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Abstract

The problem of efficient allocation of the grand coalition worth in
transferable-utility games boils down to specifying how the surplus is dis-
tributed among individuals, in the situation where the individual share is
well-defined. We show that the Individual Monotonicity axiom for Equal
Surplus, together with Efficiency and Equal Treatment, implies Egali-
tarian Surplus Sharing, while the same axiom for Equal Ratio implies
Proportional Division. The results thus illustrate the common structure
in deriving two principles of surplus distribution, egalitarian and pro-
portional, from the Individual Monotonicity axioms. We further show
that relaxation of Equal Treatment leads to Weighted Surplus Sharing
and Shifted Proportional Division, highlighting the common structure in
which Individual Monotonicity characterizes the allocations that can in-
corporate social objectives of a redistributive nature.
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1 Introduction

Monotonicity plays a crucial role in characterizing solution concepts in coop-
erative games. One of the primary examples is that the strong monotonicity,
together with the axioms of efficiency and symmetry, characterizes the Shapley
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value (Young, 1985).1 A variety of characterizations using monotonicity con-
ditions have also been obtained in the literature (Casajus and Yokote, 2019).
Weak monotonicity, for instance, leads to the egalitarian Shapley value (Joosten,
1996; van den Brink et al., 2013; Casajus and Huettner, 2014b), while grand
coalition monotonicity implies the equal division value (Casajus and Huettner,
2014b). Based on linear algebraic arguments, Yokote and Funaki (2017) provides
a unified approach, in which various combinations of monotonicity conditions
imply linear combinations of the corresponding solution concepts. In particu-
lar, they show that surplus+individual monotonicity, together with efficiency
and symmetry, characterizes the Center of Imputation Set (CIS), introduced by
Driessen and Funaki (1991).

In addition to the above result, several characterizations of the CIS value
have been explored in the literature. Two kinds of characterizations are provided
in van den Brink and Funaki (2009), one with consistency and standardness, and
another with efficiency, symmetry, linearity and weak individual rationality. The
characterization given by Casajus and Huettner (2014a) is based on the axiom of
coalition surplus monotonicity, which requires that if all zero-normalized worths
increase in coalitions that include a player, then the excess amount the player
receives over the individual worth also increases.

Our characterization is simple and constructive. Individual Monotonicity
for Equal Surplus (IMES) requires that, if a player’s individual worth increases,
the payoff of the player also increases, given that the grand coalition surplus
remains the same. Combined with the Efficiency and Equal Treatment axioms,
we obtain the CIS value. Given the simplicity of our proof technique, the
characterization is extended in several directions. First, we extend it to more
general forms of individual share, which can be considered as a legitimate claim
of each individual in the society. For instance, if the individual share is the
separable contribution, i.e., the increase in worth when she joins a coalition
and forms the grand coalition (Driessen and Funaki, 1991), then we obtain a
characterization of the egalitarian non-separable contribution (ENSC) value.
More generally, we allow the individual share to be defined by a symmetric and
affine function. The surplus is then the remainder of the grand coalition worth
net of the sum of individual shares. We show that the only solution which
satisfies the IMES, Efficiency and Equal Treatment axioms is the Egalitarian
Surplus Sharing (ESS) value. The above CIS and ENSC characterizations are
special cases when the individual share has a specific form. A remarkable feature
of our characterization results is that none of them relies on the linearity axiom.
This line of research is in line with the recent work by Nakada (2024) which
uses decision-theoretic tools to provide an explanation how linearity is derived
from monotonicity.

Furthermore, we show that the same proof technique can be applied to the
characterization of the Proportional Division by the axiom of Individual Mono-
tonicity for Equal Ratio (IMER). The proof is analogous. Instead of considering

1In the original work by Shapley (1953), the Shapley value is characterized by the axioms
of efficiency, symmetry, linearity and the null player property. The linearity axiom plays an
essential role in the proof.
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the remainder after subtracting the total individual shares from the grand coali-
tion worth, we consider the ratio after dividing the latter by the former. We
then show that the surplus should be divided proportionally. This line of char-
acterization of the Proportional Division value is novel and different from those
developed in recent papers (Zou et al., 2021, 2022; van den Brink et al., 2023).
What is remarkable in our results is the common structure in which the princi-
ples of egalitarian and proportional surplus sharing are derived by the Individual
Monotonicity axioms.

In Section 5, we provide further characterizations by dropping the Equal
Treatment axiom and requiring Homogeneity instead. By applying the same
technique again, we show that IMES characterizes the Weighted Surplus Shar-
ing (WSS), which includes Egalitarian Surplus Sharing as a special equal-weight
case. Since the WSS is written as a class of allocations obtained by a zero-sum
redistribution based on the ESS, our characterization shows that dropping sym-
metry corresponds to unequal treatment of individuals, which allows us to incor-
porate social objectives of an asymmetric nature, such as minority protection,
support for the disabled, consideration of seniority, and so on.

A novel finding is that the Proportional Division is also extended in an
analogous way. By dropping Equal Treatment, IMER characterizes the Shifted
Proportional Division, a class of allocations obtained as a zero-sum redistribu-
tion from the Proportional Division. Given that the redistribution terms are
written as proportional to the Equal Surplus and Equal Ratio respectively, our
results again highlight the central role of the Individual Monotonicity axioms
and the common structure of the characterization.

The rest of the paper is organized as follows. The characterization results
of the CIS and the ENSC, are presented in Section 2. We extend the axiom to
the individual share defined by an arbitrary affine function, and obtain charac-
terization of the Egalitarian Surplus Sharing in Section 3. Our axiom is further
extended to the Individual Monotonicity for Equal Ratio, and a characterization
of Proportional Division is obtained in Section 4. We relax the Equal Treatment
axiom and characterize Weighted Surplus Sharing and Shifted Proportional Di-
vision in Section 5. The proofs of the lemmas are relegated to the Appendix.

2 Individual Monotonicity for Equal Surplus

2.1 Preliminary

LetN = {1, 2, · · · , n} be the set of the players. Let VN =
{
v : 2N → R|v (∅) = 0

}
denote the set of all cooperative transferable utility games (TU-games) on N .
For S ⊆ N , v(S) is called the worth of coalition S. Let φ : VN → Rn be
a solution where φi (v) is the value assigned to player i ∈ N . Together with
the following axiom of Efficiency, φi (v) is also called the payoff of player i in
game v, which describes the portion of the grand coalition worth v(N) that is
allocated to player i.

Axiom 1 (Efficiency) For any v ∈ VN ,
∑

i∈N φi (v) = v (N) .
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Axiom 2 (Equal Treatment) For any v ∈ VN , and for any players i, j ∈ N
with i ̸= j, if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}, then φi(v) = φj(v).

Throughout the paper, the Efficiency axiom is required. The Equal Treat-
ment axiom is required except in Section 5, in which we examine its relaxation.

2.2 A characterization of CIS

We consider the following axiom of Individual Monotonicity for Equal Surplus.
The axiom requires that, if the surplus defined as the grand coalition worth
net of the individual worths is equal, the solution value is monotonic in the
individual worth.

Axiom 3 (Individual Monotonicity for Equal Surplus: IMES) For any
v, w ∈ VN , if

v (N)−
∑
k∈N

v ({k}) = w (N)−
∑
k∈N

w ({k})

and v ({i}) ≥ w ({i}) , then φi (v) ≥ φi (w).

Our first result is that the IMES axiom, together with Efficiency and Equal
Treatment, characterizes the Center of the Imputation Set (CIS), which is de-
fined as follows (Driessen and Funaki, 1991).

Definition 4 (CIS) The Center of the Imputation Set is:

CISi (v) = v ({i}) + 1

n

(
v (N)−

∑
k∈N

v ({k})

)
, ∀i ∈ N.

The following theorem provides a characterization of the CIS. Notice that it
does not hinge on the linearity axiom, which is often used in characterization
of the solution concepts in TU-games.

Theorem 5 A solution satisfies (Efficiency), (Equal Treatment) and (IMES),
if and only if it is the CIS value.

Before proving Theorem 5, we introduce the following axiom, Individualistic
Property for Equal Surplus (IES), which requires the solution to depend solely
on the individualistic stand-alone worth under equal surplus.

Axiom 6 (Individualistic Property for Equal Surplus: IES) For any v, w ∈
VN , if v (N) −

∑
k∈N v ({k}) = w (N) −

∑
k∈N w ({k}) and v ({i}) = w ({i}) ,

then φi (v) = φi (w).

It is straightforward to see that (IMES) implies (IES). Suppose v ({i}) =
w ({i}) . Then, obviously v ({i}) ≥ w ({i}) and v ({i}) ≤ w ({i}). Applying
(IMES) to both inequalities, we obtain φi (v) = φi (w).

Now, we prove Theorem 5.
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Proof of Theorem 5. It is obvious that (CIS) satisfies (Efficiency), (Equal
Treatment) and (IMES). To show the opposite, fix a game v ∈ VN . For each
k = 0, · · · , n, construct a game vk as follows:

vk ({i}) =
{
v ({i}) if i ≤ k
0 if i > k

(1)

for the stand-alone coalitions,

vk (S) = v (S) (2)

for all S ⊊ N with 2 ≤ |S| < n, and

vk (N) = v (N)−
n∑

i=k+1

v ({i}) (3)

for the grand coalition. Notice that for k = n, vn coincides with v. On the other
hand, v0 satisfies v0 ({i}) = 0 for all i.

Now, let uN be the N -unanimity game multiplied by a constant v0 (N) =
v (N) −

∑
i∈N v ({i}), that is, uN (S) = 0 for all S ⊊ N and uN (N) = v0 (N).

Then, (Equal Treatment) implies that φi

(
uN
)
= φj

(
uN
)
for any i, j ∈ N . By

(Efficiency), φi

(
uN
)
= v0 (N) /n for all i ∈ N . We can apply (IES) to uN and

v0, and we have φi

(
v0
)
= v0 (N) /n for all i ∈ N . By letting k = 0 in (3), we

have

φi

(
v0
)
=

1

n

(
v (N)−

∑
k∈N

v ({k})

)
. (4)

Now, for any k = 0, 1, · · · , n, (1) and (3) imply that

vk (N)−
∑
i∈N

vk ({i}) = v (N)−
∑
i∈N

v ({i}) .

Note that the sequence of games (vk)nk=0 is constructed so that they all have
the same surplus as v. In particular, fix any k ∈ N and we have

vk (N)−
∑
i∈N

vk ({i}) = vk−1 (N)−
∑
i∈N

vk−1 ({i}) .

Moreover, (1) implies that vk ({i}) = vk−1 ({i}) = 0 for any i > k, and
vk ({i}) = vk−1 ({i}) = v {i} for any i < k. Therefore, by applying (IES),
we have:

φi

(
vk
)
= φi

(
vk−1

)
for any i ̸= k. (5)

Hence,

vk (N)−
∑
i ̸=k

φi

(
vk
)
= vk (N)−

∑
i ̸=k

φi

(
vk−1

)
. (6)
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On the other hand, the sequence (vk)nk=0 is constructed so that the grand coali-
tion worth increases by the individual worth v ({k}). More precisely, using (3)
for k and k − 1, we obtain

vk−1 (N) = v (N)−
n∑

i=k

v ({i}) = vk (N)− v ({k}) . (7)

Hence, by (6) and (7),

vk (N)−
∑
i ̸=k

φi

(
vk
)
= v ({k}) + vk−1 (N)−

∑
i ̸=k

φi

(
vk−1

)
.

Then, (Efficiency) implies that

φk

(
vk
)
= v ({k}) + φk

(
vk−1

)
,∀k ∈ N. (8)

Now, for any i ∈ N , by (5) and (8),

φi (v
n) = φi

(
vi
)
= v ({i}) + φi

(
vi−1

)
= v ({i}) + φi

(
v0
)
. (9)

Remember vn = v. By (4), we have

φi (v) = v ({i}) + φi

(
v0
)

= v ({i}) + 1

n

(
v (N)−

∑
k∈N

v ({k})

)
.

This is exactly (CIS).

2.3 An analogous characterization of ENSC

The dual concept of the CIS is the ENSC, the Egalitarian Non-Separable Con-
tribution (Driessen and Funaki, 1991). In the ENSC, the non-separable contri-
bution, defined as the remaining part of the grand coalition value net of the total
separable contributions of all players, is distributed equally among all players.

Definition 7 (SC, NSC) The separable contribution of player i in game v is:

SCi (v) = v (N)− v (N\ {i}) .

The non-separable contribution of game v is:

NSC (v) = v (N)−
∑
i∈N

SCi(v).

Definition 8 (ENSC) The Egalitarian Non-Separable Contribution is defined
by:

ENSCi (v) = SCi (v) +
1

n
NSC (v) , ∀i ∈ N.
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A characterization of ENSC, analogous to Theorem 5, can be provided by
the Individual Monotonicity axiom defined over v∗, the dual of v.

Definition 9 (Dual) The dual v∗ of game v is defined by v∗ (S) = v (N) −
v (N\S), for any S ⊆ N.

In particular, v∗ ({i}) = v (N) − v (N\ {i}) ,∀i. In the following axiom, the
surplus to be shared among the players is defined by the dual of v.

Axiom 10 (IMES*) For any v, w ∈ VN , if

v (N)−
∑
k∈N

v∗ ({k}) = w (N)−
∑
k∈N

w∗ ({k})

and v∗ ({i}) ≥ w∗ ({i}) , then φi (v) ≥ φi (w).

We have the following characterization.

Theorem 11 A solution φ satisfies (Efficiency), (Equal Treatment) and (IMES*),
if and only if it is the ENSC value.

Proof. The “if” part is obvious. To show the “only if” part, notice that it is
straightforward by definition that ENSC is the dual of CIS:

ENSCi (v) = CISi (v
∗) ,∀i,∀v.

If (IMES*) is satisfied for game v, (IMES) is satisfied for game v∗. By ap-
plying Theorem 5 to v∗, we obtain φi (v) = CISi (v

∗) ,∀i,∀v. Hence, φi (v) =
ENSCi (v) .

3 Generalized individual share

In the previous section, we considered two types of individual share: the stand-
alone individual worth and the separable contribution. The surplus was defined
as the remainder after subtracting the sum of individual shares from the grand
coalition worth. Both cases are extreme in that the individual share only rep-
resents the contribution of the stand-alone coalition in the former and that to
the grand coalition in the latter.

In this section, we extend the definition of individual share using a func-
tion f that can provide more general structures in what is considered to be an
individual claim. Such a function f may represent the social consensus accord-
ing to which how much the legitimate claim of each individual should reflect
the factors such as individual contribution to the coalitions of diverse sizes.
The stand-alone coalition worth fi(v) = v({i}) and the separable contribution
fi(v) = SCi(v) are the special examples. Then, the Individual Monotonicity ax-
iom can be extended to the one requiring monotonic relationship of the payoff
with respect to the individual share defined by f .

Let f : VN → Rn be a function. Efficiency is not required on f .
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Axiom 12 (f-Individual Monotonicity for Equal Surplus: f-IMES) For
any v, w ∈ VN , if

v (N)−
∑
k∈N

fk (v) = w (N)−
∑
k∈N

fk (w)

and fi (v) ≥ fi (w) , then φi (v) ≥ φi (w).

Axiom 13 (f-Individualistic Property for Equal Surplus: f-IES) For any
v, w ∈ VN , if v (N)−

∑
k∈N fk (v) = w (N)−

∑
k∈N fk (w) and fi (v) = fi (w) ,

then φi (v) = φi (w).

It is straightforward to see that (f -IMES) implies (f -IES), by applying the
inequality in the definition of (f -IMES) to both directions.

The corresponding Egalitarian Surplus Sharing value with respect to f is
defined as follows:

Definition 14 (Egalitarian Surplus Sharing: ESS) We say that the solu-
tion φ is the Egalitarian Surplus Sharing value with respect to f , if

φi (v) = fi (v) +
1

n

(
v (N)−

∑
k∈N

fk (v)

)
,∀i ∈ N. (f -ESS)

The CIS characterization (Theorem 5) and the ENSC characterization (The-
orem 11) of the previous section are special cases of the f -ESS characterization
where fi takes a specific function of v, fi = v ({i}) and fi = v(N)− v (N\ {i}),
respectively. In this section, we pursue further generalization.

3.1 Symmetric and linear f

We first define symmetry and linearity on f . Let π be a permutation on N ,
defined as a bijection from N to itself. For any S ⊆ N, define πS := {π (i)}i∈S

and πv (πS) := v (S).

Axiom 15 (Symmetry) fπ(i) (πv) = fi (v), for any permutation π on N , in-
dividual i ∈ N and game v ∈ VN .

Axiom 16 (Linearity) f (v + w) = f (v) + f (w) and f (av) = af (v) for any
v, w ∈ VN and a ∈ R.

Theorem 17 Suppose that f satisfies (Symmetry) and (Linearity). A solution
φ satisfies (Efficiency), (Equal Treatment) and (f -IMES), if and only if it is
the ESS value.

We use the following lemmas in the proof.
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Lemma 18 If f satisfies (Symmetry) and (Linearity), then there exist con-

stants
(
αk
)n
k=1

∈ Rn and
(
βk
)n−1

k=1
∈ Rn−1 such that

fi (v) =
∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S) . (10)

Lemma 19 Let i ∈ N and S ⊆ N . Define a matrix as follows:

A = (aiS)i∈N,1≤|S|<n

where

aiS =

{
α|S| if i ∈ S,
β|S| if i /∈ S.

If there exists k ∈ {1, 2, · · · , n− 1} such that αk ̸= βk, then the matrix A has a
full rank n.

The proofs of Lemmas 18 and 19 are relegated to the Appendix.

Proof of Theorem 17. The “if” part is obvious. We show the “only if” part.
By Lemma 18, we have

fi (v) =
∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S) . (11)

First, suppose αj = βj for all j ∈ {1, 2, · · · , n− 1}. Then, (11) becomes

fi (v) =
∑
S⊆N

α|S|v (S) ,

and thus all (fi)i∈N are identical. Then, by (f -IES), all (φi)i∈N are equal.
Only the equal division is the solution, which trivially satisfies (f -ESS). In the
following, suppose ∃j ∈ {1, 2, · · · , n− 1} such that αj ̸= βj .

For i, k ∈ N , let
f̂i,k (v) = fi (v) · 1 (i ≤ k) , (12)

where 1 (·) is the characteristic function, which takes the value 1 if the inside
of the bracket is true and 0 otherwise. We construct a sequence of games
v0, v1, · · · , vn such that, for k = 0, 1, · · · , n,

fi
(
vk
)

= f̂i,k (v) , ∀i, and (13)

vk (N) = v (N)−
∑
i>k

fi (v) . (14)

For k = n, (13) and (14) are satisfied by letting vn = v. Now, fix k ∈
{0, 1, · · · , n− 1}. Here, the challenge is that we need to show the existence
of a game vk which satisfies (13) and (14). Since (14) can be trivially satisfied
by seeing it as a definition of the grand coalition value of game vk, the variables
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to be determined are
(
vk (S)

)
1≤|S|<n

, and there are 2n − 2 of them. Since (11)

should hold for all i, the values of
(
vk (S)

)
1≤|S|<n

should satisfy:∑
S∋i

α|S|vk (S) +
∑
S ̸∋i

β|S|vk (S) = f̂i,k (v) ,∀i. (15)

There are n equations (for each i ∈ N) in (15), which are equivalent to:∑
S∋i,S⊊N

α|S|vk (S) +
∑
S ̸∋i

β|S|vk (S) = f̂i,k (v)− αnvk (N) ,∀i. (16)

By regarding it as a system of linear equations, define a matrix as follows:

A = (aiS)i∈N,1≤|S|<n

where

aiS =

{
α|S| if i ∈ S,
β|S| if i /∈ S.

Letting v =
(
vk (S)

)
1≤|S|<n

and b =
(
f̂i,k (v)− αnvk (N)

)
i∈N

, (16) is equiva-

lent to:
Av = b. (17)

Notice that b is fully determined by v and f , since vk (N) is fixed by (14).
Therefore, a sufficient condition for the existence of a solution v in (17) is that
the matrix A of size n× (2n − 2) has a full rank n.

Remember that ∃j ∈ {1, 2, · · · , n− 1} such that αj ̸= βj . By Lemma 19, A
has full rank n. Then, for any b, there exists at least one solution v in (17),
which guarantees that there exists a game vk which satisfies both (13) and (14),
for each k ∈ {0, 1, · · · , n− 1}.

By (12), (13) and (14),

vk (N)−
∑
i∈N

fi
(
vk
)
=

(
v (N)−

∑
i>k

fi (v)

)
−
∑
i≤k

fi (v) = v (N)−
∑
i∈N

fi (v) .

Notice that the last part is independent of k. Hence, for k = 1, 2, · · · , n, we
have:

vk (N)−
∑
i∈N

fi
(
vk
)
= vk−1 (N)−

∑
i∈N

fi
(
vk−1

)
.

Also by (13), we have fi
(
vk
)
= fi

(
vk−1

)
for all i ̸= k. Hence, we can apply

(f -IES) to vk and vk−1, and obtain

φi

(
vk
)
= φi

(
vk−1

)
for all i ̸= k. (18)

Then, for i ∈ N, {
φi (v

n) = φi

(
vn−1

)
= · · · = φi

(
vi
)
,

φi

(
vi−1

)
= φi

(
vi−2

)
= · · · = φi

(
v0
)
.

(19)
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Now, consider v0. By (12) and (13), we have fi
(
v0
)
= f̂i,0 (v) = 0, for i ∈ N .

By (f -IES), (Equal Treatment) and (Efficiency), the unique solution of v0 is the
equal division. Therefore, by (14),

φi

(
v0
)
=

1

n

(
v (N)−

∑
k∈N

fk (v)

)
,∀i. (20)

Now, consider any k ∈ N . By (Efficiency),

vk (N) =
∑
i∈N

φi

(
vk
)
= φk

(
vk
)
+
∑
i ̸=k

φi

(
vk
)
,

vk−1 (N) =
∑
i∈N

φi

(
vk−1

)
= φk

(
vk−1

)
+
∑
i ̸=k

φi

(
vk−1

)
.

By (18) and (19),

vk (N)− vk−1 (N) = φk

(
vk
)
− φk

(
vk−1

)
= φk (v

n)− φk

(
v0
)
.

By (14),
vk (N) = vk−1 (N) + fk (v) .

Hence,
fk (v) = φk (v

n)− φk

(
v0
)
.

Since vn = v,
φk (v) = fk (v) + φk

(
v0
)
.

By (20), we obtain:

φk (v) = fk (v) +
1

n

(
v (N)−

∑
i∈N

fi (v)

)
,

which is exactly (f -ESS).

Remark 20 Suppose α̂S = 1 (|S| = 1) , and β̂S = 0,∀S. Then, fi (v) =
v ({i}),∀i, v. This corresponds to the (CIS) characterization in Theorem 5. Sup-

pose α̂S = 1 (S = N) , and β̂S = −1 (|S| = n− 1). Then, fi (v) = v∗ ({i}) =
v (N) − v (N\ {i}),∀i, v. This corresponds to the (ENSC) characterization in
Theorem 11. Moreover, by letting fi be any linear combination of v ({i}) and
v∗ ({i}), we obtain a characterization of the linear combination of the CIS and
the ENSC.

In addition, when the linear requirement for f is replaced by affinity, we can
show that, the solution which satisfies Efficiency and Individual Monotonicity
is invariant with respect to the constant term of the affinity condition.
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Axiom 21 (Affinity) For any i, fi (v) is an affine function of {v (S)}S⊆N ,

that is, there exist constants
(
α̂S , β̂S

)
S⊆N

and γ such that

fi (v) =
∑
S∋i

α̂Sv (S) +
∑
S ̸∋i

β̂Sv (S) + γ. (Aff)

Proposition 22 Suppose that f satisfies (Symmetry) and (Affinity). A solu-
tion φ satisfies (Efficiency), (Equal Treatment) and (f -IMES), if and only if
it is the ESS value. Moreover, the solution is invariant with respect to γ, the
constant term in the Affinity axiom.

Proofs of the propositions in this section are relegated to the Appendix.

3.2 Characterization of the f-ESS family

In the previous subsection, we have first fixed a specific individual share repre-
sented by a linear and symmetric function f , and then provided a characteriza-
tion of the f -ESS solution. Instead, we provide here a full characterization of
the f -ESS family, the set of all solutions that can be obtained as a result of the
egalitarian surplus sharing from some individual share f .

First, if no restriction is imposed on f , the answer becomes trivial. Any
efficient solution φ can be written as an f -ESS by regarding φ itself as f . On
the other hand, any f -ESS solution is efficient by definition. Therefore, the set
of solutions which can be written as an f -ESS by any f coincides with the set
of all efficient values.

Second, if f is restricted to be linear, the answer is straightforward: a so-
lution φ is the f -ESS for some linear f , if and only if φ is efficient and linear.
This follows from linearity of (f -ESS) in Definition 14.2

Now, suppose that f is linear and symmetric. Then, the set of f -ESS so-
lutions turns out to include known values such as CIS, ENSC and the Equal
Division. To provide a full description of the result, define a sequence of solu-
tions

(
ψk
)n
k=1

as follows:

Definition 23 For each k, define ψk : VN → Rn by:

ψk
i (v) =

(
1− k

n

) ∑
S:|S|=k,S∋i

v (S)

− k

n

 ∑
S:|S|=k,S ̸∋i

v (S)

+
1

n
v (N) . (21)

In particular, note that ψ1 coincides with the CIS, ψn−1 coincides with
the ENSC, and ψn coincides with the Equal Division: EDi(v) = v(N)/n ∀i,∀v.
Note also that ψk satisfies the following axiom if and only if k = 1 and k = n−1:
φi(v) = v(i) ∀i, for any v such that v(S) =

∑
i∈S v(i) ∀S ⊆ N .

2A formal statement and its proof are relegated to the Appendix
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Proposition 24 There exists a linear and symmetric function f : VN → Rn

such that a solution φ is f -ESS, if and only if φ is written as an affine combina-
tion of

(
ψk (v)

)n
k=1

, that is, there exist coefficients
(
λk
)n
k=1

such that
∑n

k=1 λ
k =

1 and

φ (v) =

n∑
k=1

λkψk (v) . (22)

The set of solutions described by (22) coincides with the set of all efficient,
linear and symmetric solutions (Ruiz et al. (1998), Lemma 9).

As can be seen from these propositions, the process of deriving an efficient
solution φ by ESS from an arbitrary individual share f can be viewed as an
efficient extension operator using the principle of egalitarian surplus sharing.
Further discussion on the characterization of extension operators is beyond the
scope of the current paper and readers are invited to refer to Funaki et al.
(2024).

4 Individual Monotonicity for Equal Ratio

4.1 A characterization of Proportional Division

The IMES axiom can be extended to the one which requires monotonicity with
respect to the equal ratio, rather than the equal surplus. We then obtain a
characterization of the Proportional Division value. To see that, consider the
following class of games with positive individual worths:

VN
+ :=

{
v ∈ VN

∣∣∣∣∣∑
k∈N

v ({k}) > 0

}
.

Axiom 25 (Individual Monotonicity for Equal Ratio: IMER) For any
v, w ∈ VN

+ , if
v (N)∑

k∈N v ({k})
=

w (N)∑
k∈N w ({k})

and v ({i}) ≥ w ({i}) , then φi (v) ≥ φi (w).

It is straightforward to see that if φ satisfies (IMER), then it also satisfies the
Individualistic Property for Equal Ratio (IER).

Axiom 26 (Individualistic Property for Equal Ratio: IER) For any v, w ∈
VN
+ , if

v (N)∑
k∈N v ({k})

=
w (N)∑

k∈N w ({k})

and v ({i}) = w ({i}) , then φi (v) = φi (w).

The Proportional Division is defined as follows.
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Definition 27 (PD) The Proportional Division value is defined as:

φi (v) =
v ({i})∑

k∈N v ({k})
v (N) , ∀i ∈ N. (PD)

Theorem 28 A solution φ satisfies (Efficiency), (Equal Treatment) and (IMER),
if and only if it is the PD value.

Proof. It is obvious that (PD) satisfies (Efficiency), (Equal Treatment) and
(IMER). To show the opposite, fix a game v ∈ VN

+ .
For each k = 0, · · · , n, construct a game vk as follows:

vk ({i}) =
{
v ({i}) if i ≤ k
1 if i > k

(23)

for the stand-alone coalitions,

vk (S) = v (S) (24)

for all S ⊊ N with 2 ≤ |S| < n, and

vk (N) =

∑
i≤k v ({i}) + n− k∑

i∈N v ({i})
v (N) (25)

for the grand coalition. Notice that vn = v. On the other hand, v0 satisfies
v0 ({i}) = 1 for all i.

Now, define a game uN by uN (S) = 1 for all S ⊊ N and uN (N) = v0 (N).
Then, (Equal Treatment) implies that φi

(
uN
)
= φj

(
uN
)
for any i, j ∈ N . By

(Efficiency), φi

(
uN
)
= v0 (N) /n for all i ∈ N . We can apply (IES) to uN and

v0, and we have φi

(
v0
)
= v0 (N) /n for all i ∈ N . By letting k = 0 in (25), we

have

φi

(
v0
)
=

v (N)∑
k∈N v ({k})

. (26)

Now, notice that, for any k = 0, 1, · · ·n, (23) and (25) imply that

vk (N)∑
i∈N vk ({i})

=
vk (N)∑

i≤k v ({i}) + n− k
=

v (N)∑
i∈N v ({i})

.

Therefore, fix any k ∈ N and we have

vk (N)∑
i∈N vk ({i})

=
vk−1 (N)∑

i∈N vk−1 ({i})
.

Moreover, (23) implies that vk ({i}) = vk−1 ({i}) = 1 for any i > k, and
vk ({i}) = vk−1 ({i}) = v ({i}) for any i < k. Therefore, by applying (IER), we
have:

φi

(
vk
)
= φi

(
vk−1

)
for any i ̸= k. (27)
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Therefore,

vk (N)−
∑
i ̸=k

φi

(
vk
)
= vk (N)−

∑
i̸=k

φi

(
vk−1

)
. (28)

By (25), we have

vk (N) =

∑
i≤k v ({i}) + n− k∑

i∈N v ({i})
v (N) ,

vk−1 (N) =

∑
i≤k−1 v ({i}) + n− (k − 1)∑

i∈N v ({i})
v (N) .

Hence,

vk (N)− vk−1 (N) =
v ({k})− 1∑
i∈N v ({i})

v (N) ,

that is,

vk (N) = vk−1 (N) +
v ({k})− 1∑
i∈N v ({i})

v (N) (29)

Plugging in (29) into the right-hand side of (28), we obtain

vk (N)−
∑
i̸=k

φi

(
vk
)
= vk−1 (N) +

v ({k})− 1∑
i∈N v ({i})

v (N)−
∑
i ̸=k

φi

(
vk−1

)
.

By (Efficiency), we have vk (N) −
∑

i ̸=k φi

(
vk
)

= φk

(
vk
)
and vk−1 (N) −∑

i ̸=k φi

(
vk−1

)
= φk

(
vk−1

)
. Hence,

φk

(
vk
)
=

v ({k})− 1∑
i∈N v ({i})

v (N) + φk

(
vk−1

)
. (30)

Now, for any i ∈ N , by (27) and (30),

φi (v
n) = φi

(
vi
)
=

v ({i})− 1∑
k∈N v ({k})

v (N)+φi

(
vi−1

)
=

v ({i})− 1∑
k∈N v ({k})

v (N)+φi

(
v0
)
.

Remember vn = v. By (26), we have:

φi (v) =
v ({i})− 1∑
k∈N v ({k})

v (N) + φi

(
v0
)

=
v ({i})− 1∑
k∈N v ({k})

v (N) +
v (N)∑

k∈N v ({k})

=
v ({i})∑

k∈N v ({k})
v (N) .

This is exactly (PD).
Readers may notice that the structure of the proof is analogous to that

of Theorem 17 in the previous section, where Egalitarian Surplus Sharing is
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characterized by the IMES axiom. The resulting allocation becomes the PD
value, if the axiom is replaced by that of IMER. Our proofs illustrate that the
difference stems from the way in which the surplus is distributed. The difference
of requiring IMES and IMER is reflected to the way whether the surplus is
distributed additively or proportionally.

4.2 IMER with respect to f

We generalize the axiom of Individual Monotonicity for Equal Ratio with respect
to the individual share defined by an arbitrary log-linear function f . For this
purpose, we consider the following class of games with positive coalition worths:

VN
++ :=

{
v ∈ VN |v (S) > 0, ∀S ⊆ N,S ̸= ∅

}
.

We consider the set of positive individual shares F+ :=
{
f : VN

++ → Rn
+

}
.

Axiom 29 (f-Individual Monotonicity for Equal Ratio: f-IMER) Fix f ∈
F+. For any v, w ∈ VN

++, if

v (N)∑
k∈N fk (v)

=
w (N)∑

k∈N fk (w)

and fi (v) ≥ fi (w), then φi (v) ≥ φi (w).

Suppose that the function f satisfies symmetry (Axiom 15) and the following
log-linearity.

Axiom 30 (Log-linearity) For any i, fi (v) is a log-linear function of {v (S)}S⊆N ,

that is, there exist constants
(
α̂S , β̂S

)
S⊆N,S ̸=∅

such that

fi (v) =
∑
S∋i

α̂S log v (S) +
∑

S ̸∋i,S ̸=∅

β̂S log v (S) .

We first show the following lemma.

Lemma 31 If f satisfies (Symmetry) and (Log-linearity), then there exist con-

stants
(
αk
)n
k=1

∈ Rn and
(
βk
)n−1

k=1
∈ Rn−1 such that

fi (v) =
∑
S∋i

α|S| log v (S) +
∑

S ̸∋i,S ̸=∅

β|S| log v (S) . (31)

Proof. The proof is entirely analogous to that of Lemma 18. We obtain the
result by replacing v (S) with log v (S).

The Proportional Division value with respect to f is defined as follows:
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Definition 32 (f-PD) The Proportional Division value with respect to f is:

φi (v) =
fi (v)∑

k∈N fk (v)
v (N) . (f -PD)

Theorem 33 Suppose that f ∈ F+ satisfies (Symmetry) and (Log-linearity).
A solution φ satisfies (Efficiency), (Equal Treatment) and (f -IMER), if and
only if it is the f -PD value.

Proof. The “if” part is obvious. We prove the “only if” part. By Lemma 31, f
satisfies (31). Then, as in the proof of Theorem 17, we can construct a sequence
of games v0, v1, · · · , vn = v such that

fi
(
vk
)
=

{
fi (v) if i ≤ k
1 if i > k

(32)

and

vk (N) =

∑
i≤k fi (v) + n− k∑

i∈N fi (v)
v (N) (33)

for k = 0, 1, · · · , n.
Then, for k = 1, · · · , n, we can apply (f -IMER) to vk and vk−1, and obtain

that
φi

(
vk
)
= φi

(
vk−1

)
for any i ̸= k.

By (Efficiency),

φk

(
vk
)
= φk

(
vk−1

)
+
(
vk (N)− vk−1 (N)

)
.

Therefore,
φk (v) = φk

(
v0
)
+
(
vk (N)− vk−1 (N)

)
.

As in the proof of Theorem 28, apply (Efficiency) and (Equal Treatment) to
v0 and we obtain φi

(
v0
)
= v0 (N)/n for all i ∈ N . Letting k = 0 in (33), we

have:

φk

(
v0
)
=

v (N)∑
i∈N fi (v)

.

Also by (33),

vk (N)− vk−1 (N) =
fk (v)− 1∑
i∈N fi (v)

v (N) .

Therefore, we obtain:

φk (v) =
v (N)∑
i∈N fi (v)

+
fk (v)− 1∑
i∈N fi (v)

v (N)

=
fk (v)∑
i∈N fi (v)

v (N) ,

which is exactly equal to (f -PD).
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By Definition 32, it is straightforward to see that the f -PD value is written
as the sum of the following two terms:

φi(v) = fi(v) +
fi(v)∑

k∈N fk(v)

(
v(N)−

∑
k∈N

fk(v)

)
. (34)

This means that the f -PD allocation can be seen as the proportional distribution
of the surplus, defined as the grand coalition worth net of the sum of individual
shares specified by f . Each individual i first receives the individual share fi and
the remaining surplus is shared proportionally to fi.

5 Characterization without Equal Treatment

We have required Equal Treatment as an axiom that brings symmetry among
individuals in all the characterization results obtained in the previous sections.
By dropping the requirement for Equal Treatment of individuals in society, the
solution concept can incorporate social objectives of an asymmetric nature. In
this section, we consider characterization of the solutions without the Equal
Treatment axiom.

5.1 Weighted Surplus Sharing

We first drop the Equal Treatment axiom used in the characterization of the
Egalitarian Surplus Sharing. We consider the Homogeneity axiom instead.

Axiom 34 (Homogeneity: H) For any λ ∈ R and any game v ∈ VN , φ (λv) =
λφ (v) , where λv is the game in which all coalition worths of v are multiplied
by λ.

Recall that the surplus is shared equally among all individuals in the ESS.
Instead, we consider Weighted Surplus Sharing (WSS), in which the surplus is
shared in proportion to a constant weight which sums up to one (Kongo, 2019;
Yang et al., 2019). More precisely, WSS is defined as follows:

Definition 35 (Weighted Surplus Sharing: WSS) A solution φ is a Weighted
Surplus Sharing value, if there exists a constant vector a = (ai)i∈N satisfying∑

i∈N ai = 1, such that

φi (v) = v ({i}) + ai

(
v (N)−

∑
k∈N

v ({k})

)
, ∀i ∈ N, ∀v ∈ VN . (WSS)

The ESS value is a special case of WSS in which ai = 1/n for all i. Also,
notice that we do not impose the restriction of ai ≥ 0,∀i ∈ N , although the
weight is often assumed to be non-negative in the literature (Kongo, 2019; Yang
et al., 2019). The reason is that we do not exclude general forms of surplus
sharing, in which certain individuals are taxed in order to achieve a desirable
redistribution. The following theorem provides a characterization of WSS.
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Theorem 36 The solution φ satisfies (Efficiency), (IMES) and (H) if and only
if it is a WSS value.

Proof. Suppose φ is a WSS. Then, (Efficiency), (IMES) and (H) are obviously
satisfied.

To show the opposite, fix a game v ∈ VN . Define a sequence of games(
vk
)n
k=0

as in (1), (2) and (3). Then, v0 ({i}) = 0 for all i ∈ N .

Now, let uN be the standard N -unanimity game, that is, uN (S) = 1 if
S = N , and uN (S) = 0 otherwise. Define a game w := v0 (N)uN . Then,
w(N) = v0(N) and w ({i}) = 0 for all i ∈ N . Hence, we have:

v0 (N)−
∑
k∈N

v0 ({k}) = w (N)−
∑
k∈N

w ({k})

and v0 ({k}) = w ({k}) = 0 for all k ∈ N . Therefore, we can apply (IMES) to
obtain that

φk

(
v0
)
= φk (w) ,∀k ∈ N.

By (H), φk (w) = v0 (N)φk

(
uN
)
. Letting ak := φk

(
uN
)
, we have:

φk

(
v0
)
= v0 (N) ak,∀k ∈ N. (35)

On the other hand, exactly in the same way as in the proof of Theorem 5,
(1), (2) and (3), together with (Efficiency) and (IMES) imply (9), that is,

φi (v
n) = v ({i}) + φi

(
v0
)
, ∀i ∈ N .

Remember vn = v. By (3) and (35),

φi (v) = v ({i}) + v0 (N) ai

= v ({i}) + ai

(
v (N)−

∑
k∈N

v ({k})

)
.

This is exactly (WSS) with ai = φi

(
uN
)
.

In Theorem 36, we have extended the set of characterized allocations from
ESS to WSS by dropping Equal Treatment and requiring Homogeneity instead.
Note that Homogeneity is independent of Equal Treatment. Readers may have
noticed that the Homogeneity axiom is applied only to the unanimity game in
the proof, and thus the requirement of Homogeneity is more than necessary.
Such an intuition is correct. However, we have stated Theorem 36 using the
Homogeneity axiom, because we believe it is sensible for an axiomatization
theory to deliver axioms which are natural and easy to interpret.

On the other hand, if one aims to understand more precisely the mathemat-
ical boundary up to which one can relax the axioms in the characterization of
ESS and WSS, further investigation would be useful.

The following axiom requires homogeneity of the solution only among the
unanimity games.
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Axiom 37 (Weak Homogeneity: WH) For any λ ∈ R, φ
(
λuN

)
= λφ

(
uN
)
.

By definition, if a solution satisfies Homogeneity, it also satisfies WH. It is also
obvious that Homogeneity is satisfied by both ESS and WSS. Moreover, Equal
Treatment implies Weak Homogeneity, under Efficiency. Therefore, characteri-
zation of WSS is obtained if (H) is replaced by (WH) in Theorem 36, which is
a slightly more powerful statement.

In the same vein, we can consider the following axiom between Equal Treat-
ment and Weak Homogeneity (van den Brink, 2007):

Axiom 38 (Weak Symmetry: WS) For every v ∈ VN , if v(S∪{i}) = v(S∪
{j}), ∀S ⊆ N\{i, j}, ∀i, j ∈ N with i ̸= j, then there exists a constant c ∈ R
such that φi(v) = c for all i ∈ N .

By definition, it is straightforward to see that the requirement of Weak
Symmetry is weaker than that of Equal Treatment, i.e., if a solution satisfies
Equal Treatment, then it also satisfies WS. Since Equal Treatment is applied
only to the unanimity games in the proofs of Theorems 5, 11, 17 and Proposition
22, we obtain all the characterizations in these claims, by weakening Equal
Treatment to Weak Symmetry.

In turn, under the assumption of Efficiency, Weak Symmetry implies Weak
Homogeneity, i.e., if a solution satisfies Efficiency and WS, then it also satisfies
WH. Therefore, the proof of Theorem 36 also indicates that a characterization
boundary between ESS and WSS lies between the requirement of Weak Symme-
try and that of Weak Homogeneity. The relationship is summarized in Figure
1.

Figure 1: Relaxation of Equal Treatment (Efficiency is assumed).

5.2 Shifted Proportional Division

An analogous extension can be applied to the characterization of the Propor-
tional Division value. Instead of Equal Treatment, we require Grand Coalition
Homogeneity. For any game v ∈ VN

+ , let vλ be the game in which the grand
coalition worth is multiplied by λ ∈ R+, while the worth v (S) remains the same
for all other coalitions S ⊊ N .

Axiom 39 (Grand Coalition Homogeneity: GCH) For any game v ∈ VN
+

and any λ ∈ R+, φ
(
vλ
)
= λφ (v).
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Definition 40 (Shifted Proportional Division: SPD) We say that φ is a
Shifted Proportional Division value, if ∃ (bi)i∈N such that

∑
i bi = 0 and

φi (v) =
v ({i}) + bi∑
k∈N v ({k})

v (N) , ∀i ∈ N. (SPD)

Theorem 41 A solution satisfies (Efficiency), (IMER) and (GCH), if and only
if it is a SPD value.

Proof. The “if” part is obvious. We prove the “only if” part.
Define a sequence of games

(
vk
)n
k=0

as follows. For each k = 0, · · · , n, let
vk (N) =

∑
j≤k v({j})+n−k∑

j∈N v({j}) v (N) ,

vk ({i}) =
{
v ({i}) if i ≤ k
1 if i > k

,

vk (S) = v (S) if 1 < |S| < n.

(36)

In particular for k = 0, we have:{
v0 (N) = n∑

j∈N v({j})v (N) ,

v0 ({i}) = 1,∀i ∈ N.

Note also that vn = v. Furthermore, the sequence is constructed so that

vk (N)∑
j∈N vk ({j})

=
v (N)∑

j∈N v ({j})
for all k = 0, · · · , n.

and
vk ({i}) = vk−1 ({i}) for all k = 1, · · · , n and i ̸= k.

Therefore, we can apply (IMER) to vk and vk−1, and obtain:

φi

(
vk
)
= φi

(
vk−1

)
for all k = 1, · · · , n and i ̸= k. (37)

In particular, for each k = 1, · · · , n, we have:

φk

(
vk
)
= φk (v

n) and φk

(
vk−1

)
= φk

(
v0
)
. (38)

Now, let w defined by w(S) = 1 for all nonempty S ⊆ N , and let ai = φi (w)
for all i ∈ N . By (Efficiency),

∑
i∈N ai = 1. Consider the game wλ with

λ = v0 (N). Then, by (GCH), φi

(
wλ
)
= λφi (w) = λai = aiv

0 (N) ,∀i ∈ N .
Since v0(N) = wλ(N) and v0 ({i}) = wλ ({i}) = 1,∀i ∈ N , we can apply
(IMER) to v0 and wλ and obtain φi

(
v0
)
= φi

(
wλ
)
,∀i ∈ N . Hence,

φi

(
v0
)
= φi

(
wλ
)
= aiv

0 (N) =
ain∑

j∈N v ({j})
v (N) ,∀i ∈ N. (39)
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By (Efficiency),

vk (N) =
∑
i∈N

φi

(
vk
)
= φk

(
vk
)
+
∑
i ̸=k

φi

(
vk
)
,

vk−1 (N) =
∑
i∈N

φi

(
vk−1

)
= φk

(
vk−1

)
+
∑
i ̸=k

φi

(
vk−1

)
.

By (37), the last terms of the above equations are equal. Hence,

vk (N)− vk−1 (N) = φk

(
vk
)
− φk

(
vk−1

)
.

By (38),
vk (N)− vk−1 (N) = φk (v

n)− φk

(
v0
)
.

Remember vn = v and by (39),

φk (v) = vk (N)− vk−1 (N) + φk

(
v0
)

= vk (N)− vk−1 (N) +
akn∑

j∈N v ({j})
v (N) .

On the other hand, by construction (36),

vk (N)− vk−1 (N) =
v (k)− 1∑
j∈N v ({j})

v (N) .

Hence,

φk (v) =
v (k)− 1 + akn∑

j∈N v ({j})
v (N) .

By letting bk = akn−1, we have
∑

k∈N bk = n
∑

k∈N ak−n = 0, and we obtain
the result.

Grand Coalition Homogeneity is independent of the Equal Treatment axiom.
Indeed, the requirement of GCH is stronger than what is necessary for charac-
terizing the SPD. To see how far we can relax Equal Treatment, let us consider
the following axiom analogous to the Weak Homogeneity defined above. For
λ ∈ R+, let ũλ be the game such that:

ũλ (S) =

{
1 if S ̸= N, ∅
λ if S = N

.

Axiom 42 (Weak Grand Coalition Homogeneity: WGCH) For λ ∈ R+, φ
(
ũλ
)
=

λφ
(
ũ1
)
.

If a solution satisfies GCH, then it also satisfies WGCH. Since GCH is applied
only to the game w in the proof of Theorem 41, we immediately have the
following characterization:

Proposition 43 A solution satisfies (Efficiency), (WGCH) and (IMER), if
and only if it is a SPD value.

Note that if a solution satisfies Equal Treatment and Efficiency, it also satisfies
WGCH. Our results therefore indicate how far the Equal Treatment axiom can
be relaxed so that the set of characterized solutions expands from PD to SPD.
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5.3 Interpretation of the weakening of ET

We have seen above that the set of characterized solutions is expanded from
the ESS to the WSS when the Equal Treatment axiom is relaxed. It is worth
emphasizing that the WSS can be written as a shifted allocation based on the
ESS. To see that, let bi := ai − 1/n, ∀i ∈ N in (WSS). Then, we have:

WSSi (v) = v ({i}) +
(
1

n
+ bi

)(
v (N)−

∑
k∈N

v ({k})

)

= ESSi (v) + bi

(
v (N)−

∑
k∈N

v ({k})

)
.

Similarly, the Shifted Proportional Division can be written as:

SPDi (v) =
v ({i}) + bi∑
k∈N v ({k})

v (N) .

= PDi (v) + bi
v (N)∑

k∈N v ({k})
.

In both cases, the vector of coefficients b = (bi)i∈N satisfies
∑

i bi = 0, and b = 0
is the special case in which the Equal Treatment axiom is satisfied. Therefore,
relaxing the Equal Treatment axiom corresponds to an adjustment by a zero-
sum transfer proportional to the vector b, which is fixed and applied to all games
v.

Our results thus imply that the extended sets of allocations can incorpo-
rate social objectives of an asymmetric nature, such as redistribution, minority
protection, support for the disabled, consideration of seniority, and so on. The
coefficient vector b is fixed exogeneously in each society, but the same b is ap-
plied to all games v. As seen from the expressions above, the resulting allocation
is written as a redistribution based on the Egalitarian Surplus Sharing or the
Proportional Division, which represents the egalitarian or proportional prin-
ciple, respectively. What is common in both cases is the structure in which
relaxation of the Equal Treatment axiom leads to the redistribution term in
the above expressions. Notice that the term multiplied by bi corresponds to
the equal surplus and the equal ratio, specified in the Individual Monotonicity
axiom, respectively. Our characterization results thus highlight the common
structure in the characterization of ESS and PD, and the central role played by
the Individual Monotonicity axioms.

6 Conclusional remarks

In this paper, we provide a characterization of the Center of the Imputation Set
value using the axioms of Individual Monotonicity for Equal Surplus, Efficiency
and Equal Treatment. We show that the characterization is extended to the
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Egalitarian Surplus Sharing, by defining surplus as the remainder of the grand
coalition worth after subtracting the sum of the individual shares specified by
any symmetric and affine function. Our characterization demonstrates that the
three axioms lead to the egalitarian allocation principle, according to which
each individual receives the sum of the two terms, the individual share and the
egalitarian share of the surplus.

When the Individual Monotonicity axiom is required for Equal Ratio, again
combined with the Efficiency and Equal Treatment, we obtain the proportional
principle, according to which each individual receives the payoff proportional
to the individual share. The main structure is the same: what each individual
receives is the sum of the two terms, the individual share itself and the portion
of the surplus distributed proportionally to the individual share. Our character-
ization thus highlights the essential role of the Individual Monotonicity axioms
played in the characterization of two allocational principles.

We then relax the Equal Treatment axiom and show that the set of charac-
terized allocations is extended to the Weighted Surplus Sharing and the Shifted
Proportional Division, respectively. These allocations can be written as the
result of a zero-sum redistribution based on Egalitarian Surplus Sharing and
the Proportional Division respectively. Our result therefore explicitly demon-
strate how the relaxation of Equal Treatment corresponds to the redistribution
term in the resulting allocation. It turns out that redistribution is proportional
to the equal surplus and equal ratio specified in the Individual Monotonicity
axioms. Consequently, our results suggest that integrating social objectives of
an asymmetric nature boils down to how to redistribute the equal surplus and
equal ratio, while the remainder is allocated according to the two allocational
principles also induced by the Individual Monotonicity axioms.

Our results are applicable to the discussion on the efficient allocation where
there is a social agreement concerning the individual share which does not neces-
sarily satisfy efficiency. For example, Banzhaf index is a semivalue which reflects
individual’s influence on the social outcome, and does not satisfy efficiency in
general. In the commonly used normalization, the surplus is distributed pro-
portionally to the individual share. While characterizations of the normalized
Banzhaf value are available in the literature (van den Brink and van der Laan,
1998), our characterization provides a common ground for the analysis of pro-
portional and egalitarian surplus sharing. Although the direct comparison of
two types of normalization based on the common feature of Individual Mono-
tonicity axioms is intriguing, further analysis is beyond the scope of the current
paper and we leave it for future research.
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A Appendix

A.1 Proof of Lemmas

Proof of Lemma 18. By Theorem 1 of Weber (1988), linearity of f implies
that there exists a set of constants

(
αS
i

)
i∈N,S⊆N

such that:

fi (v) =
∑
S⊆N

αS
i v (S) ,∀i ∈ N, ∀v ∈ VN . (40)

We first show the following claim.

Claim 44 Suppose that f satisfies (Symmetry) and (Linearity). Then, there

exists a set of constants
(
α̂S , β̂S

)
S⊆N

such that:

fi (v) =
∑
S∋i

α̂Sv (S) +
∑
S ̸∋i

β̂Sv (S) ,∀i ∈ N, ∀v ∈ VN . (41)

Proof of Claim 44. (Symmetry) implies the following (Equal Treatment) on
f : if v (S ∪ {i}) = v (S ∪ {j}) ,∀S ⊆ N\ {i, j} , then fi (v) = fj (v).

Take an arbitrary S ⊆ N. Consider a game v such that v (S) ̸= 0 and v (T ) =
0 for all T ̸= S, T ⊆ N . Then, by (40), fi (v) = αS

i v (S) and fj (v) = αS
j v (S) .

Now, suppose that there exist two players i and j (̸= i) such that i, j ∈ S.
By applying (Equal Treatment) to v and (i, j), we obtain fi (v) = fj (v) , which
implies αS

i = αS
j . This holds for any i, j ∈ S. Similarly, suppose that there exist

two players i and j (̸= i) such that i, j /∈ S. Again, we apply (Equal Treatment)
to v and (i, j), and obtain fi (v) = fj (v), which implies αS

i = αS
j . This holds

for any i, j /∈ S.
Now, for each S ⊆ N , replace αS

i by α̂S for any i such that i ∈ S, and by

β̂S for any i such that i /∈ S. From (40), we obtain (41).
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In order to proceed with the proof of Lemma 18, fix a permutation π. Take
any i, j ∈ N such that π (i) = j. Then, by (Symmetry),

fi (v) = fπ(i) (πv) = fj (πv) ,∀v. (42)

Apply (Linearity) to fj (πv) , and we have:

fj (πv) =
∑
S∋j

α̂Sπv (S) +
∑
S ̸∋j

β̂Sπv (S) . (43)

Since πv (πS) = v (S) by definition, (43) is equal to:∑
S∋j

α̂Sv
(
π−1 (S)

)
+
∑
S ̸∋j

β̂Sv
(
π−1 (S)

)
. (44)

For each S such that S ∋ j, let S′ = π−1 (S\ {j}) ∪ {i}. Since π (i) = j,
this induces a bijection from {S|S ∋ j} to {S′|S′ ∋ i}. Moreover, π (S′) = S.
Therefore, the first term of (44) becomes:∑

S∋j

α̂Sv
(
π−1 (S)

)
=
∑
S′∋i

α̂π(S′)v (S′) .

Similarly, by setting S′′ = π−1 (S), the second term of (44) becomes:∑
S ̸∋j

β̂Sv
(
π−1 (S)

)
=
∑
S′′ ̸∋i

β̂π(S′′)v (S′′) .

Therefore, by (43), we have:

fj (πv) =
∑
S′∋i

α̂π(S′)v (S′) +
∑
S′′ ̸∋i

β̂π(S′′)v (S′′) .

By (Linearity) and (42), the following equality should hold for any v:∑
S∋i

α̂Sv (S) +
∑
S ̸∋i

β̂Sv (S) =
∑
S′∋i

α̂π(S′)v (S′) +
∑
S′′ ̸∋i

β̂π(S′′)v (S′′) .

This is an identity with respect to {v (S)}S⊆N . By comparing the coefficients

of v (S) on both sides for any S such that S ∋ i, we have α̂S = α̂π(S). Since
this should hold for any i, j ∈ N such that π (i) = j and i ∈ S, there exists
a constant αk such that αk = α̂S for any S ∋ i such that |S| = k. Similarly,
by comparing the coefficients of v (S) for any S such that S ̸∋ i, we obtain

β̂S = β̂π(S). Hence, there exists a constant βk such that βk = β̂S for any S ̸∋ i
such that |S| = k. Finally, we obtain (10).

Proof of Lemma 19. Suppose A has a rank less than n. Then, there exists
a linear combination of n row vectors which sum up to the zero vector, that is,
there exists a non-zero vector t = (ti)

n
i=1 ∈ Rn such that∑

i

tiaiS = 0,∀S ⊊ N. (45)
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Then, for any S ⊊ N such that |S| = k,

αk

(∑
i∈S

ti

)
+ βk

(∑
i/∈S

ti

)
= 0.

Take any i, j ∈ N such that i ̸= j, and S′ ⊆ N\ {i, j} such that |S′| = k − 1.
Let S1 = S′ ∪ {i} , S2 = S′ ∪ {j}, and we have:

αk

(∑
i′∈S1

ti′

)
+ βk

∑
i′ /∈S1

ti′

 = 0,

αk

(∑
i′∈S2

ti′

)
+ βk

∑
i′ /∈S2

ti′

 = 0,

By subtracting one from the other, we obtain

αk (ti − tj)− βk (ti − tj) = 0.

Since αk ̸= βk, we have ti = tj . Since the choice of i and j was arbitrary, we
have t1 = t2 = · · · = tn. Together with (45), we have ti = 0,∀i, which is a
contradiction.

A.2 Proof of Propositions

Proof of Proposition 22. Since f satisfies affinity, ∃γ ∈ R and f ′ such that

fi (v) = f ′i (v) + γ,∀i (46)

and f ′ satisfies linearity. Whenever

v (N)−
∑
k∈N

fk (v) = w (N)−
∑
k∈N

fk (w)

and fi (v) ≥ fi (w), we have

v (N)−
∑
k∈N

f ′k (v) = w (N)−
∑
k∈N

f ′k (w)

and f ′i (v) ≥ f ′i (w) . Therefore, whenever we can apply (f -IMES), we can also
apply (f ′-IMES). We can thus apply Theorem 17 to f ′, and we obtain:

φi (v) = f ′i (v) +
1

n

(
v (N)−

∑
k∈N

f ′k (v)

)
,∀i ∈ N. (f ′-ESS)
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Plugging (46) in it, we have

φi (v) = fi (v)− γ +
1

n

(
v (N)−

∑
k∈N

(fk (v)− γ)

)

= fi (v)− γ +
1

n

(
v (N)−

∑
k∈N

fk (v) + nγ

)

= fi (v) +
1

n

(
v (N)−

∑
k∈N

fk (v)

)
.

The solution is exactly the same as (f -ESS), implying invariance of the solution
with respect to γ.

Proof of Proposition 24. We start with the “only if” part. Suppose there
exists a linear and symmetric function f : VN → Rn. Then, by Lemma 18,
there exist constants

(
αk
)n
k=1

∈ Rn and
(
βk
)n
k=1

∈ Rn such that

fi (v) =
∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S) .

Then, we have:

∑
i∈N

fi (v) =
∑
i∈N

∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S)


=

∑
S⊆N

{
|S|α|S| + (n− |S|)β|S|

}
v (S) .

Since φ is the f -ESS solution,

φi (v) = fi (v) +
1

n

v (N)−
∑
j∈N

fj (v)


=

∑
S∋i

α|S|v (S) +
∑
S ̸∋i

β|S|v (S)

+
1

n

v (N)−
∑
j∈N

fj (v)


=

 ∑
S∋i

{
α|S| − |S|α|S|+(n−|S|)β|S|

n

}
v (S)

+
∑

S ̸∋i

{
β|S| − |S|α|S|+(n−|S|)β|S|

n

}
v (S)

+
1

n
v (N)

=

 ∑
S∋i

{
n−|S|

n

(
α|S| − β|S|)} v (S)

+
∑

S ̸∋i

{
|S|
n

(
β|S| − α|S|)} v (S)

+
1

n
v (N) .

Let γk := αk − βk for k = 1, · · · , n− 1. We thus obtain:

φi (v) =
∑
S∋i

(
1− |S|

n

)
γ|S|v (S)−

∑
S ̸∋i

|S|
n
γ|S|v (S) +

1

n
v (N) . (47)
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Now, let φ̄ := φ − ED and ψ̄k := ψk − ED. Then, (47) implies that φ̄ is

written as a linear combination of
(
ψ̄k (v)

)n−1

k=1
as follows:

φ̄ (v) =

n−1∑
k=1

γkψ̄k (v) .

Therefore, φ is written as an affine combination of
(
ψk (v)

)n−1

k=1
and ED.

Now we show the “if” part. Suppose that φ is written as an affine combina-

tion of
(
ψk (v)

)n−1

k=1
and ED as in (22). Let

fi (v) =
∑
S∋i

λ|S|v (S) .

Then, f is linear and symmetric. We show that the induced f -ESS solution
coincides with φ.

First, notice that when (fj)j∈N are summed up, each S ⊆ N is counted
exactly |S| times. Hence, we have∑

j∈N

fj (v) =
∑
S⊆N

|S|λ|S|v (S)

=
∑
S∋i

|S|λ|S|v (S) +
∑
S ̸∋i

|S|λ|S|v (S) .

The f -ESS solution is then:

fi (v) +
1

n

v (N)−
∑
j∈N

fj (v)


=

∑
S∋i

λ|S|v (S) +
1

n

v (N)−

∑
S∋i

|S|λ|S|v (S) +
∑
S ̸∋i

|S|λ|S|v (S)


=

∑
S∋i

(
1− |S|

n

)
λ|S|v (S)−

∑
S ̸∋i

|S|
n
λ|S|v (S) +

1

n
v (N) . (48)

By (21), (48) is equal to:

n−1∑
k=1

λkψk
i (v) +

(
1−

n−1∑
k=1

λk

)
1

n
v (N)

=

n−1∑
k=1

λkψk
i (v) + λn

1

n
v (N) ,

which is equal to φi (v) in (22).

The following are a formal statement and its proof for the case where f is
efficient and linear.
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Proposition 45 A solution φ is the f -ESS value for some linear f , if and only
if φ is efficient and linear.

Proof of Proposition 45. To show the only if part, suppose that there exists
a linear f such that φ is the f -ESS solution, as in Definition 14. Then, it is
obvious by definition that φ is efficient:

∑
i∈N φi (v) = v (N) ,∀v. Moreover, for

any v, w ∈ VN ,

φi (v + w) = fi (v + w) +
1

n

(
(v + w) (N)−

∑
k∈N

fk (v + w)

)

= fi (v) + fi (w) +
1

n

(
v (N) + w (N)−

∑
k∈N

fk (v)−
∑
k∈N

fk (w)

)
= φi (v) + φi (w) .

The first and the third equalities are by definition of φ, and the second is by
linearity of f . Hence, φ is also linear.

If part is obvious: if φ is efficient and linear, then by setting φ itself as f , φ
is the f -ESS.
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