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Abstract

We study how a data-rich firm can benefit by unilaterally sharing its customer
data with a data-poor competitor when the data can be used for price discrim-
ination. By sharing data on the segment of market that is more loyal to the
competitor while keeping the data on the competitor’s most loyal segment to
itself, the firm can induce the competitor to raise its price for consumers it
does not have data on. Such data sharing is an example of a fat-cat strategy
as it softens price competition that follows data sharing. Although consumer
surplus decreases as a result of data sharing, total surplus can increase when
the sharing firm concedes its market share to the competitor, which improves
the quality of consumer-firm matching.
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1 Introduction

In 2017, The Economist famously declared that data is the new oil in the dig-

ital economy.1 Consumer-generated data analyzed with powerful machine-learning
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tools can facilitate data-enabled learning, which can lead to new or improved prod-

ucts, more target-oriented business models, effective defense against competition, etc.

(Hagiu and Wright, 2020). Consumer data can also allow firms to sharpen their pric-

ing tools and extract more surplus from consumers through price discrimination. For

example, finer-grained analysis utilizing big data has made personalized pricing closer

to becoming a reality in some industries. The flip side is that competition can become

more intense when it is based on finer levels of customer data that can be used for

price discrimination (Thisse and Vives, 1988; Fudenberg and Tirole, 2000; Choe et

al., 2018).

Can a firm benefit by unilaterally sharing its customer data with a competitor

when the data can be used for price discrimination? As alluded to in the previous

paragraph, it would seem that the sharing firm cannot benefit because data shar-

ing will improve the competitor’s pricing capabilities and intensify competition by

facilitating poaching by the competitor.2 The purpose of this paper is to provide a

model where an informed firm can choose to share customer data with an uninformed

competitor and, given the optimally chosen amount of shared data, both firms are

better off than without data sharing. The key driver of this result is that the informed

firm strategically selects a subset of data to share with a competitor, which induces

the competitor to raise its price for consumers it does not have data on. Therefore,

the unilateral data sharing considered in this paper is a soft commitment when the

subsequent competition is in strategic complements, hence is an example of a fat-cat

strategy (Fudenberg and Tirole, 1984).3 We sketch below our main argument.

Consider a Hotelling model with two firms located at each end. Firm 1 has data

on all consumers’ locations and can set a personalized price for each consumer. Firm

2 does not have any data to start with and chooses only a uniform price. Given the

maximal differentiation, firm 1’s informational advantage does not extend to the entire

market, implying that there are some consumers served by firm 2 even without data

sharing. We call this firm 2’s customer base. Since prices are strategic complements,

2See, for example, Kim and Choi (2010) or Chen et al. (2022). A number of studies reviewed
later provide various models where mutual, rather than unilateral, data sharing can increase industry
profits.

3In Fudenberg and Tirole (1984), a fat-cat strategy refers to overinvestment by an incumbent
that accommodates entry by committing to play less aggressively post-entry. Subsequently, the
term has come to be used more generally in two-stage games to refer to any strategic commitment
a firm makes in the first stage that softens competition in the second stage when the second-stage
competition is in strategic complements.
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firm 1 can benefit if it can induce firm 2 to increase its uniform price.

Suppose now firm 1 shares data on some consumers in firm 2’s customer base

except those who are very close to firm 2’s location. Then firm 2 makes pricing

decisions separately for consumers it has data on and the rest: for the former whom

we call targeted consumers, firm 2 chooses personalized prices and, for the latter,

it chooses a uniform price. In the baseline model, we assume firm 2 can engage

in search discrimination, which prevents its targeted consumers from choosing its

uniform price.4 Then firm 1 can choose data sharing in such a way that leads firm

2 to set its uniform price to serve only consumers who are very close to firm 2’s

location.5 Consequently, firm 2 will raise its uniform price above the level it would

choose in the absence of data sharing. This benefits firm 1 by allowing it to increase

its personalized prices. But firm 1 does not concede any additional consumers to

firm 2 because it shares data only for some consumers in firm 2’s customer base.6

Put together, firm 1 can benefit from data sharing through higher personalized prices

at no cost of reduced market share. A clear implication from our analysis can be

summarized as this: share data on consumers who are more loyal to the competitor

than to yourself; but keep the data on the competitor’s most loyal consumers to

yourself.

The welfare effects of data sharing depend on market conditions and the nature

of competition that follows data sharing. We can decompose the welfare effects into

two parts. The first one is how data sharing enables firms to better extract consumer

surplus, which we call the surplus-extraction effect. Clearly, the surplus-extraction

effect impacts consumer surplus negatively. The second one is how data sharing affects

the matching between consumers and firms, called the quality-of-matching effect.

Data sharing may have a positive or negative quality-of-matching effect depending

on how market shares change after data sharing. Given our assumption of full market

coverage, the surplus extraction effect is relevant only to consumer surplus, while the

4In Section 4.1, we consider the case where firm 2 cannot engage in search discrimination. Firm
1 can still benefit from data sharing although the mechanism is now different. Firm 2’s inability to
search discriminate puts a cap on its personalized prices it can charge to targeted consumers. This
leads firm 2 to increase its (off-the-path) uniform price, which benefits firm 1.

5Of course, the segment of firm 2’s customer base with shared data needs to be chosen suitably
so that firm 2 does not have incentives to set its uniform price to serve some consumers outside its
customer base. In Section 3.2, we spell out the precise condition for this.

6This is an illustrative example of how firm 1 can benefit from sharing data with firm 2 without
losing its market share. Firm 1’s optimal data sharing may involve conceding some market share to
firm 2 if the benefit of doing so more than offsets the reduced market share.
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quality-of-matching effect is relevant to both consumer surplus and total surplus.

If firm 1 increases its market share further as a result of data sharing, then both

consumer surplus and total surplus decrease. In this case, not only does the surplus-

extraction effect hurt consumers, but also the quality-of-matching effect is negative.

However, if data sharing results in firm 1 giving away some of its market share to

firm 2, then total surplus increases thanks to the positive quality-of-matching effect.

We study several variations of the baseline model and examine how our main

insight extends to other economic environments. In Section 4.1, firm 2 is assumed to

be unable to use search discrimination, i.e., it cannot prevent its targeted consumers

from choosing its uniform price. We show that firm 1 continues to benefit from data

sharing, but even more than when search discrimination is possible. In Section 4.2,

we analyze the case where firm 2’s data anaytics limits use of the shared data to

third-degree price discrimination rather than personalized pricing. We show that our

main insight continues to hold, but the dampened surplus-extraction effect in this

case implies that consumers are better off than when the shared data is used for

personalized pricing. In Section 4.3, we discuss the extent to which customer data

can be used to deter firm 2’s entry to the market. As data sharing always occurs once

entry has been accommodated, firm 2’s entry becomes more likely when data sharing

is possible. Thus the possibility of data sharing mitigates the extent to which data

plays a role as an entry barrier. In Section 4.4, we consider the case where firm 1

can be considered a dual-mode platform that charges a fixed sales fee to firm 2. We

show that the only effect the sales fee has is to soften competition and raise all prices

by the amount of the sales fee, and our results on the optimal data sharing remain

robust. Several additional extensions of the baseline model are also discussed in the

remainder of Section 4.

Contributions to the literature

Two strands of literature are directly relevant to our work. The first one relates

to information sharing among firms and the second one is on competition based on

personalized pricing.

Information sharing among firms exists in many industries such as airline, bank-

ing and finance, tourism and hospitality, etc. See, for example, Feasey and de Streel

(2020) for a comprehensive discussion on information sharing in practice and the

related regulatory issues. The earlier academic literature has been focused on shar-
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ing information on cost or demand conditions that can facilitate output or pricing

decisions (e.g., Gal-Or, 1985; Armantier and Richard, 2003). More recent studies

identify various conditions under which mutual information sharing, or information

exchange between firms, can increase industry profits. These conditions pertain to

firms’ asymmetric and imperfect abilities to target customers (Chen et al. 2001),

consumer switching costs (Shy and Stenbacka, 2013), or two-dimensional customer

information (Jentzsch et al., 2013).7 In contrast to these studies, our focus is on

unilateral sharing of customer information that can be used for price discrimination.

Chen et al. (2001) and Liu and Serfes (2006) provide models where unilateral

information sharing subject to side payments can increase industry profits. For ex-

ample, the main mechanism in Liu and Serfes (2006) is that the firm with a small

loyal customer base but a large amount of customer data can share its data with a

competitor, thereby allowing the competitor to better extract surplus from the cus-

tomers whose data is shared. Although this reduces the sharing firm’s profit, the

reduced profit can be compensated by the side payment. Consequently, unilateral

information sharing does not arise in the absence of side payment. Somewhat related

studies consider the case where a monopoly data broker sells data to competing firms

to maximize its profit (Montes et al., 2019; Bounie et al., 2021). A general insight is

that data is sold to only one firm in a way to soften competition, hence data sharing

can never take place. In contrast, we show that unilateral information sharing is

individually rational even in the absence of side payments. In addition, these studies

typically assume consumer preferences are uniformly distributed whereas we consider

general distributions.

There is a large and growing body of literature on personalized pricing. Consumer

data is shown to intensify competition when it is used for personalized pricing in a

static model of horizontal differentiation (Thisse and Vives, 1988) or vertical differ-

entiation (Choudhary et al., 2005).8 This insight is extended to a dynamic model of

behavior-based pricing by Choe et al. (2018) and product personalization by Zhang

(2011). Chen and Iyer (2002) studies the firm’s decision to invest in customer ad-

7Choe et al. (2022) considers a standard model of behavior-based price discrimination, but
adds a stage when firms can agree to share customer information before price competition begins.
They show that information sharing obtains in equilibrium because it softens competition when
information is gathered, although it intensifies competition when shared information is used in
subsequent competition.

8These results are based on the case where the market is fully covered. When it is not, Rhodes
and Zhou (2022) shows the results are reversed.
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dressability which enables personalized pricing. Shaffer and Zhang (2002) allows firm

heterogeneity and Chen et al. (2020) considers consumers’ identity management that

can bypass firms’ attempt to price discriminate. Fudenberg and Villas-Boas (2012)

provides a comprehensive survey of the earlier literature, and Ezrachi and Stucke

(2016) provide various examples of personalized pricing in practice. Our work con-

tributes to this literature by analyzing the implications of unilateral data sharing

when it is used for personalized pricing, which is not formally studied in the existing

literature.

The rest of the paper is organized as follows. The baseline model is described in

Section 2 and analyzed in Section 3. Section 4 studies several extensions and varia-

tions of the baseline model explained previously. In Section 5, we provide evidence

on B2B data data sharing in practice and the implications for management that our

analysis sheds light on. Section 6 concludes the paper with discussions on the direc-

tions for future research. Appendix contains deferred proofs while the online appendix

includes proofs of the results in Section 4 as well as some additional discussions.

2 The model

We adopt a standard location model with a general distribution for consumer

preferences. There is a continuum of consumers on [0, 1]. A consumer’s preference

is indexed by her location x ∈ [0, 1] where x has a smooth, cumulative distribution

function F and a strictly positive density f . We assume F satisfies the monotone

hazard rate condition, i.e., h(x) := f(x)/(1 − F (x)) is strictly increasing in x. We

call the consumer located at x simply consumer x. There are two firms. Firm 1 is

located at 0 and has full information about consumers’ preferences. Firm 2 is located

at 1 and initially has no information about consumers’ preferences.

A consumer derives a gross value v from a product from either firm and incurs

a transportation cost di, the distance between her location and firm i’s location.

So if a consumer buys a product from firm i at price pi, then she obtains utility

v − pi − di. We assume v ≥ 2 so that the market is fully covered.9 Firm 1 can

costlessly share data with firm 2. When a consumer’s data is shared, firm 2 knows

the exact location of that consumer, called a targeted consumer, based on which to

exercise price discrimination.

9In Section 4.7, we discuss the case where the market is not fully covered.
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We allow firm 1 to choose any market segment for data sharing. For example,

it may choose to share data on consumers in several disjoint segments. However, as

we show later in Lemma 1, firm 1 weakly prefers sharing data on an interval to any

other forms of data sharing. This leads us to a simple form of data sharing: firm 1

chooses an interval [a, b] ⊆ [0, 1] for data sharing. For clarity of exposition, we do not

consider any monetary payment between the two firms in the baseline model.10 With

its full information, firm 1 sets personalized price p1(x) for each consumer x ∈ [0, 1].

Without data sharing, firm 2 can choose only a uniform price, denoted by p2. Given

data sharing on [a, b], firm 2 chooses personalized price p2(x) for x ∈ [a, b] and uniform

price p2 for the rest of the consumers. To simplify notation, we normalize the cost of

production to zero.11

The timing of the game is as follows. First, firm 1 chooses [a, b]. Second, firm

2 decides whether or not to accept the shared data. If the shared data is rejected,

then we have the status quo. If firm 2 accepts the shared data, then the subsequent

pricing game proceeds as follows. Firm 2 moves first by choosing its uniform price

where relevant. Following this, the two firms simultaneously make private offers of

personalized prices to consumers they have data on. The sequential timing in price

offers is standard in the literature on personalized pricing (Thisse and Vives, 1988;

Shaffer and Zhang, 2002; Choe et al., 2018). This not only reflects the flexibility

in choosing personalized prices, but also allows us to solve for the subgame perfect

Nash equilibrium in pure strategies.12 We assume that firm 2 can prevent consumers

who are given its private offers from choosing its uniform price. This can be done, for

example, by redirecting the product search by a consumer, a practice called steering or

search discrimination. Relaxing this assumption does not change our general insight

and further benefits firm 1, as we show in Section 4.1.

Remark 1. Our assumption that firm 1 has full information and firm 2 has no

information is made for simplicity. As will become clear, our main insight continues

to hold if firm 1 has information on [0,m] with m ∈ (zN , 1) where zN is the location of

10In Section 4.4, we extend our model to the case where firm 1 can charge a fixed sales fee to firm
2, a practice often adopted by dual-mode platforms. In Section 4.5, we discuss the case where firm
1 can sell data to firm 2. We show that our main insight remains robust to these extensions.

11We can modify the model to allow for cost differences between the two firms. For example,
firm i has a constant marginal cost ci with c1 ̸= c2. This will not change our main insight insofar as
both firms are active in equilibrium with or without data sharing.

12Following Chen et al. (2020, Section 5.5), we can show that all equilibria in our model are in
mixed strategies when firms simultaneously choose uniform and personalized prices.
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marginal consumer in the benchmark without data sharing. Then, firm 1 can choose

to share data on a subset of [zN ,m], which can benefit both firms. Likewise, mutually

beneficial data sharing exists even when firm 2 has information on some consumers

close to its location, say, [n, 1] where n > zN . In this case, firm 2’s pricing decisions

on [n, 1] are delinked from its pricing decisions on [0, n]. Thus, firm 1 can choose

mutually beneficial data sharing on a subset of [zN , n′] for some n′ < n.

Remark 2. In our baseline model, the shared data is used for personalized pricing.

In Section 4.2, we analyze the case where the shared data is used for third-degree

price discrimination. Although we do not consider the general information design

problem where firm 1 can choose the informativeness of shared data by choosing

a disclosure strategy, which is a mapping from the Hotelling line to a distribution

over message space,13 we conjecture that our main insight may hold for general data

sharing strategies. It is because our results hold for the two polar cases, the most

informative data sharing analyzed in Section 3 and the least informative data sharing

analyzed in Section 4.2. Analysis of the two polar cases can be useful in studying

more general cases.

3 Analysis

3.1 Benchmarks

We start with two benchmark cases. First, without data sharing, the marginal

consumer z satisfies p1(z) + z = p2 + (1 − z). Since firm 1 can lower p1(z) down

to zero, we have z = (1 + p2)/2. Firm 2 chooses p2 = 2z − 1 to maximize profit

π2 = p2(1−F (z)). From the first-order condition,14 we obtain the following equations

for firm 2’s optimal price denoted by pN2 and the marginal consumer’s location denoted

by zN :

pN2 :=
2

h(zN)
, zN :=

1

2
+

1

h(zN)
. (1)

Since firm 2 can serve the segment [zN , 1] even without data sharing, we call it firm 2’s

customer base. Given pN2 , firm 1 chooses personalized price that leaves all consumers

on [0, zN ] indifferent between choosing either firm, i.e., pN1 (x) = max{pN2 + (1 −

13See, for example, Bergemann and Morris (2019).
14The second-order condition is satisfied due to the monotone hazard rate condition.
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2x), 0}.15 In the benchmark without data sharing, firms earn profits given by

πN
1 :=

∫ zN

0

(pN2 + (1− 2x))dF (x), πN
2 := pN2 (1− F (zN)). (2)

Second, if firm 1 shares data on all consumers, then we have the outcome in

Thisse and Vives (1988): firm 1 serves [0, 1/2] with p1(x) = 1 − 2x and firm 2

serves the rest with p2(x) = 2x − 1. Clearly, firm 1 is worse off compared to the

case without data sharing. Not only firm 1’s market share shrinks from [0, zN ] to

[0, 1/2] but also personalized prices firm 1 charges to consumers it serves decrease

from pN1 (x) = pN2 + (1− 2x) to p1(x) = 1− 2x. Firm 2 is better off compared to the

benchmark without data sharing. It is because firm 2 now serves additional consumers

on [1/2, zN ] while serving all consumers on [zN , 1] at personalized prices higher than

its uniform price in the absence of data sharing, i.e., p2(x) = 2x− 1 ≥ pN2 = 2zN − 1

for all x ∈ [zN , 1].

3.2 Mutually beneficial data sharing

We now turn to the full game and analyze when data sharing can benefit both

firms, hence is accepted by firm 2. Let us start with the following observations. First,

given data sharing on [a, b], firm 2’s problem of choosing its uniform price can be

delinked from its choice of personalized prices, due to our assumption that firm 2 can

exercise search discrimination. This intensifies competition on [a, b]. Consequently,

firm 1’s profit from the segment [a, b] cannot be higher after data sharing. Second,

firm 1 will set its personalized price that will leave each consumer it serves indifferent

between choosing either firm. That is, given firm 2’s uniform price p2, firm 1 will

set p1(x) = max{p2 + (1 − 2x), 0}. Thus, higher p2 benefits firm 1 by allowing it to

raise its personalized prices. Put together, these observations imply that firm 1 can

benefit from data sharing only if it softens competition for consumers whose data

is not shared and induces firm 2 to raise its uniform price above pN2 . From these

observations, we can show that it is sufficient to focus on the case in which firm 1

shares data on an interval.

Lemma 1 Firm 1 weakly prefers sharing data on an interval to any other forms of

data sharing.

15In case of indifference, we assume consumers choose firm 1.

9



Proof: See the appendix.

Given that [zN , 1] is firm 2’s customer base, it is easy to see that, for data sharing

on [a, b] to benefit firm 1, we must have a > 1/2 and b > zN . The reasoning is as

follows. First, sharing data on [a, b] with b ≤ zN intensifies competition on this seg-

ment without the benefit of raising firm 2’s uniform price above pN2 . Second, sharing

data on [a, b] with a ≤ 1/2 is dominated by sharing data on only [1/2, b] because the

former intensifies competition on [a, 1/2] without increasing firm 2’s uniform price.

Henceforth, we restrict analysis to the following set of (a, b).

S := {(a, b) | 1/2 < a < b, zN < b} (3)

Following data sharing, firm 2’s choice of uniform price depends on which segment

of consumers it intends to serve with uniform price. There are two possibilities. First,

if firm 2 serves only [b, 1], then it chooses p21 = 2b− 1 and earns profit

π21(b) = (2b− 1)(1− F (b)). (4)

Second, if it serves [z′, a] ∪ [b, 1] for some z′ ≤ a, then it chooses p22 = 2z′ − 1 and

earns profit (2z′ − 1)(1− F (b) + F (a)− F (z′)). Maximizing this leads to

p22 =
2 (1− F (b) + F (a)− F (z′))

f(z′)
, z′ =

1

2
+

1− F (b) + F (a)− F (z′)

f(z′)
>

1

2
. (5)

Denote the resulting profit by π22(a, b). The next lemma shows that, for firm 1 to

benefit from sharing data on [a, b], firm 2’s uniform price must be p21 = 2b− 1.

Lemma 2 For data sharing on [a, b] to be profitable for firm 1, it should necessarily

induce firm 2 to choose its uniform price to serve consumers on [b, 1] only.

Proof: See the appendix.

We provide below the intuition for Lemma 2. Given a > 1/2, data sharing on [a, b]

implies that firm 2 will serve the entire segment [a, b]. Therefore, the only way firm 1

can benefit from data sharing is to induce firm 2 to raise its uniform price above pN2 .

This is possible when firm 2 chooses its uniform price to serve consumers on [b, 1] only.

However, if firm 2 chooses its uniform price to serve additional consumers on [z′, a],
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then firm 2’s uniform price is lower than pN2 . It is because F satisfies the monotone

hazard rate condition, which implies z′ < zN as shown in the proof of Lemma 2. In

this case, not only does firm 1 concede its market share to firm 2, but its personalized

prices also decrease due to a lower uniform price chosen by firm 2. To summarize,

Lemma 2 implies firm 2’s incentive compatibility constraint that any data sharing by

firm 1 needs to satisfy:

(IC) π21(b) ≥ π22(a, b). (6)

In addition, data sharing needs to make firm 2 weakly better off than in the

benchmark without data sharing; or else, firm 2 will ignore the shared data. When

firm 2 serves consumers on [a, b] with personalized prices p2(x) = 2x−1 and those on

[b, 1] with uniform price p21 = 2b− 1, its profit is π2(a, b) =
∫ b

a
(2x− 1)dF (x)+π21(b).

Thus we have the following individual rationality constraint for firm 2:

(IR) π2(a, b) =

∫ b

a

(2x− 1)dF (x) + π21(b) ≥ πN
2 . (7)

When data sharing on [a, b] satisfies (IC) and (IR), firm 1 serves all consumers on

[0, a] with personalized prices p1(x) = p21 + (1 − 2x) = 2(b − x), while firm 2 serves

the rest of the market. Thus, firm 1’s profit is given by

π1(a, b) =

∫ a

0

(p21 + (1− 2x))dF (x) = 2bF (a)− 2

∫ a

0

xdF (x). (8)

Differentiating π1(a, b) in (8), we find ∂π1(a, b)/∂a > 0 and ∂π1(a, b)/∂b > 0 for

all b > a > 1/2. Thus, firm 1’s profit increases in a because it shares less data, and

it increases in b because higher b leads to a higher uniform price by firm 2. Likewise,

differentiating π2(a, b) in (7), we find ∂π2(a, b)/∂a < 0 and ∂π2(a, b)/∂b > 0 for all

b > a > 1/2. Thus, firm 2’s profit decreases in a because of less data sharing, and it

increases in b because of more data sharing. Moreover, in the proof of Proposition 1

below, we show π1(a, b) > πN
1 and π2(a, b) > πN

2 for all b > a = zN . This implies that,

insofar as firm 2’s (IC) is satisfied, there exists data sharing [zN , b′] with b′ ∈ (zN , 1),

under which both firms have higher profits than in the benchmark without data

sharing.

Proposition 1 For any distribution F that satisfies the monotone hazard rate con-

dition, we have π1(a, b) > πN
1 and π2(a, b) > πN

2 for all b > a = zN . In addition, there
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exists b′ ∈ (zN , 1) such that firm 2’s (IC) is satisfied under data sharing on [zN , b′],

hence sharing data on [zN , b′] makes both firms better off compared to the benchmark

without data sharing.

Proof: See the appendix.

The intuition for the above proposition is as follows. Firm 1 can benefit from

sharing data on consumers who are in firm 2’s customer base, whom firm 1 cannot

serve even without data sharing. That is, sharing data on [zN , b′] does not cost firm 1

any market share. But firm 1 should keep data on consumers who have high loyalty

to firm 2. By keeping data on [b′, 1] to itself, firm 1 can induce firm 2 to raise its

uniform price to p21 = 2b′ − 1 > pN2 .

Sharing data in this way softens competition as firm 2 will try to extract surplus

from the consumers with high loyalty by charging a high uniform price. This allows

firm 1 to raise its own personalized prices for consumers whom firm 1 continues to

serve after data sharing. Thus firm 1 benefits from data sharing through higher

personalized prices but at no cost of reduced market share. Firm 2 also benefits from

such data sharing because it serves the same set of consumers but at higher prices

for all of them than without data sharing.

3.3 Optimal data sharing

In the previous section, we showed that mutually beneficial data sharing exists for

any distribution F . We now turn to the discussion of the optimal data sharing that

firm 1 will choose. Firm 1’s problem can be stated as follows:

max
(a,b)∈S

π1(a, b) subject to (IC) and (IR). (9)

We already know that the following conditions must be met for the optimal data

sharing. First, data sharing has to be on an interval [a, b]. Second, we must have

1/2 < a and zN < b < 1. Third, data sharing should induce firm 2 to choose a

uniform price 2b− 1, which is accepted by consumers on [b, 1] only. These necessary

conditions characterize the optimal data sharing in reasonable details, and they do

not depend on the underlying distribution F . But one remaining issue is whether

a < zN or a ≥ zN under the optimal data sharing, which depends on F as we discuss

below.
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When a ≥ zN , data sharing does not entail any cost of reduced market share for

firm 1. When a < zN , firm 1 sacrifices some market share if doing so increases firm 2’s

uniform price, which more than compensates for the reduced market share. Clearly,

whether a is above or below zN depends on the shape of distribution F . Recall that

firm 2 chooses between a high uniform price p21 to serve [b, 1] and a low uniform price

p22 to serve [z′, a] ∪ [b, 1]. Firm 2’s (IC) requires that the former is more profitable

for firm 2 than the latter. Given that b > zN > 1/2, this is likely to be the case when

F is left-skewed with a concentrated density around [zN , 1]. Moreover, firm 1’s profit

strictly increases in b when firm 2 chooses the high uniform price p21. Therefore, when

F is left-skewed, firm 1 can maintain large b, hence induce the high uniform price p21,

without losing market share by setting a < zN .

Firm 1 may concede additional consumers to firm 2 by setting a < zN if F is

not highly left-skewed. Many distributions are not highly left-skewed, including all

distributions symmetric around 1/2 and hence neither left- nor right-skewed. Firm

1 then optimally reduces a below zN (i.e., losing the marginal consumer) in order to

maintain a large b (i.e., a high profit margin on all inframarginal consumers) without

violating firm 2’s (IC). To show this argument more formally, we first fully characterize

the optimal data sharing under the uniform distribution, showing that the optimal

a is indeed set strictly below zN . We then numerically solve for the optimal data

sharing for a family of distribution functions to further support our main insight.

Suppose F is a uniform distribution, hence symmetric around 1/2. Then, F (x) =

x, and it is straightforward to calculate the equilibrium outcome in the benchmark

without data sharing: zN = 3/4, pN2 = 1/2, πN
1 = 9/16, and πN

2 = 1/8. Given data

sharing on [a, b], we have π21(b) = (2b − 1)(1 − b), π22(a, b) = (1 + 2a − 2b)2/8, and

π1 = 2ab − a2. Based on the above, we can solve firm 1’s problem in (9), leading to

the following equilibrium outcome for the data sharing game.

Proposition 2 If F is a uniform distribution, then firm 1’s optimal choice is given

by [a∗, b∗] ≈ [0.71, 0.97].

� Firm 1 serves consumers on [0, a∗] with personalized price p∗1(x) = 2b∗− 2x and

earns profit π∗
1 ≈ 0.87 > 9/16 = πN

1 .

� Firm 2 serves consumers on [a∗, b∗] with personalized price p∗2(x) = 2x − 1,

consumers on [b∗, 1] with uniform price p∗2 = 2b∗ − 1, and earns profit π∗
2 ≈

0.21 > 1/8 = πN
2 .
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Proof: See the appendix.

Notice that we have a∗ < zN when F is uniform. This confirms our earlier

observation that the optimal data sharing involves choosing a < zN . That is, firm

1 sacrifices its market share by sharing data on some consumers outside firm 2’s

customer base. But firm 1’s loss from giving away market share [a∗, zN ] is smaller

than the gain from inducing a higher uniform price from firm 2. This is because

a∗ > 1/2 and firm 1 can set higher personalized prices for all consumers on [0, a∗] but

its loss is limited to [a∗, zN ].

We now consider a family of distribution functions, which all satisfy the monotone

hazard rate condition, to demonstrate that a∗ ≥ zN unless F is too highly left-skewed,

and a∗ < zN , otherwise. Specifically, we consider the beta distribution with shape pa-

rameters (α, β), i.e., x ∼ Beta(α, β). The probability density function of Beta(α, β)

can take on various shapes and it nests many continuous distributions as special or

limiting cases, including uniform, exponential, power, and normal distributions. In

Table 1, we present the numerical solution (a∗, b∗) to firm 1’s optimal data sharing

problem for five examples of beta distribution. As shown in Table 1, the optimal data

sharing involves a∗ < zN in all cases except when (α, β) = (5, 1), the latter being the

case with an increasing density function, or a highly left-skewed distribution. This

supports our claim that a∗ ≥ zN is likely when F is highly left-skewed. To examine

this further, we plot a∗ and zN in Figure 1 for the case where β = 1 and α increases

from 1 to 5. The solid line labeled zN and the dotted line labeled a∗ cross once when

α ≈ 2.1. Thus, as α increases, hence F becomes more left-skewed, we have a∗ > zN

for all values of α greater than 2.1.16

— Insert Table 1 and Figure 1 about here. —

3.4 Welfare implications

How does data sharing affect consumer surplus and total surplus? Consider first

total surplus. Given full market coverage, total surplus can be proxied by the average

distance travelled by a consumer, which is minimized when the marginal consumer

16When F is a beta distribution, we can numerically show (i) a∗ < zN for all α = β, i.e., F is
symmetric around 1/2, (ii) a∗ > zN if s < −1 where s is the skewness of F , (iii) a∗ monotonically
increases as α increases holding β fixed, or as β decreases holding α fixed, i.e., F becomes more
left-skewed. The details are available from the authors.
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is at 1/2 because firms are located at 0 and 1.17 It then follows that total surplus

increases if 1/2 < a∗ < zN and decreases if a∗ > zN . In the former case, the reduced

preference mismatch by firms and consumers is a salutary effect of data sharing.

If a∗ < zN , then data sharing has a positive quality-of-matching effect by allowing

consumers on [a∗, zN ] to be matched to firm 2, their preferred choice. If a∗ > zN ,

then data sharing has a negative quality-of-matching effect by leading consumers on

[zN , a∗] to be matched to firm 1, their less preferred choice. The effect of data sharing

on total surplus is shown in the last column in Table 1 for various beta distributions.

Consider next consumer surplus. Observe that all consumers staying with the

same firm after data sharing are worse off because they incur the same transportation

cost, but pay higher price after data sharing. For these consumers, the quality-of-

matching effect stays the same but the surplus-extraction effect works against them.

But consumers who switch firms may or may not be worse off depending on different

equilibria and how the quality-of-matching and surplus-extraction effects are balanced

against each other.

Consider the case where a∗ ≥ zN . Then, consumer x ∈ [zN , a∗] switches to firm

1 after data sharing. Thus, for consumer x ∈ [zN , a∗], the quality-of-matching effect

is given by (1 − x) − x = 1 − 2x < 0, while the surplus-extraction effect is given by

p∗1(x)−pN2 , which may or may not be negative. But the overall effect is negative since

her total cost is p∗1(x)+x = 2b∗−x after data sharing and pN2 +(1−x) = 2zN−x before

data sharing. The former is larger because b∗ > zN , hence all switching consumers

are worse off after data sharing. Put together, data sharing reduces consumer surplus

if a∗ ≥ zN .

If a∗ < zN , then consumer x ∈ [a∗, zN ] switches to firm 2 after data sharing,

so incurs a total cost p∗2(x) + (1 − x) = x. Before data sharing, her total cost is

pN1 (x) + x = 2zN − x. The latter is larger because x ≤ zN , hence all switching

consumers are better off after data sharing. The effect on consumer surplus then

depends on comparing the losses for consumers who stay with the same firm and the

gains for those who switch firms. We show in the proof of Proposition 3 that the

losses outweigh the gains so that data sharing also reduces consumer surplus when

a∗ < zN . For example, when F is a uniform distribution, we have a∗ < zN as shown

in Proposition 2, which implies that the optimal data sharing decreases consumer

17Let z be the location of the marginal consumer. Then the average distance travelled by a

consumer is
∫ z

0
xdF (x) +

∫ 1

z
(1− x)dF (x), which is minimized when z = 1/2.
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surplus but increases total surplus. We summarize the above discussions below.

Proposition 3 Suppose firm 1’s optimal data sharing is given by [a∗, b∗]. Then,

for any distribution F that satisfies the monotone hazard rate condition, consumer

surplus decreases unambiguously, and total surplus decreases if and only if a∗ ≥ zN .

Proof: See the appendix.

Our analysis offers clear implications for competition policy in regards to data

sharing between competitors. While data sharing unambiguously hurts consumers,18

it has a salutary effect of increasing total surplus if a dominant, data-rich firm concedes

some of its market share to its competitor as a result of sharing data. The increase

in total surplus in this case is due to reduced preference mismatch: holding prices

equal, firm 2 is a preferred choice for consumers who switch from firm 1 to firm 2

after data sharing. However, if data sharing enables the dominant, data-rich firm to

further increase its market share, i.e., a∗ ≥ zN , then both consumer surplus and total

surplus are adversely affected.19

4 Extensions

4.1 No search discrimination

In this section, we discuss the case where firm 2 cannot engage in search discrim-

ination. That is, firm 2 cannot prevent a consumer who is offered its personalized

price from choosing its uniform price. Given data sharing on [a, b], consumer x ∈ [a, b]

then chooses the lower of the two prices offered by firm 2, i.e., min{p2(x), p2}. Thus,
firm 2’s uniform price acts as a cap on its personalized prices.

Suppose firm 1 chooses to share data on [a, b]. It is easy to see that, when firm 2

cannot search discriminate, it does not have incentives to choose a low uniform price

to serve consumers on [z′, a]. If it does, then all consumers on [a, b] will choose the

18Using the competition-in-utility-space approach, de Cornière and Taylor (2020) obtains a similar
result that giving firms more data can be anti-competitive as it makes surplus extraction more
efficient.

19Somewhat related, Armstrong and Zhou (2022) shows that more data can reduce preference
mismatch but soften competition by amplifying perceived product differentiation. In our model,
the effect of data sharing on match quality is driven entirely by price competition because product
differentiation is exogenously given.
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lower of the uniform price and personalized prices. As a result, firm 2’s profit is at

most (2z′ − 1)(1 − F (z′)). But this is smaller than πN
2 = (2zN − 1)(1 − F (zN)) by

the definition of zN , which firm 2 can guarantee by ignoring the shared data. This

implies that, when firm 2 cannot search discriminate, its optimal pricing decision

automatically satisfies (IC). Consequently, if firm 2 accepts the shared data on [a, b],

then it will choose a uniform price p2 = 2b−1 for consumers on [b, 1] and personalized

prices p2(x) = 2x − 1 for consumers on [a, b]. In sum, although firm 2’s inability

to search discriminate gives consumers on [a, b] an extra option of purchasing at

uniform price, firm 2 instead charges a high uniform price, rendering the extra option

unattractive. This leads to firm 2’s profit given by

π2(a, b) =

∫ b

a

(2x− 1)dF (x) + (2b− 1)(1− F (b)).

Because firm 1 benefits when p2 = 2b−1 increases, the solution to firm 1’s problem

is then (â, b̂) such that b̂ is as large as possible and π2(â, b̂) = πN
2 . This gives us b̂ = 1,

and â such that π2(â, 1) = πN
2 . On the equilibrium path, firm 2 uses only personalized

prices. But the equilibrium is supported by its off-the-path uniform price p2 ≥ 1; if

p2 < 1, then consumers on [(p2 + 1)/2, 1] will deviate and choose firm 2’s uniform

price. Because p2 ≥ p∗2 = 2b∗ − 1, firm 1’s personalized prices increase for all its

consumers. Moreover, we can show â > a∗ from π2(â, 1) = πN
2 . Thus, firm 1 is

strictly better off in the absence of search discrimination.

Compared to the case without data sharing, it is straightforward to check that

all consumers are worse off. The total surplus is also lower simply because â > zN ,

implying that there is more preference mismatch. Compared to the case with data

sharing and search discrimination, consumer surplus is lower because prices rise for

all consumers and total surplus is also lower because â > a∗. To summarize, banning

search discrimination can enable the dominant, data-rich firm to fine-tune its data

sharing strategy, which is then used by its competitor to further soften competition

than when search discrimination is allowed. This reduces both consumer surplus and

total surplus.

Proposition 4 Suppose firm 2 cannot engage in search discrimination.

� Firm 1’s optimal data sharing is given by [â, 1] where â solves
∫ 1

â
(2x−1)dF (x) =

πN
2 , and â > max{zN , a∗}.
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� Firm 1 serves consumers on [0, â] with personalized prices p̂1(x) = p̂2+(1−2x) ≥
2− 2x and earns strictly higher profit than the case with search discrimination,

where p̂2 ≥ 1 is firm 2’s uniform price.

� Firm 2 serves consumers on [â, 1] with personalized prices p̂2(x) = 2x− 1, and

earns the same profit as in the benchmark without data sharing.

� Both consumer surplus and total surplus are lower compared to the case without

data sharing, as well as the case with data sharing and search discrimination.

Proof: See the appendix.

4.2 Data sharing for third-degree price discrimination

Even when firm 1 shares data, firm 2 may not have capabilities such as data

analytics that may be necessary to process the shared data for personalized pricing.

This reduces the value of data for firm 2 and may allow it to exercise only third-

degree price discrimination, choosing one uniform price for the segment with shared

data and another uniform price for the rest of the market. But firm 1 continues to

use personalized pricing for all consumers. We analyze this case in this section.

As discussed in the previous section, firm 1 can benefit from data sharing only

when it induces firm 2 to increase uniform price above pN2 . Given data sharing on

[a, b] with a ≥ 1/2, denote firm 2’s uniform price for the segment [a, b] by q2l, and

that for the rest of the market by q2h. On [a, b], the marginal consumer’s location,

denoted by zl, satisfies p1(zl)+zl = q2l+1−zl with p1(zl) = 0, implying q2l = 2zl−1.

Suppose b < zN . Then we have q2l = 2zl − 1 < 2zN − 1 = pN2 . In addition, firm 2

chooses q2h = pN2 and serves [zN , 1] by the definition of pN2 . Thus, when b < zN , firm

1 cannot induce firm 2 to increase its price above pN2 . In what follows, we focus on

the case with b ≥ zN .

Consider the segment [a, b]. Firm 2 chooses q2l to maximize profit from this

segment given by π2l = q2l (F (b)− F (zl)). From the first-order condition for an

interior solution, we obtain

q2l =
2 (F (b)− F (zl))

f(zl)
where zl =

1

2
+

F (b)− F (zl)

f(zl)
∈ (a, b).

Otherwise, we have a boundary solution, q2l = 2a − 1 and zl = a, hence π2l =
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q2l (F (b)− F (zl)). Clearly, it is not optimal for firm 2 to charge q2l < 2a−1, in which

case it serves the same set of consumers but at a lower price. Likewise, firm 2 never

charges price q2l ≥ 2b− 1 because it leads to π2l = 0.

For the rest of the market, firm 2 chooses q2h. As before, firm 2’s choice of q2h

depends on whether it serves only [b, 1], hence q2h = 2b− 1 with corresponding profit

π21(b), or it serves additional consumers on [z′, a] for some z′ < a with corresponding

profit π22(a, b). The following lemma shows that firm 1’s optimal data sharing should

necessarily satisfy firm 2’s (IC): π21(a) ≥ π22(a, b). In addition, it is not optimal

for firm 1 to share data on [a, b] and then serve some consumers on that segment.

It is because firm 1’s personalized prices on [a, b] depend on firm 2’s low uniform

price q2l; firm 1 is better off by not sharing data on these consumers so that it can

charge personalized prices that depend on firm 2’s high uniform price q2h. Lemma 3

summarizes these observations.

Lemma 3 Firm 1’s optimal data sharing on [a, b] should necessarily satisfy firm 2’s

(IC) π21(b) ≥ π22(a, b), and induce firm 2 to serve the entire segment [a, b] with

uniform price q2l = 2a− 1.

Proof: See the online appendix.

By Lemma 3, we can write firm 2’s profit under the optimal data sharing as

π2(a, b) = (2a − 1) (F (b)− F (a)) + π21(b). Thus we have the following individual

rationality constraint for firm 2:

(IR) π2(a, b) = (2a− 1) (F (b)− F (a)) + (2b− 1) (1− F (b)) ≥ πN
2 . (10)

Then, firm 1’s profit under the optimal data sharing is

π1(a, b) =

∫ a

0

(2b− 2x)dF (x).

Firm 1’s problem can be stated as follows:

max
(a,b)

π1(a, b) subject to b ≥ zN , π21(b) ≥ π22(a, b), and (10). (11)

Denote the solution to (11) by (a∗∗, b∗∗), and the solution to firm 1’s problem

under personalized pricing stated in (9) by (a∗, b∗). Clearly, firm 1’s profit function
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is the same in both (9) and (11). Firm 2’s (IC) is also the same. The only difference

is that firm 2’s (IR) is harder to satisfy in (11) than in (9). It is because third-degree

price discrimination is a less effective tool than personalized pricing for firm 2 to

extract surplus from targeted consumers: firm 2’s profit from [a, b] is smaller when it

chooses q2l = 2a−1 to serve the entire segment than when it can choose personalized

price p2(x) = 2x− 1 for each targeted consumer. Therefore, an immediate conclusion

is that, if (a∗, b∗) satisfies (10), then we must have (a∗∗, b∗∗) = (a∗, b∗). In this case,

neither firm 1’s profit nor total surplus changes from those in Section 3.3, but firm

2’s profit is smaller, which implies that consumer surplus is larger.

Proposition 5 Suppose firm 2 uses the shared data for third-degree price discrimina-

tion and (10) holds under the optimal data sharing under personalized pricing. Then,

compared to the case where firm 2 can use the shared data for personalized pricing,

� firm 1’s optimal data sharing does not change,

� firm 1’s profit under the optimal data sharing does not change but firm 2’s profit

decreases;

� total surplus does not change but consumer surplus increases.

We can show that condition (10) is satisfied at (a∗, b∗) for many distributions sat-

isfying the monotone hazard rate condition. For example, (10) holds for the uniform

distribution, power distribution, triangular distribution when the peak point of f(x)

is to the right of x = 0.56, beta distribution with increasing f(x), U-shaped f(x),

and unimodal f(x) when α − β is positive and relatively large. Thus the following

corollary is immediate.

Corollary Suppose F is a uniform distribution and firm 2 uses the shared data for

third-degree price discrimination. Then, firm 1’s optimal choice of [a, b] is the same

as in Proposition 2, with the only difference that consumer surplus is higher under

third-degree price discrimination.

However, (10) may not hold at (a∗, b∗) when f(x) has a very thin right tail. Even

in this case, we can still show that there exists b ∈ (zN , 1) such that sharing data

on [zN , b] is mutually beneficial, similar to Proposition 1. But we would need to

solve numerically for the optimal data sharing for specific distribution functions, as
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in Section 3.2. In Figure 2, we plot the optimal data sharing under third-degree price

discrimination for various beta distributions with α = 2, which we label (a∗∗, b∗∗).

Given α = 2, condition (10) is satisfied at (a∗, b∗) for all β ≤ 1.9. Thus, we have

(a∗∗, b∗∗) = (a∗, b∗) for α = 2 and β ≤ 1.9. But when β > 1.9, condition (10) fails

at (a∗, b∗) and, as shown in Figure 2, we now have a∗ < a∗∗ < zN < b∗∗ < b∗. Thus,

compared to the case with personalized pricing, firm 1 shares less data.

— Insert Figure 2 about here. —

4.3 Customer data as an entry barrier

Customer data can be a source of a firm’s competitive advantage if it is utilized

for data-enabled learning. Moreover, customer data is often an important input in

digital markets and, therefore, can act as a barrier to entry. A data-rich incumbent

can cement its position by offering better-targeted products thanks to data-enabled

learning, which attracts more customers and more customer data, hence creating a

self-enforcing loop. This has led to active policy discussions related to data mobility

and data openness.20 Our analysis sheds light on this by clarifying to what extent

customer data can work as an entry barrier.

We modify our model as follows. The game is played over two periods, indexed

by t = 1, 2. Firm 1, an incumbent, has data on all consumers in both periods while

firm 2, a potential entrant, has access to customer data depending on how the game

evolves. Firm 1’s location is fixed at point zero in both periods and firm 2’s location

upon entry is fixed at point one.21 In t = 1, firm 2 makes an entry decision, followed

by firm 1’s data sharing decision.22 There is a fixed entry cost E > 0. If firm 2

enters, then the two firms compete as in our baseline model. At the end of t = 1,

firm 2 collects data on customers it serves in addition to the data shared by firm 1,

if any. In t = 2, following firm 2’s entry, the two firms compete using the customer

data they have for price discrimination. We focus on the case where F is a uniform

20See Crémer et al. (“EU Report”, 2019), Furman et al. (“Furman Report”, 2019), or the
ACCESS Act in the US that passed through the House Committee on June 24, 2021.

21This is the same as setup as in Gehrig et al. (2011), whose focus is on firm 2’s entry decision
when firm 1 can price discriminate and there are consumer switching costs. Our focus is on how
data sharing affects firm 2’s entry decision.

22One may consider an alternative timeline in which firm 1 makes and announces its data sharing
decision first, after which firm 2 makes an entry decision. This timeline can lead to time inconsistency
whereby firm 1’s announcement not to share data becomes not credible once firm 2 enters.
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distribution, which facilitates clear discussions. To simplify notation, we assume away

time discount. In what follows, we provide heuristic discussions only with the detailed

analysis shown in the proof of Proposition 6.

To begin with, suppose firm 1 does not have any customer data. Then, upon firm

2’s entry, the two firms compete as in standard behavior-based price discrimination

with personalized pricing (Choe et al. 2018): they compete à la Hotelling in t = 1

and, in t = 2, customer data collected in t = 1 is used for price discrimination. As

shown by Choe et al. (2018), the game has two pure-strategy equilibria, one being a

mirror image of the other, from which we select the one that favors firm 1.23 In that

equilibrium, firm 1’s total profit over two periods is Π1 = 109/169 ≈ 0.645 and firm

2’s total profit is Π2 = 383/676 ≈ 0.572. Thus firm 2 enters if E < 0.572.

Suppose now firm 1 has data on all consumers. Without data sharing, the two

firms compete in t = 1 as in our baseline model, leading to the marginal consumer zN .

In t = 2, firm 2 chooses a uniform price on [0, zN ] and personalized prices on [zN , 1].

Solving the two-period model gives us zN = 7/10, Π1 = 17/20, Π2 = 7/20. Recall

that, in the benchmark one-period model without data sharing, we have zN = 3/4.

Thus, firm 2’s market share in t = 1 is larger in the two-period model. It is because

firm 2 becomes more aggressive in t = 1 when it anticipates subsequent competition

in t = 2: securing a larger market share in t = 1 enables firm 2 to extract more

surplus through personalized pricing in t = 2. Indeed, without data sharing, firm 2’s

uniform price in t = 1 is 1/2 in the one-period model, but it is 2/5 in the two-period

model. Compared to the case where firm 1 does not have any customer data, we can

say that data plays a role as an entry barrier when 0.35 < E < 0.572. But this ignores

firm 1’s incentives to share data once firm 2 enters. The possibility of beneficial data

sharing mitigates the extent to which customer data can be an effective entry barrier.

We discuss this below.

Suppose firm 2 enters and firm 1 chooses to share data on [a, b]. Then, in t = 2,

firm 2 has access to data on [a, b] as well as on customers it serves in t = 1. Solving

the two-period model shows that the optimal data sharing is [a∗, b∗] = [0.710, 0.943]

with each firm’s total profit given by Π1 = 1.201, Π2 = 0.431. Recall that, in the one-

period model where F is a uniform distribution, we have [a∗, b∗] = [0.71, 0.97]. Thus,

firm 1 shares less data in the two-period model, in particular, by withholding data on

consumers who are most loyal to firm 2. It is because dynamic considerations make

23For example, firm 1 may choose its uniform price in t = 1 anticipating firm 2’s entry.
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firm 2 more aggressive in t = 1 as discussed above, which firm 1 counters by sharing

less data. Nonetheless, firm 1’s optimal data sharing is qualitatively the same as in

the one-period model in that the data on firm 2’s most loyal customers is withheld.

Both firms benefit from the optimal data sharing and firm 2 enters if E < 0.431. Note

that, without firm 1’s optimal data sharing, firm 2 enters if E < 0.35. We summarize

these discussions below.

Proposition 6 Suppose firm 2 makes a decision to enter the market at a fixed entry

cost E, after which firm 1 makes a decision to share data with firm 2.

� If firm 1 does not have customer data, then firm 2 enters if E < 0.572.

� If firm 1 is fully informed but data sharing is not possible, then firm 2 enters if

E < 0.35. Thus, data acts as an entry barrier when 0.35 < E < 0.572.

� If firm 1 is fully informed and data sharing is possible, then firm 2 enters if

E < 0.431 and firm 1 shares data on [0.710, 0.943]. Thus, data acts as an entry

barrier when 0.431 < E < 0.572, and data sharing mitigates data’s role as an

entry barrier when 0.35 < E < 0.431.

Proof: See the online appendix.

4.4 When firm 1 charges a fee for sales

Many data-rich firms such as Alibaba or Amazon are digital platforms that operate

in a dual mode: they run marketplaces for third-party sellers while selling their own

products on the marketplaces.24 The platform typically charges a fee for sales to

third-party sellers. We extend our baseline model to consider a simple case where

firm 1 charges a fixed per-unit sales fee to firm 2.25

Suppose firm 1 charges a per-unit fee k ≥ 0. This induces firm 1 to price less

aggressively for consumers loyal to firm 2. In the absence of sales fee, Bertrand

competition for each consumer implies that firm 1 will choose zero personalized price

for consumers more loyal to firm 2. Instead, firm 1 can cede these consumers to firm

24See Hagiu et al. (2022) for a general analysis of dual-mode platforms as well as many examples.
25Many platforms use a two-part fee structure that consists of fixed fee per item sold plus variable

fee that is proportional to the sale amount. Examples include Amazon, eBay, Shopify, etc. Incor-
porating such a fee structure to our model is beyond the scope of current paper, which we leave for
future work.
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2 and earn k per each consumer. Given this, firm 2 will raise its price by shifting the

sales fee entirely onto its customers. It is because consumers have inelastic demand

insofar as firm 1 does not undercut firm 2. Since firm 1 can collect k from firm 2, it

has no incentive to undercut firm 2 when firm 2 shifts entire k onto its customers.

In addition, firm 2’s higher uniform price allows firm 1 to increase its personalized

prices. In short, the sales fee softens competition and raises all prices by k, which is

then collected by firm 1. Other than that, the sales fee does not change equilibrium

market shares, nor firm 1’s optimal data sharing. We formalize this below.

Let us start with the case without data sharing. The marginal consumer z is given

by p1(z) + z = p2 + (1− z). Since firm 1 should be indifferent between earning p1(z)

from serving consumer z, or ceding consumer z to firm 2 and earning a fee k instead,

we must have p1(z) = k. From these two equalities, we obtain p2 = 2z − 1 + k.

Plugging this into firm 2’s profit, we have

π2 = (p2 − k) (1− F (z)) = (2z − 1) (1− F (z)) .

Observe that the above profit is exactly the same as firm 2’s profit in our baseline

model without data sharing. Thus, zN remains the same, hence so does each firm’s

market share and firm 2’s profit. The only change for firm 2 is that its uniform price

increases by k to 2zN − 1 + k. But firm 1 is better off because it can charge higher

personalized prices to all customers it serves and also earns a sales fee k(1− F (zN)).

Specifically, firm 1’s personalized price is p1(x) = p2+(1− 2x) = 2zN − 2x+k, hence

increases by k compared to the case without the sales fee. Thus, firm 1’s profit is

π1 =

∫ zN

0

(2zN − 1 + k)dF (x) + k(1− F (zN)) =

∫ zN

0

(2zN − 2x)dF (x) + k. (12)

In the right hand side of the second equality in (12), the first term is firm 1’s profit in

the baseline model without data sharing. Thus, the sales fee has the effect of charging

a price premium k to every consumer, which becomes additional profit for firm 1.

Suppose now firm 1 shares data on [a, b]. It is easy to see that beneficial data

sharing should continue to have a > 1/2 and b > zN . For consumer x ∈ [a, b],

firm 1’s indifference condition is p1(x) = k and consumer x’s indifference condition is

p1(x) = p2(x) + (1 − 2x). From these two, we obtain p2(x) = 2x − 1 + k, and firm
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2 serves all consumers on [a, b].26 For consumers outside [a, b], firm 2’s uniform price

can be chosen to serve only [b, 1] or additional consumers to the left of a. As in our

baseline model, firm 1’s optimal data sharing hinges on which uniform price firm 2

should be induced to choose.

First, if firm 2 chooses uniform price to serve only [b, 1], then its uniform price is

p21 = 2b− 1 + k. In this case, firm 1’s profit, denoted by π11, is

π11 =

∫ a

0

(2b− 2x+ k)dF (x) + k(1− F (a)) =

∫ a

0

(2b− 2x)dF (x) + k,

where the first term on the right hand side of the second equality is exactly the

same as firm 1’s profit given in (8). Second, if firm 2 chooses uniform price to serve

[z′, a]∪ [b, 1] for some z′ ≤ a, then its uniform price is p22 = 2z′−1+k. Then firm 1’s

profit is π12 =
∫ z′

0
(2z′ − 2x)dF (x) + k. Subtracting k from each, we have exactly the

same profit for each case as in Section 3.2. In addition, one can easily check that firm

2’s profit in each case is also exactly the same as that in Section 3.2. Thus, Lemma

2 applies and firm 2’s (IC) is the same as before. Since the addition of constant term

k to firm 1’s profit does not change its optimization problem, it follows that firm 1’s

optimal data sharing remains the same as in our baseline model. We summarize the

results in Proposition 7.

Proposition 7 Suppose firm 1 charges firm 2 a per-unit fee for sales k ≥ 0.

� In the equilibrium with or without data sharing, each firm’s market share and

firm 2’s profit are the same as those without the sales fee, but all prices and

firm 1’s profit increase by k.

� Firm 1’s optimal data sharing is the same with or without the sales fee.

4.5 Data sharing with side-payment

We have so far focused on firm 1’s incentive to voluntarily share data. We ab-

stracted away the possibility of side-payment associated with data sharing in order

to highlight the strategic benefits of data sharing. However, one may wonder how the

outcome may change if firm 1 can charge for its shared data. We consider this case

in this section. For simplicity, we assume that firm 1 makes a take-it-or-leave-it offer

26We assume consumers on [a, b] choose firm 2 in case of indifference.

25



of a lump-sum, non-negative fee for the data, denoted by Φ. The timing is as follows:

firm 1 chooses Φ and [a, b]; firm 2 accepts or rejects firm 1’s offer; if firm 2 accepts

firm 1’s offer, then firm 2 pays Φ to firm 1 in exchange for the data on [a, b]; the two

firms compete in price. The rest of the model remains the same as before, including

the use of data for personalized pricing.

An immediate observation is that any mutually beneficial data sharing in the

absence of side-payments continues to be mutually beneficial when side-payments are

allowed. Firm 1 can simply share the same amount of data and use Φ to extract full

additional profit from firm 2. That is, if sharing data on [a, b] is mutually beneficial

with corresponding profits π1(a, b) ≥ πN
1 and π2(a, b) ≥ πN

2 , then firm 1 can continue

to share data on [a, b] and choose Φ = π2(a, b) − πN
2 . Thus, we expect firm 1 to be

better off when side-payments are allowed.

A natural question is then whether firm 1 shares more data when side-payments

are allowed. Intuition tells us it should because, given the extra tool to extract

surplus from firm 2, firm 1 would be less stringent in sharing data. Since firm 1 can

use Φ to extract any profit from firm 2, i.e., Φ = π2(a, b)− πN
2 , we can focus on data

sharing that maximizes industry profit. That is, firm 1 chooses (a, b) to maximize

π1(a, b) + π2(a, b) subject to Φ = π2(a, b)− πN
2 ≥ 0.

Suppose the optimal data sharing without side-payment is given by [a∗, b∗]. Sup-

pose now firm 1 shares additional data on [a′, a∗] when side-payment is possible where

a′ = a∗ − ϵ for arbitrarily small ϵ. Note that firm 2 chooses its uniform price to serve

only [b∗, 1] given data sharing on [a∗, b∗]. Since a′ < a∗, it continues to do so when

additional data on [a′, a∗] is shared. Thus, the only change in industry profit is from

[a′, a∗]. If it increases, then firm 1 shares more data when side-payment is allowed.

In the absence of side-payment, consumer a′ is served by firm 1 for profit 2b∗ − 2a′.

After additional data sharing, she is served by firm 2 for profit 2a′−1. Thus, industry

profit from [a′, a∗] increases if a′ > (2b∗ + 1)/4 or, given that ϵ is arbitrarily small,

if a∗ > (2b∗ + 1)/4. In sum, if a∗ > (2b∗ + 1)/4 at the optimal data sharing [a∗, b∗]

without side-payment, then firm 1 can increase its profit by sharing more data on

[a′, a∗] when side-payment is allowed. When a∗ ≤ (2b∗+1)/4, additional data sharing

on [a′, a∗] needs to be accompanied by additional data sharing on [b∗, b′] so that firm

2’s uniform price increases. In this case, the optimal data sharing can be derived

only numerically. For example, when F is uniform, the optimal data sharing with

side-payment is [a, b] = [0.66, 0.984]. Note that, when F is uniform, the optimal data
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sharing without side-payment is [a∗, b∗] = [0.71, 0.97]. Thus, we have a∗ ≤ (2b∗+1)/4

so that both a∗ and b∗ need to be adjusted in a way firm 1 shares more data when

side-payment is allowed. To summarize, firm 1 shares more data and enjoys larger

profit when side-payment is allowed.

4.6 Data broker

A data-poor firm may be able to obtain data from sources other than the data-rich

firm, for example, from data brokers. Data brokers’ optimal strategy of selling data to

competing firms has been the focus of several recent studies (e.g., Montes et al., 2019;

Bounie et al., 2021). Since firm 1 in our model is fully informed, the data broker can

sell data only to firm 2, but this can potentially change firm 1’s data-sharing strategy.

We discuss this below, assuming F is a uniform distribution.

Suppose that a data broker can sell the full set of customer data to firm 2 at

a fixed price P . If firm 2 purchases data from the data broker, then the two firms

compete in personalized prices as in Thisse and Vives (1988), resulting in the gross

profit of 1/4 for each firm. Firm 2’s net profit is 1/4 − P . Recall that, in the

baseline model with the optimal data sharing, the equilibrium profits are π∗
1 = 0.87

and π∗
2 = 0.21. Thus, the optimal data sharing in the baseline model continues to be

optimal if P ≥ 0.25 − 0.21 = 0.04. However, if P < 0.04, then firm 2 has incentives

to purchase data from the data broker, which decreases firm 1’s profit from 0.87 to

0.25. Thus, firm 1 needs to adjust its data-sharing strategy to leave more surplus to

firm 2 in order to avoid the tough competition in personalized prices. This leads to

an expansion of [a∗, b∗] relative to the baseline model. For each value of P < 0.04, the

optimal data sharing can be solved numerically. For the case where F is a uniform

distribution, one can check that, as P decreases from 0.04 to 0, firm 1 shares more

data by decreasing a∗ and increasing b∗.27

4.7 Partially-covered markets

In the baseline model, we assumed v is large enough so that the market is fully

covered. We now discuss the case where the market is not fully covered even when

it is served by both firms, which can lead to quite different outcomes when firms

compete in personalized pricing (Rhodes and Zhou, 2022). Suppose v < zN where

27The calculation is available from the authors.
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zN is the marginal consumer in the benchmark without data sharing. Then, without

data sharing, firm 2 serves [zN , 1] with uniform price pN2 = 2/h(zN) as shown in

(1), and firm 1 serves [0, v] with personalized price p1(x) = v − x for all x ∈ [0, v].

Consequently, consumers on [v, zN ] are not served by either firm, and the market is

not fully covered without data sharing if v < zN .

In this case, the uncovered segment [v, zN ] separates the two firms, which makes

them local monopolies. Thus, they do not compete with each other and their prices

are no longer strategic complements. It then follows that firm 1 does not benefit when

firm 2 increases its uniform price, implying that mutually beneficial data sharing does

not exist. Nonetheless, data sharing can benefit firm 2 and increase total surplus by

enabling firm 2 to serve consumers who would not be served without data sharing.

For example, suppose v = 1/2 and F is uniform so that zN = 3/4. Then, when firm 1

shares data on [1/2, 3/4], firm 2 can profitably serve all consumers on [1/2, 3/4] with

personalized price p2(x) = x − 1/2 ≥ 0. This increases firm 2’s profit but does not

change consumer surplus, hence total surplus increases. Although firm 1’s profit does

not change in this case, firm 1 can also benefit from data sharing if it can charge firm

2 for data sharing.

4.8 When firm 1 cannot price discriminate

The main insight that unilateral data sharing can be mutually beneficial hinges

on firm 2’s ability to price discriminate after data sharing. It does not depend on

firm 1’s ability to price discriminate. We now show that the same insight continues to

hold even when firm 1 charges a uniform price. Data sharing allows firm 2 to delink

its pricing decisions on the segment with shared data and the rest of the market, the

latter in competition with firm 1. As in our baseline model, suitably chosen data

sharing can soften competition on the second segment, which allows firm 1 to raise

its uniform price without losing its market share. For simplicity, our discussion below

is based on the case where F is uniform.

Suppose firm 1 is fully informed but cannot price discriminate, for example, due

to lack of data analytics necessary for price discrimination. Firm 2 does not have any

data but has access to data analytics, and can exercise personalized pricing after data

sharing. In the benchmark without data sharing, the symmetric Hotelling equilibrium

prices are p1 = p2 = 1, firm 1 serves [0, 1/2], and each firm earns profit 1/2.
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Suppose now firm 1 shares data on [1/2, 3/5]. We will show that this benefits

both firms. Denote firm 1’s uniform price by p′1 and firm 2’s uniform price p′2. After

data sharing, firm 2 will serve [1/2, 3/5] with personalized prices, hence Hotelling

competition is only on [0, 1/2]∪[3/5, 1]. Suppose p′1 = 1+ϵ for sufficiently small ϵ > 0.

Firm 2 can undercut firm 1 slightly by choosing p′2 < 1 + ϵ to serve [γ, 1/2] ∪ [3/5, 1]

where γ is sufficiently close to 1/2 given that ϵ is sufficiently small. Or it can choose

p′2 = p′1 + 1/5 = 6/5 + ϵ which makes consumer x = 3/5 indifferent, hence firm 2

serves only [3/5, 1]. Given that ϵ is sufficiently small, firm 2’s profit from its uniform

price is higher from the second choice. In addition, firm 2 can charge personalized

price p2(x) = p′1 + (2x− 1) > 1 for all consumers on [1/2, 3/5]. Thus, firm 2 is better

off after data sharing. Firm 1 is also better off because it serves the same set of

consumers but charges a higher price.28 The discussion above shows that our main

insight continues to hold even when firm 1 cannot price discriminate; what matters

is firm 2’s ability to price discriminate after data sharing.

5 Discussions and Implications for Management

5.1 B2B data sharing in practice

Although data sharing is mandated in a few industries such as banking and en-

ergy,29 the B2B data sharing considered in this paper is growing in many other indus-

tries. Based on a survey conducted during 2017-2018 in 31 countries in the European

Economic Area, Arnaut et al. (2018a) reports examples of B2B data sharing in vari-

ous industries such as automotive, transport and logistics, agriculture, telecom, etc.

The survey finds that data sharing can take different forms ranging from unilateral

to more collaborate approaches, and that most B2B data sharing occurs within their

own business sector.30 Particularly relevant to our model, the survey finds that a

majority of participating companies choose to share a small proportion of data they

28In the online appendix, we provide a more formal argument for when data sharing on [a, b] can
be mutually beneficial by solving for equilibrium prices given [a, b].

29In Europe, sector-specific data sharing is imposed in banking and finance, automotive, energy,
electronic communications and postal services. See Feasey and de Streel (2020) for details.

30The type and frequency of data shared and the mechanism for data sharing vary depending on
businesses and industries. For example, Green Energy Options (geo), a UK-based supplier of energy
monitoring devices, shares data on energy use and efficiency on a real-time basis, by relying on FTP
technologies or online data repositories. For more specific examples, see Arnaut et al. (2018b).
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generate, rather than their complete datasets, depending on their business strategies.

But the survey does not distinguish between non-personal data and personal data, the

latter being the main type of data that can be used to facilitate price discrimination.

More specific examples of unilateral data sharing with competitors can be found

in the practices of dual-mode online platforms such as Alibaba, Amazon, JD.com,

Target, Walmart, etc. They run a marketplace for third-party sellers but also sell

their own in-house products on the marketplace, thus competing with third-party

sellers (Hagiu et al. 2022). These platforms use their advantage in collecting and

analyzing consumer data to help third-party sellers to personalize their offers to cus-

tomers. For example, Amazon provides third-party sellers with some raw data on

consumer identification and consumers’ transaction details, together with the aggre-

gated data on business performance, consumer behaviour and market trends (PPMI,

2020). Moreover, Amazon helps third-party sellers on its platform, some of whom are

competitors to Amazon’s in-house brands, to target their coupons to specific groups

such as Amazon Prime customers, mothers, students, customers who have viewed or

purchased from certain Amazon Standard Identification Numbers, etc. As we show

in this paper, this type of unilateral data sharing can benefit both Amazon and its

third-party sellers, irrespective of how third-party sellers personalize their offers using

the shared data and whether Amazon charges fees for their platform service.

Chinese e-commerce giants, Alibaba and JD.com recently started offering free data

analytics services to sellers on their platforms through their initiatives, called the A100

program and the Zu Chongzhi platform, respectively. They profile customers by col-

lecting and analyzing their data about gender, age, occupation, location, purchase

history, keywords used in search, payment method, brand and product preferences,

etc. Alibaba leverages its customer data to help its online sellers to design products

and marketing strategies in order to target specific consumer segments, but goes on

further to provide a promotional tool that can be used to implement price discrim-

ination (Zhang et al., 2020). In this sense, Alibaba shares data with sellers on its

platform not only directly but also indirectly through data analytics and other pro-

motional tools. Some sellers can even improve the targetability of their marketing

campaign in their brick-and-mortar shops. For instance, Bestore, a Chinese snack

food chain, encourages shoppers to save their facial data when they pay with Al-

ibaba’s face-scanning payment tablets in its stores, and crafts campaigns to target
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specific niches of customers by utilizing data shared by Alibaba.31 At the same time,

Alibaba and JD.com compete with these sellers in the offline market by investing

heavily in their own brick-and-mortar stores in recent years. Although more details

about the data shared by these platforms are not available, it is conceivable that these

platforms choose what to share and how in a way that is mutually beneficial so that

sellers choose to remain on their platforms.

5.2 Implications for management

The main takeaway from our analysis is that strategic use of customer data can be

an example of a fat-cat strategy. A data-rich firm can choose a proportion of customer

data to share with a data-poor competitor, which can then soften price competition.

In doing this, two general conditions need to be met. First, shared data should be on

the segment of the market that is likely to be more loyal to the competitor, but the

data on the competitor’s most loyal segment needs to be withheld. This condition

does not seem hard to satisfy given the prevalent use of various market segmentation

strategies. Second, the primary use of the data is for price discrimination. Because

our logic holds whether shared data is used for personalized pricing or third-degree

price discrimination, the latter ubiquitous in practice, we believe the second condition

is not hard to satisfy either.

While the strategic benefits of data sharing described above are clear, the question

remains whether such data sharing may not infringe competition laws. For example,

Article 101(1) of the Treaty on the Functioning of the European Union (TFEU)

can limit data sharing among competitors if it restricts competition. An exception

justifiable under Article 101(3) is when such data sharing can have beneficial effects

that outweigh anticompetitive effects (Feasey and de Streel, 2020, pp. 40-41). As our

analysis has shown, the welfare effects of data sharing depend on market conditions

and the nature of competition. First, if the data-rich firm increases its market share

further as a result of data sharing, then both consumer surplus and total surplus

decrease. This is true whether competition is in personalized pricing or in third-degree

price discrimination. Second, if data sharing results in the data-rich firm conceding

some of its market share to the competitor, then total surplus increases thanks to

the improved quality of consumer-firm matching. The effect on consumer surplus

31https://www.reuters.com/article/us-china-tech-retail-idUSKCN1TL09D
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depends on the nature of competition in this case: consumer surplus decreases when

competition is in personalized pricing, but the effect on consumer surplus is ambiguous

when competition is in third-degree price discrimination, depending further on market

conditions. In view of these implications, one may say that regulators do not have a

prima facie case against the kind of data sharing studied in this paper.

A necessary condition for implementing the data sharing strategy described in

this paper is the availability of data analytics. Possessing a large amount of raw,

unstructured data in itself would not enable the data-rich firm to identify and select

which data to share with its competitors and how. The firm also needs capabilities to

process and analyze the data. Thus, the investment costs in data analytics may work

as a technology barrier in implementing the optimal data sharing strategy studied in

this paper. However, as rapid advancements in digital technologies and computational

sciences reduce the costs significantly and bring down the technology barrier, the

strategic use of data sharing identified in this paper will gain more practical relevance.

6 Conclusion

We have shown when a data-rich firm can benefit by unilaterally sharing its cus-

tomer data with a competitor when the data can be used for price discrimination.

Our main point is that the firm can soften competition by sharing data on consumers

who are more loyal to the competitor than to the firm itself, but withholding the data

on the competitor’s most loyal consumers. This induces the competitor to choose a

high non-discriminatory price for its most loyal consumers, which allows the sharing

firm to raise its own prices. Given the growing prevalence of data sharing among

firms, our analysis offers an important insight into the strategic use of data sharing,

and its implications for competition policy.

We discuss below some directions for future research. First, we can examine if

our insight continues to hold more generally. Although we have employed a styl-

ized Hotelling model for expositional clarity, we expect our key insight to be valid

in oligopoly models with product differentiation where one firm has sufficient data

advantage over its competitors. But a more general setup will allow us to study ad-

ditional issues such as the number and identity of the competitors with which the

dominant firm would like to share data.32 Second, given that unilateral data sharing

32For example, the most straightforward extension of our model to the case with three firms is a

32



is often used by dual-mode online platforms, we have considered the case where the

platform charges a fixed fee for sales. It would be interesting to extend our model to

study dual-mode platforms by incorporating a more general fee structure platforms

use, and its impact on data sharing. Third, data does not only flow from platforms

to sellers, but the other way around. For example, Amazon is reported to have used

data from third-party sellers to develop its own products.33 A key in designing a

successful online marketplace is to gain a better understanding of the interaction of

these data flows that go in opposite directions. Finally, the extent and effectiveness

of data-sharing are constrained by consumers’ privacy choice such as opt-in decisions,

which can be endogenized in further research.

Appendix

Proof of Lemma 1

Suppose firm 1 chooses to share data on [a′, b′] ∪ [a, b] with a′ < b′ < a < b. We

prove that firm 1 prefers sharing data on [a, b] only, or [a′, b′] only. The same argument

can be applied to any pairwise comparison and show that firm 1 prefers sharing data

on n intervals to sharing data on n+1 intervals. Then, by transitivity, firm 1 prefers

sharing data on a single interval to any other types of data sharing.

Suppose firm 1 shares data on [a′, b′] ∪ [a, b]. We start with two observations.

First, for firm 1 to prefer sharing data on [a′, b′] ∪ [a, b] to that on [a, b], a necessary

condition is b′ > 1/2. If b′ ≤ 1/2, then sharing data on [a′, b′] in addition to [a, b] does

not affect firm 2’s uniform price because [0, 1/2] is not contestable by firm 2, but it

decreases firm 1’s profit from [a′, b′]. Second, without data sharing, firm 2’s profit is

(2z − 1)(1− F (z)) where z is the marginal consumer’s location, which is maximized

at zN . This implies that data sharing with b ≤ zN does not affect firm 2’s choice of

uniform price, hence cannot benefit firm 1. These observations lead us to focus on

the cases where b′ > 1/2 and b > zN .

unit-length linear city where fully-informed firm 1 is located at 1/2 and uninformed firm 2 is at 0,
and uninformed firm 3 is at 1. It is easy to see that our main insight continues to be valid in this
case. But it is less obvious in other cases, for example, a circular city where each firm has a loyal
customer base on each side of its location. In the online appendix, we offer some discussions on data
sharing among three firms on a Salop circle.

33https://www.wsj.com/articles/amazon-scooped-up-data-from-its-own-sellers-to-launch-
competing-products-11587650015
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Let z∗ be the marginal consumer’s location that maximizes firm 2’s profit, hence

firm 2’s uniform price is p∗2 = 2z∗−1. There are four possibilities: (i) z∗ = z1 = b; (ii)

z∗ = z2 ∈ (b′, a); (iii) z∗ = z3 = b′; (iv) z∗ = z4 ≤ a′. Note that, when data is shared

only on [a, b], the profit-maximizing marginal consumer’s location is either z1 or z2.

In the first two cases, i.e., z∗ = z1 or z2, the same z∗ is profit-maximizing for

firm 2 when only [a, b] is chosen for data sharing, leading to the same uniform price.

Then firm 1 is better off sharing data on only [a, b] because additional data sharing

on [a′, b′] reduces its profit from that segment. In the fourth case, z∗ = z4, we have

z4 < min{z1, z2}, hence firm 2’s uniform price is lower than when only [a, b] is chosen

for data sharing (i.e., 2z4 − 1 < min{2z1 − 1, 2z2 − 1}). Once again, firm 1 is better

off sharing data on only [a, b]. This leaves us the third case where z∗ = z3 = b′. Given

b′ > 1/2, there are two possibilities. First, if b′ ∈ (1/2, zN), then, as shown previously,

firm 2 will set the marginal consumer’s location at zN when data is shared only on

[a′, b′]. Thus firm 1 is better off sharing data only on [a′, b′] because firm 2’s price

increases from 2b′ − 1 to 2zN − 1. Second, if b′ ≥ zN , then firm 2 will continue to

set the marginal consumer’s location at b′ when data is shared only on [a′, b′]. In this

case, firm 1 is indifferent between sharing data on [a′, b′] ∪ [a, b] and only [a′, b′] as

firm 1 cannot sell to consumers on [a, b] in either case.

Proof of Lemma 2

It suffices to show that firm 1 cannot benefit from data sharing that induces firm

2 to choose p22. For this, we will show z′ < zN , hence p22 < pN2 , which proves that

firm 1 is worse off with data sharing in this case.

From the definition of zN , we have (1 − 2zN)h(zN) + 2 = 0. Define g(x) :=

2 + (1 − 2x)h(x). Then, since h′(x) > 0 by the monotone hazard rate condition, we

have g′(x) = −2h(x) + (1− 2x)h′(x) < 0 for all x ≥ 1/2. Rewrite z′ as

z′ =
1

2
+

1

h(z′)
− F (b)− F (a)

f(z′)
<

1

2
+

1

h(z′)
.

Thus we have g(z′) = 2 + (1 − 2z′)h(z′) > 0. Since g(zN) = 0, g′(x) < 0 for all

x ≥ 1/2, and z′ > 1/2, we have z′ < zN .

Proof of Proposition 1

Consider data sharing on [a, b] with b > a, which is at no loss of generality thanks

to Lemma 1. By Lemma 2, firm 1 can benefit from data sharing only if firm 2 uses
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its uniform price to serve only consumers on [b, 1] where b < 1. Given this, π1(a, b)

is as given in (8) and π2(a, b) is as given in (7). We first show π1(a, b) > πN
1 and

π2(a, b) > πN
2 for all 1 > b > a = zN . Since pN2 = 2zN − 1, we can rewrite πN

1 as

πN
1 = 2zNF (zN)− 2

∫ zN

0
xdF (x). Then, we have

π1(a, b)− πN
1 = 2

(
bF (a)− zNF (zN)

)
− 2

(∫ a

0

xdF (x)−
∫ zN

0

xdF (x)

)
= 2(b− zN)F (zN) > 0 for all b > a = zN .

For firm 2, we have

π2(a, b)− πN
2 =

∫ b

a

(2x− 1)dF (x) + (2b− 1)(1− F (b))− (2zN − 1)(1− F (zN))

=

∫ b

zN
(2x− 1)dF (x) +

∫ 1

b

(2b− 1)dF (x)−
∫ 1

zN
(2zN − 1)dF (x) if a = zN

>

∫ 1

b

(2b− 1)dF (x) +

(∫ b

zN
(2zN − 1)dF (x)−

∫ 1

zN
(2zN − 1)dF (x)

)
=

∫ 1

b

(2b− 2zN)dF (x) > 0 for all b > zN .

We now show there exists b′ ∈ (zN , 1) such that data sharing on [zN , b′] satisfies

firm 2’s (IC). This, together with what we showed above, proves that sharing data on

[zN , b′] benefits both firms. Fix a = zN so that we express π22(z
N , b) as a function of b

only, denoted by π̂22(b) := π22(z
N , b). It is straightforward to check π21(z

N) = π̂22(z
N)

and π21(1) < π̂22(1). So mutually beneficial data sharing, if exists, must be for some

b < 1. Recall that π21(b) is maximized at b = zN by the definition of zN , hence

π21(z
N) > π21(z) for all z ̸= zN . But we also have π21(z

′) = (2z′ − 1)(1 − F (z′)) ≥
π̂22(b) = (2z′ − 1)(1− F (b) + F (zN)− F (z′)). Put together, we have

π̂22(z
N) = π21(z

N) > π21(z
′) > π̂22(b).

Since π̂22(z
N) > π̂22(b) for any b > zN , we have π̂′

22(z
N) < 0. By the definition of zN ,

we have π′
21(z

N) = 0. Since π̂′
22(z

N) < 0 and π21(z
N) = π̂22(z

N), there exists b′ > zN
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such that π21(b
′) > π̂22(b

′)., i.e., data sharing on [zN , b′] satisfies firm 2’s (IC).

Proof of Proposition 2

Given that zN = 3/4, we have S = {(a, b) | 1/2 < a < b, 3/4 < b}. It is easy to

derive firm 2’s (IC) as follows:

(2b− 1)(1− b) ≥ (1 + 2a− 2b)2

8
. (13)

Since firm 2’s profit from setting personalized prices on [a, b] is
∫ b

a
(2x − 1)dx =

a(1− a)− b(1− b), we can write firm 2’s (IR) as

(2b− 1)(1− b) + a(1− a)− b(1− b) ≥ πN
2 =

1

8
. (14)

Given the above, firm 1 serves consumers on [0, a] with personalized prices p1(x) =

(2b− 1)+ (1− 2x) = 2(b−x), hence its profit is
∫ a

0
2(b−x)dx = 2ab− a2. Thus, firm

1’s problem can be stated as follows:

max
a,b

2ab− a2, subject to (a, b) ∈ S, (13), and (14).

We consider the following two cases.

Case (i): a < 3/4. In this case, firm 1’s problem is

max
a,b

2ab− a2, subject to
1

2
< a <

3

4
< b ≤ 1, (13), and (14).

We first solve the relaxed problem by considering only constraint (13), after which we

verify that the other constraints are satisfied at the solution to the relaxed problem.

The Lagrangian is then

L = 2ab− a2 + λ

(
(2b− 1)(1− b)− (1 + 2a− 2b)2

8

)
.
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The first-order conditions are

∂L
∂a

= −a(λ+ 2) + b(λ+ 2)− λ

2
= 0,

∂L
∂b

= a(λ+ 2) +

(
7

2
− 5b

)
λ = 0,

λ

(
(2b− 1)(1− b)− (1 + 2a− 2b)2

8

)
= 0.

The above equation system yields

a∗ ≃ 0.7077, b∗ ≃ 0.9699, λ∗ ≃ 0.2052, (15)

and the associated profit is π∗
1 ≃ 0.8720. Clearly, the above solution satisfies both

constraints, 1
2
< a∗ < 3

4
< b∗ ≤ 1 and (14). Therefore, a∗ and b∗ in (15) are indeed

the optimal solution for the case where a < 3/4.

Case (ii): 3/4 ≤ a. Firm 1’s problem in this case is

max
a,b

2ab− a2, subject to
3

4
≤ a < b ≤ 1, (13), and (14).

Once again, we solve the relaxed problem by considering only the constraints 3/4 ≤ a

and (13). We will verify the remaining constraints are satisfied at the solution to the

relaxed problem. Then the Lagrangian is

L = 2ab− a2 + λ

(
(2b− 1)(1− b)− (1 + 2a− 2b)2

8

)
+ λ1

(
a− 3

4

)
.

The first-order conditions are

∂L
∂a

= −a(λ+ 2) + b(λ+ 2)− λ

2
+ λ1,

∂L
∂b

= a(λ+ 2) +

(
7

2
− 5b

)
λ,

λ

(
(2b− 1)(1− b)− (1 + 2a− 2b)2

8

)
= 0,

λ1

(
a− 3

4

)
= 0.
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The above equation system leads to

a∗ =
3

4
, b∗ =

19

20
, λ∗ = 3, λ∗

1 = 0.5 (16)

and the associated profit is π∗
1 ≃ 0.8625. Moreover, firm 2’s profit is (2b∗−1)(1−b∗)+

a∗(1− a∗)− b∗(1− b∗) = 37
200

> 1/8, and all the remaining constraints are satisfied.

Comparing the two cases, we can conclude that firm 1 will choose a∗ ≃ 0.7077,

b∗ ≃ 0.9699 and obtain profit π∗
1 ≃ 0.8720. Firm 2’s profit is then π∗

2 = 0.2059.

Proof of Proposition 3

It remains to show that consumer surplus decreases when a∗ < zN . We compare

the total costs consumers incur before and after data sharing. The total costs are the

sum of prices paid and transportation costs. Thus the total costs for all consumers

before data sharing are

πN
1 + πN

2 +

∫ zN

0

xdF (x) +

∫ 1

zN
(1− x)dF (x). (17)

After data sharing, the total costs are

π∗
1 + π∗

2 +

∫ a∗

0

xdF (x) +

∫ 1

a∗
(1− x)dF (x). (18)

Subtracting (17) from (18) and noting that a∗ < zN , we obtain

(π∗
1 − πN

1 ) + (π∗
2 − πN

2 ) +

∫ zN

a∗
(1− 2x)dF (x)

= (π∗
1 − πN

1 ) +

∫ b∗

zN
(2x− 1)dF (x) +

∫ 1

b∗
(2b∗ − 1)dF (x)−

∫ 1

zN
(2zN − 1)dF (x) > 0.

In the above, the equality follows from πN
2 =

∫ 1

zN
(2zN − 1)dF (x) and π∗

2 =
∫ b∗

a∗
(2x−

1)dF (x)+
∫ 1

b∗
(2b∗−1)dF (x), and the inequality holds because π∗

1 ≥ πN
1 and

∫ b∗

zN
(2x−

1)dF (x)+
∫ 1

b∗
(2b∗−1)dF (x) >

∫ 1

zN
(2zN−1)dF (x). This proves that consumer surplus

decreases after data sharing when a∗ < zN .
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Table 1: Comparison of outcomes with and without data sharing

PDF (α, β) zN [a∗, b∗] π∗
1-π

N
1 π∗

2-π
N
2 CS∗-CSN TS∗-TSN

unimodal (2, 4) 0.61 [0.50, 0.98] + + – +

U-shaped (0.9, 0.9) 0.76 [0.72, 0.97] + + – +

decreasing (0.9, 2) 0.67 [0.50, 0.99] + + – +

increasing (5, 1) 0.81 [0.83, 0.96] + + – –

uniform (1, 1) 0.75 [0.71, 0.97] + + – +

Note: + indicates positive; − indicates negative; CS denotes consumer surplus; TS
denotes total surplus.
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Figure 1: Optimal [a∗, b∗] under beta distribution
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Figure 2: Optimal [a, b] under beta distribution and third-degree price discrimination
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Online Appendix

Proof of Proposition 4

We have already shown that firm 2’s (IC) is satisfied in the absence of search

discrimination. Thus, firm 2’s optimal pricing strategy is to choose p2 = 2b − 1 for

consumers on [b, 1] and p2(x) = 2x − 1 for consumers on [a, b]. Given this, firm 1

chooses [a, b] to maximize its profit π1(a, b) =
∫ a

0
(2b − 2x)dF (x) subject to firm 2’s

participation constraint:

π2(a, b) = (2b− 1) (1− F (b)) +

∫ b

a

(2x− 1)dF (x) ≥ πN
2 . (A1)

We claim that b = 1 in the solution to firm 1’s problem. One can show that both

π1(a, b) and π2(a, b) are increasing in b. This implies that firm 1 can increase profit

by increasing b while satisfying (A1). Given b = 1, firm 1 then chooses a to satisfy

(A1) with equality: â solves
∫ 1

â
(2x− 1)dF (x) = πN

2 , hence â > zN .

Next, we show â > a∗. Suppose a∗ ≥ â. Then we have∫ 1

â

(2x− 1)dF (x) =

∫ a∗

â

(2x− 1)dF (x) +

∫ b∗

a∗
(2x− 1)dF (x) +

∫ 1

b∗
(2x− 1)dF (x)

>

∫ b∗

a∗
(2x− 1)dF (x) + (2b∗ − 1) (1− F (b∗))

≥ (2zN − 1)
(
1− F (zN)

)
= πN

2 .

This contradicts the definition of â.

Finally, we show that no search discrimination reduces consumer surplus and total

surplus. The effect on total surplus is clear because â > max{zN , a∗}. Consider now
consumer surplus compared to the case without data sharing. All consumers who

stay with the same firm are worse off because prices are higher. Consumer x ∈ [zN , â]

switches to firm 1 after data sharing, hence incurs total cost p̂1(x)+x ≥ 2−x; without

data sharing, her total cost is pN2 + (1− x) = 2zN − x. Because the former is larger,

she is worse off. Next is the case with data sharing and search discrimination. There

are four possible cases: (i) a∗ < zN < b∗ and zN < â < b∗; (ii) a∗ < zN < b∗ and

b∗ < â; (iii) zN < a∗ < b∗ and a∗ < â < b∗; and (iv) zN < a∗ < b∗ and b∗ < â. We

prove our claim for case (i) only, as the other cases are similar. When a∗ < zN < b∗

and zN < â < b∗, all consumers on [0, a∗] ∪ [b∗, 1] stay with the same firm, and pay
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higher prices under no search discrimination. So they are all worse off. Consumer

x ∈ [a∗, â] switches to firm 1 under no search discrimination. So her total cost changes

from p∗2(x)+ (1−x) = 2x− 1+ (1−x) = x to p̂1(x)+x ≥ 2−x. The latter is larger,

so she is worse off. Last, consumer x ∈ [â, b∗] stays with firm 2 and pays the same

personalized price.

Proof of Lemma 3

Claim 1: Under the optimal data sharing, we have q2l = 2a− 1, hence zl = a.

Denote firm 2’s profit from [a, b] by π̃21 when it serves the entire segment [a, b], hence

π̃21 = (2a− 1)(F (b)− F (a)), and by π̃22 when it serves a subset [zl, b] ⊂ [a, b], hence

π̃22 = (2zl − 1)(F (b)− F (zl)). Given b > zN , we need to consider only the following

two cases: (i) zN ≤ a < b and (ii) a < zN < b.

(i) Suppose zN ≤ a < b. Define G(x) := (2x − 1)(1 − F (x)). By the definition

of zN , we have G′(zN) = 0 and G is strictly concave due to the monotone hazard

rate condition. Thus we have G′(x) ≤ 0 for all x ≥ zN . Define H(x) := (2x −
1)(F (b) − F (x)), hence π̃21 = H(a) and π̃22 = H(zl) where a ≤ zl. To show zl = a,

it suffices to show H(a) ≥ H(zl). It is easy to see H ′(x) < G′(x) for all x ∈ [zN , 1).

Since G′(x) ≤ 0 for all x ≥ zN , we have H ′(x) < 0 for all x ∈ [zN , 1). This proves

H(a) ≥ H(zl), and hence zl = a.

(ii) Suppose a < zN < b. We will show that it is not optimal for firm 1 to share

data that leads to zl > a. Suppose firm 2’s profit H(x) = (2x − 1)(F (b) − F (x)) is

maximized at zl > a. The analysis in case (i) above shows that H(x) is decreasing

for all x ≥ zN . Thus, zl > a implies that we must have zl < zN . Firm 1 serves

consumers on [a, zl] with personalized prices p1(x) = 2zl − 2x in this case. But firm

1 can increase its profit by sharing data on [zl, b] instead of [a, b]. By doing this, firm

1’s profit from [0, a] does not change, but its profit from [a, zl] increases because its

personalized price on this segment increases from p1(x) = 2zl−2x to p1(x) = 2b−2x.

Thus, we must have zl = a.

Claim 2: Firm 1’s optimal data sharing should satisfy π21(b) ≥ π22(a, b).

There are two possible cases, zN ≤ a < b or a < zN < b. Since the proof is very

similar in both cases, we prove the claim only for the first case. Suppose zN ≤ a < b.

Firm 2’s problem on [a, b] has either a boundary solution where zl = a, or an interior

solution where a < zl < b. By Claim 1, we only need to consider the case where

zl = a. Suppose zl = a so that firm 2 serves all consumers on [a, b] with price
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q2l = 2a− 1 > pN2 . If q2h = 2b− 1, then firm 1’s profit is π1 =
∫ a

0
(2b− 2x)dF (x). If

q2h = 2z′ − 1 for some z′ < a, then firm 1’s profit is

π1 =

∫ z′

0

(2z′ − 2x)dF (x) <

∫ a

0

(2b− 2x)dF (x).

Thus, firm 1 is better off when firm 2’s chooses q2h = 2b − 1 to serve [b, 1] only, i.e.,

firm 2’s (IC) needs to be satisfied.

Proof of Proposition 6

(i) Case where firm 1 does not have customer data

We start with the case where firm 1 does not have any customer data. Suppose firm

2 enters the market. In t = 1, the marginal consumer is z = 1/2 + (p2 − p1)/2 where

pi (i = 1, 2) is firm i’s uniform price in t = 1. At the end of t = 1, firm 1 collects data

on [0, z], called firm 1’s target segment, and firm 2 collects data on [z, 1], called firm

2’s target segment. In t = 2, firms charge personalized prices for targeted consumers

and a uniform price for the rest. This is a standard model of behavior-based price

discrimination analyzed in Choe et al. (2018). There are two pure-strategy equilibria,

one being a mirror image of the other. Denote firm i’s uniform price in period 1 by p1i ,

and its total profit over two periods by Πi, i = 1, 2. By substituting δc = δf = t = 1

into Proposition 1 in Choe et al. (2018), we obtain the following in the equilibrium

where firm 1’s total profit over two periods is larger than firm 2’s.1

p11 = 8/13, p12 = 10/13, z = 15/26, Π1 = 109/169, Π2 = 387/676. (A2)

Thus, firm 2 enters the market if E < 387/676 ≈ 0.572.

(ii) Case where firm 1 is fully informed but data sharing is not possible

Suppose now firm 1 has data on all consumers. First, suppose that firm 1 does

not share data with firm 2. Let zN be the marginal consumer in t = 1 upon firm 2’s

entry. Denote firm i’s personalized price for consumer x in period t by pti(x), whenever

relevant, and firm 2’s uniform price in period t by pt2. In t = 1, firm 1 serves [0, zN ]

with p11(x) = 2zN − 2x for x ∈ [0, zN ] and firm 2 serves [zN , 1] with p12 = 2zN − 1. In

t = 2, firm 2 serves [zN , 1] with p22(x) = 2x − 1, and serves additional consumers on

1In the other equilibrium, we have p11 = 10/13, p12 = 8/13, z = 11/26, Π1 = 387/676, Π2 =
109/169.
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[z′, zN ] with p22 such that z′ = (1 + p22)/2. Maximizing firm 2’s t = 2 profit leads to

p22 = zN − 1/2, hence z′ = zN/2 + 1/4 < zN where the inequality is due to zN > 1/2.

In t = 2, firm 1 serves [0, z′] with p21(x) = 2z′−2x = zN +1/2−2x. Thus, each firm’s

total profit over two periods can be written as follows:

ΠN
1 =

∫ zN

0

(2zN − 2x)dx+

∫ zN/2+1/4

0

(zN + 1/2− 2x)dx =
20(zN)2 + 4zN + 1

16
,

ΠN
2 = (2zN − 1)(1− zN) +

∫ 1

zN
(2x− 1)dx+ (zN − 1/2)(zN/2− 1/4)

=
−20(zN)2 + 28zN − 7

8
.

Maximizing ΠN
2 , we find zN and the two firms’ equilibrium profits given by

zN = 7/10, ΠN
1 = 17/20, ΠN

2 = 7/20. (A3)

Thus, if data sharing is not possible, then firm 2 does not enter if E > 7/20.

Compared to the case where firm 1 does not have any customer data, we can say that

data plays a role as an entry barrier when 0.35 < E < 0.572.

(iii) Case where firm 1 is fully informed and data sharing is possible

Suppose firm 1 shares customer data on [a, b] with firm 2. Denote firm i’s person-

alized price for consumer x in period t by pti(x), and firm 2’s uniform price in period

t by pt2. Consider t = 1. As in our baseline model, firm 2 can use uniform price p12 to

serve either [b, 1] only or additional consumers to the left of a, say, [z′, a]. We discuss

each case below.

First, if firm 2 chooses p12 = 2b − 1 to serve only [b, 1] in t = 1, then its target

segment in t = 2 becomes [a, 1]. In t = 2, as shown previously, firm 2 chooses

p22 = a− 1/2 to serve [a/2 + 1/4, a] and charges p22(x) = 2x− 1 to serve [a, 1]. Then
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each firm’s total profit over two periods can be written as follows:

Π1 =

∫ a

0

(2b− 2x)dx+

∫ a/2+1/4

0

(a+ 1/2− 2x)dx =
1− 12a2 + 4a+ 32ab

16
,

Π2 =

∫ b

a

(2x− 1)dx+ (2b− 1)(1− b) +

∫ 1

a

(2x− 1)dx+ (a− 1/2)[a− (a/2 + 1/4)]

=
−12a2 − 8b2 + 12a+ 16b− 7

8
.

Second, if firm 2 chooses p12 = 2z′−1 to serve [z′, a]∪ [b, 1] in t = 1, then its target

segment in t = 1 becomes [z′, 1]. Analogous to the previous case, firm 2 chooses

p22 = z′ − 1/2 to serve [z′/2+ 1/4, z′] and charges p22(x) = 2x− 1 to serve [z′, 1]. Firm

2’s total profit in this case is

Π′
2 =

∫ b

a

(2x−1)dx+(2z′−1)(1−b+a−z′)+

∫ 1

z′
(2x−1)dx+(z′−1/2)[z′−(z′/2+1/4)].

Maximizing the above profit, we obtain z′ = (7 − 4(b − a))/10, with the resulting

equilibrium profit given by

Π′
2 =

−12a2 + 7(2b− 1)2 − 16ab+ 28a

20
.

As in our baseline model, we can show that firm 1’s profitable data sharing must

induce firm 2 to choose its uniform price in t = 1 to serve only [b, 1]. To see this,

suppose data sharing on [a, b] induces firm 2 to choose its uniform price to serve

[z′, a] ∪ [b, 1] in t = 1 for some z′ < a. As shown in the proof of Lemma 2, we have

z′ < zN in this case. Then, it is straightforward to check that firm 1’s t = 1 profit

under data sharing is smaller than that without data sharing. In t = 2, firm 1’s profit

is
∫ z′/2+1/4

0
(z′ + 1/2 − 2x)dx under data sharing, and

∫ zN/2+1/4

0
(zN + 1/2 − 2x)dx.

The latter is larger because z′ < zN .

Then, firm 1’s problem is to choose [a, b] to maximize Π1 subject to Π2 ≥ Π′
2 and

Π2 ≥ ΠN
2 = 7/20. Solving the problem gives us [a∗, b∗] = [0.710, 0.943], with each

firm’s total profit over two periods given by

Π∗
1 = 1.201, Π∗

2 = 0.431. (A4)

Given firm 1’s optimal data sharing, firm 2 enters if E < 0.431. Note that, without
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firm 1’s data sharing, firm 2 enters if E < 0.572. Thus, the possibility of data sharing

mitigates the role of customer data as an entry barrier when 0.35 < E < 0.431.

Analysis for Section 4.8 when firm 1 cannot price discriminate

We show when data sharing can be mutually beneficial even when firm 1 cannot

price discriminate and chooses a uniform price. Other than that, everything else is the

same as in the baseline model. That is, firm 1 is fully informed, firm 2 is uninformed,

and shared data can be used by firm 2 for personalized pricing.

In the benchmark without data sharing, we have the symmetric Hotelling equilib-

rium where each firm chooses a uniform price equal to 1, firm 1 serves [0, 1/2], and

each firm earns profit 1/2. Consider now the case where firm 1 shares data on [a, b]

for b < 1. We want to construct an equilibrium such that (i) firm 1 charges the local

monopoly’s price p1 for consumers on [0, a], (ii) firm 2 charges the local monopoly’s

price p2 for consumers on [b, 1], and (iii) firm 2 charges personalized prices for con-

sumers on [a, b]. In what follows, we identify necessary and sufficient conditions for

such an equilibrium.

Step 1. Let us first derive firm i’s local monopoly price. Firm 1’s profit is πm
1 =

p1min{v − p1, a}. When v − p1 ≥ a, firm 1’s profit is πm
1 = p1a. The optimal price

is p1 = v − a and firm 1 earns (v − a)a. When v − p1 ≤ a (i.e., p1 ≥ v − a), firm 1’s

profit is πm
1 = p1(v− p1). In this case, firm 1’s optimal price is p1 = v− a iff a ≤ v/2

and is p1 = v/2 iff a ≥ v/2. In sum, firm 1’s optimal local monopoly price is

p∗1 =

v − a, if 2a ≤ v

v/2, if 2a ≥ v.
(A5)

Firm 1’s profit is

π∗
1 =

(v − a)a, if 2a ≤ v

v2/4, if 2a ≥ v.

Similarly, we can derive firm 2’s optimal local monopoly price as

p∗2 =

v − (1− b), if 2(1− b) ≤ v

v/2, if 2(1− b) ≥ v.
(A6)
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Firm 2’s profit from the uniform price is

π∗
2 =

(v − (1− b))(1− b), if 2(1− b) ≤ v

v2/4, if 2(1− b) ≥ v.

From the above, there are four different cases for a given tuple (v, a, b), based on

the relationship among v, 2a, and 2(1− b): (i) v ≥ max{2a, 2(1− b)}, (ii) 2a ≤ v ≤
2(1 − b), (iii) 2(1 − b) ≤ v ≤ 2a, (iv) v ≤ min{2a, 2(1 − b)}. In all but case (i), the

market is not fully covered. In what follows, we focus on case (i). Then, we have

p∗1 = v − a and p∗2 = v − (1− b).

Step 2. We check consumers’ purchase decisions are optimal. It is easy to check

that consumers on [0, a] purchase from firm 1 as their utility from firm 2 is negative;

consumers on [b, 1] purchase from firm 2 as their utility from firm 1 is negative.

Consumer x ∈ [a, b] faces personalized price

p2(x) = min{v − (1− x), p∗1 + (2x− 1)} = v − (1− x). (A7)

All consumers on [a, b] choose firm 2 because their utility from firm 1 is negative.

Step 3. We now establish the conditions under which no firm has incentive to lower

its price to poach the rival’s customers. Let us start with firm 1. Under deviation

price pd1, the marginal consumer is x̂d = 1
2
+

p∗2−pd1
2

. A profitable deviation requires

x̂d ≥ b, implying pd1 ≤ v− b. Firm 1 maximizes deviation profit πd
1 = pd1(x̂

d− b+ a) =
1
2
pd1(v+2a−b−pd1) subject to p

d
1 ≤ v−b. First, if (v+2a−b)/2 ≥ v−b, then the optimal

pd1 = v − b, implying x̂d = b. But such a deviation is never profitable because firm 1

lowers its price without gaining any extra demand. Next, if (v+2a−b)/2 ≤ v−b, then

the optimal pd1 = (v + 2a− b)/2 and firm 1’s deviation profit is πd
1 = (v + 2a− b)2/8.

Therefore, firm 1 has no incentive to poach firm 2’s customers if and only if

(v+2a−b)/2 ≥ v−b or (v+2a−b)/2 ≤ v−b and (v+2a−b)2/8 ≤ (v−a)a. (A8)

Similarly, we can show that firm 2 has no incentive to poach firm 1’s customers if

and only if

v+a+2b ≤ 3 or v+a+2b ≥ 3 and (v+a−2b+1)2/8 ≤ (v−(1−b))(1−b). (A9)
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Step 4: Each firm should earn higher profit under data sharing than in the bench-

mark without data sharing. These conditions are

π∗
1 = (v − a)a ≥ 1/2 = πN

1 , (A10)

π∗
1 = (v − (1− b))(1− b) +

∫ b

a

(v − (1− x))dx ≥ 1/2 = πN
2 . (A11)

Step 5. If we can find a tuple (v, a, b) such that 2a ≤ v, 2(1− b) ≤ v, (A8), (A9),

(A10), and (A11) hold, then we can say (A5), (A6), and (A7) give us equilibrium

prices and the data sharing [a, b] is mutually beneficial. From the above, we can iden-

tify a set of (v, a, b) satisfying the following: (i) 1.45 ≤ v ≤ 2.28 (large v incentivizes a

firm to poach the rival’s customers, as shown by (A8) and (A9)); (ii) 0.26 ≤ a ≤ 0.58;

(iii) 0.46 ≤ b ≤ 0.84; (iv) b < 1/2 is possible when v ∈ [1.52, 1.86]; (v) b cannot be

too close to 1 because, otherwise, firm 2 has incentives to poach firm 1’s customers,

as shown in (A9).

For example, when v = 1.8, data sharing on (a, b) = (0.5, 0.6) is mutually beneficial

with equilibrium uniform prices given by p∗1 = 1.3 and p∗2 = 1.4. In Figure 3, we

plot the set of mutually beneficial data sharing (a, b) when v = 2. An example is

(a, b) = (0.45, 0.6), which leads to p∗1 = 1.55 and p∗2 = 1.6. Since π∗
1 = (v − a)a which

increases in a for all a ≤ v/2 = 1 when v = 2, firm 1’s optimal data sharing is the

one with the largest value of a in the shaded region in Figure 3.

Figure 3: Mutually beneficial data sharing when v = 2
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Data sharing on a Salop circle

Consider a unit-perimeter Salop circle where three firms are located equidistant

from one another and F is a uniform distribution. We label firm 1’s location 0 (as

well as 1), firm 2’s location 1/3, and firm 3’s location 2/3. Firm 1 is fully informed

and firms 2 and 3 are uninformed. The rest is the same as in our baseline model.

1. Benchmark without data sharing

Let z1 denote the marginal consumer’s location on [0, 1/3] where relevant compe-

tition is between firms 1 and 2. Then we have

p1(z1) + z1 = p2 + (1/3− z1) .

Since p1(z1) = 0, we have z1 = p2/2+1/6. Let 1/3+z2 denote the marginal consumer’s

location on [1/3, 2/3] where relevant competition is between firms 2 and 3, and firm

1’s personalized price is zero for all consumers on this segment. Then we have

p2 + z2 = p3 + (1/3− z2) .

This gives us z2 = (p3 − p2)/2 + 1/6. Let 2/3 + z3 denote the marginal consumer’s

location on [2/3, 1] where relevant competition is between firms 1 and 3. Then we

have

p3 + z3 = p1(z3) + (1/3− z3) .

Since p1(z3) = 0, we have z3 = 1/6− p3/2.

We now solve for the uniform prices chosen by firms 2 and 3. Firm 2’s profit is

π2(p2, p3) = p2 (1/3 + z2 − z1) = p2 (1/3 + p3/2− p2) .

Firm 3’s profit is

π3(p2, p3) = p3 (2/3 + z3 − (1/3 + z2)) = p3 (1/3 + p2/2− p3) .

Solving the two firms’ profit maximization problems simultaneously, we obtain p2 =

p3 := pN = 2/9, and z1 = 5/18, z2 = 1/6, and z3 = 1/18. Thus the marginal

consumer’s location on each segment is given by 5/18, 1/2, and 13/18. That is, firm 1
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serves [0, 5/18]∪ [13/18, 1] with personalized price p1(x) = p2+(1/3−2x) = 5/9−2x

on [0, 5/18]. Firm 1’s profit from [13/18, 1] is the same as that from [0, 5/18]. Thus

its equilibrium profit is

πN
1 = 2

∫ 5/18

0

(5/9− 2x) dx = 25/162.

Firm 2 serves [5/18, 1/2] with pN = 2/9, and firm 3 serves the rest of the market with

pN = 2/9. Thus they have the same profit given by

πN
2 = πN

3 = (2/9) (1/2− 5/18) = (2/9) (13/18− 1/2) = 4/81.

2. Beneficial data sharing

The above analysis shows that firm 2’s customer base is [5/18, 1/2], of which

[5/18, 1/3] is the segment that lies between firms 1 and 2, and firm 3’s customer

base is [1/2, 13/18] with [2/3, 13/18] being the segment lying between firms 1 and 3.

Unlike the case with linear city, firms 2 and 3 now have their customer base on each

side of their location. For example, the subset [1/3, 1/2] of firm 2’s customer base

is not contestable by firm 1. This implies that firm 1’s withholding of data on the

subset of [5/18, 1/3] and/or [2/3, 13/18] does not have the same effect as in the case

with linear city, mainly because firms 2 and 3 compete for the segment [1/3, 2/3].

On the other hand, firm 1’s problem is qualitatively the same as before. The main

purpose of data sharing is to induce firms 2 and 3 to increase their uniform prices

above pN = 2/9 while the subsequent change in firm 1’s market share, if any, is of

secondary importance.

We show below that firm 1’s sharing of data on entire [5/18, 1/3] with firm 2 and

entire [2/3, 13/18] with firm 3 can benefit all three firms relative to the benchmark

without data sharing. Given data sharing on [5/18, 1/3], firm 2 chooses p2 targeting

only the segment [1/3, 2/3]. Likewise, given data sharing on [2/3, 13/18], firm 3

chooses p3 targeting only the segment [1/3, 2/3]. Let 1/3+z be the marginal consumer

on [1/3, 2/3]. Then we have

p2 + z = p3 + (1/3− z) ,

which gives us z = (p3 − p2)/2 + 1/6. Firm 2 chooses p2 to maximize p2z and firm 3
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chooses p3 to maximize p3(1/3− z). This leads to the symmetric equilibrium uniform

price p∗2 = p∗3 := p∗ = 1/3 and z = 1/6. Note that firm 1 chooses personalized

price equal to zero for all consumers on [1/3, 1/2]. Thus, given p∗2 = p∗3 := p∗ = 1/3,

consumers on [1/3, 1/2] are indifferent between choosing firms 1 and 2, and consumers

on [1/2, 2/3] are indifferent between choosing between firms 1 and 3. From the above,

it’s clear that all three firms benefit from data sharing. First, firm 1 does not lose

any market share but can charge higher personalized prices to consumers it serves

because p∗ > pN . Specifically, firm 1’s personalized price increases from 5/9 − 2x to

2/3− 2x, hence its profit is

π∗
1 = 2

∫ 5/18

0

(2/3− 2x) dx = 35/162 > 25/162 = πN
1 .

Firm 2’s market share also stays the same as before but firm 2 charges higher

personalized prices to consumers on [5/18, 1/3] and higher uniform price to con-

sumers on [1/3, 1/2]. Specifically, for consumer x ∈ [5/18, 1/3], firm 2’s person-

alized price is given by p2(x) + (1/3 − x) = p1(x) + x where p1(x) = 0, hence

p2(x) = 2x − 1/3 ≥ 2/9 = pN for all x ∈ [5/18, 1/3]. Thus firm 2’s profit can

be calculated as

π∗
2 =

∫ 1/3

5/18

(2x− 1/3) dx+ p∗ (1/2− 1/3) = 23/324 > 4/81 = πN
2 .

By symmetry, firm 3 has the same profit as firm 2. Thus, all three firms benefit when

firm 1 shares data on [5/18, 1/3] with firm 2 and data on [2/3, 13/18] with firm 3.

The above is one simple example of beneficial data sharing, and there could be

other possibilities. But one clear observation is that sharing additional data on

[1/3, 2/3] would not increase uniform prices chosen by firms 2 and 3 above the uni-

form price p∗ = 1/3. It is because firm 1 chooses personalized price equal to zero for

all consumers on [1/3, 1/2], which sets an upper bound on the uniform price that can

be chosen by firms 2 and 3. For example, consumer x ∈ [1/3, 2/3] chooses firm 2 if

and only if p2 + (x − 1/3) ≤ min{p1(x) + x, p3 + (2/3 − x)} ≤ p1(x) + x = x given

p1(x) = 0. Thus p2 ≤ 1/3.
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