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Abstract

Complexity and limited ability affect how we learn and make decisions under uncer-

tainty. Using finite automata to model belief formation, this paper studies the charac-

teristics of optimal learning behavior in small and big worlds, where the complexity of

the environment is low and high, respectively, relative to the cognitive ability of the deci-

sion maker. Optimal behavior is well approximated by the Bayesian benchmark in very

small worlds but is more different as the worlds get bigger. In addition, in big worlds, the

optimal learning behavior could exhibit a wide range of well-documented non-Bayesian

learning behavior, including heuristics, correlation neglect, persistent over-confidence,

inattentive learning, and other behaviors of model simplification or misspecification.

These results establish a clear and testable relationship among the prominence of non-

Bayesian learning behavior, complexity, and cognitive ability.
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1 Introduction

Savage (1972) argues that Bayesian decision theory applies only to small world problems

but not big world problems, where the latter refers to scenarios where it is difficult to form

prior beliefs on states and signal structures or construct the state space. This paper offers

an alternative distinction between “small” and “big” worlds based on the complexity of the

inference problem relative to the cognitive ability of individuals. “Small” worlds refers to

inference problems that are simple relative to the cognitive ability of individuals. Therefore,

by comparing learning behaviors in the “small” and “big” worlds, this paper sheds light on

the heterogeneity of learning behaviors across decision problems and individuals. Analyzing

a theoretical model with finite automata, I show that a wide range of ignorance behav-

ior, including the use of heuristics (Kahneman et al. (1982)), correlation neglect (Enke and

Zimmermann (2019)), persistent over-confidence (Hoffman and Burks (2017)), inattentive

learning (Graeber (2019)), arises as optimal learning behaviors in face of complexity in big

worlds, but not in small worlds. Thus, these “biased” learning behaviors are more prominent

in more complex problems and among individuals with lower cognitive ability.

More specifically, I consider a decision maker (DM) who tries to learn the true state of

the world from a finite state space, where the number of possible states N measures the

complexity of the inference problem. In each period t = 1, · · · ,∞, the DM guesses the true

state of the world and gets a higher utility if he is correct. After making a guess, he receives

a signal and updates his belief. To model limited cognitive ability, I assume that the DM’s

belief is confined to an M sized automaton that captures limited cognitive ability, as in the

seminal work of Hellman and Cover (1970) and Wilson (2014).1 In period 0, he starts in

one of the M memory states, makes his guess given his memory state based on a decision

rule, receives a signal, transits to another based on a transition rule, and finally enters the

next period. In contrast to the Bayesian model, the DM has a coarser idea of the likelihood

of different states of the world, and the coarseness decreases in M . Thus M measures the

cognitive ability of the DM. I define small worlds as cases where N
M

is small, otherwise the

decision problem is a big world: Whether a problem is a small or big world depends on the

relative complexity of the world with respect to the individual’s cognitive ability.2

To shed light on how complexity affects learning, I compare the characteristics of the

optimal updating mechanisms that maximize the asymptotic utility of the DM in small and

big worlds. The results are summarized in Table 1. First, I analyze how the individual’s

decisions differ from the Bayesian benchmark in small and big worlds. This sheds light on

under what circumstances the Bayesian model serves as a good approximation of decision-

making under uncertainty. I show that in small worlds, asymptotic behavior is close to

1See also Compte and Postlewaite (2012), Monte and Said (2014), Basu and Chatterjee (2015), Chauvin
(2019) Chatterjee and Sabourian (2020) in the economic literature that model belief updating and the aversion
of complexity with finite automata. See also Oprea (2020) and Banovetz and Ryan (2020) for experimental
evidence.

2Note that if the individual tracks his belief not with a finite automaton but with a real number statistic,
the cardinality of the belief statistics is much larger than N , and the model collapses to a Bayesian model.
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Small Worlds:
low complexity relative
to cognitive ability N

M

Big Worlds:
high complexity relative
to cognitive ability N

M

Is behavior close to Bayesian? Yes No

Could ignorance in learning be “optimal”? No Yes

Could disagreement be persistent? No Yes

Table 1: Differences in learning behaviors in small/big worlds

Bayesian. In particular, the DM almost always makes the same guess as a Bayesian individual

as N
M
→ 0. In contrast, when the world is bigger, i.e., when N

M
increases, the DM makes more

mistakes and his behavior becomes more different from Bayesian.

The second, and main, result of this paper shows that in big worlds, as the DM faces

a trade-off in allocating his scarce cognitive resources, i.e., the M memory states, it could

be optimal to ignore some states and focus learning on a subset of states. In contrast, such

“ignorant” behavior is never optimal in small worlds. This shows a relationship between

complexity and ignorance in learning, which nests different well-documented learning biases,

including heuristics, correlation neglect, persistent over-confidence, inattentive learning, and

other model simplification and misspecification behaviors.

To see how “ignorance” captures different biases, consider the example of persistent over-

confidence (Hoffman and Burks (2017), Heidhues et al. (2018)). Suppose that the state of

the world comprises the DM’s and his teammate’s ability, where both could be high or low,

and the DM observes team performances as signals. In the current setting, persistent over-

confidence occurs when the DM never guesses the states where his ability is low, behaves as

if he always believes he has high ability, and only updates his belief about his teammate’s

ability, even after observing a sequence of bad team performance. Similarly, for correlation

neglect (Enke and Zimmermann (2019)), consider that the state of the world comprises a

strong or weak stock market and positive, no, or negative correlation among data. Correlation

neglect is captured in the current setting as the individual ignores the possible correlation

among data and only updates his belief about the stock market as if he always believes there

is no correlation.

This paper shows that such ignorance behavior is optimal only when relative complexity is

large (big worlds), especially when the ignored state is a priori unlikely, or when information

supporting that state is weak. For example, if the DM is confident about his ability, he

focuses on learning his teammate’s ability; if it is difficult to distinguish state with and

without correlation, the DM ignores the possibility that data are correlated. Importantly,

I also show that even if the states and information structures are symmetric, ignorance is

optimal in environments where it is difficult to learn, e.g., when signals are noisy or when

the state space is large. It echoes that complexity, or difficulty in learning, drives ignorance,

even when there are no a priori reasons to ignore any specific states of the world.
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Last, I analyze whether disagreements are persistent in small and big worlds. As asymp-

totic behaviors are close to the Bayesian model in small worlds, intuitively individuals would

always eventually agree with each other and make the same guesses. In contrast, in big

worlds, because individuals with different prior beliefs and/or cognitive ability adopt dif-

ferent optimal learning mechanisms and could ignore different states, they could disagree

with each other with probability 1 even after receiving the same infinite sequence of public

information. For example, after observing a large sequence of bad team performance, two

individuals with persistent over-confidence would disagree on the assessment of their abil-

ities: they ignore the states where their ability is low and attribute the bad performance

to the other person. Moreover, I show a novel driving force of disagreement: even when

two individuals have the same prior beliefs and observe the same infinite sequence of public

signals with no uncertainties in signal structures, they could eventually disagree with each

other when they have different levels of cognitive ability M .

This paper is organized as follows. In the next section, I briefly discuss how this paper

relates to the literature. Section 3 presents the model. I analyze the optimal learning behavior

in small and big worlds in Sections 4. In Section 5, I conclude by presenting a discussion of

the results. The proofs and omitted results are presented in the Appendix, and the extensions

are presented in the online Appendix.3

2 Literature

In this section, I discuss the existing literature and the contribution of this paper.

First, this paper is obviously related to the literature using finite automata to model

learning with aversion to complexity (Hellman and Cover (1970), Börgers and Morales (2004),

Compte and Postlewaite (2012), Wilson (2014), Chatterjee and Hu (2021), etc.).4 While the

literature discusses the impact of complexity on learning, they do not analyze how different

levels of complexity and cognitive ability affect learning and the prominence of learning biases.

Moreover, the studies above focus on binary state space because of technical difficulties.

While this paper does not “fully” characterize the optimal automaton, the results shed light

on its characteristics when N > 2. In particular, the results about ignorance suggest that

for larger state space, unlike when N = 2, ignorance is a crucial feature even when the states

are a priori the same.

Sims (2003) and Matějka and McKay (2015) study the implication of rational inattention

and show that it explains sticky prices in the market and micro-founds the multinomial

logit choice model, Steiner and Stewart (2016) shows that an optimal response to noises in

perceiving the details of lotteries leads to probability weighting in prospect theory (Kahneman

and Tversky (1979)), and Jehiel and Steiner (2020) and Leung (2020) show that a capacity

3The online Appendix could be found on https://sites.google.com/site/ltkbenson/research.
4Also see Chatterjee and Sabourian (2020) for a review, and Oprea (2020) and Banovetz and Ryan (2020)

for empirical evidence.
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constraint on the number of signals that individuals could update their belief with drives

confirmation bias and other biases in belief formation. This paper also contributes to a

growing literature that explains behavioral anomalies as optimal/efficient strategies in light

of limited cognitive ability. Steiner and Stewart (2016) shows that an optimal response to

noises in perceiving the details of lotteries leads to probability weighting in prospect theory,

and Jehiel and Steiner (2020) and Leung (2020) show that a capacity constraint on the

number of signals that individuals could update their belief with drives confirmation bias. In

contrast, this paper explains a larger class of biases under the same framework and illustrates

a relationship between their prominence and the level of complexity.

Similar to Section 4.2 in this paper, Caplin et al. (2019) present conditions where the

DM would ignore some actions in a rational inattention setting. Unlike this paper, they

only present conditions depending on the prior belief and the utility matrix, but not the

level of complexity nor the informativeness of signals. Moreover, in contrast to Caplin et al.

(2019), in this paper, I show that it could be optimal to ignore some states even in symmetric

environments where prior belief is uniform and the utility matrix is symmetric.

Last, this paper’s results on asymptotic disagreement contribute to the large literature

that explains the phenomenon. In the existing literature, asymptotic disagreement is driven

by differences in signal distributions across states or differences in learning mechanisms

(Morris (1994), Mailath and Samuelson (2020), Gilboa, Samuelson and Schmeidler (2020)),

the lack of identification or uncertainty in signal distributions (Acemoglu, Chernozhukov

and Yildiz (2016)), confirmation bias (Rabin and Schrag (1999)), or model misspecification

(Freedman (1963, 1965), Berk (1966)). Differently, this paper looks into the connection

between limited ability and disagreement, and shows when asymptotic disagreement could

arise and when it will not occur, depending on the relative complexity of the inference prob-

lem. Moreover, I show a novel machanism that disagreement could arise solely because of

differences in cognitive abilities.

3 Model

I consider a world with N possible true states, i.e., ω ∈ Ω = {1, 2, · · · , N}, and a decision-

maker (DM), wherein each period t = 1, · · · ,∞, the DM tries to guess what the true state is.

Formally, in each period t, the DM takes an action at ∈ A = Ω and gets utility u(a, ω) ∈ R

where a = ω is the unique maximizer of u(a, ω).5 The DM does not observe his utility

after taking action; thus, u(a, ω) is best interpreted as an intrinsic utility of being correct.

Otherwise, the problem becomes trivial as the DM will experiment and learn perfectly the

true state after observing the utility. The prior belief of the DM is (pω)Nω=1 where
∑N

ω=1 p
ω = 1

and pω > 0 for all ω ∈ Ω.

5This assumption rules out “safe” actions that are not maximizers in any state but yield good payoffs in
multiple states. In the next section, I discuss how complexity affects the incentive of choosing these “safe”
actions.
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In each period after taking an action, the DM receives a signal st ∈ S that is independently

drawn across different periods from a continuous distribution with p.d.f. fω in state ω.6,7 I

assume that no signal perfectly rules out any states of the world: there exists ς > 0 such that

inf
s∈S

fω(s)

fω′(s)
> ς for all ω, ω′ ∈ Ω. (1)

Without loss of generality, no pairs of signal structures are the same, i.e., there are no

ω and ω′ 6= ω such that fω(s) = fω
′
(s) for (almost) all s ∈ S. This implies that states are

identifiable, and a Bayesian learns the true state perfectly as t→∞. In contrast, I focus on

the bounded memory setting I now describe.

The DM is subject to a memory constraint such that he can only update his belief using

an M memory states automaton. In each period, his belief is represented by a memory

state mt ∈ {1, 2, · · · ,M}. An updating mechanism specifies an initial state m1 ∈ 4M , a

transition function between the M memory states given a signal s ∈ S, which is denoted as

T : M × S → 4M , and a decision rule d : M → A.8 The set of memory states where the

DM chooses action ω is denoted as Mω. In each period t, as illustrated in Figure 1, the DM

starts with some memory state mt, take action at ∼ d(mt), receives a signal st, and transit to

memory state mt+1 ∼ T (mt, st).
9 This paper analyzes the asymptotic learning of the DM,

i.e., the DM aims to choose an updating mechanism at period 0 that maximizes his expected

long run per-period utility:10

lim
T→∞

Em1,T ,d

[
1

T

T∑
t=1

u(at, ω)

]
.

Given state ω ∈ Ω, the sequence mt, together with some specified initial memory state

m1, forms a Markov chain. Denote µωm as the long-run proportion of time that the DM is

in memory state m when the true state of the world is ω, and Qω as the matrix of transi-

tion probabilities, i.e., Qω = [
∫
s
Pr{T (m, s) = m′}fω(s) ds]mm′ . By the Birkhoff–Khinchin

theorem, the distribution µω = (µω1 , µ
ω
2 , · · · , µωM)T solves the following system of equations:

µω = (µω)TQω, (2)

By the Brouwer fixed-point theorem, a solution always exists. Moreover, when there are

multiple solutions, it implies that the Markov Chain is reducible, and the long-run distribution

6The order, i.e., whether the DM receives a signal before or after taking an action in each period, does
not affect the result.

7To ease exposition, I assume that signals follow a continuous distribution, but the results hold with more
general probability measures.

8Note that without loss of generality, I restrict attention to deterministic decision rules unless stated
otherwise.

9Switching between multiple M memory state automatons requires more than M memory states, and the
current setting allows switching between smaller automatons, as illustrated in Online Appendix A.

10An alternative is to maximize the discounted sum of utility as in Wilson (2014). As shown in Online
Appendix B, the results in this paper hold qualitatively when the discount factor is close to 1.
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Starts at memory state mt.

Takes action at ∼ d(mt).

Receives signal st.

Transits to memory state

mt+1 ∼ T (mt, st).

Figure 1: Timeline at period t given an updating mechanism (T , d).

is uniquely pinned down by the initial memory state.

The asymptotic utility, or the long-run per-period utility, of an updating mechanism

(m1,T , d) is equal to:

U(m1,T , d) =
N∑
ω=1

[
pω

(
M∑
m=1

u (d(m), ω)µωm

)]
(3)

and the asymptotic utility loss is equal to:

L(m1,T , d) =
N∑
ω=1

[pωu(ω, ω)]− U(m1,T , d). (4)

The DM maximizes the asymptotic utility or, equivalently, minimizes the asymptotic utility

loss. I mostly refer the optimal design of the updating mechanism as the minimization of L.

In general, with similar arguments in Hellman and Cover (1970), an optimal mechanism may

not exist. Therefore, the rest of the paper focuses on ε-optimal updating mechanisms that

are defined as follows. Define

L∗M ≡ inf
m1,T ,d

L(m1,T , d).

An updating mechanism (m1,T , d) is ε-optimal if and only if L(m1,T , d) ≤ L∗M + ε.

Throughout the paper, I focus on the more interesting case where L∗M < mina
∑N

ω=1 p
ω [u(ω, ω)− u(a, ω)],

such that learning strictly improves utility.

In the next section, I compare the characteristics of the ε-optimal updating mechanisms

in small and big worlds. Roughly speaking, N represents how complicated the world is, and

M represents the cognitive resources/ability of the DM. This gives a natural definition of

small and big worlds based on relative (or perceived) complexity: an inference problem is a

small world when the N
M

is small, and is a big world otherwise. Throughout the paper, unless

stated otherwise, I focus on the more interesting case that M ≥ N .
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4 Results

4.1 Is behavior close to Bayesian?

In the current setup, a Bayesian individual (almost) perfectly learns the true state of the

world asymptotically and achieve asymptotic utility loss close to 0. Thus, we could interpret

L∗M as the distance between the DM’s behavior and that of a Bayesian individual. The

Proposition presents the formal results and the paragraph after offers interpretations. For

ease of exposition, I denote uω ≡ (uω(a, ω))Na=1.

Proposition 1. We have the following results regarding L∗M :

(i) L∗M strictly decreases in M ;

(ii) For each N and (uω, pω, fω)Nω=1, there exists some constant r < 1 and K > 0 such that

L∗M < Krb
M−1
N
c (also implies limM→∞ L

∗
M = 0);

(iii) For each N and (fω)Nω=1, there exists a sequence of updating mechanism (m1,TM , dM)

such that limM→∞ L(m1,TM , dM) = 0 for all (uω, pω)Nω=1.

The behavioral implications of Proposition 1 are as follows: (i) shows that the DM’s

behavior gets closer to that of a Bayesian individual as M increases, or equivalently as
N
M

decreases, i.e., as the world gets smaller.11 (ii) shows that as N
M

converges to 0, the

DM’s asymptotic decisions are well-approximated by Bayesian, and shows a higher relative

complexity of the world decreases the convergence rate. (iii) demonstrates the robustness of

perfect learning in very small worlds where N
M

is close to 0, as no knowledge of prior or the

utility matrix is needed.12

Before I describe the the proof, it is important to first define confirmatory signals for each

state ω, especially because the model goes beyond the binary state setting. When N = 2, the

confirmatory signals for state 1 are S1 = {s ∈ S : f 1(s) > f 2(s)}. The set of confirmatory

signals for both states defined in this way is non-empty, and because of the binary nature,

it is also more likely that the DM receives confirmatory signals for the correct state than

for the wrong state, i.e.,
∫
s∈S1

f 1(s) ds >
∫
s∈S2

f 1(s) ds. However, these observations do not

generalize to N > 2. For example, consider the following signal structure with N = 3 and

S = {s1, s2, s3}:

f 1(s1) = 0.5, f 1(s2) = 0.4, f 1(s3) = 0.1;

f 2(s1) = 0.4, f 2(s2) = 0.2, f 2(s3) = 0.4;

f 3(s1) = 0.1, f 3(s2) = 0.4, f 3(s3) = 0.5.

11In the main text, N is fixed, and thus a world is small enough, i.e., N
M is small enough, if and only if

M is large enough. In online Appendix C, I analyze the ε-optimal updating mechanism of a sequence of
inference problems where both N,M → ∞, and show that the behavioral implications depend on the limit
of N

M instead of M . In particular, the results of small worlds hold qualitatively when the limit of N
M is 0 and

the results of big worlds hold qualitatively when the limit of N
M is strictly greater than 0.

12I thank an anonymous referee for pointing this out.
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If I define signals supporting state ω as Sω = {s ∈ S : ω = arg maxω′ f
ω′(s)}, as analogue

to N = 2, there won’t be any signals that support state 2. One could also show that no

deterministic definitions of confirmatory signals will guarantee that the DM receives signals

supporting the correct state more likely than signals supporting a wrong state in every state

of the world. Instead, I stochastically label signals as confirmatory signals for each state. A

signal s is labeled as a confirmatory signal for state ω with probability proportional to fω(s),

with appropriate normalization such that each signal is labeled as a confirmatory signal for

one of the state with probability less than 1, and is labeled as a confirmatory signal for no

state with complementary probability. In this example, s2 is labeled as a confirmatory signal

for state 1 with probability 0.4, a confirmatory signal for state 2 with probability 0.2 and a

confirmatory signal for state 3 with probability 0.4. s1 and s3 are labeled analogously. Thus,

in state 2, the DM receives a signal supporting state 2 with probability 0.42+0.22+0.42 = 0.36,

a signal supporting state 1 with probability 0.5∗0.4 + 0.4∗0.2 + 0.1∗0.4 = 0.32, and a signal

supporting 3 with probability 0.1 ∗ 0.4 + 0.4 ∗ 0.2 + 0.5 ∗ 0.4 = 0.32. Similarly, in state 1, the

DM receives a confirmatory signal for state 1 more likely than a signal supporting state 2

(or 3), and in state 3, the DM receives a confirmatory signal for state 3 more likely than a

signal supporting state 1 (or 2). In all ω, the DM receives a signal supporting the correct

state more likely than a signal supporting a wrong state.

Now using the definition of confirmatory signals, I briefly describe the proof of (i) of

Proposition 1. Consider an ε-optimal mechanism (m1,TM , dM) at memory size M in which

M1,M2 6= ∅ and M1 ∪ M2 = M , i.e., the DM either chooses action 1 or action 2, and

suppose the memory size increases to M + 1. The following construction strictly improves

the asymptotic utility of (m1,TM , dM). First, keep m1 and d unchanged (for memory state

1, · · · ,M). Second, add the following transition to (m1,TM , dM): the DM transits to M + 1

with some probability δ1 if he was at a memory state in M1 and received a signal supporting

state 1, and transits out of M + 1 to, randomly, one of the memory states in M1 with some

probability δ2 if he received a signal supporting state 2. Last, the DM chooses action 1 in

memory state M + 1. The proof involves choosing the appropriate δ1 and δ2 such that the

DM chooses action 1 in state 1 with the same probability as before. As it is less likely that

the DM will transit to memory state M+1 in state 2, he chooses action 1 less likely in state 2

and hence strictly improves his asymptotic utility.

Now to prove (ii) and (iii) of Proposition 1, I construct a simple updating mechanism,

illustrated in Figure 2. The mechanism tracks only the DM’s favorable action and the cor-

responding confidence level over time. At any period t, the DM believes one of the N

actions or no action is favorable, while his confidence level of his favorable action, if he has

one, is an integer between 1 and bM−1
N
c. The memory states could thus be represented by

mt ∈ {0}∪{1, · · · , N}×{1, · · · , bM−1
N
c} where memory state 0 stands for no favorable action.

The decision rule is such that he takes the favorable action if he has one, and takes action 1

if he does not have a favorable action.13 The transition rule is described as follows.

13The decision rule when the DM does not have a favorable action does not affect the proof and result.
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0

...

action 1

confidence

level

...

action 2

· · ·

...

· · ·

...

action N − 1

...

action N

with length

bM−1N c

Figure 2: A simple updating mechanism that achieves perfect learning in small worlds for all
N , (pω)Nω=1 and (fω)Nω=1.

First, the DM starts with no favorable action.14 If he receives a confirmatory signal for a

state ω, he changes his favorable action to action ω with a confidence level 1; if he receives

signals that is not confirmatory for any states, he stays in the same memory state 0 in which

he has no favorable action. Second, suppose at some period t the DM’s favorable action is

action ω with confidence level k. If he receives a confirmatory signal for state ω, he revises

his confidence level upwards to k+ 1 if k is not already at the maximum bM−1
N
c, and stays in

the same memory state if k is at the maximum. Third, if he receives a confirmatory signal

for state ω′ 6= ω, he revises his confidence level downwards to k − 1 with probability 1
δ
< 1

if k ≥ 2, transits to the memory state 0 with no favorable action with probability 1
δ
< 1 if

k = 1, and stays in the same memory state with probability 1 − 1
δ
. Lastly, if he receives

signals that are not supporting any states, he stays in his current memory state with his

favorable action and confidence level unchanged. This simple updating mechanism could

thus be interpreted as an algorithm that tracks the confidence level of only one state/action

at a time, with underreaction to belief-challenging signals (captured by 1
δ
< 1).

The proof involves choosing a sufficiently large δ such that it is more likely for the DM

to adjust his confidence level upwards than to adjust it downwards. This ensures enough

“exploitation” that the DM doesn’t switch between actions too often. Crucially, when M
N

increases, the maximum number of confirmatory signals the DM can “store” increases, and

the more likely the DM will be at the correct branch choosing the correct action. When
M
N
→∞, the DM almost surely learns perfectly the true state as t→∞.

Here I point out several noteworthy implications of the analysis. First, as argued above,

unlike Cover (1969) and Wilson (2014) with N = 2, when N > 2, it is in general necessary

14The starting memory state has no impact on the long-run distribution over the memory states and does
not affect the asymptotic payoff.
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to define confirmatory signals for each state stochastically. Thus, a stochastic transition

matrix is generally necessary. It implies that upon receiving the same signal, the individual

will sometimes regard it as supporting one state, and sometimes regard it as supporting a

different state. It resembles empirical evidence that documents heterogeneous interpretations

of same pieces of information, especially when the piece of information is imprecise (Gaines

et al. (2007)).

Second, as shown in Proposition 1(iii), the simple updating mechanism described in this

section approximates perfect learning for all N and (uω, pω, fω)Nω=1 in small worlds when M

is large. Therefore, no knowledge of prior belief (pω)Nω=1 and utility matrices (uω)Nω=1 are

required. It is in particularly consistent to the result that behavior is close to Bayesian in

small worlds as the simple updating mechanism is parsimonious and easy to implement.

Third, perfect learning with the simple updating mechanism in very small worlds is robust

to “implementation errors”, as shown in the online Appendix E. Roughly speaking, I assume

that the DM mistakenly transits to a neighboring memory state with some probability γ

in each period regardless of the signal realization s. Such local mistakes could be induced

by mistakes in the perception of signals or imperfect tracking (local fluctuation) of memory

states. Online Appendix E shows that Proposition 1(iii) hold for all γ ∈ [0, 1), further

strengthening the result of perfect learning in very small words.

4.2 Is ignorance optimal?

In this subsection, I present the main results on whether ignorance behavior is optimal in

small and big worlds. Ignorance is formally defined as follows: an updating mechanism

ignores state ω if the DM almost never chooses action ω no matter what the true state is,

i.e.,

lim
T→∞

Eω′,m1T ,d

[∑T
t=1 1at=ω

T

]
= 0 for all ω′.

An updating mechanism is ignorant if it ignores some state. As argued in the introduction, ig-

norance nests a large set of behavioral biases that depart from the Bayesian model. Note that

given the assumption that information strictly improves utility, i.e., L∗M < mina
∑N

ω= p
ω[u(ω, ω)−

u(a, ω)], when N = 2, no ignorant updating mechanism is ε-optimal when ε is sufficiently

small.I present the formal results on ignorance in the following Proposition when N > 2, and

offer interpretations in the next paragraph.

Proposition 2. Regarding ignorance behavior:

(i) For all N > 2 and M , there exists some (uω
′
, pω

′
, fω

′
)Nω′=1 and ε̄ > 0 such that all

ε̄-optimal updating mechanism ignores state ω for some ω;

(ii) In contrast, take N > 2 and (uω
′
, pω

′
, fω

′
)Nω′=1, when M is big enough, all ε-optimal

update mechanisms are non-ignorant for some small enough ε .

11



First, (i) shows that generally, there exist decision environments such that ignorance is

optimal. As M
N

is finite, the DM cannot allocate infinite cognitive resources to every state of

the world. The DM is bound to make mistakes and faces trades-off between the probability

of mistakes in different states of the world. (i) implies that it could be optimal for the DM

to ignore some states altogether to improve learning in other states. On the other hand,

(ii) shows that the set of decision environments where ignorance is optimal vanishes as M

grows large, or equivalently as the world gets smaller. As M increases, the DM can allocate

many more memory states to each action. Trade-off between learning in different states is

less important. In particular, when N
M

converges to 0, the DM learns almost perfectly for all

states of the world, and has no incentive to ignore any of the states. Proposition 2 also implies

that when N
M

is small, the DM will not choose actions that are “safe” but are sub-optimal in

every state of the world.

Elaborating on Proposition 2, the following Corollary presents three conditions as exam-

ples on when such ignorance happens.

Corollary 1. When N > 2, u(ω′, ω) = 0 for all ω and ω′ 6= ω, there exists some threshold

ξp, ξu > 0 and F > 1 such that if

(i) pω < ξp, or

(ii) u(ω,ω)
minω′′ 6=ω u(ω′′,ω′′)

< ξu, or

(iii) sups
fω(s)

fω
′ (s)
× sups

fω
′
(s)

fω(s)
≤ F for some ω′ 6= ω,

all ε̄-optimal mechanisms are ignorant for some ε̄ > 0.

Intuitively, (i) shows that when the prior probability of a state is low, the DM would

rather ignore that state and allocate cognitive resources to learn other states of the world.

For example, an individual who is confident about his ability would not update his belief in

his but only his teammates’ ability, exhibiting persistent overconfidence. Similarly, (ii) shows

that when a state is relatively unimportant that the utility of guessing correctly that state

is relatively small, the DM would ignore that state to focus on learning others. Lastly, (iii)

shows that when it is difficult to distinguish states ω and ω′, the DM ignores one of the two

states. That is, the DM ignores states that are difficult to identify. To see the intuition,

imagine two states ω and ω′ where fω(s) ≈ fω
′
(s) for all s, and that state ω is a priori less

favorable than state ω′. The DM has to receive a large number of signals that support ω

against ω′ such that he prefers to take action ω instead of ω′. To use many memory states

to record signals supporting ω and still be (almost) unsure about choosing ω over ω′ is an

inefficient use of memory states. Instead, saving those numerous cognitive resources to learn

other states of the world, for example, by recording signal supporting ω′ against some ω′′

and vice versa, he can improve his utility in the other states (ω and ω′′) and will be better

off. Condition (iii) is particularly applicable in correlation neglect: when it is difficult to

distinguish positive or no correlation in the data, and if positive correlation is slightly less

12



likely, the DM ignores the possibility of positive correlation and focuses on learning other

states of the world.

Optimal ignorance in symmetric environments

Proposition 2 and Corollary 1 shows that ignorance is optimal in asymmetric environments

when M
N

is small, but ignorance is also optimal in some symmetric environments. I consider

the following setup where states and actions are ex-ante identical: There are N possible

signal realizations, i.e., S = {s1, · · · , sN}, and pω, u(ω, ω), u(ω′, ω), Fω(sω)

Fω(sω′ )
> 1 are invariant

across all ω and ω′ 6= ω. Note that for computational simplicity, I consider a discrete signal

structure in this Subsection.

The result is shown in Figure 5, where N = M ∈ {4, 6, 8}. The y-axis is the asymptotic

utility of a symmetric updating mechanism that ignores half of the states, illustrated in

Figure 4, minus that of the best non-ignorant updating mechanism, illustrated in Figure 3.

Thus, if the y-axis is above 0, all ε-optimal mechanisms must be ignorant for small enough

ε. The x-axis is the informativeness of the signal structure, i.e., Fω(sω)

Fω(sω′ )
where ω′ 6= ω. The

analysis and the code is presented in the Appendix B. Figure 5 shows that ignorance is

optimal when the informativeness is smaller than some threshold, and the threshold is bigger

when N is bigger. In other words, ignorant is optimal when it is difficult to learn, which

strengthens the result of Proposition 2.15 The result also contrasts with the setting when

N = 2, in which the optimal updating mechanism is symmetric and non-ignorant in such

symmetric environments.

The intuition of the result is as follows. To consider all states, the DM allocates one

memory state to each action. It is thus easy for the DM to alternate between different

actions and unavoidably make mistakes. Put differently, the updating mechanism is “noisy”.

This is especially true when N is large as one memory state constitutes only a small part of the

automaton or when signals are very noisy. If, in contrast, the DM ignores half of the actions,

he allocates two memory states to each of the actions that he considers and he switches

between actions less frequently. This improves his decision making among the smaller set of

states that he considers. When N is large or when l
ωω′

is small, the improvement outweighs

the loss he incurs among the states that he ignores, because the loss is small to begin with,

i.e., the asymptotic utility of a “noisy” updating mechanism that considers all states is small.

4.3 Is disagreement persistent?

Lastly, I turn to the question of whether disagreement could persist asymptotically in small

and big worlds. Consider two individuals A and B who have different utility matrices (uωA)Nω=1

and (uωB)Nω=1, and/or different prior beliefs (pωA)Nω=1 and (pωB)Nω=1, and/or different abilities

15The magnitude of the thresholds also suggests that ignorance is not an extreme event. For example,
when N = 3, ignorance is better when the likelihood ratio of the signals is smaller than (around) 3.
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1 2

3 4

δ13 × S3 δ31 × S1

δ12 × S2

δ21 × S1

δ24 × S4 δ42 × S2

δ34 × S4

δ43 × S3

δ23 × S3

δ32 × S2δ14 × S4

δ41 × S1

Figure 3: The optimal non-ignorant updating mechanism that considers all states, with
N = M = 4. The number in the node denotes the action that the DM takes when he is
this memory state. Moreover, in memory state ω, and upon receiving a signal that supports
state ω′ 6= ω, the DM transits to memory state ω′ with probability δωω′ < 1 and stays in his
current memory state otherwise.

1 2 3 4

δ × S2

S1

δ × S2

δ × S1

S2

δ × S1

Figure 4: An example of an updating mechanism that ignore two states, with N = M = 4.
The DM takes action 1 in memory states 1 and 2, and takes action 2 in memory states 3 and
4. In memory state 3, if the DM receives a signal supporting state 2, he transits to memory
state 4; if the DM receives a signal supporting state 1, he transits to memory state 2 with
probability δ and stays in his current memory state otherwise. In memory state 4, if the
DM receives a signal state 1, he transits to memory state 3 with probability δ and stays in
his current memory state otherwise. The transition function in memory state 1 and 2 are
defined accordingly. δ is chosen to be close to 0 to maximize the asymptotic utility.
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Figure 5: The y-axis is the (estimated) asymptotic utility of the ignorant mechanism illus-
trated in Figure 4 minus that of the non-ignorant mechanism illustrated in Figure 3, while

the x-axis is l
ωω′

. The ignorant mechanism outperforms the non-ignorant mechanism when

l
ωω′

is smaller than some threshold. Moreover, the threshold is larger as N increases from 4
to 6, and from 6 to 8.

of information acquisition captured by (fωA)Nω=1 and (fωB)Nω=1.16 Their updating mechanisms,

(mA1,FA, dA) and (mB1,FB, dB), induce a (random) sequence of actions over time. To define

disagreement, I sample one action from each individual A and B and define the “disagreement

between (mA1,FA, dA) and (mB1,FB, dB) in state ω” as the probability that the two sampled

actions are different.17 For a given ε, the disagreement between individual A and B in state ω

is the supremum of disagreement between all pairs of ε-optimal updating mechanisms in state

ω. Lastly, the two individuals almost always disagree (resp. agree) with each other for a given

ε if their disagreement equals 1 (resp. 0) in all states.

Corollary 2. Regarding disagreement:

(i) For all N > 2, MA and MB, there exists some (uωA, p
ω
A, f

ω
A)Nω=1 and (uωB, p

ω
B, f

ω
B)Nω=1 such

that individual A and B almost always disagree as ε→ 0.

(ii) In contrast, take (uωA, p
ω
A, f

ω
A)Nω=1 and (uωB, p

ω
B, f

ω
B)Nω=1, there exists some K1, K2 > 0

and r < 1 such that the disagreement between individual A and B is bounded above by(
K1r

bmin{MA,MB}−1

N
c +K2ε

)
in all states.

16For example, individual A could receive noisier signals than individual B, i.e., fωA = γ + (1 − γ)fωB for
some γ ∈ (0, 1); or individual A could have different learning advantages in identifying some states better but
other states worse than individual B, i.e., sups f

ω
A(s)/fω

′

A (s) > sups f
ω
B(s)/fω

′

B (s) but sups f
ω′′

A (s)/fω
′′′

A (s) <

sups f
ω′′

B (s)/fω
′′′

B (s) for some ω, ω′, ω′′, ω′′′.
17For example, if both individuals alternate between action 1 and 2, their disagreement is 1

2 . An alternative
definition is to measure the proportion of time t where aAt 6= aBt : If both individuals alternate between action 1
and 2, their disagreement is 0 if they both start with the same action and is 1 otherwise. Corollary 2 (i)
holds with this definition, while the limit result of (ii) holds, i.e., disagreement approaches 0 as M goes to
infinite.
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(i) shows that in general there exists decision environments such that disagreement almost

always happens and is persistent. However, as shown in (ii), when the world gets smaller (N
M

goes to 0), such set of decision environments with disagreement vanishes: different individ-

uals with different prior beliefs and/or information acquisition abilities who adopt (almost)

optimal updating mechanisms are bound to agree with each other.

The intuition of the result is as follows: as different individuals with different prior beliefs

and utilities would adopt different updating mechanisms, they could focus their learning on

different subsets of states of the world when they have limited memory. In particular, consider

an example with N = 4, if individual A ignores state 1 and 2 and individual B ignores state 3

and 4, they will never choose the same action and thus disagree with certainty.18 However, as
N
M

goes to 0, decisions gets closer to Bayesian, and the two individuals almost always choose

the same actions.

The following result further shows that disagreement could be driven solely by differences

in cognitive ability. For simplicity, I allow M to be smaller than N in the following result.

Corollary 3. There exists MA 6= MB and (uωA, p
ω
A, f

ω
A)Nω=1 = (uωB, p

ω
B, f

ω
B)Nω=1 such that indi-

vidual A and B almost always disagree as ε→ 0.

I prove the Corollary with an example where MA = 1 < MB = 2, N = 3, and u(ω, ω) =

1 > u(ω, ω′) = 0 for all ω and ω′ 6= ω. Importantly, state 1 is a priori more likely than state 2

and 3, while it is easier to distinguish state 2 and 3 than to distinguish state 1 and state 2,

or state 1 and state 3.19 In this example, individual A always chooses action 1 as he does not

have sufficient cognitive resources to learn. On the other hand, if p1 is not too large compared

to p2 and p3, individual B ignores state 1. He takes advantages of the informative information

structure to distinguish state 2 and 3, such that he can be confident that he doesn’t take

action 2 in state 3 and vice versa. Thus, as long as state 1 is not a priori too likely, ignoring

it would yields a higher utility.20 To sum up, as individual A has a lower cognitive ability,

his learning and actions would depend a lot on the prior belief, while individual B has the

ability to take advantage of the information structure.21 As a result, they adopt different

updating mechanisms which leads to disagreement.

18Note that the result of disagreement continues to hold in a framework where individuals observe each
other’s actions. More specifically, one could re-define the signal structures in the current setting to incorporate
the information conveyed by the actions taken by the two individuals.

19Mathematically, sups
f3(s)
f2(s) sups

f2(s)
f3(s) > sups

f1(s)
f2(s) sups

f2(s)
f1(s) .

20One may argue that after seeing individual B choosing action 2 or 3, individual A should change his
action. However, this is not possible as he has only one unit of memory capacity M = 1 and thus has to
effectively commit to one action. In particular, one can generalize this framework to which the two individuals
also see each others’ actions as signals and Proposition 3 would still hold.

21Note that although this example imposes strong assumptions in particular on the size of bounded memory
of individual A, it generates a strong form of disagreement in which the two individuals disagree asymptoti-
cally with certainty. Similar intuition implies that even when the assumption is relaxed, the difference in M
would lead to asymptotic disagreement at least probabilistically.
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5 Discussion and Conclusion

Heterogeneity of learning and heuristics under different environments or across

different individuals This paper explains a wide range of behavioral anomalies with the

same mechanism, i.e., efficient allocation of limited cognitive resources in light of complexity.

Importantly, the comparison of small and big worlds illustrates a link between the degree of

(relative) complexity of the inference problem and the aforementioned non-Bayesian learn-

ing behaviors, which is supported by the experimental results in Enke and Zimmermann

(2019) and Graeber (2019). Enke and Zimmermann (2019) shows that correlation neglect

negatively correlates with the cognitive ability of subjects and “an extreme reduction in the

environment’s complexity eliminates the bias”, while Graeber (2019) shows that a reduction

in the complexity of the problem by removing a decipher stage of signals reduces inattentive

learning behavior.

On the other hand, Enke and Zimmermann (2019) and Graeber (2019) also show that

simply reminding subjects about the neglected variables reduces inattentive learning and im-

proves inference. This “reminder effect” can be reconciled in the current setup via an effect of

a change in the state space. Consider the behavior of inattentive inference in Graeber (2019).

The author shows that when subjects are asked to guess the realization of a variable A, they

often ignore the effect of another variable B on the signal distribution. Applying to the setting

in this paper, consider that before being reminded about the ignored variable, the state space

is supp(A)×supp(B)×{B affects the signal distribution, B does not affect the signal distribution},
in which subjects might ignore the states that say “B affects the signal distribution”. After

being reminded about the effect of B, the set of states of the world is effectively reduced

to supp(A) × supp(B) × {B affects the signal distribution}, the complexity decreases, and

subjects adopt another learning mechanism that does not involve ignorant learning.

Future research directions The mechanism mentioned in the previous paragraph brings

forth an open question that is not answered in this paper. In reality, individuals face different

(sets of) inference problems and are likely endowed with different learning mechanisms for

different sets of states of the world. Like in the example mentioned in the previous para-

graph, upon receiving new information, individuals could revise the state space and transit

from one learning mechanism to another. This is also related to the question of how indi-

viduals construct the state space given an inference problem. Arguably, there are infinitely

many variables that might affect the signal distributions, and their realizations could be in-

corporated in the set of possible states. Roughly speaking, the result of ignorance seems to

suggest that individuals may only include the most “important” or “a priori probable” states,

while the “reminder effect” suggests that the construct of the state space also depends on the

information received by the individual. Moving forward, I believe that the question of how

individuals construct their perceived state space and the corresponding prior belief deserves

more in-depth and careful analysis as it is fundamental to individuals’ learning behavior.
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A Proofs

A.1 Proof of Proposition 1

I first define “confirmatory signals” for each state. A signal s supports state ω with probability

Gω(s) and supports no state with probability 1−
∑N

ω=1G
ω(s), where

Gω(s) ∝ fω(s)√∫
(fω(s))2ds

(A.1)

with normalization such that
∑N

ω=1 G
ω(s) ≤ 1. With some abuse of notations, I use F ω

to denote the probability of receiving a signal supporting state ω′, or equivalently “a signal

Gω′”, in state ω, i.e., F ω(Gω′) ≡
∫
fω(s)Gω′(s) ds. Importantly, Equation A.1 implies it is

more likely that the DM receives a signal supporting a correct state than a signal supporting

a wrong state:

F ω(Gω) =

∫
(fω(s))2ds√∫
(fω(s))2ds

=

√∫
(fω(s))2ds >

∫
fω(s)fω

′
(s)ds√∫

(fω′(s))2ds
= F ω(Gω′),

implied by the Cauchy–Schwarz inequality.

Proof of Proposition 1 (i). Consider a ε-optimal mechanism with memory size M denoted as

(m1,T , d). I now construct a mechanism with memory size M + 1 denoted as (m′1,T
′, d′)

that delivers a strictly higher asymptotic utility than (m1,T , d). The result follows when ε

goes 0. More specifically, pick an m̃ ∈ M1 and without loss suppose arg mina u(a,N) = 1.

With some constants (δi)
N−1
i=0 that I will describe later, (m′1,T

′, d′) follows:

m′1 = m1.

d(m) = d′(m) for all m = 1, · · · ,M .

d(M + 1) = 1.

Pr [T ′(m, ·) = m′] ∝ Pr [T (m, ·) = m′] for all m /∈ {m̃,M + 1} and all m′ 6= m,M + 1.

Pr [T ′(m̃, s) = m] ∝

δ0 Pr [T (m̃, s) = m] if m 6= M + 1.;∑N
i=1 δiG

i(s) if m = M + 1.

Pr [T (M + 1, s) = m] ∝

c if m = m̃;

0 if m 6= m̃,M + 1.

for some constant c and with appropriate normalization such that
∑

m′ 6=m Pr [T ′(m, s) = m′] ≤
1 for all m.22 (δi)

N
i=1 is chosen such that they satisfy the following system of linear equations

for some chosen ∆ > 1:

22Note that the long-run distribution is invariant if the transition matrix Pr [T ′(m, s) = m′] is scaled up
by a common factor.
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δ1


∫
G1(s)f 1(s) ds−∆

∫
GN(s)f 1(s) ds∫

G1(s)f 2(s) ds−∆
∫
GN(s)f 2(s) ds

...∫
G1(s)fN−1(s) ds−∆

∫
GN(s)fN−1(s) ds

+ δ2


∫
G2(s)f 1(s) ds−∆

∫
GN(s)f 1(s) ds∫

G2(s)f 2(s) ds−∆
∫
GN(s)f 2(s) ds

...∫
G2(s)fN−1(s) ds−∆

∫
GN(s)fN−1(s) ds

+ · · ·+

δN−1


∫
GN−1(s)f 1(s) ds−∆

∫
GN(s)f 1(s) ds∫

GN−1(s)f 2(s) ds−∆
∫
GN(s)f 2(s) ds

...∫
GN−1(s)fN−1(s) ds−∆

∫
GN(s)fN−1(s) ds

+ δN


∫
GN(s)f 1(s) ds−∆

∫
GN(s)f 1(s) ds∫

GN(s)f 2(s) ds−∆
∫
GN(s)f 2(s) ds

...∫
GN(s)fN−1(s) ds−∆

∫
GN(s)fN−1(s) ds

 = 0

(A.2)

Such (δi)
N
i=1 exists as there are more variables than number of Equations. Now, denote

(µ
′ω
m)M+1

m=1 as the long-run distribution of (m′1,T
′, d′) and (µωm)Mm=1 as the long-run distribution

of (m1,T , d). Equation (A.2) ensures that

µ
′ω
M+1

µ
′ω
m̃

/
µ
′N
M+1

µ
′N
m̃

=

∑N
i=1

∫
Gi(s)fω(s) ds∑N

i=1

∫
Gi(s)fN(s) ds

= ∆ > 1

for all ω = 1, · · · , N−1. Next, set δ0 = 1+
∑N

i=1

∫
Gi(s)fN (s) ds

c
∆, we have for ω = 1, · · · , N−1,

µ
′ω
m = µωm for all m 6= m̃,M + 1,

µ
′ω
m̃ =

1

δ
µωm̃

µ
′ω
m̃ + µ

′ω
M+1 = µ

′ω
m̃

(
1 +

∑N
i=1

∫
Gi(s)fN(s) ds

c
∆

)
= µωm̃.

One the other hand, in state N ,

µ
′ω
m =

1

1−
∑N

i=1

∫
Gi(s)fN (s) ds

c
(∆− 1)µωm̃

µωm for all m 6= m̃,M + 1,

µ
′ω
m̃ =

1

1−
∑N

i=1

∫
Gi(s)fN (s) ds

c
(∆− 1)µωm̃

(
1

δ
µωm̃)

µ
′ω
m̃ + µ

′ω
M+1 = µ

′ω
m̃

(
1 +

∑N
i=1

∫
Gi(s)fN(s) ds

c

)
.

Pick ∆ > 1 (but not too big), the DM chooses action 1 with a lower probability in state N ,

and other actions with a higher probability (by a factor of 1

1−
∑N

i=1

∫
Gi(s)fN (s) ds

c
(∆−1)µωm̃

). As

arg mina u(a,N) = 1, the result follows.

Proof of Proposition 1 (ii) and (iii). I formally describe the simple updating mechanism de-

scribed in the main text. Denote λ = b(M − 1)/Nc, relabel the memory states as 0, 11, · · · , 1λ,
21, · · · , 2λ, · · · , Nλ and denote the unused memory states as Nλ + 1, Nλ + 2, · · · ,M − 1.
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The decision rule is as follows:

d(0) = 1;

d(ωk) = ω for all ω = 1, . . . , N and k = 1, · · · , λ;

d(m) = 1 for all m > Nλ.

The transition function between the memory states is defined below for some big enough

δ > 1 such that
δF ω(Gω′)∑

ω′′ 6=ω′ F
ω(Gω′′)

> 1 for all ω, ω′ ∈ Ω.

Suppose the DM receives some signal s, he follows the following transition rule:

T (0, s) =

ω1 with probability Gω(s) for all ω = 1, · · · , N ;

0 with probability 1−
∑N

ω=1G
ω(s).

T (ω1, s) =


ω2 with probability Gω(s);

0 with probability
∑

j∈Ω\{ω}
Gj(s)
δ

;

ω1 with probability 1−
∑

j∈Ω\{ω}
Gj(s)
δ
−Gω(s).

T (ωλ, s) =

ω(λ− 1) with probability
∑

j∈Ω\{ω}
Gj(s)
δ

;

ωλ with probability 1−
∑

j∈Ω\{ω}
Gj(s)
δ

.

while for k = 2, 3, · · · , λ− 1,

T (ωk, s) =


ω(k + 1) with probability Gω(s);

ω(k − 1) with probability
∑

j∈Ω\{ω}
Gj(s)
δ

;

ωk with probability 1−
∑

j∈Ω\{ω}
Gj(s)
δ
−Gω(s).

Finally, for m > Nλ, T (m, s) = m for all s. By restricting the initial memory state to

one of 0, 11, 12, · · · , 1λ, 21, 22, · · · , 2λ, · · · , Nλ, the DM will never transit to memory states

m > Nλ.

Note that this updating mechanism does not depend on pω nor uω. Now I compute the

long-run distribution µω and the utility loss L(m1,T , d). Fix a state ω, at the two extreme

memory states in branch ω′, i.e., memory states ω′λ and ω′(λ− 1),

µωω′(λ−1)F
ω(Gω′) = µωω′λ

1

δ

∑
ω′′ 6=ω′

F ω(Gω′′)

µωω′(λ−1) = µωω′λ

[
δF ω(Gω′)∑

ω′′ 6=ω′ F
ω(Gω′′)

]−1
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for all ω′. Next, at memory state ω′(λ− 1),

µωω′λ
1

δ

∑
ω′′ 6=ω′

F ω(Gω′′) + µωω′(λ−2)F
ω(Gω′) = µωω′(λ−1)

[
1

δ

∑
ω′′ 6=ω′

F ω(Gω′′) + F ω(Gω′)

]

µωω′(λ−2) = µωω′(λ−1)

[
δF ω(Gω′)∑

ω′′ 6=ω′ F
ω(Gω′′)

]−1

Repeating the same procedures implies that for all k = 1, · · · , λ and ω′ = 1, · · · , N

µωω′k = µωω′λ

[
δF ω(Gω′)∑

ω′′ 6=ω′ F
ω(Gω′′)

]−(λ−k)

(A.3)

and

µωω′k = µω0

[
δF ω(Gω′)∑

ω′′ 6=ω′ F
ω(Gω′′)

]k
(A.4)

As
∑N

ω′=1

∑λ
k=1 µ

ω
ω′k + µω0 = 1, and denote δFω(Sω′ )∑

ω′′ 6=ω′ F
ω(Sω′′ )

by rωω
′
, we have

µωωλ

λ∑
k=1

[rωω]−(λ−k) + µωωλ [rωω]−λ + µωωλ [rωω]−λ
∑
ω′ 6=ω

λ∑
k=1

[
rωω

′
]k

= 1

⇒ µωωλ =
1∑λ

k=1 [rωω]−(λ−k) + [rωω]−λ + [rωω]−λ
∑

ω′ 6=ω
∑λ

k=1 [rωω′ ]k

and the probability of choosing actions in Ω \ ω in state ω is smaller than
∑

m/∈{ω1,··· ,ωλ} µ
ω
m

which is as follows:

[rωω]−λ + [rωω]−λ
∑

ω′ 6=ω
∑λ

k=1

[
rωω

′]k∑λ
k=1 [rωω]−(λ−k) + [rωω]−λ + [rωω]−λ

∑
ω′ 6=ω

∑λ
k=1 [rωω′ ]k

< [rωω]−λ + [rωω]−λ
∑
ω′ 6=ω

λ∑
k=1

[
rωω

′
]k

= [rωω]−λ +
∑
ω′ 6=ω

rωω
′

rωω′ − 1

[(
rωω

′

rωω

)λ
− [rωω]−λ

]

< [rωω]−λ +
∑
ω′ 6=ω

rωω
′

rωω′ − 1

[(
rωω

′

rωω

)λ]
(A.5)

< [rωω]−λ + (N − 1)
maxω′ 6=ω r

ωω′

maxω′ 6=ω rωω
′ − 1

[
max
ω′ 6=ω

(
rωω

′

rωω

)λ]

<

[
(N − 1)

maxω′ 6=ω r
ωω′

maxω′ 6=ω rωω
′ − 1

+ 1

]
max

{
[rωω]−λ ,max

ω′ 6=ω

(
rωω

′

rωω

)λ}

The first inequality of Equation (A.5) is implied by the fact that the denominator is strictly
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greater than 1. Now, using Equation (A.5) and denote Kω =

[
(N − 1)

maxω′ 6=ω r
ωω′

maxω′ 6=ω r
ωω′−1

+ 1

]
we

can compute the upper bound of the utility loss L(m1,T , d)

L(m1,T , d) ≤
N∑
ω=1

pω max
a6=ω
{u(ω, ω)− u(a, ω)}

 ∑
m/∈{ω1,··· ,ωλ}

µωm


<

N∑
ω=1

pω max
a6=ω
{u(ω, ω)− u(a, ω)}Kω max

{
[rωω]−λ ,max

ω′ 6=ω

(
rωω

′

rωω

)λ}

< max
ω

[
max
a6=ω
{u(ω, ω)− u(a, ω)}Kω max

{
[rωω]−λ ,max

ω′ 6=ω

(
rωω

′

rωω

)λ}]
(A.6)

As [rωω]−1 and maxω′ 6=ω

(
rωω′

rωω

)
are strictly smaller than 1 for all ω, Proposition 1 (ii) follows.

Moreover, as [rωω]−1 and maxω′ 6=ω

(
rωω′

rωω

)
are strictly smaller than 1 for all ω, the right-hand

side of Equation (A.5) converges to 0 as λ goes to ∞. This proves Proposition 1 (iii).

A.2 Proof of Proposition 2 and Corollary 1

Proof of Proposition 2 (ii). First, an ignorant updating mechanism induces utility loss weakly

greater than minω∈Ω mina6=ω[pω(u(ω, ω)−u(a, ω))] > 0. On the other hand, as shown in Propo-

sition 1, L∗M converges to 0 as M → ∞. The monotonicity of L∗M implies there exists some

big enough M̄ such that for M ≥ M̄ , L∗M ≤ L∗
M̄
< minω∈Ω mina6=ω[pω(u(ω, ω) − u(a, ω))].

The result follows.

Proof of Proposition 2 (i) and Corollary 1. First note that Corollary 1 implies Proposition 2

(i). I first prove Corollary 1(i). Consider an updating mechanism (m1,T , d) such that

µω̃m > 0 for some ω̃ and m where d(m) = ω. Now I prove that there exists a different

updating mechanism that yields higher asymptotic utility if pω is small enough.

Consider state ω and ω′, recall that the long-run distribution in state ω and ω′ are the

solution of the following fixed point equations:

µω = (µω)TQω;

µω
′
= (µω

′
)TQω′ .

(A.7)

Equation (A.7) shows that, given an updating mechanism (m1,T , d), fω and fω
′
, the long-

run distribution µω, µω
′
and the ratio ( µ

ω
m

µω′m
)Mm=1 are invariant of N , (pω

′′
)Nω′′=1 and (fω

′′
)ω′′ 6=ω,ω′ .

Therefore, we can apply Theorem 2 of Hellman and Cover (1970) where N = 2 such that:

maxm
µω
′

m

µωm

minm
µω′m
µωm

≤ (l
ωω′

l
ω′ω

)(M−1). (A.8)

where l
ωω′

= sups
fω(s)

fω′ (s)
. First, minm

µω
′

m

µωm
> 0 for all ω′ 6= ω. Suppose to the contrary that for
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some ω′, minm
µω
′

m

µωm
= 0, Equation (A.8) implies that maxm

µω
′

m

µωm
= 0 and µω

′
m = 0 for all m. It

in turn implies that maxm
µωm
µω′m

is unbounded and minm
µωm
µω′m

= 0 and it contradicts

maxm
µωm
µω′m

minm
µωm
µω′m

≤ (l
ω′ω
l
ωω′

)(M−1).

Now since minm
µω
′

m

µωm
> 0 for all ω′, denote uω = u(ω, ω), we have

minm
µω
′

m

µωm
≥ (l

ωω′

l
ω′ω

)−(M−1)maxm
µω
′

m

µωm

minm
µω
′

m

µωm
≥ ς2(M−1)maxm

µω
′

m

µωm

minm
µω
′

m

µωm
≥ ς2(M−1)

uω
′
pω
′
µω
′

m

uωpωµωm
≥ ς2(M−1)u

ω′pω
′

uωpω
for all m.

The second inequality follows Equation (1) while the third inequality is implied by the fact

that
∑

m µ
ω′
m =

∑
m µ

ω
m = 1. Now, denote u = maxω∈Ω mina6=ω[u(ω, ω) − u(a, ω)] and u =

minω∈Ω mina6=ω[u(ω, ω)−u(a, ω)], as min maxω′
uω
′
pω
′

uωpω
= u

u

1−pω

N−1

pω
, there exists some ω′ such that

uω
′
pω
′
µω
′

m

uωpωµωm
≥ ς2(M−1) min max

ω′

uω
′
pω
′

uωpω
≥ ς2(M−1)u

u

1−pω
N−1

pω
for all m ∈M . (A.9)

When pω < ς2(M−1) u
u

1−pω
N−1

, or equivalently, pω

1−pω < ς2(M−1) u
u

1
N−1

, Equation (A.9) implies that

uω
′
pω
′
µω
′

m > uωpωµωm, and the DM is better off choosing ω′ than choosing ω for all m ∈ M .

Setting ε̄ = uω
′
pω
′
µω
′

m−uωpωµωm∑
ω′′ p

ω′′µω′′m
proves the first bullet point of Corollary 1. Similar argument

proves Corollary 1(ii). Check!

I now prove Corollary 1(iii). Again, consider an updating mechanism T such that µω̃m > 0

for some ω̃ and m where d(m) = ω. Similar to the proof of the first part of Corollary 1,

minm
µω
′

m

µωm
≥ (l

ωω′

l
ω′ω

)−(M−1)maxm
µω
′

m

µωm

minm
µω
′

m

µωm
≥ F

−(M−1)
maxm

µω
′

m

µωm

minm
µω
′

m

µωm
≥ F

−(M−1)

uω
′
pω
′
µω
′

m

uωpωµωm
≥ F

−(M−1)uω
′
pω
′

uωpω
for all m.

(A.10)

As uω
′
pω
′
> uωpω, for F <

[
uωpω

uω′pω′

] 1
M−1

, Equation (A.10) implies that uω
′
pω
′
µω
′

m > uωpωµωm,
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i.e., the DM is better to choose action ω′ instead of ω. Setting ε̄ = uω
′
pω
′
µω
′

m−uωpωµωm∑
ω′′ p

ω′′µω′′m
, the result

follows.

A.3 Proof of Corollary 2

Proof. First, (i) is directly implied by Corollary 1. If pωA is small enough for all ω ∈ NA ⊂ N

and pωB is small enough for all ω ∈ NB = N \NA, individual A (almost) never picks action ω

for all ω ∈ NA and individual B (almost) never picks action ω for all ω ∈ N \NA. Therefore,

they must disagree with each other.

To prove (ii), note that by Proposition 1, we know that if an individual adopts an ε-

optimal updating mechanism, his utility loss is bounded above by Krb
M−1
N
c + ε for some

K > 0 and r < 1. Thus, for all ω, the probability that the individual chooses a “wrong”

action ω′ 6= ω is strictly smaller than

[
Krb

M−1
N
c+ε

minω pω

]
. For all ω, the probability that both

individuals chooses action ω and thus agree with each other is greater than1−

KAr
bMA−1

N
c

A + ε

minω pωA

1−

KBr
bMB−1

N
c

B + ε

minω pωB


>1−

[
1

minω pωA
+

1

minω pωB

]
(max{KA, KB}(max{rA, rB})b

min{MA,MB}−1

N
c + ε)

for all ε-optimal updating mechanisms of individual A and B. The result follows.

A.4 Proof of Corollary 3

Proof. I prove the Corollary using the following simple example. Consider a setting with

N = 3 and two individuals, A and B, who share the same prior belief and the same objective

signal structure:

p1 =
1

3
+ 2ν

p2 = p3 =
1

3
− ν

(A.11)

sup
s

f 1(s)

fn(s)
= sup

s

fn(s)

f 1(s)
=
√

1 + τ for n = 2, 3

sup
s

f 2(s)

f 3(s)
= sup

s

f 3(s)

f 2(s)
=
√

1 + Ψ where Ψ > τ .

(A.12)

with 1 + τ ≥
1
3

+2ν
1
3
−ν .23 Moreover, assume that u(1, 1) = u(2, 2) = u(3, 3) = 1 and u(ω, ω′) = 0

for all ω 6= ω′. The only difference the two individuals have is their levels of cognitive ability,

23It ensures that if M ≥ 2, the DM never chooses action 1 with probability 1 and he can achieve a strictly
lower utility loss compared to the benchmark of no information.
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where MA = 1 and MB = 2.

First, as M = 1 for individual A, his action is constant in all periods for all signal

realizations and thus d(1) = 1. Individual A always take action 1. Now I characterize the ε-

optimal updating mechanism of individual B. With some abuse of notations, denote L∗2(nn′)

as optimal utility loss where the DM chooses action n in memory state 1 and action n′ in

memory state 2. We have, obviously,

L∗2(11) =
2

3
− 2ν,

L∗2(22) = L∗2(33) =
2

3
+ ν.

Moreover, as argued in the proof of Proposition 2 (i), suppose d(1) = n and d(2) = n′ 6= n,

we have
µn1

1− µn′2

/
1− µn1
µn
′

2

=
µn1
µn
′

1

/
µn2
µn
′

2

≤ sup
s

fn(s)

fn′(s)
sup
s

fn
′
(s)

fn(s)
.

The upper bound of L∗(nn′) is given by the following minimization problem:

min
µn1 ,µ

n′
2

1− pn − pn′ + pn(1− µn1 ) + +pn
′
(1− µn′2 )

given
µn1

1− µn′2

/
1− µn1
µn
′

2

≤ sup
s

fn(s)

fn′(s)
sup
s

fn
′
(s)

fn(s)
,

Hellman and Cover (1970) shows that the upper bound is tight with the updating mechanism

where T (1, s′) = 2 if and only if fn
′
(s′)

fn(s′)
is close to sups

fn
′
(s)

fn(s)
, and T (2, s′) = 1 if and only if

fn(s′)

fn′ (s′)
is close to sups

fn(s)

fn′ (s)
. Therefore,

L∗2(12) = L∗2(13) =
1

3
− ν +

2
√

(1 + τ)
(

1
3

+ 2ν
) (

1
3
− ν
)
−
(

2
3
− ν
)

τ
,

L∗2(23) =
1

3
+ 2ν +

2
(

1
3
− ν
)√

1 + Ψ−
(

2
3
− 2ν

)
Ψ

.

where 1 + τ ≥
1
3

+2ν
1
3
−ν implies L∗2(22) = L∗2(33) > L∗2(11) ≥ L∗2(12) = L∗2(13). In the following,

I prove L∗2(12) > L∗2(23) if ν is small enough which implies that aBt = 2 or 3 for all t in all

ε-optimal updating mechanism when ε is smaller than L∗2(12)−L∗2(23). Now, L∗2(12) > L∗2(23)

if and only if

L∗2(12)−L∗2(23) = 3ν+
2(1

3
− ν)
√

1 + Ψ

Ψ
−

2
3
− 2ν

Ψ
−

2
√

(1 + τ)(1
3

+ 2ν)(1
3
− ν)

τ
+

2
3

+ ν

τ
< 0.

When ν = 0,

L∗2(12)− L∗2(23) =
2

3

(√
1 + Ψ

Ψ
−
√

1 + τ

τ

)
− 2

3

(
1

Ψ
− 1

τ

)
.
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As both
√

1+x
x

and 1
x

decreases in x, Ψ > τ implies that L∗2(12) − L∗2(23) < 0 when ν = 0.

The result follows by continuity.

B An example of ignorance with uniform prior belief

and symmetric signal structures

In this section, I consider a case where N = M ≥ 4 and states of the world are a priori

uniformly distributed, i.e., pω = 1
N

for all ω = {1, · · · , N}. Moreover, u(ω, ω) = 1 >

u(ω′, ω) = 0 for all ω and ω′ 6= ω. For simplicity, consider a class of “symmetric” discrete

signal structures where S = {s1, · · · .sN} and sω is a signal that supports state ω. More

specifically,

F ω(sω) = I F ω(sω
′
) for all ω and ω′ 6= ω where I > 1.

Thus, under all states of the world, it is I times more likely to receive a signal that supports

the true state than a signal that supports one of the other states.

In such a symmetric environment, there seems to be no reason to ignore any of the states.

However, I will present an example that shows that it is beneficial to ignores some states

when N is large or I is small. First, consider a simple “symmetric” updating mechanism

that ignores no states, illustrated in Figure 3 with an example of N = 4. As the DM ignores

no state, he allocates one memory state to each action. Without loss of generality, assume

he takes action ω in memory state ω. When the DM is in memory state m = ω, upon

receiving a signal sω
′
, i.e., a signal that supports state ω′, he transits to memory state ω′

with some probability δmω ≤ 1, and stays in his current memory state otherwise. Formally,

the transition function is as follows:

T (m, sω) = δmω × {ω}+ (1− δmω)× {m} for all m and ω.

In the following I show that such updating mechanism is optimal among the class of all

non-ignorant mechanism.

Suppose for some non-ignorant mechanism that the DM chooses action ω in memory state

ω, and the DM transits from memory state m 6= ω to memory state ω upon receiving signal

sω
′

with strictly positive probability where ω′ 6= ω. Similar to the proof of Proposition 1 (i),

I construct an updating mechanism that strictly improves asymptotic utility. First, decrease

the probability of transiting from memory state m to ω upon receiving signal sω
′
by p. Second,

increase the probability of transiting from memory state m to ω upon receiving signal sω by

p (re-normalize if necessary to ensure the probability of transiting from memory state m

to ω upon receiving signal sω is not greater than 1). These two steps do not change the

utility in all state ω′′ 6= ω, ω′ because F ω′′(sω
′
) = F ω′′(sω), increase the utility in state ω but

potentially decrease the utility in state ω′. Last, scale up all the transitions out of memory
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state ω (again, re-normalize if necessary) such that the utility in state ω is the same before

the first step of construction. As it is less likely to receive sω in state ω′ than in state ω, the

last step “over-scale-up” the transition out of memory state ω in ω′, and thus increases the

utility in state ω′ such that it is higher before the construction. It also increases the utility

in state ω′′ 6= ω, ω′ such that it is higher before the construction.

Now consider an ignorant mechanism that follows the similar idea of the non-ignorant

updating mechanism illustrated in Figure 3, but ignores half of the states of the worlds. For

simplicity, assume that N is plural. The ignorant mechanism is illustrated in Figure 4, with

an example of N = 4. By ignoring half of the states, the DM allocates two memory states to

each action that he does not ignore. Without loss of generality, assume that the DM takes

action ω in memory states 2ω − 1 and 2ω for ω ≤ N
2

, and ignores all actions ω′ > N
2

. In the

“more confident” memory state 2ω, upon receiving a signal supporting state ω′ 6= ω where

ω′ ≤ N
2

, the DM transits to state 2ω − 1 with probability δ < 1 and stays in his current

memory state otherwise. In the “less confident” memory state 2ω−1, upon receiving a signal

that supports state ω, he transits to the “more confident” memory state 2ω; upon receiving

a signal that supports state ω′ 6= ω where ω′ ≤ N
2

, the DM transits to state 2ω′ − 1 with

probability δ < 1 and stays in his current memory state otherwise.

Formally, the transition function is as follows:

T (2ω, sω) = 2ω for all ω ≤ N

2
,

T (2ω, sω
′
) =

2ω − 1 with probability δ

2ω with probability 1− δ
for all ω ≤ N

2
, ω′ 6= ω and ω′ ≤ N

2
,

T (2ω − 1, sω) = 2ω for all ω ≤ N

2
,

T (2ω − 1, sω
′
) =

2ω′ − 1 with probability δ

2ω with probability 1− δ
for all ω ≤ N

2
, ω′ 6= ω and ω′ ≤ N

2
,

T (m, sω
′
) = m for all ω >

N

2
.

Suppose the true state is 1, In the stationary distribution, we must have

δµ1
2ω

∑
ω′ 6=ω,ω′≤N

2

F 1(sω
′
) = µ1

2ω−1F
1(sω) for all ω ≤ N

2
,

δµ1
2ω−1F

1(sω
′
) = δµ1

2ω′−1F
1(sω) for all ω, ω′ ≤ N

2
and ω 6= ω′.

(B.1)

From the first Equation of Equation (B.1), we know that when δ is close to 0, µ1
2ω−1 is close
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to 0 for all ω ≤ N
2

. Moreover, we have

µ1
2 =

F 1(s1)

δ
∑

ω′ 6=1,ω′≤N
2
F 1(sω′)

× δF 1(s1)

δF 1(sω)
×
δ
∑

ω′ 6=ω,ω′≤N
2
F 1(sω

′
)

F 1(sω)
× µ1

2ω

=
I

N
2
− 1
×I ×

(
N

2
− 2 + I

)
× µ1

2ω

=
I 2(N + 2I − 4)

N − 2
µ1

2ω

for all ω 6= 1 and ω ≤ N
2

. We have

µ1
2 +

∑
ω 6=1,ω≤N

2

µ1
2ω = 1

µ1
2 +

N − 2

I 2(N + 2I − 4)

(
N

2
− 1

)
µ1

2 = 1

µ1
2 =

2I 2(N + 2I − 4)

2I 2(N + 2I − 4) + (N − 2)2
.

By repeating the same computation for all ω ≤ N
2

, the asymptotic utility equals:

N
2∑

ω=1

2I 2(N + 2I − 4)

2I 2(N + 2I − 4) + (N − 2)2
× 1

N
=

I 2(N + 2I − 4)

2I 2(N + 2I − 4) + (N − 2)2
. (B.2)

Then the R code on https://sites.google.com/site/ltkbenson/research produces Fig-

ure 5 in the main text.
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