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Abstract

A social choice function (SCF) is said to be Nash implementable if there
exists a mechanism in which every Nash equilibrium outcome coincides with
that specified by the SCF. The main objective of this paper is to assess the
impact of considering mixed strategy equilibria in Nash implementation. To
do this, we focus on environments with two agents and restrict attention to
finite mechanisms. We call a mixed strategy equilibrium “compelling” if its
outcome Pareto dominates any pure strategy equilibrium outcome. We show
that if the finite environment and the SCF to be implemented jointly satisfy
what we call Condition P+M, we construct a finite mechanism which Nash
implements the SCF in pure strategies and possesses no compelling mixed
strategy equilibria. This means that the mechanism might possess mixed
strategy equilibria which are “not” compelling. Our mechanism has several
desirable features: transfers can be completely dispensable; only finite mech-
anisms are considered; integer games are not invoked; and agents’ attitudes
toward risk do not matter. These features make our result quite distinct
from many other prior attempts to handle mixed strategy equilibria in the
theory of implementation. We also illustrate the difficulty of extending our
result to the case of more than two agents.
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1 Introduction

The theory of implementation attempts to answer two questions. First, can one
design a mechanism that successfully structures the interactions of agents in such a
way that, in each state of the world, they always choose actions which result in the
socially desirable outcomes for that state? Second, if agents possess information
about the state and interact through a given mechanism, what properties do the
resulting outcomes, viewed as a map from states to outcomes (and called social
choice functions - henceforth, SCFs), possess? In answering these, the consequences
of a given mechanism are predicted through the application of game theoretic
solution concepts.1

In this paper we adopt Nash equilibrium as a solution concept, consider com-
plete information environments, and ask if a given SCF is implementable, i.e., when
we can design a mechanism in which “every” Nash equilibrium induces outcomes
consistent with the SCF. Although the literature claims to care about all equilibria,
it often ignores mixed strategy equilibria and only focuses on pure strategy equi-
libria. Jackson (1992) provides the most forceful argument for why the omission
of mixed strategy equilibria brings about a serious consequence. In his Example
4, Jackson (1992) constructs a two-person environment and an SCF such that (i)
there is a finite mechanism that pure Nash implements the SCF; and (ii) every finite
pure Nash implementing mechanism always has a mixed strategy equilibrium that
gives a lottery that is preferred by both agents to the outcome of the SCF. Thus,
if we insist on using finite mechanisms, which is to be anticipated in an environ-
ment with finite number of alternatives and agents, we must question why agents
would limit themselves to playing only pure strategies, particularly when there is a
mixed strategy equilibrium that would be strictly preferred by both of them than
any pure strategy equilibrium. We call such a mixed strategy equilibrium com-
pelling. In this paper, we revisit Jackson’s example in Subsection 3.1 and show in
Subsection 3.2 that the issue of compelling mixed strategy equilibria identified by
Jackson’s example is not specific to the two-person environment but generalized
into a three-person environment where each agent plays an indispensable role in
at least one state.

To obtain the main result of the paper, we consider a two-person finite en-
vironment with respect to an SCF on which we impose Condition P+M, which
delineates a set of conditions where it is always possible to construct a finite mech-
anism which pure Nash implements the SCF without compelling mixed strategy
equilibria.2 We call such a notion of implementation compelling implementation.

1See Jackson (2001), Maskin and Sjöström (2002), and Serrano (2004) for the survey of im-
plementation theory.

2Note that Dutta and Sen (1991) and Moore and Repullo (1990) independently identify a
necessary and sufficient condition (called Condition β and Condition µ2, respectively) for two-
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Importantly, compelling implementation allows the implementing mechanism to
admit mixed strategy equilibria that result in outcomes not consistent with the
ones induced by the SCF, provided these mixed equilibria are not compelling.
Hence, compelling implementation is considered a compromise between pure Nash
implementation where only pure strategy equilibria considered and mixed Nash
implementation where all mixed strategy equilibria are fully considered.

To locate our contribution in a broader context, we first acknowledge that every
prior work cited in the table below exploits some combination of the following five
ingredients to handle mixed strategy equilibria in complete information environ-
ments: (i) infinite mechanisms; (ii) rationalizability as a stronger requirement than
Nash equilibrium;3 (iii) refinements of Nash equilibrium, such as subgame perfect
equilibrium and undominated Nash equilibrium; (iv) environments with transfers
or ones similar to separable environments of Jackson, Palfrey, and Srivstava (1994);
and (v) cardinal utilities.4

Combination of Previous works which handle mixed strategy equilibria
ingredients used in complete information environments

(i) Kartik and Tercieux (2012), Maskin (1999), Maskin and Sjöström (2002), Mezzetti and Renou (2012a)

(i) × (v) Kunimoto (2019), Serrano and Vohra (2010)

(i) × (ii) × (v) Bergemann, Morris, and Tercieux (2011), Jain (2021), Kunimoto and Serrano (2019), Xiong (2022)

(ii) × (iv) × (v) Abreu and Matsushima (1992), Chen, Kunimoto, Sun, and Xiong (2021)

(iii) × (iv) Goltsman (2011), Jackson, Palfrey, and Srivastava (1994), Moore and Repullo (1988), Sjöström (1994)

(iii) × (iv) × (v) Abreu and Matsushima (1994)

(iv) Mezzetti and Renou (2012b)

(iv) × (v) Chen, Kunimoto, Sun, and Xiong (2022)

Table 1: The list of prior works handling mixed strategy equilibria in complete
information environments.

We next emphasize that we obtain the main result of the paper without using
any of the five ingredients used in the previous works. Of course, there is the cost
associated with this result, as our implementing mechanism might admit mixed
strategy equilibria which are not compelling. In addition to the information about
the agents’ ordinal strict preferences, what is required is the information regarding
the smallest difference in cardinal utilities between any two distinct alternatives.
We can think of such information as the smallest unit in which the agents’ utilities

person Nash implementation where only pure strategies are considered.
3Rationalizability is a more demanding requirement than Nash equilibrium because every

action played with positive probability in a mixed strategy Nash equilibrium is rationalizable.
4This table, by no means, exhausts all related papers.
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are measured. As long as that unit of measure is positive, we can construct a
mechanism that compellingly implements the SCF. In this sense, while compelling
implementation is not completely ordinal, it can be made as ordinal as it can pos-
sibly be. We consider Nash implementation as the right notion of implementation
if we insist on the robustness to information perturbations. This is so because
Aghion, Fudenberg, Holden, Kunimoto, and Tercieux (2012) and Chung and Ely
(2003) both show that Maskin monotonicity, a necessary condition for Nash imple-
mentation, is also necessary if we want implementation using refinements of Nash
equilibria to be robust to information perturbations.5 Our mechanism is finite so
that it does not use the integer games which are often considered a questionable
devise in the literature.6 The use of transfers can be dispensed with completely,
which allows us to apply our result to an important class of environments includ-
ing the models of voting and matching in which monetary transfers are simply
unavailable.

We finally take up Korpela (2016) which is perhaps the closest to our paper.7

Korpela (2016) uses a weaker notion of implementation than our compelling imple-
mentation in the sense that his notion of implementation ignores all Nash equilib-
ria which are not compelling, “regardless of whether they are pure or mixed.” We
mention three main differences: first, Korpela’s (2016) notion of implementation
does not necessarily imply pure strategy Nash implementation, whereas our com-
pelling implementation does. Second, our Condition P+M is significantly weaker
than Korpela’s (2016) “essentially finite economic environments” needed for his
result. Third, we focus on the case of two agents, while Korpela (2016) handles
any number of agents.8

We organize the rest of the paper as follows: Section 2 presents the environ-
ment, notation, mechanisms and solution concepts, as well as a small discussion on
Maskin Monotonicity. Section 3 consists of two subsections: Subsection 3.1 revis-
its Example 4 of Jackson (1992), which motivates our inquiry and Subsection 3.2
generalizes the insights obtained by Jackson’s example into a three-person environ-
ment in which each agent plays an indispensable role in at least one state. From
Section 4 till the end of the paper, we focus entirely on two-person environments.
Section 4 slightly modifies Example 4 of Jackson (1992) and presents an illustra-

5Aghion, Fudenberg, Holden, Kunimoto, and Tercieux (2012) and Chung and Ely (2003)
adopt subgame perfect equilibrium and undominated Nash equilibrium as a solution concept,
respectively.

6In the integer game, each agent announces some integer and the person who announces the
highest integer gets to name his favorite outcome.

7This paper has been developed independently of Korpela (2016) and we only became aware
of it after we completed the first draft of the paper.

8In the rest of the paper, we will further make the connection to Korpela (2016) wherever
necessary.
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tion of this paper’s main result. Section 5 contains the main result of the paper
together with a specific family of mechanisms that can achieve compelling imple-
mentation under Condition P+M. Section 6 shows that part of Condition P+M is
necessary for pure Nash Implementation and the other part of Condition P+M is
indispensable for compelling implementation in the sense that our mechanism fails
to achieve compelling implementation when the other part of Condition P+M is
not satisfied. Section 7 compares our mechanism with the canonical mechanism of
Moore and Repullo (1990), showing that there is a class of environments satisfying
Condition P+M in which the canonical mechanism of Moore and Repullo (1990)
admits a compelling mixed strategy equilibrium. In Section 8, we illustrate the
difficulty of extending our result to the case of more than two agents. Section 9
concludes the paper and the Appendix contains the proofs omitted from the main
body of the paper.

2 Preliminaries

Throughout the paper, we consider an environment in which there is a finite set of
agents, denoted by I = {1, 2, . . . , n}. Let Θ be the finite set of states. It is assumed
that the underlying state θ ∈ Θ is commonly certain among the agents. This is
the complete information assumption. Let A denote the set of social alternatives,
which are assumed to be independent of the information state. We shall assume
that A is finite, and denote by ∆(A) the set of probability distributions over A.
Associated with each state θ is a preference profile �θ= (�θi )i∈I where �θi is agent
i’s preference relation over A at θ. We write a �θi a

′
when agent i weakly prefers

a to a
′

in state θ. We also write a �θi a
′

if agent i strictly prefers a to a
′

in state θ
and a ∼θi a

′
if agent i is indifferent between a and a

′
in state θ. We can now define

an environment as E =
(
I, A,Θ, (�θi )i∈I,θ∈Θ

)
, which is implicitly understood to be

commonly certain among the agents. Throughout the paper, we assume that the
environment E admits strictly preferences only, that is, for any i ∈ I, θ ∈ Θ, and
a, a

′ ∈ A, it follows that either a �θi a
′

or a
′ �θi a.

We assume that any preference relation �θi is representable by a von Neumann-
Morgenstern utility function ui(·, θ) : ∆(A)→ R. We say that ui(·, θ) is consistent
with �θi if, for any a, a

′ ∈ A, ui(a, θ) ≥ ui(a
′
, θ) ⇔ a �θi a

′
. We denote by U θi the

set of all possible cardinal representations ui(·, θ) that are consistent with �θi . We
formally define U θi as follows:

U θi =

{
ui(·, θ) ∈ [0, 1]|A|

∣∣∣∣ ui(·, θ) is consistent with �θi ; mina∈A ui(a, θ) = 0;
and maxa∈A ui(a, θ) = 1

}
,

where |A| denotes the cardinality of A. Let U θ ≡ ×i∈IU θi and U ≡ ×θ∈ΘU θ. We
denote any subset of U θi by Û θi and any subset of U θ by Û θ, respectively
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The planner’s objective is specified by a social choice function (henceforth,
SCF) f : Θ → ∆(A). Although many papers deal with multi-valued social choice
correspondences in the literature of Nash implementation, we focus only on single-
valued SCFs.

2.1 Mechanisms and Solution Concepts

Let Γ = ((Mi)i∈I , g) be a finite mechanism where Mi is a nonempty finite set of
messages available to agent i; g : M → A (where M ≡ ×i∈IMi) is the outcome
function. At each state θ ∈ Θ and profile of representations u ∈ U , the environment
and the mechanism together constitute a game with complete information which
we denote by Γ(θ, u). By Γ(θ) we mean the game in which the preference profile
(�θi )i∈N is commonly certain among the agents so that any representation u ∈ U
is admissible. Note that the restriction of Mi to a finite set rules out the use of
integer games (See, for example, Maskin (1999)).

Let σi ∈ ∆(Mi) be a mixed strategy of agent i in the game Γ(θ, u). A strategy
profile σ = (σ1, . . . , σN) ∈ ×i∈I∆(Mi) is said to be a mixed-strategy Nash equilib-
rium of the game Γ(θ, u) if, for all agents i ∈ I and all messages mi ∈ supp (σi)
and m′i ∈Mi, we have∑

m−i∈M−i

∏
j 6=i

σj(mj)ui(g(mi,m−i), θ) ≥
∑

m−i∈M−i

∏
j 6=i

σj(mj)ui(g(m′i,m−i), θ).

A pure-strategy Nash equilibrium is a mixed-strategy Nash equilibrium σ such
that each agent i’s mixed-strategy σi assigns probability one to some mi ∈Mi. Let
NE(Γ(θ, u)) denote the set of mixed-strategy Nash equilibria of the game Γ(θ, u)
and pureNE(Γ(θ)) denote the set of pure strategy Nash equilibria of the game
Γ(θ). As far as we are only concerned with pure strategy equilibria, we only need
ordinal preferences so that we can write pureNE(Γ(θ)). We also define

NE(Γ(θ)) =
⋃
u∈Uθ

NE(Γ(θ, u))

as the set of all Nash equilibria of the class of games Γ(θ, u) across all possible
representation u ∈ Uθ. Since it does not depend upon cardinal utilities, NE(Γ(θ))
is defined only in terms of ordinal preferences. We introduce the notion of pure
strategy Nash implementation.

Definition 1 An SCF f is pure Nash implementable if there exists a finite
mechanism Γ = (M, g) such that for every state θ ∈ Θ, (i) pureNE(Γ(θ)) 6= ∅;
and (ii) m ∈ pureNE(Γ(θ))⇒ g (m) = f (θ).
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For each θ ∈ Θ, define

supp(NE(Γ(θ))) =
{
m ∈M | ∃ u ∈ U θ such that ∃ σ ∈ NE(Γ(θ, u)) with σ(m) > 0

}
as the set of message profiles which can be played with positive probability in
a Nash equilibrium of the game Γ(θ, u) associated with some u ∈ Uθ. We next
introduce a notion of mixed strategy Nash implementation.

Definition 2 An SCF f is mixed Nash implementable if there exists a finite
mechanism Γ = (M, g) such that for every state θ ∈ Θ, (i) pureNE(Γ(θ)) 6= ∅;
and (ii) m ∈ supp(NE(Γ(θ)))⇒ g (m) = f (θ).

This definition is proposed by Maskin (1999) but we differ from Maskin (1999)
because he allows for infinite mechanisms. The notion of mixed Nash implementa-
tion is stronger than that of pure Nash implementation because the former guar-
antees that every message profile that can be played with positive probability in a
Nash equilibrium results in the outcome specified by the SCF. Since it is extremely
demanding to take care of all mixed strategy equilibria, we propose a notion of com-
pellingness, which singles out the class of mixed strategy equilibria on which we
give a serious consideration.

Definition 3 Fix θ ∈ Θ and u ∈ U θ. We say that σ is a compelling mixed
strategy equilibrium of the game Γ(θ, u) if, for any m ∈ pureNE(Γ(θ)) and i ∈ I,∑

m̃∈M

σ(m̃)ui(g(m̃), θ) ≥ ui(g(m), θ),

with at least one strict inequality for some i ∈ I.

For each θ ∈ Θ, we denote by Û θ an arbitrary subset of U θ. We write Û ≡
×θ∈ΘÛ θ. We now introduce what we call compelling implementation which takes Û
as the set of admissible cardinal utilities explicitly. The basic tenet underlying our
notion of Nash implementation is that we ignore mixed strategy equilibria which
are “not” compelling, while we take compelling mixed strategy equilibria seriously.

Definition 4 Let Û ⊆ U . An SCF f is compellingly implementable (C-
implementable) with respect to Û if there exists a finite mechanism Γ = (M, g)
such that for every state θ ∈ Θ, (i) pureNE(Γ(θ)) 6= ∅; (ii) m ∈ pureNE(Γ(θ))⇒
g (m) = f (θ); and (iii) for any u ∈ Û θ, the game Γ(θ, u) has no compelling mixed
strategy equilibria.

Our notion of compelling implementation strengthens the definition of pure
Nash implementation with the following additional requirement: there be no com-
pelling mixed strategy equilibria within the class of games Γ(θ, u) across all rep-
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resentation u ∈ Û θ. On the other hand, our notion of compelling implementa-
tion weakens the definition of mixed Nash implementation by allowing the fol-
lowing possibilities: (i) there might exist a state θ ∈ Θ and a message profile
m ∈ supp(NE(Γ(θ)) such that g(m) 6= f(θ) and (ii) there might exist θ ∈ Θ,
u ∈ U θ\Û θ, and σ ∈ NE(Γ(θ, u)) such that σ is compelling. The first possibility
means that our implementing mechanism might admit a bad mixed strategy Nash
equilibrium that is not compelling. The second possibility means that our imple-
menting mechanism might admit a compelling equilibrium if we allow a possible
representation u to be outside of Û .

2.2 Maskin Monotonicity

We now restate the definition of Maskin monotonicity that Maskin (1999) proposes
for Nash implementation.

Definition 5 An SCF f satisfies Maskin monotonicity if, for every pair of
states θ̃ and θ with f(θ̃) 6= f (θ), some agent i ∈ I and some allocation a ∈ A exist
such that

f(θ̃) �θ̃i a and a �θi f(θ̃). (1)

To show that Maskin monotonicity a necessary condition for compelling im-
plementation, suppose that the SCF f is C-implementable by a mechanism Γ =
(M, g). When θ̃ is the true state, there exists a pure-strategy Nash equilibrium
m ∈M in Γ(θ̃) which induces f(θ̃). If f(θ̃) 6= f (θ) and θ is the true state, then m
cannot be a Nash equilibrium, i.e., there exists some agent i who has a profitable
deviation. Suppose that the deviation induces outcome a, i.e., agent i strictly
prefers a to f(θ̃) at state θ. Since m is a Nash equilibrium at state θ̃, such a
deviation cannot be profitable in state θ̃; that is, agent i weakly prefers f(θ̃) to a
at state θ̃. In other words, a belongs to agent i’s lower contour set at f(θ̃) of state
θ̃, whereas it belongs to the strict upper-contour set at f(θ̃) of state θ. Therefore,
Maskin monotonicity is a necessary condition for compelling implementation; in
fact, it is a necessary condition even for pure Nash implementation.

3 The Relevance of Mixed Strategy Equilibria in

Nash Implementation

In this section, we articulate a compelling reason why we need to be worried about
mixed strategy equilibria in Nash implementation. To do so, we decompose our
argument into two subsections. In Subsection 3.1, we revisit Example 4 of Jack-
son (1992), which focuses on an environment with two agents and shows that the
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omission of mixed strategy equilibria brings about a serious blow to Nash imple-
mentation. In Subsection 3.2, we show that all the insights exhibited by Example
4 of Jackson (1992) can be extended to an environment with three agents and
moreover, this extension can be made in a nontrivial manner, i.e., each agent
plays an indispensable role in at least one state. Hence, the extension achieved in
Subsection 3.2 emphasizes that the relevance of mixed strategy equilibria in Nash
implementation is rather a general phenomenon, not specific to the two-person
environment.

3.1 Example 4 of Jackson (1992)

Suppose that there are two agents I = {1, 2}; four alternatives A = {a, b, c, d}; and
two states Θ = {θ, θ′}. Suppose that agent 1 has the state-independent preference
a �1 b �1 c ∼1 d and agent 2 has the preference a �θ2 b �θ2 d �θ2 c at state θ and
preference b �θ′2 a �θ′2 c ∼θ′2 d at state θ′. Consider the SCF f such that f (θ) = a
and f (θ′) = c.

First, Jackson (1992) constructs a finite mechanism Γ = (M, g) (described in
Table 2) that implements the SCF f in pure-strategy Nash equilibria:

g(m) Agent 2
m1

2 m2
2 m3

2

m1
1 c d d

Agent 1 m2
1 d a b

m3
1 d b a

Table 2: The mechanism introduced in Example 4 of Jackson (1992).

There are two pure strategy Nash equilibria, (m2
1,m

2
2) and (m3

1,m
3
2), in the

game Γ(θ), both of which result in outcome a. In the game Γ(θ
′
), the unique pure-

strategy Nash equilibrium is (m1
1,m

1
2), which results in outcome c. Thus, the SCF

f is implementable by the above finite mechanism in pure-strategy Nash equilibria.
Due to the necessity of Maskin monotonicity for Nash implementation, we know
that the SCF f satisfies Maskin monotonicity. However, in the game Γ(θ

′
), there

is a mixed-strategy Nash equilibrium, where each agent i plays m2
i and m3

i with
equal probability, which results in outcomes a and b, each with probability 1/2.
Both agents strictly prefer any outcome of the mixed-strategy equilibrium to the
outcome of the pure-strategy equilibrium. Thus, according to our terminology,
this mixed strategy Nash equilibrium is compelling. Note that there is a conflict
of interests between the two agents over a and b in state θ

′
, i.e., while agent 1
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prefers a to b, agent 2 prefers b to a. This conflict of interests allows us to have the
unique pure strategy Nash equilibrium in the game Γ(θ

′
), which results in outcome

c. At the same time, this logic for the uniqueness of the pure-strategy equilibrium
is extremely dubious because outcomes a and b are strictly better for both agents
than outcome c.

Jackson (1992) further shows that his argument applies to any finite implement-
ing mechanism. That is, for any finite mechanism which implements the SCF f in
pure-strategy Nash equilibria, there must also exist a compelling mixed-strategy
Nash equilibrium at state θ′ inducing a lottery different from c, which is the so-
cially desirable outcome by the SCF f at state θ

′
. Therefore, the SCF f is “not”

C-implementable with respect to U , which is the set of “all” cardinal utility rep-
resentations, or any of its subsets. It thus follows that the identified compelling
mixed strategy equilibrium persists independently of any cardinal representation.

3.2 The Case of More Than Two Agents

The previous subsection presented a scenario where any finite pure Nash imple-
menting mechanism suffers from the existence of compelling mixed equilibria, un-
dermining the competence of pure Nash implementation. We now argue that the
problem exemplified in Subsection 3.1 is not specific to the two-person environ-
ment. More specifically, we consider an environment with three agents in which
each player plays an indispensable role in at least some state and nevertheless, we
are able to show that the same insights obtained in Subsection 3.1 can be extended
to this three-person environment.

Consider an environment E∗ in which there are three agents, I = {1, 2, 3}; four
alternatives, A = {a, b, c, d}; and four states, Θ = {θ1, θ2, θ3, θ4}, as well as the
SCF f to be implemented, which all are depicted by the table below:

State Agent 1 Agent 2 Agent 3 f(·)
θ1 a �θ11 b �θ11 c ∼θ11 d a �θ12 b �θ12 d �θ12 c a �θ13 b �θ13 c ∼θ13 d f(θ1) = a

θ2 a �θ21 b �θ21 c ∼θ21 d b �θ22 a �θ22 c ∼θ22 d a �θ23 b �θ23 c ∼θ23 d f(θ2) = c

θ3 a �θ31 b �θ31 c ∼θ31 d b �θ32 a �θ32 c ∼θ32 d b �θ33 a �θ33 d �θ33 c f(θ3) = b

θ4 d �θ41 a �θ41 b �θ41 c b �θ42 a �θ42 c ∼θ42 d a �θ43 b �θ43 d �θ43 c f(θ4) = d

Table 3: The environment E∗ and the SCF f

The environment E∗ and the SCF f differ from those presented by Example 4 of
Jackson (1992) in a non-trivial way, as there are more states and none of the agents
has preferences that are a replication of another agent. Moreover, every outcome
in the set of alternatives can be chosen by the SCF in some state. As such, it
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is impossible to devise a mechanism that simply ignores one agent by giving him
a trivial message space, which essentially reduces the problem of implementation
to the two-person problem. In this sense, we deal with a genuinely three-person
problem. Let us consider the following mechanism (M, g) in which each agent
chooses an integer from {0, 1, 2}; agent 1 chooses a row; agent 2 chooses a column;
and agent 3 chooses a matrix:

g(m1,m2, 0) Agent 2
2 1 0

2 c d d
Agent 1 1 d a b

0 d b a

g(m1,m2, 1) Agent 2
2 1 0

2 d c c
Agent 1 1 a a b

0 b a b

g(m1,m2, 2) Agent 2
2 1 0

2 d c c
Agent 1 1 b b a

0 a b a

Table 4: The mechanism that pure Nash implements f in the environment E∗

The mechanism above pure Nash implements the SCF f . However, in state θ2,
there is a compelling mixed equilibrium, with agents 1 and 2 uniformly randomizing
between messages 1 and 0 and agent 3 uniformly randomizing between messages
1 and 2. This is so regardless of any cardinal representation. As in the same as
Example 4 of Jackson (1992), this is a persistent feature possessed by any finite
mechanism that pure Nash implements f :

Proposition 1 We consider the environment E∗. Then, the SCF f is pure Nash
implemented by finite mechanisms. Moreover, if the SCF f is pure Nash imple-
mented by a finite mechanism Γ, for any u ∈ U , the game Γ(θ2, u) has a compelling
mixed strategy equilibrium.9

This proposition (whose proof can be found in the Appendix) highlights that
the issue of compelling mixed strategy equilibria in pure Nash implementation is
not specific to two-person environments but can be extended to much more general
environments.

9The proof of this proposition essentially follows the same logic of the remark made by Jackson
(1992, p.770). We adapt Jackson’s argument to an environment where there are three agents;
there are four states; and each agent plays an indispensable role defining the outcome induced
by the SCF in some state.
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4 Illustration of the Main Result

In the rest of the paper, due to our technical difficulty, we will focus entirely on
the two-person environments, i.e., I = {1, 2}. We defer our discussion on this
difficulty to the conclusion section. The main objective of this paper is to identify
a class of environments where the issue of compelling mixed strategy equilibria can
be avoided by carefully designing an implementing mechanism. In this section, we
illustrate how we resolve this issue in the slightly modified version of Example 4 of
Jackson (1992).

One crucial feature Jackson’s Example 4 has is that its argument seems to rely
heavily on the extreme inefficiency of the SCF, i.e., the SCF f assigns the common
worst outcome in state θ

′
.10 To investigate how robust Jackson’s argument is, we

only make the following modification: both agents now strictly prefer c to d in state

θ
′
, i.e., c �θ

′

i d for each i = 1, 2. Recall that this modification is consistent with
our setup, as the environment this paper considers only admits strict preferences.

We summarize the basic setup. Agent 1 has the state-independent preference
a �1 b �1 c �1 d and agent 2 has the preference a �θ2 b �θ2 d �θ2 c at state θ
and preference b �θ′2 a �θ′2 c �θ′2 d at state θ′. Consider the same SCF f such
that f (θ) = a and f (θ′) = c. This way the SCF never assigns the worst outcome
for any agent in either state (a feature that will also be implied by our sufficient
condition).

With this modification, we are able to construct a mechanism that not only
implements the SCF in pure-strategy Nash equilibrium but also guarantees that
all mixed-strategy equilibria of the constructed mechanism give each agent the
expected payoff arbitrarily close to that of d, which is worse than that of c, the
outcome induced by the SCF f at state θ′. Hence, we essentially overturn the
implication of Jackson’s Example 4 by assuming that there is a uniform bound for
the utility difference.

For each integer k ≥ 2, we define Γk = (Mk, gk) as a mechanism with the
following properties: (i) for each i ∈ N , Mk

i = {0, 1, . . . , k} and (ii) the outcome
function gk : Mk → A is given by the following rules: for each m ∈Mk,

• If m = (k, k), then gk(m) = c;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h, h), then
gk(m) = a;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h, (h +
1 mod k)), then gk(m) = b; and

• Otherwise, gk(m) = d.

10Jackson (1992, p.770) is well aware of this point.
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We illustrate this mechanism as follows:

gk(m) Agent 2
k k − 1 k − 2 k − 3 · · · 3 2 1 0

k c d d d · · · d d d d
k − 1 d a d d · · · d d d b
k − 2 d b a d · · · d d d d
k − 3 d d b a · · · d d d d

Agent 1
...

...
...

...
...

. . .
...

...
...

...
3 d d d d · · · a d d d
2 d d d d · · · b a d d
1 d d d d · · · d b a d
0 d d d d · · · d d b a

Table 5: Γk = (Mk, gk) where k ≥ 3.

When k = 2, our mechanism is reduced to the one introduced by Jackson (1992)
where we set m1

i = 2;m2
i = 1; and m3

i = 0 for each i ∈ {1, 2}.

g(m) Agent 2
2 1 0

2 c d d
Agent 1 1 d a b

0 d b a

Table 6: Γk = (Mk, gk) where k = 2.

For each θ ∈ Θ, i ∈ {1, 2}, and ε > 0, we define U θ,εi as a subset of U θi as
follows:

U θ,εi =
{
ui ∈ Uθi

∣∣∣ |ui(a, θ)− ui(a′ , θ)| ≥ ε, ∀a ∈ A, ∀a′ ∈ A\{a}, ∀θ ∈ Θ
}
.

Let U θ,ε ≡ ×i∈NU θ,εi and U ε ≡ ×θ∈ΘU θ,ε. We observe that U ε possesses the follow-
ing monotonicity:

ε > ε
′
> 0⇒ U ε ( U ε

′

⊆ U ⊆ U0.

Loosely speaking, if we choose ε > 0 small enough, we can approximate U by U ε
to an arbitrary degree. We are now ready state the main result of this section.
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Proposition 2 For any ε > 0, there exists K ∈ N large enough such that the SCF
f is C-implementable with respect to U ε by the mechanism ΓK.

Proof : The proof is completed by a series of lemmas. For the moment, we fix
k in the proof and we ignore the dependence of the mechanism on k. We first show
pure Nash implementation by the mechanism Γk.

Lemma 1 The mechanism Γk implements the SCF in pure-strategy Nash Equilib-
rium.

Proof: The message profile (1, 1) is a Nash equilibrium of the game Γk(θ), as
it yields a which is their most preferred outcome for both agents so that no agent
can find a profitable deviation. We claim that a is the unique Nash equilibrium
outcome of the game Γk(θ). Let m be a message profile such that g(m) 6= a. We
will show that m is “not” a Nash equilibrium in the game Γk(θ):

• If g(m) = b, there exists an integer h with 0 ≤ h ≤ k − 1 such that m =
(h, (h + 1 mod k)). Then agent 1 has an incentive to send a message h +
1 mod k so that outcome a is induced.

• If g(m) = c, then m = (k, k). Then, agent 2 has an incentive to send any
message other than k so that outcome d is induced, as he strictly prefers
outcome d to outcome c at state θ.

• If g(m) = d, then we have m = (m1,m2) where m1 6= m2. If m1 > m2

then, agent 1 has an incentive to deviate from m1 to m2 so that outcome a
is induced. Conversely, if m2 > m1, then agent 2 has an incentive to deviate
from m2 to m1, so that outcome a is induced.

We next claim that (k, k) is a Nash equilibrium of the game Γk(θ
′
) because any

unilateral deviation from (k, k) yields d, which is inferior to c induced by (k, k) for
both agents. Moreover, no other outcome can be induced by a Nash equilibrium
in this game: every message profile m = (m1,m2) where m2 < k and g(m) 6= a
has a profitable deviation for player 1 at m′1 = m2, while every message profile
m = (m1,m2) where m1 < k and g(m) 6= b has a profitable deviation for player
2 at m′2 = m1 + 1 mod k. Since g(m) = a implies m1 < k and g(m) = b implies
m2 < k, we have that there are no possible Nash equilibria with either m1 < k or
m2 < k. Thus, the only possible Nash equilibrium in pure strategies for this game
is (k, k). �

The following lemma is our key result, characterizing the set of Nash equilibria
of the mechanism Γk in state θ

′
.
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Lemma 2 For each i ∈ {1, 2}, let σi = (σi(0), σi(1), ..., σi(k)) denote agent i’s
strategy and for each x ∈ {0, 1, . . . , k}, let σi(x) denote the probability that agent
i chooses x. If σ = (σ1, σ2) is a Nash equilibrium in the game Γk(θ

′
), then, for

each i ∈ {1, 2}, there is a number pi ∈ [0, 1] such that σi(x) = pi/k for each
x ∈ {0, . . . , k − 1}. Moreover, p1 = 0 if and only if p2 = 0.

Proof: Recall that we set ui(d; θ
′
) = 0 for each ui ∈ Uθ

′

i and i ∈ {1, 2}. Let σ
be a Nash equilibrium of the game Γk(θ

′
). If σi(k) = 1 for each i ∈ {1, 2}, such pi

in the lemma is guaranteed to exist by setting pi = 0. Thus, we assume that there
exists i ∈ {1, 2} for whom σi(k) < 1. We divide the proof into a series of steps,
whose proofs will be found in the Appendix:

Step 1a: If there exists x ∈ {0, . . . , k − 1} such that σ1(x) > 0, then σ2(x) > 0.

Step 1b: If there exists x ∈ {1, . . . , k−1} such that σ2(x) > 0, then σ1(x−1) > 0.
Moreover, if σ2(0) > 0, then σ1(k − 1) > 0.

Step 1c: If there exist i ∈ {1, 2} and x
′ ∈ {0, . . . , k − 1} for whom σi(x

′
) > 0,

then σ1(x) > 0 and σ2(x) > 0 for all x ∈ {0, . . . , k − 1}.

Step 2: If there exist i ∈ {1, 2} and x, x
′ ∈ {0, . . . , k− 1} such that σi(x) > 0 and

σi(x
′
) > 0, then σi(x) = σi(x

′
).

It follows from both Steps 2 and 1c that σi(x) = σi(x
′
) for every x, x

′ ∈
{0, . . . , k − 1} and i ∈ {1, 2}. Thus, we can set pi =

∑k−1
x=0 σi(x). Since we as-

sume σi(k) < 1 for each i ∈ {1, 2}, we have pi > 0. This completes the proof of
Lemma 2. �

As we can easily see in the proof of Lemma 1, there are no (compelling) mixed
strategy Nash equilibria of the game Γk(θ) because, in state θ, the unique Nash
equilibrium outcome is a, which is the best outcome for both agents. It thus
remains to prove that there are no compelling mixed strategy equilibria in the
game Γk(θ

′
).

If k ≥ 3, we let σk be a nontrivial mixed-strategy Nash equilibrium in the game
Γk(θ

′
). Then, the resulting outcome distribution induced by σk is given by

g ◦ σk =


c w.p. (1− p1)(1− p2)
a w.p. (p1p2)/k
b w.p. (p1p2)/k
d w.p. ((k − 2p1p2)/k)− ((1− p1)(1− p2)),

where p1, p2 ∈ (0, 1] and pi =
∑k−1

x=0 σi(x) for each i ∈ {1, 2}. Recall the following
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pieces of notation:

U θ
′

1 =
{
u1(·; θ′) ∈ [0, 1]A

∣∣ 1 = u1(a; θ
′
) > u1(b; θ

′
) > u1(c; θ

′
) > u1(d; θ

′
) = 0

}
;

U θ
′

2 =
{
u2(·; θ′) ∈ [0, 1]A

∣∣ 1 = u2(b; θ
′
) > u2(a; θ

′
) > u2(c; θ

′
) > u2(d; θ

′
) = 0

}
.

Let U θ
′
≡ Uθ

′

1 × U θ
′

2 . For each ε ∈ (0, 1), we have

U θ
′
,ε

1 =
{
u1(·; θ′) ∈ Uθ

′

1

∣∣ u1(c; θ
′
) ≥ ε

}
;

U θ
′
,ε

2 =
{
u2(·; θ′) ∈ U θ

′

2

∣∣ u2(c; θ
′
) ≥ ε

}
.

Similarly, let U θ
′
,ε ≡ Uθ

′
,ε

1 × U θ
′
,ε

2 .
By the lemma below, we show that for each ε > 0, there exists K ∈ N large

enough so that, for any u ∈ U θ
′
,ε, the game ΓK(θ

′
, u) has no compelling mixed

strategy equilibria.

Lemma 3 For each ε > 0, there exists an integer K ∈ N large enough so that for

any k ≥ K, i ∈ {1, 2}, and (u1(·, θ′), u2(·; θ′)) ∈ Uθ
′
,ε,

Ui(σ
k; θ

′
) ≤ ui(c; θ

′
),

where Ui(σ
k; θ

′
) =

∑k
x=0 σ

k
1(x)

∑k
x′=0 σ

k
2(x

′
)ui(g(x, x

′
); θ

′
).

Proof : Fix ε > 0 and i ∈ {1, 2}. We compute

Ui(σ
k; θ

′
) =

p1p2

k
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p1)(1− p2)ui(c; θ

′
).

For each (p1, p2) ∈ [0, 1]2, we define

k(p1, p2) =
ui(a; θ′) + ui(b; θ

′)

ui(c; θ′)

[
1

p1
+

1

p2
− 1

]−1

.

In the rest of the proof, we make use of the following properties of k(p1, p2):

• k(·, ·) is strictly increasing in both arguments over [0, 1]2.

• k(p1
h, p

2
h) converges to zero no matter how the sequence {(p1

h, p
2
h)}∞h=1 ap-

proaches (0, 0). Thus, k(0, 0) ≡ lim(p1,p2)→(0,0) k(p1, p2) = 0.

• k(1, 1) = [ui(a; θ′) + ui(b; θ
′)]/ui(c; θ

′) = max(p1,p2)∈[0,1]2 k(p1, p2).
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• We can conveniently rewrite k(p1, p2) as

k(p1, p2) =
ui(a; θ′) + ui(b; θ

′)

ui(c; θ′)

p1p2

[1− (1− p1)(1− p2)]
.

We set K = min{k ∈ N|k ≥ 2/ε}. As 2/ε ≥ [ui(a; θ′) + ui(b; θ
′)]/ui(c; θ

′) for

any ui(·; θ
′
) ∈ U θ

′

i [ε], we have that K ≥ k(1, 1). Due to the strict monotonicity of
k(p1, p2) with respect to p1 and p2, we have that K ≥ k(p1, p2) for any (p1, p2) ∈
[0, 1]2. Hence, for any k ≥ K:

Ui(σ
k; θ

′
) =

p1p2

k
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p1)(1− p2)ui(c; θ

′
)

≤ p1p2

k(p1, p2)
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p1)(1− p2)ui(c; θ

′
)

(∵ k ≥ K ≥ k(p1, p2) ∀(p1, p2) ∈ [0, 1]2)

= ui(c; θ
′)[1− (1− p1)(1− p2)] + (1− p1)(1− p2)ui(c; θ

′
)

= ui(c; θ
′
).

This completes the proof of Lemma 3. �

Combining Lemmas 1, 2, and 3 together, we complete the proof of Proposition
2. �

5 The Main Result

The objective of this section is to generalize Proposition 2 which we obtained in
the previous section. First, we introduce a notion of acceptability.

Definition 6 Given two subsets of alternatives A,B ⊆ A, we say that alternative
x is (A,B)-acceptable at state θ if x ∈ A ∪ B and the following two conditions
hold:

• There is no alternative a ∈ A such that a �θ1 x.

• There is no alternative b ∈ B such that b �θ2 x.

The property that x is (A,B)-acceptable at state θ guarantees that A is con-
tained in agent 1’s lower contour set at x in state θ and B is contained agent 2’s
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lower contour set at x in state θ. In the rest of the argument below, we write
Θ = {θ0, θ1, . . . , θJ} where J = |Θ| − 1. So, we are now ready to introduce the key
condition for our characterization.

Definition 7 The environment E =
(
{1, 2}, A,Θ, (�θi )i∈{1,2},θ∈Θ

)
satisfies Con-

dition P+M with respect to the SCF f if there exist a function z : {0, . . . , J} ×
{0, . . . , J} → A with Z as z(·)’s image, and two collections of subsets {Aj}Jj=0, {Bj}Jj=0 ⊆
A such that

1. z(j1, j2) ∈ Aj2 ∩ Bj1 for all (j1, j2) ∈ {0, . . . , J} × {0, . . . , J};

2. For each state θ ∈ Θ and each pair (j1, j2) ∈ {0, . . . , J} × {0, . . . , J}, if
f(θ) 6= z(j1, j2), there exists either a(j1,j2) ∈ Aj2 such that a(j1,j2) �θ1 z(j1, j2)
or b(j1,j2) ∈ Bj1 such that b(j1,j2) �θ2 z(j1, j2);

3. For every j ∈ {0, . . . , J}, f(θj) is (Aj,Bj)-acceptable at state θj;

4. For every θ ∈ Θ and every j ∈ {0, . . . , J}, if there exists x ∈ A such that x
is (Aj,Bj)-acceptable at θ, then x = f(θ),

5. For each θ ∈ Θ, if f(θ) ∈ Z, there exists no x ∈
⋃J
j=0Aj ∪ Bj such that

x �θi f(θ) for all i ∈ {1, 2}.

6. For each θ ∈ Θ, if f(θ) /∈ Z, then f(θ) �θi z for all i ∈ {1, 2} and z ∈ Z.

In what follows, Properties 1, 2, 3, and 4 in Condition P+M are collectively
called Condition P and Properties 5 and 6 in Condition P+M are collectively
called Condition M, respectively. By “Condition P,” we mean the property con-
cerning “pure” Nash implementation and by “Condition M,” we mean the property
concerning “mixed” Nash implementation.

We next show that Condition P+M is satisfied in the modified version of Jack-
son’s (1992) example discussed in Section 4. We set J = 1, z(j1, j2) = d ∀(j1, j2) ∈
{0, 1}2, A0 = B0 = {c, d}, A1 = B1 = {a, b, d}. Property 1 of Condition P can
easily be verified, as A0,A1,B0,B1 all contain d. Property 5 of Condition M is
vacuously satisfied, as there exists no θ̃ ∈ Θ such that f(θ̃) = d. Property 2 of
Condition P is satisfied because z(j1, j2) = d for each (j1, j2); a ∈ A0; c ∈ A1;

a �θ̃1 d and c �θ̃1 d for each θ̃ ∈ Θ. Property 3 of Condition P is satisfied be-
cause f(θ) = a, which is (A1,B1)-acceptable in state θ and f(θ

′
) = c, which is

(A0,B0)-acceptable in state θ′. Since outcomes a and c are the only alternatives
that are (Aj,Bj)-acceptable for some j = 0, 1 in some state, Property 4 of Condi-
tion P holds. Lastly, Property 6 is satisfied because z(j1, j2) = d for each (j1, j2);
f(θ) = a; f(θ

′
) = c; both agents prefer a to d in state θ and c to d in state θ′.

Thus, all properties in Condition P+M hold.
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We recall the following notation. For each ε > 0, θ ∈ Θ, and i ∈ {1, 2}, we
define

U θ,εi =
{
ui ∈ Uθi

∣∣∣ |ui(a, θ)− ui(a′ , θ)| ≥ ε, ∀a ∈ A, ∀a′ ∈ A\{a}, ∀θ ∈ Θ
}

as the set of agent i’s cardinal utility representations in state θ such that the utility
difference is bounded from below by ε. We let U θ,ε = U θ,ε1 ×U

θ,ε
2 and U ε = ×θ∈ΘU θ,ε.

Theorem 1 Let f be an SCF. Suppose that the finite two-person environment
E =

(
{1, 2}, A,Θ, (�θi )i∈{1,2},θ∈Θ

)
satisfies Condition P+M with respect to the SCF

f . Then, for any ε > 0, the SCF f is C-implementable with respect to U ε.

Proof: Suppose that the finite two-person environment E =
(
{1, 2}, A,Θ, (�θi )i∈{1,2},θ∈Θ

)
satisfies Condition P+M with respect to the SCF f . For each integer k ≥ 2, we
construct a mechanism Γk = (Mk, gk) as follows: For each i ∈ {1, 2}, we set
Mk

i = {0, 1, . . . , (J + 1)k − 1} × A, i.e., each message mi = (oi, xi) agent i sends
to the mechanism is composed of a pair of an integer which lies between 0 and
(J + 1)k − 1 and an alternative in A.

Define the function nk : {0, . . . , (J + 1)k− 1} → {0, . . . , J} as follows: for each
oi ∈ {0, . . . , (J + 1)k − 1},

nk(oi) = max{n ∈ N| n× k ≤ oi}.

In words, we first compute oi/k, then round the computed number down to the
nearest integer, and finally set the obtained integer as nk(oi). For example, if
oi = 13 and k = 5, we have n5(13) = 2.

To define the outcome function below, we introduce the following permutation
πk : {0, . . . , (J+1)k−1} → {0, . . . , (J+1)k−1}: for each õ ∈ {0, . . . , (J+1)k−1},

πk(õ) =

{
nk(õ)k if õ = (nk(õ) + 1)k − 1,
õ+ 1 otherwise.

We can interpret πk as a series of J + 1 cycles which moves õ to õ + 1 for all
õ ∈ {nk(õ)k, . . . , (nk(õ) + 1)k − 2}, while moves (nk(õ) + 1)k − 1 to nk(õ)k. The
outcome function gk : Mk → A is dictated by the following three rules: for each
m ∈Mk where m = (m1,m2) = ((o1, x1), (o2, x2)),

Rule 1: If o1 = o2 and x1 ∈ Ank(o1), then gk(m) = x1.

Rule 2: If o2 = πk(o1) and x2 ∈ Bnk(o2), then gk(m) = x2.11

11We note that o2 = πk(o1) implies both o1 6= o2 and nk(o1) = nk(o2), as these properties will
be exploited later.
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Rule 3: For all other cases, gk(m) = z(nk(o1), nk(o2)).

We describe how the mechanism Γk can be played as follows: first, each agent
selects a number between 0 and J (represented in the mechanism by the values of
nk(o1) for agent 1 and nk(o2) for agent 2). If nk(o1) 6= nk(o2), the outcome is given
by z(nk(o1), nk(o2)). If nk(o1) = nk(o2), then they proceed to play a particular
form of modulo game: each announces a second number between 0 and k − 1. If
they both select the same number, which implies o1 = o2, agent 1 wins and he
can select any outcome from the set Ank(o1). If agent 2 picks a number o2 that is
higher than the number o1 picked by agent 1 exactly by one unit (or picks 0, in
case agent 1 picks k− 1) but still nk(o1) = nk(o2), then agent 2 wins and can pick
any outcome from the set Bnk(o2). In any other case, the outcome is, once again,
given by z(nk(o1), nk(o1)).12 This is illustrated in Table 7, which uses the following
notation: for each message (o1, x1) ∈ Mk

1 , (o2, x2) ∈ Mk
2 , and j ∈ {0, . . . , J − 1},

we write

aj =

{
x1 if x1 ∈ Aj,

z(j, j) if x1 /∈ Aj,
and bj =

{
x2 if x2 ∈ Bj,

z(j, j) if x2 /∈ Bj.

We complete the rest of the proof in a series of lemmas.

Lemma 4 If Condition P is satisfied, Γk pure Nash implements f .

Proof of Lemma 4: The proof is in the Appendix. �

Next, we show that if f(θ) ∈ Z, there are no compelling mixed strategy equi-
libria in the game.

Lemma 5 Assume that Condition P+M holds. If f(θ) ∈ Z, then, for any u ∈ Uθ,
the game Γk(θ, u) has no compelling mixed strategy equilibria.

Proof of Lemma 5: The proof is in the Appendix. �

It remains now for us to show that when f(θ) /∈ Z, for any ε > 0, there exists
K ∈ N such that, for any u ∈ U ε, the game ΓK(θ, u) has no compelling mixed
strategy equilibria. The proof of this case requires us to take a series of steps.

For each j ∈ {0, . . . , J} and θ ∈ Θ, let aθj be the best outcome for player 1
within Aj at state θ, and bθj the best outcome for player 2 within Bj at state θ,
respectively. In the rest of the proof, we fix θ ∈ Θ throughout.

Lemma 6 Consider the mechanism Γk = (Mk, gk). For each message m1 =
(o1, x1) ∈ Mk

1 , we can define the following message m∗1(m1) = (o1, a
θ
nk(o1)

) ∈

12This construction is reminiscent of what Korpela (2016) calls the flow game.

20



g(m1,m2) where Agent 2

mi = (oi, xi) nk(o2) = 0 nk(o2) = 1 nk(o2) = 2 . . . nk(o2) = J

for i ∈ {1, 2} 0 1 . . . k − 1 k k + 1 . . . 2k − 1 2k 2k + 1 . . . 3k − 1 . . . Jk Jk + 1 . . . (J + 1)k − 1

A
g
e
n
t

1

n
k
(o

1
)
=

0 0 a0 b0 . . . z0,0

1 z0,0 a1 . . . z0,0

.

.

.

.

.

.

.

.

.
.
. .

.

.

. z0,1 z0,2 . . . z0,J

k − 1 b0 z0,0

.

.

. a0

n
k
(o

1
)
=

1 k a1 b1 . . . z1,1

k + 1 z1,1 a1 . . . z1,1

.

.

. z1,0

.

.

.

.

.

.
.
.
.

.

.

. z1,2 . . . z1,J

2k − 1 b1 z1,1 . . . a1

n
k
(o

1
)
=

2 2k a2 b2 . . . z2,2

2k + 1 z2,2 a2 . . . z2,2

.

.

. z2,0 z2,1

.

.

.

.

.

.
.
.
.

.

.

. . . . z2,J

3k − 1 b2 z2,2 . . . a2

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

n
k
(o

1
)
=
J Jk aJ bJ . . . zJ,J

Jk + 1 zJ,J aJ . . . zJ,J

.

.

. zJ,0 zJ,1 zJ,2 . . .

.

.

.

.

.

.
.
.
.

.

.

.

J(k + 1)− 1 bJ zJ,J . . . aJ

Table 7: The mechanism Γk where we write z(j1, j2) as zj1,j2

Mk
1 (possibly m∗1(m1) = m1) such that gk(m∗1(m1),m2) �θ1 gk(m1,m2) for each

m2 ∈ Mk
2 . Moreover, if gk(m∗1(m1),m2) 6= gk(m1,m2) for some m2 ∈ Mk

2 , then
gk(m∗1(m1),m2) �θ1 gk(m1,m2). Similarly, for each message m2 = (o2, x2) ∈
Mk

2 , we can define the following message m∗2(m2) = (o2, b
θ
nk(o2)

) ∈ Mk
2 (possibly

m∗2(m2) = m2) such that gk(m1,m
∗
2(m2)) �θ2 gk(m1,m2) for each m1 ∈Mk

1 . More-
over, if gk(m1,m

∗
2(m2)) 6= gk(m1,m2) for some m1 ∈Mk

1 , then gk(m1,m
∗
2(m2)) �θ2

gk(m1,m2).

Proof of Lemma 6: The proof is in the Appendix. �

We introduce the following notation in the mechanism Γ = (M, g): for any
agent i ∈ {1, 2} and mixed strategy σi ∈ ∆(Mi), we can define another mixed
strategy σ∗i [σi] as follows: for each mi ∈Mi,

σ∗i [σi](mi) =
∑

m̃i:mi=m∗i (m̃i)

σi(m̃i).

Then, we establish the following lemma.

21



Lemma 7 Fix u ∈ U θ and σ ∈ NE(Γ(θ, u)). Then, σ∗[σ] ∈ NE(Γ(θ, u)). More-
over, if σ is compelling in the game Γ(θ, u), σ∗[σ] is also compelling in the same
game Γ(θ, u).

Proof of Lemma 7: This follows directly from Lemma 6. �

Define
NE∗(Γ(θ, u)) ≡

⋃
σ∈NE(Γ(θ,u))

{σ∗[σ]} .

By Lemma 7, we have NE∗(Γ(θ, u)) ⊆ NE(Γ(θ, u)). The contrapositive form
of Lemma 7 says that if σ∗ is not a compelling mixed strategy equilibrium, σ
is also not a compelling mixed strategy equilibrium. This implies that there is
no loss of generality to focus on NE∗(Γ(θ, u)), as far as we are concerned with
the nonexistence of compelling mixed strategy equilibria in the game Γ(θ, u). If
we only focus on NE∗(Γ(θ, u)), we can only focus on mixed strategies where the
players randomize only on the integers they choose (the first component of the
message), with the alternative (second component) being always the most preferred
alternative from their choice set associated.

With this specific structure of mixed strategies, we introduce the following
notation. Let m1(o1) = (o1, a

θ
nk(o1)

) for each o1 ∈ {0, . . . , (J + 1)k − 1} and

m2(o2) = (o2, b
θ
nk(o2)

) for each o2 ∈ {0, . . . , (J + 1)k− 1}. Then, for each i ∈ {1, 2},
denote by σi the strategy that assigns probability σi(oi) to message mi(oi), with∑(J+1)k−1

oi=0 σi(oi) = 1.

Lemma 8 Suppose that Condition P+M holds and f(θ) /∈ Z. Let u ∈ U θ and
σ = (σ1, σ2) ∈ NE∗(Γk(θ, u)) be a compelling mixed strategy equilibrium. Then,
for each i ∈ {1, 2} and j ∈ {0, . . . , J − 1} such that aθj �θ1 f(θ) or bθj �θ2 f(θ), there
is a number pij ∈ [0, 1] such that σi(x) = pij/k for each x such that nk(x) = j.

Proof of Lemma 8: The proof is in the Appendix. �

Lemma 8 needs to assume that there exists j ∈ {0, . . . , J − 1} such that aθj �θ1
f(θ) or bθj �θ2 f(θ) to characterize the structure of compelling mixed strategy
equilibria. If such a condition is not satisfied, we do not know the structure of
compelling equilibria by Lemma 8. Therefore, the next lemma guarantees that the
premise for Lemma 8 is nonvacuous.

Lemma 9 Suppose that Condition P+M holds and f(θ) /∈ Z. Let u ∈ U θ and
σ = (σ1, σ2) ∈ NE∗(Γk(θ, u)) be a compelling mixed strategy equilibrium. Then,
there exists a j ∈ {0, . . . , J − 1} such that aθj �θ1 f(θ) or bθj �θ2 f(θ).
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Proof of Lemma 9: The proof is in the Appendix. �

Using Lemmas 7, 8, and 9, we are able to establish the lemma below.13

Lemma 10 Suppose that Condition P+M holds and f(θ) /∈ Z. Then, for any
ε > 0, there exists K ∈ N such that there are no compelling mixed strategy equilibria
of the game ΓK(θ, u) for all u ∈ U ε.

Proof of Lemma 10: The proof is in the Appendix. �

The proof of Theorem 1 is completed as follows. By Lemma 4, the mechanism
Γk pure Nash implements the SCF f . When f(θ) ∈ Z, by Lemma 5, for any u ∈ U ,
the game Γk(θ, u) has no compelling mixed strategy equilibria. When f(θ) /∈ Z,
by Lemma 10, for any ε > 0, there exists K ∈ N large enough so that for any
u ∈ U ε, the game ΓK(θ, u) has no compelling mixed strategy equilibria. Thus, f
is C-implementable with respect to U ε by the mechanism Γk. �

6 Indispensability of Condition P+M

In the previous section, we have shown that our Condition P+M is a sufficient con-
dition for C-implementation. This section next investigates how necessary Condi-
tion P+M is for C-implementation. As mentioned earlier, Condition P+M can be
decomposed into the following two conditions: Condition P regarding pure Nash
implementation and Condition M regarding C-implementation, respectively. In
this section, we argue that Condition P is a necessary and sufficient condition
for pure Nash implementation by any finite mechanism, while Condition M is a
necessary condition “if we require C-implementation by our proposed canonical
mechanism.” Hence, all of the properties in Condition P+M are indispensable for
our Theorem 1.

6.1 Condition P is Necessary for pure Nash implementa-
tion

The lemma below establishes the necessity of Condition P for pure Nash imple-
mentation, which is implied by C-implementation.

Lemma 11 Suppose that the SCF f is pure Nash implementable. Then, there
exist two collections of subsets of alternatives {Aj}Jj=0, {Bj}Jj=0 ⊆ A and a function
z : {0, . . . , J} × {0, . . . , J} → A for which Condition P holds.

13The reader is referred to the proof of Lemma 10 in the Appendix to see how these lemmas
are combined.
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Dutta and Sen (1991) and Moore and Repullo (1990) independently identify
Condition β and Condition µ2, respectively as a necessary and sufficient condition
for pure Nash implementation for the case of two agents. With the help of Lemma
4, the lemma above shows that Condition P is yet another necessary and sufficient
condition for pure Nash implementation in finite mechanisms when there are two
players. Since we can modify the canonical mechanisms proposed by Dutta and
Sen (1991) and Moore and Repullo (1990) into a finite mechanism by replacing the
integer game with the modulo game, our Condition P is equivalent to Condition β
and Condition µ2.

6.2 Indispensability of Condition M

We shall show that if the environment and the SCF to be implemented violates
either Properties 5 or 6 in Condition M, our canonical mechanism Γk possesses a
compelling mixed strategy equilibrium, regardless of the size of k. More specifically,
we conclude that Property 5 of Condition M is indispensable for C-implementation
by “our canonical mechanism,” while Property 6 of Condition M is indispensable
for C-implementation by “any” finite mechanism.

We start with the indispensability of Property 6 in Condition M. To show this,
we take up Jackson’s Example 4 which features an environment and an SCF where
all properties of Condition P+M are satisfied except Property 6. In this example,
we have Θ = {θ, θ′} and f(θ) = a and f(θ

′
) = c. To see this, we set J = 1;

z(j1, j2) = d; ∀(j1, j2) ∈ {0, 1}2; A0 = B0 = {c, d}; and A1 = B1 = {a, b, d}. It is
then easy to see that Property 5 is vacuously satisfied, as we have f(θ̃) 6= d for each
θ̃ ∈ {θ, θ′}. Properties 1 through 4 are obviously satisfied, as they are necessary for

pure Nash implementation. In state θ
′
, we have f(θ

′
) = c 6= d but f(θ

′
) = c ∼θ

′

i d
for each i ∈ {1, 2} for which Property 6 of Condition M is violated. Jackson (1992)
shows that any finite mechanism which pure Nash implements the SCF f possesses
a compelling mixed strategy equilibrium in the game Γ(θ

′
). Therefore, Property 6

is indispensable for C-implementation by any finite mechanism.
To establish the indispensability of Property 5 in Condition M, we consider

the same environment and the SCF f as the one discussed in Section 4. We set
J = 1; A0 = B0 = {c, d}; A1 = B1 = {a, b, d}; z(1, 1) = c; and z(1, 0) = z(0, 1) =
z(0, 0) = d. It is straightforward to see that Properties 1 through 4 of Condition
P as well as Property 6 of Condition M are satisfied. To check Property 5 of
Condition M, we consider state θ

′
. Since Z = {c, d}, we have f(θ

′
) = c ∈ Z.

Since
⋃
j=0,1Aj ∪ Bj = {a, b, c, d}, we know that a ∈

⋃
j=0,1Aj ∪ Bj such that

a �θ
′

i f(θ
′
) = c for each i ∈ {1, 2}. Hence, Property 5 of Condition M fails.

Fix k ≥ 3 arbitrarily. We now use our canonical mechanism Γk introduced in
Theorem 1 which is described in terms of {Aj,Bj}j=0,1, and {z(0, 0), z(0, 1), z(1, 0), z(1, 1)}.
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In what follows, we focus on state θ
′

and therefore consider the game Γk(θ
′
). In

the game Γk(θ
′
), outcome a is the best outcome for agent 1, while outcome b is

the best outcome. Since we are only concerned with compelling mixed strategy
equilibria, there is no loss of generality to focus on NE∗(Γk(θ

′
)) in which agent 1

always chooses a and agent 2 always chooses b in the second component of their
message.14 Then, the game Γk(θ

′
) is illustrated as follows:

gk(m1,m2) where Agent 2

m1 = (o1, a) nk(o2) = 0 nk(o2) = 1

m2 = (o2, b) 0 1 . . . k − 1 k k + 1 . . . 2k − 1

A
g
e
n
t
1

n
k
(o

1
)
=

0 0 a b . . . d

1 d a . . . d

.

.

.

.

.

.

.

.

.
.
.
.

.

.

. d

k − 1 b d

.

.

. a

n
k
(o

1
)
=

1 k a b . . . c

k + 1 c a . . . c

.

.

. d

.

.

.

.

.

.
.
. .

.

.

.

2k − 1 b c . . . a

Table 8: The mechanism Γk where m1 = (o1, a) and m2 = (o2, b)

We consider a mixed strategy profile σ in which each agent randomizes uni-
formly over {k, . . . , 2k− 1} with equal probability 1/k. Given agent j 6= i’s mixed
strategy σj, any message from {k, . . . , 2k− 1} induces outcome a with probability
1/k, outcome b with probability 1/k, and outcome c with probability (1 − 2/k).
Since any pure message in the support of σi generates the same expected utility
given σj, σ is a mixed strategy Nash equilibrium of the game Γk(θ

′
). In this mixed

strategy equilibrium σ, both outcomes a and b are realized with positive probabil-
ities and outcome c is realized with the rest of the probability. Thus, regardless of
agent i’s cardinal utility representation, each agent i’s expected utility of playing σ
is always strictly above i’s utility which comes from c, which corresponds to f(θ

′
),

which is the unique pure strategy Nash equilibrium outcome of the game Γk(θ
′
).

Hence, σ is a compelling mixed strategy equilibrium of the game Γk(θ
′
). Note how

this argument does not depend on the size of k at all.

14See the discussion after Lemma 7 where we define NE∗(Γk(θ
′
)).
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7 Comparison with the Canonical Mechanism of

Moore and Repullo (1990)

The objective of this section is to compare the mechanism introduced in our The-
orem 1 with the natural finite version of the canonical mechanism developed by
Moore and Repullo (1990). The natural finite adaptation of the canonical mecha-
nism that pure Nash implements an SCF is obtained by replacing the integer game
with a modulo game instead. The modulo game is regarded as a finite version of
the integer game in which agents announce integers from a finite set. The agent
who matches the modulo of the sum of the integers gets to name an allocation.
The modulo game is used in Jackson (1991), McKelvey (1989), and Saijo (1988).
We will show that, in the setting of our modified version of Example 4 of Jackson
(1992), the finite version of Moore and Repullo’s canonical mechanism still admits
a compelling mixed strategy equilibrium. In contrast, such a compelling mixed
strategy equilibrium ceases to exist if we use the mechanism proposed in Section
4.

We recap the setup in Section 4. Suppose that agent 1 has the state-independent
preference a �1 b �1 c �1 d and agent 2 has the preference a �θ2 b �θ2 d �θ2 c at
state θ and preference b �θ′2 a �θ′2 c �θ′2 d at state θ′. Let f be the SCF such that
f (θ) = a and f (θ′) = c.

Let ΓMR = (MMR, gMR) be the finite version of the Moore and Repullo’s canon-
ical mechanism in which MMR

i = {(θi, bi, ni) ∈ {θ, θ′} × {a, b, c, d} × {0, 1, 2}} for
each i ∈ {1, 2}, and an outcome function gMR : MMR → {a, b, c, d} possesses the
following rules: for each m = (m1,m2) = ((θ1, b1, n1), (θ2, b2, n2)) ∈MMR,

Rule I: If there exists θ̃ ∈ {θ, θ′} such that θ1 = θ2 = θ̃, then gMR(m) = f(θ̃).
Rule II: If θ1 6= θ2 and either n1 = 0 or n2 = 0, then gMR(m) = d.
Rule III: If θ1 6= θ2 and n1 = n2 6= 0, then gMR(m) = b2.
Rule IV: If θ1 6= θ2 and n1 6= n2 with n1, n2 > 0, then gMR(m) = b1.

We consider the following mixed strategy profile σ: player 1 randomizes uni-
formly between messages (θ, a, 1) and (θ, a, 2), while player 2 randomizes uniformly
between messages (θ′, b, 1) and (θ′, b, 2). We claim that this mixed strategy profile
σ is an equilibrium of the game ΓMR(θ

′
). Given σ2, both (θ, a, 1) and (θ, a, 2) gener-

ate the same lottery in which outcomes a and b are realized with equal probability.
Similarly, given σ1, both (θ

′
, b, 1) and (θ

′
, b, 2) generate the same lottery in which

outcomes a and b are realized with equal probability. Thus, σ is a mixed strategy

equilibrium of the game ΓMR(θ
′
). Moreover, since f(θ

′
) = c and a �θ

′

1 b �θ
′

1 �θ
′

1 c

and b �θ
′

2 a �θ
′

2 �θ
′

2 c, we further conclude that σ is a compelling mixed strat-
egy equilibrium of the game ΓMR(θ

′
). Therefore, the mechanism ΓMR fails to

C-implement the SCF f . As we have discussed in Section 4, this is not the end
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of the story. In fact, we have shown that for each ε ∈ (0, 1), there exists K ∈ N
such that the SCF f is C-implementable with respect to U ε by the mechanism ΓK

proposed in Section 4. This insight is further generalized in our Theorem 1.15

The preceding argument sheds light on the importance of how to select from
among all the implementing mechanisms. This point is particularly relevant when
we are concerned with the malfunction of the mechanism due to the existence of
compelling mixed equilibria. While the issue of compelling mixed strategy equilib-
ria is unavoidable in Jackson’s (1992) original example, there are many contexts
including the modified version of Jackson’s (1992) example discussed in Section 4 in
which this problem can be resolved via a more careful selection of the implementing
mechanism.

8 On the Difficulty of Extending Our Result to

the Case of More Than Two agents

Our main result (Theorem 1) only applies to two-person environments. This section
therefore examines whether and how we can extend our Theorem 1 to environments
with three or more agents. To do this, we start from the following natural extension
of Condition P+M to environments with more than two agents:

Definition 8 Let I = {1, . . . , n} be the set of agents where n ≥ 3. The environ-
ment E =

(
I, A,Θ, (�θi )i∈I,θ∈Θ

)
satisfies Condition α with respect to the SCF f

if there exists a pair of agents {i1, i2} ⊆ I for which the truncated environment
Ei1,i2 =

(
{i1, i2}, A,Θ, (�θi )i∈{i1,i2},θ∈Θ

)
satisfies Condition P+M with respect to the

SCF f .

With Condition α, we can establish the following result:

Fact 1 Let f be an SCF and I = {1, . . . , n} be the set of agents where n ≥ 3.
Suppose that the environment E =

(
I, A,Θ, (�θi )i∈I,θ∈Θ

)
satisfies Condition α with

respect to the SCF f . Then, for any ε > 0, the SCF f is C-implementable with
respect to U ε.

This result says that if Condition α is satisfied, we can construct a mechanism
in which all agents other than i1 and i2 have a trivial message space, while i1 and
i2 play the two-person mechanism used for proving Theorem 1. Thus, compelling
implementation is achieved for any number of agents in an environment satisfying
Condition α.

15This can be verified by directly checking Condition P+M is satisfied in the modified version of
Jackson’s (1992) example in Section 4. This can be found in the discussion right after Condition
P+M is introduced.
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Condition α essentially allows the planner to achieve compelling implementa-
tion by restricting attention to a single pair of agents for which the two-person
mechanism proposed in Section 5 is employed. Hence, Condition α strikes us of
being an extremely stringent condition. What makes Condition α so restrictive are
attributed to Properties 3 and 4 of Condition P+M, which apply to a single pair of
agents {i1, i2}. We elaborate on this point. These two properties together require
that, for any θ, θ

′ ∈ Θ, whenever f(θ) 6= f(θ′), there exist an agent i ∈ {i1, i2} and

an outcome x ∈ A such that x �θi f(θ′), while f(θ
′
) �θ

′

i x. When there are only
two agents, this is equivalent to the SCF f being Maskin monotonic. When there
are more than two agents, however, this same condition requires that, for any two
states where the SCF f induces two distinct outcomes, there be the right kind
of preference reversal between the states for agent either i1 or i2. We stress that
the preferences of other agents are redundant for determining the outcome spec-
ified by the SCF f . Thus, this requirement is a lot more stringent than Maskin
monotonicity so that Condition α excludes a large class of environments from our
consideration.

To illustrate the restrictiveness of Condition α, we revisit the environment E∗
presented in Section 3.2. To account for the need of strict preferences in our
argument, we slightly modify that environment in such a way that whenever an
agent is indifferent between c and d in the original environment, that agent strictly
prefers c to d in the modified environment. This modified environment would still
violate Condition α, since each agent plays an essential role in the determination
of the outcome by the SCF in the modified environment. More specifically, agent
3’s preferences are essential because agent 3 only has the preference reversal over
f(θ2) and f(θ3) between states θ2 and θ3; agent 1’s preferences are essential because
agent 1 only has the preference reversal over f(θ3) and f(θ4) between states θ3 and
θ4; and agent 2’s preferences are essential because agent 2 only has the preference
reversal over f(θ1) and f(θ2) between states θ1 and θ2. Thus, the problem of
implementation in this environment cannot be reduced to a two-person problem
so that Condition α fails here.

9 Conclusion

We present a concept of compelling implementation, which strengthens the re-
quirement of pure-strategy Nash implementation by taking care of what we call
compelling mixed strategy equilibria, but ignoring other mixed strategy equilibria.
We call a mixed strategy equilibrium compelling if its outcome Pareto dominates
any pure strategy equilibrium.

The main contribution of this paper is to provide Condition P+M under which
compelling implementation is possible by finite mechanisms in environments with
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two agents. We also show that Condition P+M is indispensable for our result. Our
implementing mechanism has desirable properties: transfers are not needed at all;
only finite mechanisms are used; integer games are not invoked; and agents’ risk
attitudes do not matter.

We conclude this paper with possible extensions. First, we assume throughout
the paper that agents have strict preferences over alternatives. A slight relaxation
of this assumption can be made, as we only rely on the best alternative for each
agent in each choice setAj and Bj to be unique. However, since the SCF determines
the choice of both collection of sets, this places domain restrictions which depend
upon the chosen SCF. Thus, indifferences must be allowed on a case-by-case basis.

When we extend our results to environments with three or more agents in a
straightforward manner, as we did in Section 8, the class of environments in which
compelling implementation is possible becomes very small. This happens because
our Condition α introduced in Section 8 excludes a large class of environments
that can be of interest. Identifying a condition which is weaker than Condition
α in which compelling implementation is still possible remains an important open
question that we pursue in future research.

10 Appendix

In this appendix, we provide the proofs we omitted in the main body of the paper.

10.1 Proof of Proposition 1

We first show that the SCF f is pure Nash implemented by the mechanism de-
scribed by Table 4 (p.10). At state θ1, we claim that message profile (m1,m2,m3) =
(1, 1, 0) is a Nash equilibrium which induces outcome a = f(θ1). This is easy to
see because a is the best outcome for all agents in state θ1. We next claim that
outcome a is the unique pure Nash equilibrium outcome in state θ1. This is be-
cause: i) at every message profile where c is the induced outcome, agent 2 can
unilaterally induces d, which is better for agent 2 than c in state θ1 and ii) At
every message profile where d or b is the induced outcome, either agent 1 or agent
2 can unilaterally induce outcome a, which is better for both agents 1 and 2 than
d or b in state θ1. Thus, there are no other pure Nash equilibria in state θ1.

At state θ2, we claim that message profile (m1,m2,m3) = (2, 2, 0) is a Nash
equilibrium which induces outcome c = f(θ2). This is easy to see because the
only other outcome any player can unilaterally induce is d, which is indifferent to
c for all agents in state θ2. We next claim that outcome c is the unique pure Nash
equilibrium outcome in state θ2. This is because: i) at every message profile where
d is the induced outcome, either agents 1 or 2 can unilaterally induce a, which is
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better for agents 1 and 2 than d in state θ2; ii) at every message profile where the
induced outcome is b, agent 3 can unilaterally induce a, which is better for agent
3 than b in state θ2; and iii) at every message profile where the induced outcome
is a, agent 2 can unilaterally induce b, which is better for agent 2 than a in state
θ2. Thus, there are no other pure Nash equilibria in state θ2.

At state θ3, we claim that message profile (m1,m2,m3) = (1, 1, 2) is a Nash
equilibrium which induces outcome b = f(θ3). Agents 2 and 3 have no profitable
deviations because b is the best outcome for them in state θ3. Moreover, since
agent 1 can induce only outcomes b or c and b is better for agent 1 than c in state
θ3, agent 1 has no profitable deviation. So, (1, 1, 2) is a Nash equilibrium in state
θ3. We next claim that outcome b is the unique pure Nash equilibrium outcome
in state θ3. This is because: i) at every message profile where d is the induced
outcome, either agents 1 or 2 can unilaterally induce a, which is better for agents
1 and 2 than d in state θ3; ii) at every message profile where the induced outcome
is a, agent 3 can unilaterally induce b, which is better for agent 3 than a in state
θ3; and iii) at every message profile where the induced outcome is c, agent 3 can
unilaterally induce d, which is better for agent 3 than c in state θ3. Thus, there
are no other pure Nash equilibria in state θ3.

At state θ4, we claim that message profile (m1,m2,m3) = (2, 2, 2) is a Nash
equilibrium which induces outcome d = f(θ4). Agent 1 has no profitable deviations
because d is the best outcome for agent 1 in state θ4. Since agent 2 can unilaterally
induce c and c is indifferent to d for agent 2 in state θ4, agent 2 has no profitable
deviations. Finally, since agent 3 can unilaterally induce c or d and d is better
for agent 3 than c in state θ4, agent 3 has no profitable deviations. So, (2, 2, 2)
is a Nash equilibrium in state θ4. We next claim that outcome d is the unique
pure Nash equilibrium outcome in state θ4. This is because: i) at every message
profile where c is the outcome, agent 3 can unilaterally induce d, which is better
for agent 3 than c in state θ4; ii) at every message profile where b is the induced
outcome, agent 3 can unilaterally induce a, which is better for agent 3 than b in
state θ4; and iii) at every message profile where a is the induced outcome, agent
2 can unilaterally induce b, which is better for agent 2 than a in state θ4. Thus,
there are no other pure Nash equilibria in state θ4.

Let Γ = (M, g) be a finite mechanism that pure Nash implements the SCF f .
It thus remains to prove that, for any u ∈ U , the game Γ(θ2, u) has a compelling
mixed strategy equilibrium.

Define
M ′ = M

′

1 ×M
′

2 = {m ∈M | g(m) = a or b}

as the subset of M such that every message induces either a or b. For instance,
in the mechanism presented in Table 4, M

′
excludes message m1 = 2 for agent

1, since whenever he sends this message, the only outcomes it can induce are c
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or d. Since f is pure Nash implemented by the mechanism Γ and f(θ1) = a and
f(θ3) = b, M

′
must be non-empty. We denote by Γ

′
= (M

′
, g) the truncated

message space M
′

along with the original outcome function g. For any u ∈ U , by
Nash’s theorem, the finite game Γ

′
(θ2, u) has at least one possibly mixed strategy

Nash equilibrium. Fix u ∈ U . Since agents 1 and 2 prefer a to b and agent 3 prefers
b to a, which exhibits a conflict of interests between agents, this equilibrium in the
game Γ

′
(θ2, u) is genuinely a mixed strategy equilibrium which assigns positive

probability on both outcomes a and b. Finally, the mixed strategy equilibrium
in the truncated game Γ

′
(θ2, u) will also be a mixed strategy equilibrium in the

original game Γ(θ2, u), since any unilateral deviation that can lead to c or d is not
profitable for any of the agents. As outcome c is the unique pure Nash equilibrium
outcome and c and d are indifferent for all agents in state θ2, this mixed strategy
equilibrium induces a lottery which is strictly preferred to c for all agents, which
makes this mixed strategy equilibrium compelling. This completes the proof. �

10.2 Proof of Lemma 2

Proof of Step 1a: Assume by way of contradiction that there exists an integer
x ∈ {0, . . . , k − 1} such that σ1(x) > 0 and σ2(x) = 0. Then, there are two
possibilities: either there exists x

′ ∈ {0, . . . , k − 1}\{x} such that σ2(x
′
) > 0 or

σ2(k) = 1.
In the first case, let x

′ ∈ arg maxx′′∈{0,...,k−1}\{x} σ2(x
′′
). The expected payoff

for agent 1 when sending message x is

U1(x, σ2; θ
′
) =

{
σ2(x+ 1)u1(b; θ

′
) if x < k − 1

σ2(0)u1(b; θ
′
) if x = k − 1,

where we take into account that ui(d; θ
′
) = 0. On the other hand, the expected

payoff for agent 1 when sending message x
′

is given by

U1(x
′
, σ2; θ

′
) =

{
σ2(x

′
)u1(a; θ

′
) + σ2(x

′
+ 1)u1(b; θ

′
) if x

′
< k − 1

σ2(x
′
)u1(a; θ

′
) + σ2(0)u1(b; θ

′
) if x

′
= k − 1

As u1(a, θ
′
) > u1(b, θ

′
) and σ2(x

′
) ≥ σ2(x + 1), sending message x

′
is strictly

better for agent 1 than sending x against σ2, thus contradicting the hypothesis
that message x is played with positive probability in the Nash equilibrium σ.

Consider the second possibility where agent 2 sends k with probability 1. Then,
agent 1’s expected payoff of sending message x is U1(x, σ2; θ

′
) = 0, while agent 1’s

expected payoff of sending message k is U1(σ2; k; θ
′
) = u1(c, θ

′
) > 0, contradicting

the hypothesis that message x is played with positive probability in the Nash
equilibrium σ. �
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Proof of Step 1b: Assume by way of contradiction that there exists x ∈
{0, . . . , k − 1} such that σ2(x) > 0 and σ1(x − 1) = 0 if x ≥ 1 and σ1(k − 1) = 0
if x = 0. Then we decompose our argument into the following two cases: (i) there
exists x

′ ∈ {0, . . . , k − 1} such that σ1(x
′
) > 0 or (ii) σ1(k) = 1.

We first consider Case (i). We assume without loss of generality that x
′ ∈

arg maxx′′∈{0,...,k−1} σ1(x
′′
). Agent 2’s expected payoff of sending message x against

σ1 in the game Γ(θ
′
) is given by

U2(σ1, x; θ
′
) = σ1(x)u2(a; θ′),

while agent 2’s expected payoff of sending message (x
′
+ 1 mod k) against σ1 in

the game Γ(θ
′
) is given by

U2(σ1, x
′
+ 1 mod k; θ

′
) =

{
σ1(x

′
)u2(b; θ

′
) + σ1(x

′
+ 1)u2(a; θ

′
) if x

′
< k − 1

σ1(x
′
)u2(b; θ

′
) + σ1(0)u2(a; θ

′
) if x

′
= k − 1,

where we take into account that u2(d; θ
′
) = 0. Since u2(b; θ

′
) > u2(a; θ

′
) > 0, due

to the way x
′

is defined, we have U2(σ1, x
′
+ 1 mod k; θ

′
) > U2(σ1, x; θ

′
), which

contradicts the hypothesis that message x is sent with positive probability in the
Nash equilibrium σ.

We next consider Case (ii). Agent 2’s expected payoff of sending message x
against σ1 in the game Γ(θ

′
) is given by

U2(σ1, x; θ
′
) = 0,

where we take into account that u2(d; θ
′
) = 0. On the contrary, agent 2’s expected

payoff of sending message k against σ1 in the game Γ(θ
′
) is given by

U2(σ1, k; θ
′
) = u2(c; θ

′
).

Since u2(c; θ
′
) > u2(d; θ

′
) = 0, we have U2(σ1, k; θ

′
) > U2(σ1, x; θ

′
), contradict-

ing the hypothesis that message x is sent with positive probability in the Nash
equilibrium σ in the game Γ(θ

′
). �

Proof of Step 1c: Assume first that i = 1; that is, there exists x
′ ∈ {0, . . . , k−

1} such that σ1(x
′
) > 0. By Step 1a, we first have that σ2(x

′
) > 0. Second, by

Step 1b, σ2(x
′
) > 0 implies σ1(x

′ − 1) > 0 if x
′ ≥ 1 and σ1(k) > 0 if x

′
= 0. Third,

using Step 1a once again, we conclude that σ2(x
′ − 1) > 0 if x

′ ≥ 1 and σ2(k) > 0
if x

′
= 0. Finally, iterating this argument, we are able to conclude that σ1(x) > 0

and σ2(x) > 0 for all x ∈ {0, . . . , k − 1}.
The case where i = 2 is analogous to the previous one, only that we start the

loop by applying Step 1b first, before Step 1a. This completes the proof of Step
1c. �
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Proof of Step 2: Assume by way of contradiction that there exist i ∈ N and
x, x

′ ∈ {0, . . . , k − 1} such that σi(x) > σi(x
′
) > 0. By Step 1c, we know that

σi(x̃) > 0 for all x̃ ∈ {0, . . . , k − 1}. Then, we can choose x and x
′

satisfying the
following property:

x ∈ arg max
x̃∈{0,...,k−1}

σi(x̃) and x
′ ∈ arg min

x̃∈{0,...,k−1}
σi(x̃).

By Step 1c, we also know that σj(x̃) > 0 for each x̃ ∈ {0, . . . , k − 1}, where
j ∈ {1, 2}\{i}.

Assume that i = 2. The expected payoff for agent 1 of sending message x
′

against σ2 in the game Γ(θ
′
) is given by

U1(x
′
, σ2; θ

′
) =

{
σ2(x

′
)u1(a; θ

′
) + σ2(x

′
+ 1)u1(b; θ

′
) if x

′
< k − 1

σ2(x
′
)u1(a; θ

′
) + σ2(0)u1(b; θ

′
) if x

′
= k − 1

On the other hand, The expected payoff for agent 1 of sending message x against
σ2 in the game Γ(θ

′
) is given by

U1(x, σ2; θ
′
) =

{
σ2(x)u1(a; θ

′
) + σ2(x+ 1)u1(b; θ

′
) if x < k − 1

σ2(x)u1(a; θ
′
) + σ2(0)u1(b; θ

′
) if x = k − 1.

We compute

U1(x, σ2; θ
′
)− U1(x

′
, σ2; θ

′
)

= [σ2(x)− σ2(x
′
)]u1(a; θ

′
) + [σ2(x+ 1 mod k)− σ2(x′ + 1 mod k)]u1(b; θ

′
)

≥ [σ2(x)− σ2(x
′
)]u1(a; θ

′
)− [σ2(x)− σ2(x

′
)]u1(b; θ

′
)

(∵ [σ2(x+ 1 mod k)− σ2(x′ + 1 mod k)] ≥ −[σ2(x)− σ2(x
′
)], u1(b; θ

′
) > 0)

= [σ2(x)− σ2(x
′
)](u1(a; θ

′
)− u1(b; θ

′
)

> 0.

This implies that message x is a strictly better response for agent 1 against σ2 than
x
′

in the game Γ(θ
′
), contradicting the hypothesis that σ1(x

′
) > 0.

We next assume i = 1. The expected payoff for agent 2 of sending message
x
′
+ 1 against σ1 in the game Γ(θ

′
) is given by

U2(σ1, x
′
+ 1; θ

′
) =

{
σ1(x

′
+ 1)u2(a; θ

′
) + σ1(x

′
)u1(b; θ

′
) if x

′
< k − 1

σ1(0)u2(a; θ
′
) + σ1(x′)u1(b; θ

′
) if x

′
= k − 1

On the other hand, The expected payoff for agent 2 of sending message x + 1
against σ1 in the game Γ(θ

′
) is given by

U2(σ1, x+ 1; θ
′
) =

{
σ1(x+ 1)u1(a; θ

′
) + σ1(x)u2(b; θ

′
) if x < k − 1

σ1(0)u1(a; θ
′
) + σ1(x)u2(b; θ

′
) if x = k − 1.
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We compute

U2(σ1, x+ 1; θ
′
)− U2(σ1, x

′
+ 1; θ

′
)

= [σ1(x+ 1)− σ1(x
′
+ 1)]u2(a; θ

′
) + [σ1(x)− σ1(x′)]u2(b; θ

′
)

≥ [σ1(x+ 1)− σ1(x
′
+ 1)]u2(b; θ

′
)− [σ1(x)− σ1(x

′
)]u2(a; θ

′
)

(∵ [σ1(x+ 1 mod k)− σ1(x′ + 1) mod k)] ≥ −[σ1(x)− σ1(x
′
)], u2(a; θ

′
) > 0)

= [σ1(x)− σ1(x
′
)](u2(b; θ

′
)− u2(a; θ

′
))

> 0.

This implies that message x+ 1 is a strictly better response for agent 2 against σ2

than x
′
+ 1 in the game Γ(θ

′
), contradicting the hypothesis that σ2(x

′
+ 1) > 0.

This completes the proof of Step 2. �

10.3 Proof of Lemma 4

Fix j ∈ {0, . . . , J}. By Property 3 in Condition P, f(θj) is (Aj,Bj)-acceptable
at state θj. This implies that f(θj) ∈ Aj ∪ Bj. Assume first that f(θj) ∈ Aj.
We then define m = (m1,m2) = ((jk, f(θj)), (jk, z(j, j))). By construction, m
induces Rule 1 in the mechanism Γk so that we have g(m) = f(θj). We consider
m
′
1 as an arbitrary deviation strategy of agent 1 and argue that m

′
1 never be a

better reply than m1 against m2. If (m
′
1,m2) induces Rule 1, by Property 3 of

Condition P, m
′
1 is not a profitable deviation. If (m

′
1,m2) induces Rule 2, then

we have g(m
′
1,m2) = z(j, j), which, by Property 1, is also a part of Aj and thus,

by Property 3, not a profitable deviation either. If (m
′
1,m2) induces Rule 3, there

exists j1 ∈ {0, . . . , J} such that g(m
′
1,m2) = z(j1, j). By Property 1, z(j1, j) ∈ Aj

and thus by Property 3 in Condition P, m
′
1 is not a profitable deviation.

We next consider m
′
2 as an arbitrary deviation strategy of agent 2 and argue

that m
′
2 never be a better reply than m2 against m1. If (m1,m

′
2) induces Rule 1, we

have g(m1,m
′
2) = g(m1,m2) so that m

′
2 is not a profitable deviation. If (m1,m

′
2)

induces Rule 2, then g(m1,m
′
2) ∈ Bj and it follows from Property 3 of Condition

P that m
′
2 is not a profitable deviation, since f(θj) being (Aj,Bj)-acceptable at

that state means there can be no element in Bj that is preferred to f(θj) by agent
2. Finally, if (m1,m

′
2) induces Rule 3, there exists (j, j2) ∈ {0, . . . , J}× {0, . . . , J}

such that g(m1,m
′
2) = z(j, j2). It follows from Property 1 that z(j, j2) ∈ Bj

and from Property 3 of Condition P that m
′
2 is not a profitable deviation. Thus,

(m1,m2) = ((jk, f(θj), (jk, z(j, j)) is a Nash equilibrium of the game Γk(θj) in this
case.

Finally, consider the scenario when f(θj) /∈ Aj, which, by the definition of
acceptability, must imply that f(θj) ∈ Bj. Then, we define m = (m1,m2) =
((jk, z(j, j)), (jk + 1, f(θj)). This message induces Rule 2 and results in f(θj) as
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the outcome, as desired. To check that there are no profitable deviations, consider
first m′1 as an arbitrary deviation by agent 1. If (m′1,m2) induces Rule 1, by
Property 3 this is not a profitable deviation. If it induces Rule 2, the outcome is
unchanged, so again, no benefit for the agent. Finally, if it induces Rule 3, then
there is a (j1, j) such that g(m′1,m2) = z(j1, j), but as z(j1, j) ∈ Aj according to
Property 1, we can once more invoke Property 3 to conclude that this is not a
profitable deviation either.

We move on to deviation strategies attempted by agent 2, denoting by m′2 an
arbitrary deviation. As above, Property 3 ensures that any deviation that induces
Rule 2 cannot be profitable. If (m1,m

′
2) induces Rule 3 instead, then we can find

a (j, j2) such that g(m′1,m2) = z(j, j2), but as z(j, j2) ∈ Bj according to Property
1, we can once more invoke Property 3 to conclude that this is not a profitable
deviation either. Lastly, if it induces Rule 1, the outcome must be z(j, j) and then
by Properties 1 and 3 this cannot be a profitable deviation either.

Fix θ ∈ Θ. We shall show that m ∈ pureNE(Γk(θ)) implies g(m) = f(θ). We
assume by way of contradiction that there exists m ∈ pureNE(Γk(θ)) such that
g(m) 6= f(θ). We write m = (m1,m2) = ((o1, x1), (o2, x2)). We complete the proof
by considering the following separate cases.

Case 1: m induces Rule 1

Assume that m induces Rule 1. Then, we have g(m) = x1. Since x1 6= f(θ) from
our hypothesis, Property 4 of Condition P implies that for every j = {0, . . . , J},
x1 is not (Aj,Bj)-acceptable. As x1 ∈ Ank(o2), this implies that there must exist
either a ∈ Ank(o2) such that a �θ1 x1 or b ∈ Bnk(o2) such that b �θ2 x1. Assume it
is the former. Then m′1 = (o1, a) is a profitable deviation for agent 1. If it is the
latter, then m′2 = (πk(o1), b) is a profitable deviation for agent 2.

Case 2: m induces Rule 2

Assume that m induces Rule 2. Then, we have g(m) = x2. Since x2 6= f(θ) from
our hypothesis, Property 4 of Condition P implies that for every j = {0, . . . , J},
x1 is not (Aj,Bj)-acceptable. As x2 ∈ Bnk(o1), this implies that there must exist
either a ∈ Ank(o2) such that a �θ1 x1 or b ∈ Bnk(o2) such that b �θ2 x1. Assume it
is the former. Then m′1 = (o2, a) is a profitable deviation for agent 1. If it is the
latter, then m′2 = (o2, b) is a profitable deviation for agent 2.

Case 3: m induces Rule 3

If m induces Rule 3, we have g(m) = z(j1, j2) where (j1, j2) = (nk(o1), nk(o2)).
By assumption, z(j1, j2) 6= f(θ), then we can invoke Property 2 and find either
a(j1,j2) ∈ Aj2 such that a(j1,j2) �θ1 z(j1, j2) or b(j1,j2) ∈ Bj1 such that b(j1,j2) �θ2
z(j1, j2). Assume it is the former. Then agent 1 hasm′1 = (o2, a(j1,j2)) as a profitable
deviation strategy. If it is the latter, than agent 2 has m′2 = (πk(o1), b(j1,j2)) as a
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profitable deviation strategy. �

10.4 Proof of Lemma 5

Fix u ∈ U θ. Suppose by way of contradiction that there is a compelling mixed
strategy Nash equilibrium σ of the game Γk(θ, u). As Γk = (Mk, gk) pure Nash
implements the SCF f under Condition P by Lemma 4, we have that for each
i ∈ {1, 2}, ∑

m̃∈M

σ(m̃)ui(g
k(m̃), θ) ≥ ui(f(θ), θ),

with at least one strict inequality for some i ∈ {1, 2}. This implies that there exist
i ∈ {1, 2} and m ∈ supp(σ) such that

ui(g
k(m), θ) > ui(f(θ), θ).

We write m = (m1,m2) = ((o1, x1), (o2, x2)). If m induces Rule 1, we have gk(m) =
x1 and x1 ∈ Ank(o1). This contradicts Property 5 of Condition M. If m induces
Rule 2, we have gk(m) = x2 and x2 ∈ Bnk(o2). This also contradicts Property 5 of
Condition M. If m induces Rule 3, we have gk(m) = z(nk(o1), nk(o2)). By Property
1 of Condition P, we have z(nk(o1), nk(o2)) ∈ Ank(o2). This contradicts Property 5
of Condition M. �

10.5 Proof of Lemma 6

Let m1 = (o1, x1) denote player 1’s a generic message in the mechanism Γk. We
define the following partition over Mk

2 given m1:

M1
2 (m1) =

{
m2 ∈Mk

2 | (m1,m2) induces Rule 1
}
,

M2
2 (m1) =

{
m2 ∈Mk

2 | (m1,m2) induces Rule 2
}
,

M3
2 (m1) =

{
m2 ∈Mk

2 | (m1,m2) induces Rule 3
}
.

By construction, we have M1
2 (m1) ∪M2

2 (m1) ∪M3
2 (m1) = Mk

2 . Define m∗1(m1) =
(o1, a

θ
nk(o1)

). When either Rule 2 or Rule 3 is induced, player 1’s announcement

about alternatives is irrelevant. So, by construction of m∗1(m1), we obtain the
following property: for any m2 ∈M2

2 (m1) ∪M3
2 (m1),

g(m1,m2) = g(m∗1(m1),m2)⇒ g(m∗1(m1),m2) ∼θ1 g(m1,m2).

When (m1,m2) induces Rule 1, by its construction, (m∗1(m1),m2) also induces Rule
1. Under Rule 1, we know that player 1’s announcement about alternatives solely
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dictates the outcome. Once again, by construction of m∗1, along with the fact that
we have strict preferences, we obtain the following property: for any m2 ∈M1

2 (m1),

g(m1,m2) 6= g(m∗1,m2)⇒ g(m∗1,m2) �θ1 g(m1,m2).

This completes the argument for player 1.
Let m2 = (o2, x2) be a generic message agent 2 sends to the mechanism Γk. We

define the following partition over Mk
1 given m2:

M1
1 (m2) =

{
m1 ∈Mk

1 | (m1,m2) induces Rule 1
}
,

M2
1 (m2) =

{
m1 ∈Mk

1 | (m1,m2) induces Rule 2
}
,

M3
1 (m2) =

{
m1 ∈Mk

1 | (m1,m2) induces Rule 3
}
.

By construction, we have M1
1 (m2) ∪M2

1 (m2) ∪M3
1 (m2) = Mk

1 . Define m∗2(m2) =
(o2, b

θ
nk(o2)

). When either Rule 1 or Rule 3 is induced, player 2’s announcement
about alternatives is irrelevant. So, by construction of m∗2, we obtain the following
property: for any m1 ∈M1

1 (m2) ∪M3
1 (m2),

g(m1,m
∗
2(m2)) = g(m1,m2)⇒ g(m1,m

∗
2(m2)) ∼θ2 g(m1,m2).

When (m1,m2) induces Rule 2, by its construction, (m1,m
∗
2(m2)) also induces

Rule 2. Under Rule 2, we know that player 2’s announcement about alternatives
solely dictates the outcome. Once again, by construction of m∗2(m2) along with
the fact that we have strict preferences, we obtain the following property: for any
m1 ∈M2

1 (m2),

g(m1,m
∗
2(m2)) 6= g(m1,m2)⇒ g(m1,m

∗
2(m2)) �θ2 g(m1,m2).

This completes the argument for player 2. �

10.6 Proof of Lemma 8

Suppose that Condition P+M holds and f(θ) /∈ Z. Let u ∈ U θ and σ = (σ1, σ2) ∈
NE∗(θ, u) be a compelling mixed strategy Nash equilibrium. For each i ∈ {1, 2}
and j ∈ {0, . . . , J − 1}, we introduce the following notation: uai ≡ ui(a

θ
j ; θ); u

b
i ≡

ui(b
θ
j ; θ); u

z
i ≡ ui(z(j, j); θ); and σji ≡

∑
x:nk(x)=j σi(x). For each i ∈ {1, 2} and

j ∈ {0, . . . , J − 1}, we define Smaxi and Smini as follows:

Smaxi ≡ max{σi(x̃) ∈ [0, 1]| x̃ ∈ {jk, . . . , (j + 1)k − 1}},
and Smini ≡ min{σi(x̃) ∈ [0, 1]| x̃ ∈ {jk, . . . , (j + 1)k − 1}}.

Fix j ∈ {0, . . . , J}. If Smini = Smaxi for each i ∈ {1, 2}, we have that σi(x) =
σ(x′) for every x, x′ with nk(x) = nk(x′) = j and i ∈ {1, 2}. Thus, for each
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i ∈ {1, 2} and j ∈ {0, . . . , J}, we can set pij ≡
∑(j+1)k−1

x=jk σi(x). This completes
the proof of Lemma 8. Therefore, the rest of the proof is reduced to establishing
Smini = Smaxi for each i ∈ {1, 2}. This will be proved in a series of steps:

Step 8a: Assume that Smin2 6= Smax2 . Then, for each x̃ ∈ {jk, . . . , (j + 1)k − 1},
σ2(x̃) = Smin2 implies σ1(x̃) = 0.

Proof of Step 8a: Fix x
′

such that σ2(x
′
) = Smin2 arbitrarily. We claim that

there exists x 6= x
′

such that m1(x) is a strictly better reply to σ2 than m1(x′),
which implies that σ1(x

′
) = 0. This completes the proof. We show this claim by

considering the following two cases: ua1 > ub1 > uz1 or ua1 > uz1 > ub1.

Case 1: ua1 > ub1 > uz1.

Since Smin2 6= Smax2 , we can pick x such that σ2(x) = Smax2 . This implies
σ2(x) > σ2(x

′
). The expected payoff for agent 1 of sending integer x

′
against σ2 in

the game Γk(θ) is given by

U1(m1(x
′
), σ2; θ) = σ2(x

′
)ua1 + σ2(πk(x

′
))ub1 + {σj2 − σ2(x

′
)− σ2(πk(x

′
))}uz1 + ẑσ21 ,

where ẑσ
2

1 denotes the residual utility of agent 1, which depends on σ2 but remains
the same regardless of whether m1(x) or m1(x

′
) is sent.

The expected payoff for agent 1 of sending message x against σ2 in the game
Γk(θ) is given by

U1(m1(x), σ2; θ) = σ2(x)ua1 + σ2(πk(x))ub1 + (σj2 − σ2(x)− σ2(πk(x)))uz1 + ẑσ21 .

Since σ2(x) = Smax2 and σ2(x
′
) = Smin2 , we can use the following inequality:

σ2(πk(x))− σ2(πk(x
′
)) ≥ −[σ2(x)− σ2(x

′
)].

Taking the difference between the two, we compute

U1(m1(x), σ2; θ)− U1(m1(x
′
), σ2; θ)

= [σ2(x)− σ2(x
′
)]ua1 + [σ2(πk(x))− σ2(πk(x′))]ub1 + [σ2(x)− σ2(x

′
) + σ2(πk(x))− σ2(πk(x′))]uz1

= [σ2(x)− σ2(x
′
)](ua1 − uz1) + [σ2(πk(x))− σ2(πk(x′))](ub1 − uz1)

> [σ2(x)− σ2(x
′
)](ua1 − uz1)− [σ2(x)− σ2(x

′
)](ub1 − uz1)

(∵ σ2(πk(x))− σ2(πk(x
′
)) ≥ −[σ2(x)− σ2(x

′
)], ub1 > uz1)

= [σ2(x)− σ2(x
′
)](ua1 − ub1)

> 0 (∵ σ2(x) > σ2(x
′
), ua1 > ub1).

Case 2: ua1 > uz1 > ub1.
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First take x1 such that πk(x1) = x′. If σ2(x1) 6= Smin2 , then we set x = x1.
If x1 = Smin2 , then take x2 such that πk(x2) = x1 and check if σ2(x2) = Smin2 . If
σ2(x2) 6= Smin2 , then we set x = x2. If σ2(x2) = Smin2 , we iterate the same argument.
As Smin2 6= Smax2 , by the finiteness of the mechanism Γ, eventually we will find
an x such that σ2(x) 6= Smin2 but σ2(πk(x)) = Smin2 . We confirm the following
inequalities: Since σ2(x

′
) = Smin

2 and σ2(x) 6= Smin2 , we have σ2(x) > σ2(x
′
).

Moreover, since σ2(πk(x)) = Smin2 , we have that σ2(πk(x
′
)) ≥ σ2(πk(x)). We then

compute the difference in expected payoffs between these two messages:

U1(m1(x), σ2; θ)− U1(m1(x
′
), σ2; θ)

= [σ2(x)− σ2(x
′
)]ua1 + [σ2(πk(x))− σ2(πk(x′))]ub1 + [σ2(x)− σ2(x

′
) + σ2(πk(x))− σ2(πk(x′))]uz1

= [σ2(x)− σ2(x
′
)](ua1 − uz1) + [σ2(πk(x′))− σ2(πk(x))](uz1 − ub1)

> 0.

(∵ σ2(x) > σ2(x
′
), σ2(πk(x

′
)) ≥ σ2(πk(x)), ua1 > uz1 > ub1)

Considering both Cases 1 and 2, we conclude that m1(x) is a strictly better
reply to σ2 than m1(x′). This completes the proof. �

Step 8b: Assume that Smin1 6= Smax1 . Then, for each x̃ ∈ {jk, . . . , (j + 1)k − 1},
σ1(x̃) = Smin1 implies σ2(πk(x̃)) = 0.

Proof of Step 8b: Fix x
′

such that σ1(x
′
) = Smin1 arbitrarily. We claim

that there exists x 6= x
′

such that m2(πk(x)) is a strictly better reply to σ1 than
m2(πk(x

′
)), which implies that σ2(πk(x

′
)) = 0. This completes the proof. We show

this claim by considering the following two cases: ub2 > ua2 > uz2 or ub2 > uz2 > ua2.

Case 1: ub2 > ua2 > uz2

Since Smin1 6= Smax1 , we can pick x such that σ1(x) = Smax1 . This implies
σ1(x) > σ1(x

′
). The expected payoff for agent 2 of sending message πk(x

′
) against

σ1 in the game Γk(θ) is given by

U2(σ1,m2(πk(x
′
)); θ) = σ1(πk(x

′
))ua2 +σ1(x

′
)ub2 + [σj1−σ1(πk(x

′
))−σ1(x

′
)]uz2 + ẑσ12 ,

where ẑσ12 denotes the residual utility of agent 2, which depends on σ1 but remains
the same regardless of whether σ2(πk(x)) or σ2(πk(x

′
)) is played.

The expected payoff for agent 2 of sending message πk(x) against σ1 in the
game Γk(θ) is given by

U2(σ1,m2(πk(x)); θ) = σ1(πk(x))ua2 + σ1(x)ub2 + [σj1 − σ1(πk(x))− σ1(x)]uz1 + ẑσ12
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Since σ1(x) = Smax1 and σ1(x
′
) = Smin1 , we can use the following inequality:

σ1(πk(x))− σ1(πk(x
′
)) ≥ −[σ1(x)− σ1(x

′
)].

Taking the difference between the two, we compute

U2(σ1,m2(πk(x)); θ)− U2(σ1,m2(πk(x
′
)); θ)

= [σ1(πk(x))− σ1(πk(x
′
))]ua2 + [σ1(x)− σ1(x′)]ub2 + [σ1(πk(x))− σ1(πk(x

′
)) + σ1(x)− σ1(x′)]uz2

= [σ1(πk(x))− σ1(πk(x
′
))](ua2 − uz2) + [σ1(x)− σ1(x′)](ub2 − uz2)

≥ [σ1(x)− σ1(x
′
)](ub2 − uz2)− [σ1(x)− σ1(x

′
)](ua2 − uz2)

(∵ σ1(πk(x))− σ1(πk(x′)) ≥ −[σ1(x)− σ1(x
′
)], ua2 > uz2)

= [σ1(x)− σ1(x
′
)](ub2 − ua2)

> 0 (∵ σ1(x) > σ1(x
′
), ub2 > ua2).

Case 2: ub2 > uz2 > ua2.

First we take x1 such that πk(x1) = x
′
. If σ1(x1) 6= Smin1 , we set x = x1.

If σ1(x1) = Smin1 , we take x2 such that πk(x2) = x1. If σ1(x2) 6= Smin1 , we set
x = x2. If σ1(x2) = Smin1 , we repeat the same argument. Since Smin1 6= Smax1 .
we eventually can choose x such that σ1(x) 6= Smin1 . We confirm the following
inequalities: Since σ1(x

′
) = Smin

1 and σ1(x) 6= Smin1 , we have σ1(x) > σ1(x
′
).

Moreover, since σ1(πk(x)) = Smin1 , we have that σ1(πk(x
′
)) ≥ σ1(πk(x)). We then

compute the difference in expected payoffs between these two messages:

U2(σ1,m2(πk(x)); θ)− U2(σ1,m2(πk(x
′
)); θ)

= [σ1(πk(x))− σ1(πk(x
′
))]ua2 + [σ1(x)− σ1(x′)]ub2 + [σ1(πk(x))− σ1(πk(x

′
)) + σ1(x)− σ1(x′)]uz2

= [σ1(πk(x
′
))− σ1(πk(x))](uz2 − ua2) + [σ1(x)− σ1(x′)](ub2 − uz2)

> 0 (∵ σ1(πk(x
′
)) ≥ σ1(πk(x)), σ1(x) > σ1(x

′
), ub2 > uz2 > ua2)

Considering both Cases 1 and 2, we conclude that σ2(πk(x)) is a strictly better
reply to σ1 than σ(πk(x′)). This completes the proof. �

Step 8c: σ1(x̃) = 0 for every x̃ ∈ {jk, . . . , (j + 1)k − 1} if and only if σ2(x̃) = 0
for every x̃ ∈ {jk, . . . , (j + 1)k − 1}.

Proof of Step 8c: (⇒) Assume that σ1(x̃) = 0 for every x̃ ∈ {jk, . . . , (j +
1)k − 1}. Fix x ∈ {jk, . . . , (j + 1)k − 1} arbitrarily. It thus suffices to show
σ2(x) = 0. The expected payoff for player 2 of sending m2(x) against σ1 is given
as follows:

U2(σ1,m2(x); θ) =
∑

l∈{0,...,J}\{j}

∑
y:nk(y)=l

σ1(y)u2(z(nk(y), j), θ).
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From Property 6 of Condition P+M, we have that f(θ) �θ2 z for any z ∈ Z. This
implies that u2(f(θ); θ) > U2(σ1,m2(x); θ). Suppose by way of contradiction that
σ2(x) > 0. Since every message in the support of the equilibrium strategy σ2 must
offer the same expected payoff, we have

u2(f(θ); θ) > U2(σ1,m2(x); θ) = U2(σ1, σ2; θ).

This implies that σ is not a compelling equilibrium, which is the desired contra-
diction. Thus, σ2(x) = 0.

(⇐) Assume that σ2(x̃) = 0 for every x̃ ∈ {jk, . . . , (j + 1)k − 1}. Fix x ∈
{jk, . . . , (j+ 1)k− 1} arbitrarily. It thus suffices to show σ1(x) = 0. The expected
payoff for player 1 of sending m1(x) against σ2 is given as follows:

U1(m1(x), σ2; θ) =
∑

l∈{0,...,J}\{j}

∑
y:nk(y)=l

σ2(y)u1(z(j, nk(y)); θ).

From Property 6 of Condition P+M, we have that f(θ) �θ1 z for any z ∈ Z. This
implies that u1(f(θ); θ) > U1(m1(x), σ2; θ). Suppose by way of contradiction that
σ1(x) > 0. Since every message in the support of the equilibrium strategy σ1 must
offer the same expected payoff, we have

u1(f(θ); θ) > U1(m1(x), σ2; θ) = U1(σ1, σ2; θ).

This implies that σ is not a compelling equilibrium, which is the desired contra-
diction. Thus, σ1(x) = 0. �

Finally, we shall show that Smini = Smaxi for each i ∈ {1, 2}. We first claim
Smin2 = Smax2 . Assume by way of contradiction that Smin2 6= Smax2 . We then
use Step 8a to conclude that, for each x̃ ∈ {jk, . . . , (j + 1)k − 1}, σ2(x̃) = Smin2

implies σ1(x̃) = 0. This implies Smin1 = 0. Since Smin2 6= Smax2 , there exists
x ∈ {jk, . . . , (j + 1)k − 1} such that σ2(x) > 0. By Step 8c, there also exists x

′ ∈
{jk, . . . , (j+1)k−1} such that σ1(x

′
) > 0, which further implies Smin1 6= Smax1 . We

next use Step 8b to conclude that, for each x̃, σ1(x̃) = Smin1 implies σ2(πk(x̃)) = 0.
This implies Smin2 = 0. Starting from Smin1 = Smin2 = 0, we repeatedly use Steps
8a and 8b so that we are able to conclude that σ1(x̃) = 0 and σ2(x̃) = 0 for each
x̃ ∈ {jk, . . . , (j + 1)k − 1}. This implies that Smin2 = Smax2 , which contradicts the
hypothesis that Smin2 6= Smax2 .

We next claim that Smin1 = Smax1 . Assume, on the contrary, that Smax1 6= Smin1 .
We then use Step 8b to conclude that, for each x̃ ∈ {jk, . . . , (j+ 1)k− 1}, σ1(x̃) =
Smin1 implies σ2(πk(x̃)) = 0. This implies Smin2 = 0. Since Smin1 6= Smax1 , there
exists x ∈ {jk, . . . , (j + 1)k− 1} such that σ1(x) > 0. By Step 8c, there also exists
x
′ ∈ {jk, . . . , (j+1)k−1} such that σ2(x

′
) > 0, which further implies Smin2 6= Smax2 .

However, this contradicts the previously obtained conclusion that Smin2 = Smax2 .
We therefore complete the proof of Lemma 8. �
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10.7 Proof of Lemma 9

Fix u ∈ Uθ and σ ∈ NE∗(Γk(θ, u)). Assume that σ is a compelling mixed strategy
equilibrium of the game Γk(θ, u). As we know from Lemma 5 that Γk = (Mk, gk)
pure Nash implements the SCF under Condition P, we have that for each i ∈ {1, 2},∑

m̃∈M

σ(m̃)ui(g
k(m̃), θ) ≥ ui(f(θ), θ),

with at least one strict inequality for some i ∈ {1, 2}. This implies that there exist
i ∈ {1, 2} and m ∈ supp(σ) such that

ui(g
k(m), θ) > ui(f(θ), θ).

We can write m = (m1,m2) = ((o1, a
θ
nk(o1)

), (o2, b
θ
nk(o2)

)). By Properties 5 and 6
of Condition M, m induces either Rule 1 or Rule 2 so that there must exist a
j ∈ {0, . . . , J − 1} such that gk(m) ∈ Aj ∪ Bj. More specifically, if m induces
Rule 1, then gk(m) = aθj ∈ Aj where j = nk(o1), while if m induces Rule 2, then
gk(m) = bθj ∈ Bj where j = nk(o2). Thus, for some i, we have either aθj �θi f(θ)
or bθj �θi f(θ). This implies four possible different scenarios, with two immediately
completing our proof. It remains to show that the last two scenarios, where aθj �θ2
f(θ) or bθj �θ1 f(θ), will also result in either aθj �θ1 f(θ) or bθj �θ2 f(θ).

Assume first that aθj �θ2 f(θ) and f(θ) �θ2 bθj both hold. This implies that
aθj 6= f(θ) and aθj is (Aj,Bj)-acceptable at state θ, which would contradict Property
4 of Condition P. Hence, aθj �θ2 f(θ) implies bθj �θ2 f(θ) A similar argument holds
to show that bθj �θ1 f(θ) implies aθj �θ1 f(θ). Thus, we have found a j such that
aθj �θ1 f(θ) or bθj �θ2 f(θ), completing the proof. �

10.8 Proof of Lemma 10

We prove this by contradiction. That is, there exists ε > 0 such that for any
k ∈ N, there exist u ∈ U ε and σk ∈ NE∗(Γk(θ, u)) for which σk is a compelling
mixed strategy equilibrium of the game Γk(θ, u). We fix k large enough so that
by our hypothesis, we can fix u ∈ U ε and a compelling mixed strategy equilibrium
σk ∈ NE∗(Γk(θ, u)). When we determine the exact size of k later, we guarantee
that such k potentially depends on ε but not on u. Since σk is compelling in
the game Γk(θ, u) and the mechanism Γk pure Nash implements the SCF f under
Condition P by Lemma 4, we have that, for each i ∈ {1, 2},∑

m̃∈M

σk(m̃)ui(g
k(m̃), θ) ≥ ui(f(θ), θ),
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with at least one strict inequality for some i ∈ {1, 2}. This implies that there exist
i ∈ {1, 2} and m ∈ supp(σk) such that

ui(g
k(m), θ) > ui(f(θ), θ).

Fix such i ∈ {1, 2}. We introduce the following partition over supp(σk): {{M+}, {M0}, {M−}} =
supp(σk) such that

M+ = {m ∈Mk| ui(gk(m), θ) > ui(f(θ), θ)},
M0 = {m ∈Mk| ui(gk(m), θ) = ui(f(θ), θ)},
M− = {m ∈Mk| ui(gk(m), θ) < ui(f(θ), θ)}.

By construction, we have M+ 6= ∅. Using the characterization of compelling mixed
strategy equilibria in NE∗(Γk(θ, u)) obtained by Lemmas 8 and 9, σk induces Rule
3 with positive probability. By Property 6 of Condition M, we also have M− 6= ∅.
Define the following notation:

u+ ≡ max
m∈M+

ui(g(m), θ),

u− ≡ max
m∈M−

ui(g(m), θ).

By construction, we have u+ > u− and ui(f(θ), θ) > u−. We now define

K ≡ min

{
k ∈ N

∣∣∣ k > 2

ε

}
.

We fix k = K. Since σk ∈ NE∗(Γk(θ, u)), by the definition of NE∗(Γk(θ, u)), no
agents randomize over alternatives. Since we assume f(θ) /∈ Z, by Property 6 of
Condition M, we have that m ∈ M+ only if m induces either Rule 1 or Rule 2.
Furthermore, using the characterization of compelling mixed strategy equilibria in
NE∗(Γk(θ, u)) by Lemmas 8 and 9 and the construction of the mechanism Γk, we
conclude that the probability that σk induces messages in M+ is “at most” 2/k.
Moreover, by the construction of the mechanism Γk, we have that m ∈ M− if
m induces Rule 3. Once again as f(θ) /∈ Z, by Property 6 of Condition M and
the construction of the mechanism Γk, we conclude that the probability that σk
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induces messages in M− is “at least” 1− 2/k. Then,

Ui(σ
k, θ) =

∑
m∈M+

σk(m)ui(g
k(m), θ) +

∑
m∈M0

σk(m)ui(g
k(m), θ) +

∑
m∈M−

σk(m)ui(g
k(m), θ)

≤ u+ ×
2

k
+ u− ×

(
1− 2

k

)
(
∵M+ 6= ∅, M− 6= ∅,

∑
m∈M+∪M0

σk(m)ui(g
k(m), θ) ≤ u+ × (2/k) and

∑
m∈M−

σk(m)ui(g
k(m), θ) ≤ u− × (1− 2/k)

)

=
2

k
(u+ − u−) + u−,

which we define as h(k). Since u ∈ U ε, we have

2(u+ − u−)

ui(f(θ), θ)− u−
≤ 2

ε
< K.

As h(k) is strictly decreasing in k, we have

h(K) < h

(
2

ε

)
≤ h

(
2(u+ − u−)

ui(f(θ), θ)− u−

)
= ui(f(θ), θ).

Therefore, when k = K, we have

Ui(σ
K , θ) ≤ h(K) < ui(f(θ), θ).

This contradicts the hypothesis that σK is a compelling mixed strategy equilibrium
of the game ΓK(θ, u). �

10.9 Proof of Lemma 11

Let J ≡ |Θ| − 1 where |Θ| denotes the number of possible states of the world. We
then write Θ = {θj}Jj=0 and let j : Θ→ {0, . . . , J} be a bijection. Let Γ = (M, g)
be a finite mechanism that pure Nash implements f . For each θ ∈ Θ, we define
mθ = (mθ

1,m
θ
2) as a pure strategy Nash equilibrium of the game Γ(θ). The existence

of mθ is guaranteed by our hypothesis that f is pure Nash implementable by the
mechanism Γ. Then we can define sets Aj(θ),Bj(θ) as follows:

Aj(θ) = {a ∈ A | ∃ m1 ∈M1 such that g(m1,m
θ
2) = a},

and
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Bj(θ) = {b ∈ A | ∃ m2 ∈M2 such that g(mθ
1,m2) = b}.

Let j−1 : {0, . . . , J} → Θ be the inverse function of j. For each (j1, j2) ∈
{0, . . . , J} × {0, . . . , J}, we define z(j1, j2) = g(m

j−1(j1)
1 ,m

j−1(j2)
2 ).

Fix θ ∈ Θ arbitrarily. It then follows from the construction of the setsAj(θ),Bj(θ)
above that Property 1 of Condition P is satisfied.

We next claim that message profile mθ = (mθ
1,m

θ
2) is a pure strategy Nash

equilibrium of Γ(θ) if and only if f(θ) is (Aj(θ),Bj(θ))-acceptable at state θ. This
claim concludes that Properties 3 and 4 of Condition P hold. To show the only-if
part, we assume that mθ is a Nash equilibrium of the game Γ(θ). Then, there is no
message mi ∈ Mi\{mθ

i } such that g(mi,m
θ
−i) �θi g(mθ). Since the SCF f is pure

Nash implementable by the mechanism Γ, we have f(θ) = g(mθ) so that f(θ) is
(Aj(θ),Bj(θ))-acceptable at state θ. This completes the only-if-part of the claim. To
show the if-part of the claim, we rather show its contrapositive form: if mθ is “not”
a pure strategy Nash equilibrium of the game Γ(θ), then f(θ) is “not” (Aj(θ),Bj(θ))-
acceptable at state θ. Since mθ is not a Nash equilibrium of the game Γ(θ), there
exist some player i ∈ {1, 2} and a message m

′
i ∈Mi such that g(m′i,m

θ
−i) �θi g(mθ).

This implies that we have either i = 1 or i = 2. If i = 1, it follows that g(m
′
1,m

θ
2) ∈

Aj(θ) such that g(m
′
1,m

θ
2) �θ1 g(mθ). Since the SCF f is pure Nash implementable

by Γ, f(θ) is not (Aj(θ),Bj(θ))-acceptable at state θ. Instead, if i = 2, it follows that
g(mθ

1,m
′
2) ∈ Bj(θ) such that g(mθ

1,m
′
2) �θ1 g(mθ). Since the SCF f is pure Nash

implementable by Γ, f(θ) is not (Aj(θ),Bj(θ))-acceptable at state θ. This completes
the proof of the if-part of the claim.

We fix (j1, j2) ∈ {0, . . . , J} × {0, . . . , J} arbitrarily. To establish Property 2

of Condition P, we assume that f(θ) 6= z(j1, j2) = g(m
j−1(j1)
1 ,m

j−1(j2)
2 ). It fol-

lows from our hypothesis that the SCF f is pure Nash implementable by the

mechanism Γ that (m
j−1(j1)
1 ,m

j−1(j2)
2 ) is “not” a pure strategy Nash equilibrium

of the game Γ(θ). This implies that either agent 1 or agent 2 has a profitable

unilateral deviation from (m
j−1(j1)
1 ,m

j−1(j2)
2 ) in the game Γ(θ). Assume first that

agent 1 has a profitable deviation from (m
j−1(j1)
1 ,m

j−1(j2)
2 ). This implies that there

exists m
′
1 ∈ M1 such that g(m

′
1,m

j−1(j2)
2 ) �θ1 g(m

j−1(j1)
1 ,m

j−1(j2)
2 ). By construc-

tion, we have g(m
′
1,m

j−1(j2)
2 ) ∈ Aj2 . Setting a(j1,j2) = g(m

′
1,m

j−1(j2)
2 ), we con-

clude that Property 2 of Condition P holds. Assume next that agent 2 has

a profitable deviation from (m
j−1(j1)
1 ,m

j−1(j2)
2 ). This implies that there exists

m
′
2 ∈ M2 such that g(m

j−1(j1)
1 ,m

′
2) �θ1 g(m

j−1(j1)
1 ,m

j−1(j2)
2 ). By construction, we

have g(m
j−1(j1)
1 ,m

′
2) ∈ Bj1 . Setting b(j1,j2) = g(m

j−1(j1)
1 ,m

′
2), we conclude that

Property 2 of Condition P holds. This completes the proof of the lemma. �
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