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1. Introduction 

Yogi Berra famously summarized challenges in forecasting with “it’s tough to make predictions, especially 

about the future.” Yet economic agents routinely engage in forecasting because almost every decision they 

make depends on what they think inflation, income and other variables are going to be in a week, month, 

year, or longer. But how are expectations formed? What information do economic agents have about the 

current and future conditions? How useful are signals about the future? To shed more light on these 

questions, we propose a new approach that incorporates "forward information" in expectations formation.  

We start with the observation that forecasts are more than just a model iterated forward. Indeed, 

using a special survey conducted among participants in the Survey of Professional Forecasters (SPF), Stark 

(2013) documents that a vast majority of professional forecasters (80%) describe their forecasting method 

as a combination of “model” and “subjective adjustment”. For example, this practice means that when 

forecasters try to predict inflation, they use an econometric model to generate a first pass at the inflation 

projection, but then they adjust the prediction due to whatever information (e.g., news about future 

monetary/fiscal policy, technology) they have which is beyond their model.1 This “forward” information is 

useful because it may reduce forecast errors. Since forecasters can face different and likely imperfect signals 

about the future, forward information can also be a key source of forecast dispersion and apparent deviations 

from full-information rational expectations (FIRE) documented in the literature. Our objective is to extract 

this forward information from forecasts and then study its properties and effects.   

In a nutshell, consider the standard noisy information framework as a benchmark: agents face 

imperfect signals about realized fundamentals and use the Kalman filter or similar tools to filter out the noise. 

Once the forecast for the current period is formed, the forecasts for longer horizons obey the state equation 

and, hence, persistence in expectations should reflect persistence in the fundamental. For example, if the 

fundamental 𝑥௧ is an AR(1) process with persistence 𝜌, the forecast for horizon ℎ (𝑥௧ା௛|௧ሻ is simply 𝜌௛ times 

the belief about the current value of the fundamental (𝑥௧|௧): 𝑥௧ା௛|௧ ൌ 𝜌௛𝑥௧|௧. As a result, when we regress the 

forecast for horizon ℎ ൅ 1 (𝑥௧ା௛ାଵ|௧) on the forecast for horizon ℎ (𝑥௧ା௛|௧), the slope coefficient in this 

regression is 𝜌, i.e., persistence in the fundamental, for any horizon ℎ. Furthermore, the 𝑅ଶ in this regression 

should be one because there is no new information beyond the current estimate of the fundamental. We test 

these predictions using SPF forecasts for multiple horizons. In contrast to the predictions, we find that both 

the slope coefficient and the fit of the regression gradually increase and tend to “converge” as we apply the 

regression to forecasts with longer horizons.  This pattern points to some additional forecasting component, 

 
1  A common technical tool for subjective adjustment is known in practice as “add factoring”, where the forecaster 
adds some subjective factor to the estimated specification used for prediction. For an early discussion of add factoring, 
see Fair (1986).  
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beyond the application of the state equation, which produces a variation in correlation across the forecast 

horizons. 

We interpret this forecasting component as reflecting the “subjective adjustment.” Specifically, 

forecasters adjust the state-equation prediction in light of forward information (i.e., signals about the 

future). Intuitively, when forecasters adjust their “econometric” predictions to incorporate forward 

information, they introduce an “error term” (which captures forward information) in the state equation: 

𝑥௧ା௛ାଵ|௧ ൌ 𝜌𝑥௧ା௛|௧ ൅ 𝑒𝑟𝑟𝑜𝑟. Because forward information can influence not only beliefs about horizon 

ℎ ൅ 1 but also beliefs about horizon ℎ, the error term is correlated with 𝑥௧ା௛|௧ and hence can bias the 

estimate of the slope away from 𝜌 and result in 𝑅ଶ ൏ 1. However, for long enough horizons, for which 

forward signals are no longer informative, the forecasts would only be based on the state equation without 

a biasing adjustment. Thus, the forward information setup should augment the standard noisy information 

framework in two important directions: First, there will be informative signals not only about the past but 

also about future fundamentals. Second, information will vary not only across agents, as in the standard 

framework, but also across future horizons.   

We present a formal model of expectations formation with forward information along these lines. 

Agents receive multiple noisy signals referring to several periods in the future. They exploit these signals 

and optimally filter the noise when forming forecasts for multiple periods ahead. We show that forecast 

adjustment due to forward information can vary across forecasting horizons since agents need to optimally 

reweight the multiple forward signals when moving from one horizon to another. This reweighting 

mechanism diminishes and eventually stops when forecasting goes far enough into the future, at which 

point there are no further informative signals. We use simulations to show that this setup can qualitatively 

reproduce the patterns documented in the SPF data. 

Our approach offers several additional insights. First, we can assess the importance of forward 

information. In particular, our generalized framework allows us to directly test the restricted form implied 

by the standard noisy information model, which includes only signals about the current and past 

fundamentals, against the unrestricted form, which includes forward information. We show that the 

coefficients in the augmented specification are directly mapped to the optimal weights placed on the 

multiple forward signals in our framework. Based on SPF data, our results point to a significant role of 

forward information and rule out a significant amount of noisy information in the sense of the standard 

model. These findings support the view that SPF forecasts are driven by dispersed information about the 

future, rather than about the past. 

Second, our approach offers a straightforward way to extract forward information directly from 

expectations data. According to our forecast decomposition (𝑥௧ା௛ାଵ|௧ ൌ 𝜌𝑥௧ା௛|௧ ൅ 𝑒𝑟𝑟𝑜𝑟), forward 

information is the component that leads forecasters to make an adjustment to their “econometric” prediction 
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(i.e., 𝑒𝑟𝑟𝑜𝑟 in the state equation iterated forward). We apply this decomposition to SPF inflation forecasts. 

We show that forward information is helpful for predicting inflation at short horizons. Furthermore, forward 

information in the Greenbook forecasts from the Federal Reserve predicts policy rate, thus suggesting that 

the central bank acts on news about future inflation.   

Finally, we apply our approach to other variables and survey data. When we examine SPF forecasts 

for additional macroeconomic variables, we find both indirect and direct evidence for the presence of 

forward information that varies across forecasting horizons. Similar evidence is found for the Greenbooks. 

We also apply inflation forecast data from the SPF run by the European Central Bank (ECB). We exploit 

the availability of both calendar-year and rolling-year forecasts in this survey and find a pattern of variation 

across calendar quarters, which is consistent with the utilization of forward information that varies across 

forecasting horizons. 

Our study is related to several strands of literature. First, we contribute to the vast and growing 

literature on the expectations formation process (Coibion, Gorodnichenko and Kamdar (2018) provide a 

review of this literature). Survey forecasts are widely used to test and quantify models with information 

rigidities or behavioral frictions (e.g. Mankiw, Reis, and Wolfers, 2004; Capistran and Timmermann, 2009; 

Patton and Timmermann, 2010; Andrade et al., 2013; Coibion and Gorodnichenko, 2012, 2015; Fuhrer, 

2018; Angeletos et al., 2020; Bordalo et al., 2020; Giacomini et al., 2020; Kohlhas and Walther, 2021; 

Goldstein, 2021). Building on this literature, we explicitly model the “subjective adjustment” of forecasts 

which we interpret as a practice driven by the availability of forward information. We emphasize that 

forward information plays a key role in how professional forecasters form their macroeconomic projections.   

Our paper is also related to the literature about news shocks (Beaudry and Portier (2014) provide a 

survey of this literature and Chahrour and Jurado (2018) connect news shocks and noise in signals). Unlike 

the literature on expectations formation, this literature stresses the role of news about the future in driving 

the business cycle, but it largely ignores microfoundations of expectational assumptions (Chahrour and 

Jurado (2021) is a recent exception). Furthermore, with some exceptions (e.g., Barsky and Sims, 2012; 

Nguyen and Miamoto, 2019), it tends to extract news from realized macroeconomic series rather than 

expectations data. Our approach bridges these two literatures by linking forward information directly to the 

expectations formation process.  Furthermore, we emphasize and exploit heterogeneity across both agents 

and forecast horizons. Our findings can be used to quantify forward information systematically using 

forecast data and to assess its role in predicting macroeconomic dynamics and affecting policy. 

Our paper also contributes to the literature that studies the persistence of inflation and documents 

a notable decline in inflation persistence in the U.S. and other countries since the 2000s (Fuhrer (2011) 

surveys this literature). Jain (2019), which is the closest in spirit to the starting point of our analysis, utilizes 

revisions in SPF forecasts to estimate the size and time variation in the perceived persistence of inflation. 
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In contrast to Jain (2019), we allow persistence to vary with the forecast horizon. As explained above, this 

novel type of variation that we document motivates our idea of forward information. Based on our results, 

we argue that persistence estimated on long horizons can provide a better metric of perceived persistence 

of the fundamental because forward information is less likely to be quantitively important at long horizons. 

We also offer a real-time estimate of persistence based on cross-sectional/across-horizon variation in 

forecasts, which contrasts with the focus on time-series variation in actual data.  

The remainder of the paper is organized as follows. Section 2 provides a simple noisy-information 

benchmark model to build intuition and testable predictions. We show that these predictions are rejected 

by stylized facts documented for SPF inflation forecasts. Section 3 presents our model of forward 

information and rationalizes the stylized facts. Section 4 reports further tests of forward information. 

Section 5 describes how one can extract forward information from forecast data and documents the 

properties of forward information, including the ability of forward information to predict policy choices 

and future inflation. Section 6 summarizes evidence from forecasts of other key macroeconomic variables 

in the U.S. SPF and the ECB SPF. Section 7 concludes. 

  

2. Noisy information: The standard framework 

To fix ideas, we use the standard noisy-information model as a starting point. Following Woodford (2002) 

and Coibion and Gorodnichenko (2015), assume that fundamental 𝑥௧ follows an AR(1) process. While 

agents know the underlying process, they cannot perfectly observe 𝑥௧ due to idiosyncratic noise in signals 

about 𝑥௧. Their forecasting problem can be described by a state-space representation: 

State: 

𝑥௧ ൌ 𝜌𝑥௧ିଵ ൅ 𝜔௧ , (1) 

Measurement: 

𝑦௧
௜ ൌ 𝑥௧ ൅ 𝜈௧

௜ , (2) 

where  𝜔௧ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ఠଶሻ is a shock to the fundamental, 𝜈௧
௜ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎జଶሻ is idiosyncratic noise, and 𝜌 is 

the persistence of the fundamental. An optimal forecast 𝑥௧ା௛|௧
௜ , for ℎ steps ahead, is formed by each agent 

𝑖 with a Kalman filter: 

𝑥௧ା௛|௧
௜ ൌ 𝑥௧ା௛|௧ିଵ

௜ ൅ G൫𝜌௛𝑦௧
௜ െ 𝑥௧ା௛|௧ିଵ

௜ ൯, (3) 

where G is the Kalman gain. Thus, agents revise their former forecast, 𝑥௧ା௛|௧ିଵ
௜ , by placing some weight on 

the prediction 𝜌௛𝑦௧
௜, which utilizes the new signal.  
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An important implication of equation (3) is that forecasts made at time 𝑡 for various horizons should 

obey the process of the state equation:   

𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜ . (4) 

Equation (4) posits several predictions which can be tested with data on survey forecasts for multiple 

horizons. In particular: 

 

When estimating a regression of the forecast 𝑥௧ା௛|௧
௜  on the forecast  𝑥௧ା௛െ1|௧

௜ : 

I. The fit of the regression should be perfect (𝑅ଶ ൌ 1) for any ℎ ൒ 1.  

II. The regression coefficient recovers 𝜌, the persistence parameter, for any ℎ ൒ 1.  

 

Note that these predictions apply to both forecaster-level projections and consensus projections. 

We test these predictions with CPI inflation forecasts from the Survey of Professional Forecasters. 

Quarterly forecasts are available since 1981Q3 for multiple horizons, running from the current quarter to 

four quarters ahead. In addition, there is a backcast provided in each quarter for the inflation rate in the 

previous quarter. Thus, we estimate five horizon-specific regressions for each ℎ between 0 to 4.2  The results 

for the full sample period (1981Q3-2017Q4) are described in Panel A of Figure 1. We observe several 

patterns, which deviate from the above predictions. First, the estimated persistence and 𝑅ଶ vary with the 

forecast horizon significantly. Second, both the estimated persistence and 𝑅ଶ increase in the forecast 

horizon. The estimated persistence rises from ≈0.4 for ℎ ൌ 0 to ≈0.9 for the longest horizon ℎ ൌ 4. 

Likewise, 𝑅ଶ increases from ≈0.3 to ≈0.8. Finally, the fit of the regressions is far from perfect for the shorter 

horizons (𝑅ଶ ≪ 1).     

To explore the robustness of these patterns, we split the sample into four decades from the 1980s to 

the 2010s and repeat the estimation. We report results in Panel B of Figure 1. Overall, the coefficient estimates 

and R-squared show the same pattern of increase with the forecast horizon for each sub-period. The only 

difference is that the range of variation is getting narrower in recent decades. This could reflect the decline in 

inflation persistence in the US over the years, which was documented by the previous literature (e.g., Fuhrer, 

2011). Nevertheless, differences across horizons are still highly significant as indicated by the p-values.3  

 
2 ℎ ൌ 0 in the data is equivalent to ℎ ൌ 1 in the above model, since SPF respondents receive a signal on realization in 
the previous quarter.     
3  We also preform the estimation with consensus forecasts and find the same pattern documented in Figure 1. See the 
first row in Panel A of Appendix Table G.3.  
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Because equation (4) holds for any period, we can estimate the corresponding regression quarter 

by quarter separately and examine time-series variation in the estimates.4 Using a non-parametric smoother 

to remove high-frequency noise in the estimates, we report the results in Figure 2. We find that both the 

estimated persistence and 𝑅ଶ are higher at longer horizons (Panels A and B, respectively). Furthermore, as 

the estimated persistence declines over the years, so does the 𝑅ଶ of the cross-sectional regressions. This 

suggests that the dynamics of persistence and 𝑅ଶ may be related phenomena.  

Specification (4) reflects a simple AR(1) process, whereas agents may use more sophisticated 

processes. In Figure 3, we examine more general processes, such as AR(4), VAR(4), and AR(1) in terms 

of the inflation gap (the difference between inflation and trend inflation). Because we do not have enough 

forecast horizons to explore how 𝜌ො varies in ℎ, we focus on the 𝑅ଶ from a quarter-by-quarter estimation 

corresponding to each specification for ℎ ൌ 3. For the AR(4) process, we regress the forecast 𝑥௧ାଷ|௧
௜   on the 

forecasts for the 4 preceding quarters. For the VAR(4), we add forecasts of “lagged” interest rate and 

unemployment from the SPF. The inflation gap specification utilizes long-run inflation forecasts, which are 

provided in the SPF more recently, and computes the forecast for the inflation gap as the difference between 

the CPI inflation forecast and the long-run forecast.5 The figure describes a fit of the different regressions 

over the sample period which is very similar to the fit obtained with the simple AR(1). This is in line with 

Coibion and Gorodnichenko (2015), who find that a univariate AR(1) approximates well the expectations 

in the SPF data.6 

Another potential explanation for the results in Figures 1 and 2 is that forecasters use different 

models, i.e., each forecaster applies her own (perceived) 𝜌௜, which may be different from the true 

persistence parameter 𝜌. Hence, the forecast of an agent 𝑖 for time 𝑡 ൅ ℎ, denoted by 𝑥௧ା௛|௧
௜ , follows:  

𝑥௧ା௛|௧
௜ ൌ 𝜌௜𝑥௧ା௛ିଵ|௧

௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧
௜ ൅ ൫𝜌௜ െ 𝜌൯𝑥௧ା௛ିଵ|௧

௜ . (5) 

 
4  Notice that this estimation is also in line with the well-known unobserved-component modelling of inflation. 
Specifically, suppose that inflation follows 𝑥௧ ൌ 𝜇௧ ൅ 𝑥௧

ீ஺௉, where 𝜇௧ is a trend component following a random walk 
and 𝑥௧

ீ஺௉ is a transitory component following AR(1) with persistence 0 ൏ 𝜌 ൑ 1. Then, the process of 𝑥௧ can be 
written as AR(1), 𝑥௧ ൌ 𝑐௧ ൅ 𝜌𝑥௧ ൅ 𝜀௧, where 𝜀௧ captures shocks to both components and 𝑐௧ ൌ ሺ1 െ 𝜌ሻ𝜇௧ିଵ behaves 
like a "constant" that varies over time due to the trend component. When applying our AR(1) regression to inflation 
forecasts quarter by quarter, the regression constant can vary over time in a similar way.  
5 From the previous footnote, it is clear that the inflation-gap autoregression arises from the same unobserved-
component modelling of inflation, since 𝑥௧

ீ஺௉ ൌ 𝑥௧ െ 𝜇௧ . The difference in the current estimation is that we allow 
heterogeneity in forecasters' views on trend inflation, by using their long-run forecasts from the survey. 
6 Another robustness check for our stylized pattern is reported in Appendix Figure G.1. As for the AR(1), we applied 
estimations across different horizons for higher order auto-regressions. Each additional “lag” implies one less 
regression (i.e., instead of 5 regressions for the different horizons with AR(1), we can ran 4 regressions with AR(2) 
and so on). The figure reports persistence estimates as the sum of coefficients and the 𝑅ଶ values. In all the panels they 
clearly increase with the horizon, consistent with the pattern documented for AR(1).   
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If we regress  𝑥௧ା௛|௧
௜  on 𝑥௧ା௛ିଵ|௧

௜  as in specification (4), the error term corresponding to ൫𝜌௜ െ 𝜌൯𝑥௧ା௛ିଵ|௧
௜  

is clearly correlated with the regressor 𝑥௧ା௛ିଵ|௧
௜ . Furthermore, the cross-sectional estimate of average 

(perceived) persistence could depend on the distribution of ൫𝜌௜൯
௛

, thus creating variation in ℎ. Finally, 

differences in  𝜌௜ generate disagreement in forecasts.7  

To assess this alternative explanation, we estimate the persistence in expectations across horizons 

for a specific forecaster 𝑖, using OLS:  

𝑥௧ା௛|௧
௜ ൌ 𝜌௛

௜ 𝑥௧ା௛ିଵ|௧
௜ ൅ 𝑒𝑟𝑟𝑜𝑟௧

௜ . (6) 

For each horizon ℎ, we compute the average (across forecasters) value of the estimated 𝜌௛
௜ . If heterogeneity 

in 𝜌௜ were driving our results in Figures 1 and 2, we should observe that the average value of 𝜌ො௛
௜  should not 

increase in horizon ℎ. Panel A of Figure 4 documents that forecasters indeed have different perceived 

persistence of inflation: the standard deviation of 𝜌ො௛ୀଷ
௜  is above zero and it is generally increasing over 

time. However, this heterogeneity does not have a materially important effect on how inflation persistence 

varies across horizons and over time. Similar to Panel A in Figure 2, Panel B in Figure 4 documents that 

persistence (average of 𝜌ො௛
௜  across 𝑖) is larger for longer horizons and there is a broad decline in persistence 

over time. Thus, model heterogeneity does not explain why persistence increases in horizon ℎ.  

In summary, our evidence suggests that the standard noisy information framework misses some 

important forecasting component, which varies both cross-sectionally and across horizons. In what follows, 

we argue that this component is associated with the practice of “subjective adjustment” of forecasts, or “add-

factoring”. This subjective adjustment can capture forecasters’ information about future fundamentals.        

 

3. A model of forward noisy information 

To build intuition, we begin with a tractable example using two forward signals. The example is used to 

derive some analytical results that illustrate how forward information augments the forecast in the standard 

noisy information framework and introduces an additional key component to equation (4). We will then 

present a more general framework and use simulations to show how one can rationalize the patterns 

documented in the previous section.  

3.1. A case of two forward signals 

 
7 The correlation between the regressor and the error term can arise for other, potentially behavioral reasons. In 
Appendix D, we show how such correlation can arise in the model of asymmetric loss function by Elliott, Komunjer 
and Timmermann (2008) and Capistran and Timmermann (2009). However, this model does not explain why 
estimated persistence should increase with the forecast horizon. 
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Consider a state-space representation of a fundamental 𝑥௧, which follows an AR(1) process. However, 

unlike the one-signal state-space in equations (1) and (2), here agents receive three informative signals at 

time 𝑡: A perfect signal about realization (the current value of the fundamental) and two forward signals 

referring to two subsequent periods, 𝑡 ൅ 1 and 𝑡 ൅ 2. Accordingly, the state-space representation is   

State: 

𝒙௧ ≡ ൥
𝑥௧ାଶ
𝑥௧ାଵ
𝑥௧

൩ ൌ ൥
𝜌 0 0
1 0 0
0 1 0

൩ 𝒙௧ିଵ ൅ ൥
1
0
0
൩𝜔௧ାଶ ൌ Ρ𝒙௧ିଵ ൅ 𝑆′𝜔௧ାଶ (7) 

where 𝜔௧ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ఠଶሻ.  

Measurement: 

𝒚௧
௜ ≡ ൦

𝑦௧,௧ାଶ
௜

𝑦௧,௧ାଵ
௜

𝑦௧,௧
௜

൪ ൌ ൥
𝑥௧ାଶ
𝑥௧ାଵ
𝑥௧

൩ ൅ ቎
𝜈௧,௧ାଶ
௜

𝜈௧,௧ାଵ
௜

0

቏ ൌ 𝒙௧ ൅ 𝝂௧
௜  (8) 

where 𝜈௧,௧ାଵ
௜ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ଵ

ଶሻ and 𝜈௧,௧ାଶ
௜ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ଶ

ଶሻ are idiosyncratic noise in the two forward signals, 

𝑦௧,௧ାଵ
௜  and 𝑦௧,௧ାଶ

௜ , respectively. Notice that signal 𝑦௧,௧
௜  is perfect (it does not contain noise) so that 𝑥௧ is 

perfectly known at time 𝑡. Only the forward signals 𝑦௧,௧ାଵ
௜  and 𝑦௧,௧ାଶ

௜  are imperfect. We use this example to 

demonstrate how the empirical patterns in the previous section can be driven only by forward signals, even 

in the absence of noise about the realized fundamental, as in equation (2).  

Because 𝑥௧|௧
௜ ൌ 𝑥௧, we can simplify the analytical derivation of the weights in the optimal forecasts 

for the subsequent horizons. One can show (Appendix B) that the one-step ahead forecast is given by: 

𝑥௧ାଵ|௧
௜ ൌ 𝑊ଵ𝜌𝑥௧ ൅𝑊ଶ𝑦௧ିଵ,௧ାଵ

௜ ൅𝑊ଷ𝑦௧,௧ାଵ
௜ ൅  𝑊ସ𝜌ିଵ𝑦௧,௧ାଶ

௜ , (9) 

where 𝑊ଵ,𝑊ଶ,𝑊ଷ and 𝑊ସ are the optimal weights placed on each informative signal, which minimizes 

𝐸௧൫𝑥௧ାଵ െ 𝑥௧ାଵ|௧
௜ ൯

ଶ
 and obeys 𝑊ଵ ൅𝑊ଶ ൅𝑊ଷ ൅𝑊ସ ൌ 1. As derived in Appendix B.1., the optimal weights 

depend on the noise-to-signal ratios (𝜎ଵ
ଶ/𝜎ఠଶ  and  𝜎ଶ

ଶ/𝜎ఠଶ ) and the persistence parameter 𝜌.   

In a similar way, the two-step-ahead forecast is a weighted sum of the same four signals, which are 

shifted by one period to the future: 

𝑥௧ାଶ|௧
௜ ൌ 𝑤ଵ𝜌ଶ𝑥௧ ൅ 𝑤ଶ𝜌𝑦௧ିଵ,௧ାଵ

௜ ൅ 𝑤ଷ𝜌𝑦௧,௧ାଵ
௜ ൅  𝑤ସ𝑦௧,௧ାଶ

௜ . (10) 

If the corresponding optimal weights in equations (9) and (10) are equal to each other, that is, if 𝑊௞ ൌ 𝑤௞ 

for each 𝑘 ൌ 1,2,3,4, then the relationship between the forecasts would simply obey 𝑥௧ାଶ|௧
௜ ൌ 𝜌𝑥௧ାଵ|௧

௜ , 

which follows the AR(1) process in the state equation. Hence, our setup can nest the standard noisy 

information model. However, this simple relationship 𝑥௧ାଶ|௧
௜ ൌ 𝜌𝑥௧ାଵ|௧

௜  does not hold when we introduce 

forward signals. As shown in Appendix B.1., the optimal weights, when minimizing the two-step-ahead 

squared forecast error, are smaller than the corresponding weights in equation (9), except for 𝑤ସ ൒ 𝑊ସ. 
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Intuitively, because the fourth signal (𝑦௧,௧ାଶ
௜ ሻ refers directly to 𝑥௧ାଶ, it is given an extra weight in the two-

step-ahead forecast.   

As a result, the relationship between forecasts at different horizons is more complex: 

𝑥௧ାଶ|௧
௜ ൌ 𝜌𝑥௧ାଵ|௧

௜ ൅෍ሺ𝑤௞ െ  𝑊௞ሻ
ସ

௞ୀଵ

𝑆𝑖𝑔𝑛𝑎𝑙௞,௧ାଶ|௧
௜  (11) 

where 𝑆𝑖𝑔𝑛𝑎𝑙௞,௧ାଶ|௧
௜  corresponds to each of the four signals used in equation (10) (𝑆𝑖𝑔𝑛𝑎𝑙ଵ,௧ାଶ|௧

௜ ≡ 𝜌ଶ𝑥௧, 

𝑆𝑖𝑔𝑛𝑎𝑙ଶ,௧ାଶ|௧
௜ ≡ 𝜌𝑦௧ିଵ,௧ାଵ

௜ , etc.). Equation (11) illustrates that forward signals induce an adjustment to the 

“standard” forecast 𝜌𝑥௧ାଵ|௧
௜ , and that this adjustment depends on how the optimal weights change across 

forecasting horizons. From an econometric perspective, this adjustment introduces an “error term” in 

specification (4), which can account for the empirical patterns from the previous section. For example, the 

signals in this error term are correlated with the regressor 𝑥௧ାଵ|௧, thus, potentially explaining why estimated 

persistence can vary with the horizon.  

Importantly, equation (11) could also be interpreted as a decomposition of the forecast 𝑥௧ାଶ|௧
௜  into 

two components. The first component, 𝜌𝑥௧ାଵ|௧
௜ , is a standard prediction based on the state process, while 

the second component is an adjustment due to forward information, which is beyond the information 

already included in the forecast for the previous step. In Section 5, we use this interpretation to quantify the 

second component as a measure of news. We further note that the decomposition in equation (11) provides 

a formal description of the common forecasting practice, that applies some “subjective adjustment” to the 

model-based forecast (Stark, 2013).   

We now examine what happens to the adjustment component when increasing the horizon of the 

forecast to ℎ ൅ 3 (i.e., 𝑥௧ାଷ|௧
௜ ), for which the forecaster does not have any forward information. As shown 

in Appendix B.1., the optimal weights do not change and remain 𝑤௞ as in equation (10) so that: 

𝑥௧ାଷ|௧
௜ ൌ 𝑤ଵ𝜌ଷ𝑥௧ ൅ 𝑤ଶ𝜌ଶ𝑦௧ିଵ,௧ାଵ

௜ ൅ 𝑤ଷ𝜌ଶ𝑦௧,௧ାଵ
௜ ൅  𝑤ସ𝜌𝑦௧,௧ାଶ

௜ ൌ 𝜌𝑥௧ାଶ|௧
௜ . (12) 

Since the forward signals do not refer to future periods beyond 𝑡 ൅ 2, 𝑥௧ାଶ|௧ is sufficient for an optimal 

forecast for 𝑡 ൅ 3 and there is no adjustment component as we have in equation (11). More generally, this 

result illustrates that the relationship between forecasts with two consecutive horizons would obey the 

simple relation of 𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜  for any horizon beyond the horizons of the forward signals (ℎ ൒ 3 in 

our example).  

We could use 𝑥௧|௧
௜ ൌ 𝑥௧ and equation (9) to express the relation between the forecasts with the 

shortest horizons, 𝑥௧ାଵ|௧
௜  and 𝑥௧|௧

௜ : 
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𝑥௧ାଵ|௧
௜ ൌ 𝜌𝑥௧|௧

௜ ൅ ሺ𝑊ଵ െ 1ሻ𝜌𝑥௧ ൅𝑊ଶ𝑦௧ିଵ,௧ାଵ
௜ ൅ 𝑊ଷ𝑦௧,௧ାଵ

௜ ൅  𝑊ସ𝜌ିଵ𝑦௧,௧ାଶ
௜ . (13) 

The interpretation is similar to equation (11), where the simple relation 𝑥௧ାଵ|௧
௜ ൌ 𝜌𝑥௧|௧

௜ , based on the state 

process, is modified due to variations in the optimal weights placed on the signal when the forecast horizon 

changes from ℎ ൌ 0 to ℎ ൌ 1. The optimal weights in 𝑥௧ାଵ|௧
௜  are 𝑊௞, while for 𝑥௧|௧ the whole weight is 

placed on the first signal, which is the perfectly observed realization of 𝑥௧ (i.e., 𝑥௧|௧
௜ ൌ 𝑥௧). These weight 

differentials are multiplied by the corresponding signals as in equation (11).  

This simple model with forward information can thus shed light on the empirical patterns when we 

examine regressions of 𝑥௧ା௛|௧
௜  on 𝑥௧ା௛ିଵ|௧

௜ . Specifically, if we estimate a cross-sectional regression of 𝑥௧ାଵ|௧
௜  

and 𝑥௧|௧
௜  generated by our model, the estimated persistence and 𝑅ଶ would be biased towards zero, since 𝑥௧|௧

௜  

has no cross-sectional variation. At the other extreme, if we estimate a cross-sectional regression of 𝑥௧ାଷ|௧
௜  

on 𝑥௧ାଶ|௧
௜ , the coefficient will be exactly 𝜌 with a perfect fit. The “middle”-horizon regression of 𝑥௧ାଶ|௧

௜  and 

𝑥௧ାଵ|௧
௜  will provide intermediate estimates.  More generally, changes in the optimal weights across forecast 

horizons induce a “deviation” from the state process, manifested as a regression error which is also 

correlated with the regressor 𝑥௧ା௛ିଵ|௧
௜ .  Consequently, the OLS coefficient estimate could be biased away 

from the underlying persistence parameter 𝜌 and the fit of the regression could be poor. However, as we 

move to the longer horizons and estimate the regression, the variation in the optimal weights across horizons 

would diminish, thus shrinking the error term of the regression. As a result, the relation between forecasts 

horizons converges to 𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜  as ℎ increases. 

Our example can provide further intuition for this pattern of gradual convergence. Specifically, 

instead of increasing ℎ, we can focus on the middle horizon ℎ ൌ 2, and examine how the relation between 

𝑥௧ାଶ|௧
௜  and 𝑥௧ାଵ|௧, as specified in equation (11), converges to 𝑥௧ାଶ|௧

௜ ൌ 𝜌𝑥௧ାଵ|௧
௜  when increasing the noise in 

the more forward-looking signal, namely, when increasing 𝜎ଶ
ଶ. We show in Appendix B.3. how the properties 

of the regression (estimated 𝜌 and 𝑅ଶ) change when increasing 𝜎ଶ
ଶ, in line with the empirical pattern across 

horizons. We also analyze how changes in 𝜌 affect the regression properties and we find that one can generate 

co-movement of the estimated persistence coefficient and 𝑅ଶ that mimics the empirical pattern. A summary 

of the results is presented in Table 1. More generally, our key insight from this analysis is that the empirical 

patterns are driven by the gap between optimal weights at different horizons ሺ𝑤௞ െ  𝑊௞ ሻ, which tends to 

diminish in both the forecast horizon (or 𝜎ଶ
ଶ) and the underlying persistence 𝜌.     

Finally, similar to the standard noisy information model, the augmented model with forward 

information can generate predictability of forecast errors, in the spirit of Coibion and Gorodnichenko 
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(2015). Consider the one step-ahead forecast error. After plugging equations (7) and (8) into equation (9) 

and taking the average across agents (and thus eliminating all the idiosyncratic terms), we get: 

𝑥௧ାଵ െ 𝑥௧ାଵ|௧ ൌ 𝑊ଵ𝜔௧ାଵ ൅𝑊ସሺെ𝜌ିଵ𝜔௧ାଶሻ, (14) 

where 𝑥௧ାଵ|௧ (without superscript 𝑖) denotes the cross-sectional average (consensus) forecast. Using 

equations (9) and (10), and averaging across agents, we find (see Appendix B.5 for derivations) that the 

revision of the average forecast is: 

𝑥௧ାଵ|௧ െ 𝑥௧ାଵ|௧ିଵ ൌ 𝑤ଵ𝜌𝜔௧ ൅ ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷ െ𝑊ଵሻ𝜔௧ାଵ ൅𝑊ସ𝜌ିଵ𝜔௧ାଶ. (15) 

Notice that both the forecast error and forecast revision contain the shocks 𝜔௧ାଵ  and 𝜔௧ାଶ, which produces 

a correlation between the forecast error and forecast revision. In the standard noisy information setup, the 

correlation arises from shocks up to time 𝑡, due to the gradual processing of imperfect information about 

the past. By contrast, in the forward information setup, the correlation between forecast errors and revisions 

arises from future shocks, due to the gradual processing of forward information. In Appendix B.5., we 

derive the explicit expression for the OLS coefficient in a regression of the (mean-level) forecast error on 

forecast revision and show that it should be positive, in line with Coibion and Gorodnichenko (2015). 

Hence, the forward information model brings a different interpretation to the well-documented 

predictability of forecast errors.8 

 

3.2. General Framework           

At time 𝑡, agents receive multiple signals denoted by 𝑦௧,௧ା௛
௜ , which refers to a time 𝑡 ൅ ℎ in the future, 

where ℎ is the horizon of the signal, running from 0 to 𝐻 periods ahead. The state-space model could simply 

be written as: 

State: 

𝑥௧ ൌ 𝜌𝑥௧ିଵ ൅ 𝜔௧ , (16) 

where 𝜔௧ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ఠଶሻ.   

 
8 Recent studies have documented forecast error predictability even at the individual level, mostly with the opposite 
sign. Thus, forecasts underreact to information at the aggregate level but overreact at the individual level. Motivated 
by this evidence, they advocated a hybrid approach that combines informational frictions and behavioral frictions 
(Broer and Kohlhas, 2019; Bordalo et al., 2020; Angeletos et al., 2020). Such a combination is still required when 
information frictions are due to forward information. However, note that according to equation (14) the impulse 
response function of forecast errors to macroeconomic shocks may flip signs. This property speaks to the evidence on 
IRF of forecast errors, studied in Angeletos et al. (2020), which is explained there by over-extrapolation. Forward 
information may also call for a reinterpretation of individual-level results as well. For example, do forecasters 
overreact to all types of information in the same way? Or do they tend to do so only with respect to past information 
rather than forward information or vice versa? 
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Measurement: 

𝑦௧,௧ା௛
௜ ൌ 𝑥௧ା௛ ൅ 𝜈௧,௧ା௛

௜ , (17) 

where ℎ ൌ 0, … ,𝐻 and 𝜈௧,௧ା௛
௜ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎௛

ଶሻ is an idiosyncratic noise. Thus, agents have some forward 

noisy information referring to future values of the fundamental up until 𝐻 periods ahead. There are no 

useful signals from 𝐻 ൅ 1 period and onward. We could view this as if the sequence of 𝜎௛
ଶ goes to infinity 

with ℎ and 𝜎ுାଵ
ଶ  is so large that a forward signal for horizon 𝐻 ൅ 1 is too noisy to be practically useful. 

Although it is natural to assume that 𝜎௛
ଶ increases in ℎ (which is consistent with the data as we describe 

below), we do not restrict our framework to such monotonicity. For instance, some forward guidance 

relating to the path of inflation a year from now may represent an improved forward signal with at a horizon 

of a year ahead.    

It is also interesting to consider a case where the current fundamental is observed perfectly, by 

imposing 𝜎଴
ଶ ൌ 0. In this case, all heterogeneity in expectations is driven by signals referring to the future 

and not because of imprecise current/past data, as it is assumed by the standard noisy-information 

framework. As before, the standard model is nested in our general framework by imposing 𝜎௛
ଶ to be infinite 

for any ℎ, except for 𝜎଴
ଶ ൐ 0. Under these restrictions, there is no valuable forward information and 

realizations are not perfectly observed. Section 4 will use these restrictions to test our framework against 

the standard model. 

The augmented state-space model, corresponding to equations (16) and (17), takes the following 

form: 

State: 

𝒙௧ ≡ ൦

𝑥௧ାு
𝑥௧ାுିଵ

⋮
𝑥௧

൪ ൌ ൦

𝜌 0 ⋯ 0
1 0 0 0
⋱ ⋱ ⋱ ⋮
0 ⋱ 1 0

൪ 𝒙௧ିଵ ൅ 𝑆′𝜔௧ାு ൌ Ρ𝒙௧ିଵ ൅ 𝑆′𝜔௧ାு, (18) 

 

where  𝑆 ൌ ሾ1 0 ⋯ 0ሿ, so that the variance-covariance matrix of  𝑆′𝜔௧ is Σఠ ൌ 𝑆′𝑆𝜎ఠଶ . 

Measurement: 

𝒚௧
௜ ≡

⎣
⎢
⎢
⎢
⎡ 𝑦௧,௧ାு

௜

𝑦௧,௧ାுିଵ
௜

⋮
𝑦௧,௧
௜ ⎦

⎥
⎥
⎥
⎤

ൌ ൦

𝑥௧ାு
𝑥௧ାுିଵ

⋮
𝑥௧

൪ ൅

⎣
⎢
⎢
⎢
⎡ 𝜈௧,௧ାு

௜

𝜈௧,௧ାுିଵ
௜

⋮
𝜈௧,௧
௜ ⎦

⎥
⎥
⎥
⎤

ൌ 𝒙௧ ൅ 𝝂௧
௜ , (19) 

where the variance-covariance matrix of 𝝂௧
௜  is Σఔ ൌ 𝑑𝑖𝑎𝑔ሼ𝝈ఔଶሽ with 𝝈ఔଶ

ᇱ
ൌ ሾ𝜎ு

ଶ 𝜎ுିଵ
ଶ ⋯ 𝜎଴

ଶሿ, i.e., the 

idiosyncratic noise in the forward signals is uncorrelated across horizons. We also assume that the noise is 
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uncorrelated across agents and that shocks to the fundamentals and noise in the forward signal are 

uncorrelated (i.e., 𝐸൫𝜔௧ା௛𝝂௧
௜ ൯ ൌ 𝟎).9  

Based on this representation of the state-space, the Kalman filter can be applied to derive the 

optimal forecast of an agent 𝑖:10 

𝒙௧|௧
௜ ൌ 𝒙௧|௧ିଵ

௜ ൅ G൫𝒚௧
௜ െ 𝒙௧|௧ିଵ

௜ ൯, (20) 

where 𝒙௧|௧
௜  is a vector of forecasts made at time 𝑡, with horizons running from 0 to 𝐻 steps ahead, and G is 

the gain matrix (with dimension 𝐻 ൅ 1).  

Importantly, the ℎ step-ahead forecast, 𝑥௧ା௛|௧
௜ , when ℎ ൐ 𝐻, should simply obey  

𝑥௧ା௛|௧ ൌ 𝜌𝑥௧ା௛ିଵ|௧ , (21) 

which resembles equation (4) in the standard noisy information framework. However, we can show 

(Appendix A) that the forecasts for shorter horizons (0 ൏ ℎ ൑ 𝐻) in vector 𝒙௧|௧
௜  has a different dynamic:  

𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜ ൅ ൫𝑥௧ା௛|௧ିଵ
௜ െ 𝜌𝑥௧ା௛ିଵ|௧ିଵ

௜ ൯

൅ ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯൫𝒙௧ െ 𝒙௧|௧ିଵ
௜ ൯ ൅ ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯𝝂௧

௜ , 
(22) 

where 𝐆௝ denotes the vector of elements in row 𝑗 ൌ 𝐻 െ ℎ ൅ 1 of matrix G.  Equation (22) corresponds to 

equation (11) in our simple example above. As stressed earlier, introducing forward information that varies 

across horizons creates a variation across horizons in the optimal weights which did not exist in the standard 

noisy information framework. In equation (11), the variation in the weights was captured by ሺ𝑤௞ െ  𝑊௞ሻ. 

Here it is captured by the term ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯, where 𝐆௝and 𝐆௝ାଵ summarize the optimal weights applied in 

the forecasts for consecutive horizons (𝐆௝ାଵ is adjusted to the subsequent horizon ℎ by the loading 𝜌). 

Also similar to equation (11), the weight differential is multiplied by the signals. In the more general 

framework, the signals are divided into three components: 

1. The lag component ൫𝑥௧ା௛|௧ିଵ
௜ െ 𝜌𝑥௧ା௛ିଵ|௧ିଵ

௜ ൯, capturing signals from the past. This recursive form 

of the Kalman filter was absent in our above example, since the example above assumed that 

eventually the fundamental was perfectly observed. 

2. The ex-post “errors” of lagged forecasts ൫𝒙௧ െ 𝒙௧|௧ିଵ
௜ ൯, representing the additional information in 

the new forward signals. 

 
9  Although we rule out these types of correlations to simplify the analysis, our framework still imposes a structural 
correlation of the signals across horizons, due to the correlation between future fundamentals (i.e., 𝑥௧ା௛ is correlated 
with 𝑥௧ା௛ା௦). Alternatively, the signals can refer to the future shocks 𝜔௧ା௛s and therefore be uncorrelated. However, 
we will demonstrate that these types of forward signals could not account for the empirical patterns in the previous 
section. 
10 See Appendix A. The analysis there also covers the case with common noise in the signals. 
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3. The noise in the new signals (𝝂௧
௜ ). 

Equation (22) is key for understanding the empirical patterns documented in the previous section. It defines 

the missing error term in the regression of 𝑥௧ା௛|௧
௜  on 𝑥௧ା௛ିଵ|௧

௜  as in specification (4). Furthermore, it shows 

that the error-term is correlated with the regressor 𝑥௧ା௛ିଵ|௧
௜  since the forecast 𝑥௧ା௛ିଵ|௧

௜  applies the same 

signals that are captured by the error term.  Consequently, the estimated coefficient would be biased, while 

the sign of the bias depends on the signs of the elements in the weight differential vector ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯.
11 

When the horizon is beyond 𝐻, the weight differential would shrink so that the bias goes to zero and the 𝑅ଶ 

converges to 1. As in the simple model above, equation (22) further allows us to extract the forward signals 

about future fundamentals which we cover in Section 5. 

   

3.3.Simulation 

The purpose of the simulation is to examine whether our forward information framework can qualitatively 

replicate the empirical patterns documented in the previous section. We perform simulations that use 

different degrees of persistence in the state process. Each simulation is based on 1,000 draws and includes 

the four following steps: 

I. Simulating the state equation: The state process is simulated with a certain degree of persistence 

(𝜌) for a period similar to the SPF survey (about forty years of quarterly data). The variance of the 

shocks to the fundamental is set to 𝜎ఠଶ ൌ 1. 

II. Simulating the measurement equation: Forward noisy signals are simulated for a group of 40 

forecasters (similar to the number of participants in the SPF survey). The horizon of the signals 

runs from 0 to 7, and the vector of the noise variance is set to  𝝈ఔଶ
ᇱ
ൌ

ሾ10000 100 4 3   2 1 0.5 0.2ሿ. This structure assumes that noise increases in the 

horizon, and signals become extremely uninformative for horizons ℎ ൌ 6 and ℎ ൌ 7, where the 

noise variance goes to 100 and 10000, respectively (and then to infinity). To examine if the pattern 

of increasing noise is essential, we also conduct a second set of simulations in which all the variance 

parameters in 𝝈ఔଶ
ᇱ
 are set to 2.   

III. Computing the forecasts: The gain matrix G is computed, based on the Kalman filter, and then used 

to calculate optimal forecasts, with horizons running from 0 to 7, for the 40 simulated forecasters, 

using equation (20).  

 
11  By contrast, if forward signals refer purely to future shocks, as mentioned in footnote 9, the error-term would not 
be correlated with 𝑥௧ା௛ିଵ|௧

௜  and the estimated coefficient would not be biased.   
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IV. Estimating regressions: For a certain “quarter” in the middle of the simulated sample, we run cross-

sectional regressions of 𝑥௧ା௛|௧
௜  on 𝑥௧ା௛ିଵ|௧

௜ , for each ℎ between 1 to 7, and obtain the coefficient 

estimate and 𝑅ଶ statistic.12 

 

Figure 5 reports the estimated persistence 𝜌ො (Panel A) and 𝑅ଶ statistics (Panel B), measured on the 

vertical axis. The value of 𝜌, applied in each simulation, is indicated by the first horizontal axis. The second 

horizontal axis indicates the horizon of each regression (i.e. ℎ ൌ 3 corresponds to a regression of 𝑥௧ାଷ|௧
௜  on 

𝑥௧ାଶ|௧
௜ ሻ. The description is therefore equivalent to Figure 1, with a further dimension of variation in 𝜌.   

The simulations qualitatively reproduce all patterns documented in the previous section. 

Specifically, both the estimated persistence and 𝑅ଶ demonstrate the pattern of convergence across horizons. 

For short horizons their values are low. As the regression is estimated for longer horizons the coefficient 

gets closer to 𝜌 and the fit of the regression gets stronger. In addition, for each horizon, 𝜌ො and 𝑅ଶ get higher 

when 𝜌 is higher. Appendix C provides more details of the simulation results, which are in line with the 

SPF evidence. It also makes a comparison with another set of simulations, in which the variance of the 

noise in the signals is fixed across the horizons. 

Besides rationalizing the empirical patterns, our model and simulations are instructive about the 

detection of horizon 𝐻, namely, the point in the future from which forward signals are no longer 

informative.  The simulation results imply a convergence of the coefficient estimate to the value of 𝜌. On 

one hand, we have seen that estimating the persistence of inflation with specification (4) could lead to a 

biased measure, mainly downward. On the other hand, this bias would vanish if we use forecasts with long 

enough horizons, for which forward signals are almost uninformative. Similarly, in Figures 1 and 2, we 

observe signs of convergence for 𝜌ො at horizons ℎ ൌ 3,4. This convergence thus indicates that the signals at 

these horizons should be weak. Hence, SPF forecasters obtain useful forward information until about a year 

ahead on average. Furthermore, at these horizons, the estimated persistence is less likely to be biased. 

 

4. Forward information: Direct evidence 

Building on Goldstein (2021), we can have a more direct test of forward information by focusing on the 

deviation of an individual forecast from the consensus forecast. Note that the optimal vector of forecasts in 

equation (20) could be expressed as follows (using the measurement equation (19)): 

 
12   As in Figure 2, we apply a narrow window of 8 cross-sections ending at the chosen “quarter”. Similar qualitative 
results are obtained with a single cross-section. 
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𝒙௧|௧
௜ ൌ 𝒙௧|௧ିଵ

௜ ൅ G൫𝒚௧
𝒊 െ 𝒙௧|௧ିଵ

௜ ൯ ൌ 𝒙௧|௧ିଵ
௜ ൅ G൫𝒙௧ ൅ 𝝂௧

𝒊 െ 𝒙௧|௧ିଵ
௜ ൯

ൌ ሺ𝐼 െ 𝐺ሻ𝒙௧|௧ିଵ
௜ ൅ 𝐺൫𝒙௧ ൅ 𝝂௧

𝒊൯. 
(23) 

Next, we take the average across individuals (hence we drop superscript 𝑖) and obtain: 

𝒙௧|௧ ൌ ሺ𝐼 െ 𝐺ሻ𝒙௧|௧ିଵ ൅ 𝐺𝒙௧ , (24) 

where  𝒙௧|௧ and 𝒙௧|௧ିଵ are cross-sectional averages (consensus forecasts) of  𝒙௧|௧
௜ and 𝒙௧|௧ିଵ

௜ , respectively. 

Subtracting equation (24) from equation (23) we get 

𝒙௧|௧
௜ െ 𝒙௧|௧ ൌ ሺ𝐼 െ 𝐺ሻ൫𝒙௧|௧ିଵ

௜ െ 𝒙௧|௧ିଵ൯ ൅ 𝐺𝝂௧
௜ . (25) 

Equation (25) describes a simple relationship between the deviation of an individual forecast from the 

consensus forecast in period 𝑡  and the lagged deviation from period 𝑡 െ 1.  Because idiosyncratic noise 𝝂௧
௜  

is uncorrelated with forecasts made at time 𝑡 െ 1,13 we can use OLS to directly estimate the elements in the 

gain matrix, row by row, by running a regression of the deviation from the mean on lagged deviation, for 

each forecast horizon: 

𝑥௧ା௛|௧
௜ െ 𝑥௧ା௛|௧ ൌ 𝛽଴൫𝑥௧ାு|௧ିଵ

௜ െ 𝑥௧ାு|௧ିଵ൯

൅ 𝛽ଵ൫𝑥௧ାுିଵ|௧ିଵ
௜ െ 𝑥௧ାுିଵ|௧ିଵ൯ ൅ ⋯

൅ 𝛽ு൫𝑥௧|௧ିଵ
௜ െ 𝑥௧|௧ିଵ൯ ൅ 𝑒𝑟𝑟𝑜𝑟௧ , 

(26) 

where the 𝛽 coefficients are elements of row 𝐻 െ ℎ ൅ 1 in the matrix ሺ𝐼 െ 𝐺ሻ. Note that the set of regressors 

in equation (26) is the same for all ℎ.  

Specification (26) can be viewed as an augmented version of the standard noisy information model 

where agents receive noisy signals about the current value of the fundamental. Indeed, Goldstein (2021) 

has proposed the following specification for the standard model: 

𝑥௧ା௛|௧
௜ െ 𝑥௧ା௛|௧ ൌ 𝛽ேைூௌ௒൫𝑥௧ା௛|௧ିଵ

௜ െ 𝑥௧ା௛|௧ିଵ൯ ൅ 𝑒𝑟𝑟𝑜𝑟௧ , (27) 

where 𝛽ேைூௌ௒ is equal to ሺ1 െ 𝐺ேைூௌ௒ሻ and 𝐺ேைூௌ௒ is the Kalman gain, representing the weight placed on 

the single noisy signal. The standard framework imposes a restriction on the estimated matrix ሺ𝐼 െ 𝐺ሻ, 

requiring that all the off-diagonal elements should be equal to zero. This provides a straightforward test of 

our model with forward information against the null of the standard noisy-information version without 

forward signals: We simply need to estimate specification (26) and test the significance of all the 

coefficients, other than the coefficient on ൫𝑥௧ା௛|௧ିଵ
௜ െ 𝑥௧ା௛|௧ିଵ൯.  

 
13  A similar specification is obtained, when adding a common noise besides the individual-specific noise. As 
demonstrated in appendix A, by taking the deviation of the individual forecast from the mean, the term with the 
common noise will be dropped out, since it appears in the same way in both forecasts.   
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Specification (26) is also useful for testing the null that heterogeneity in information may only be 

due to forward signals, while information about realized inflation is not noisy as in the standard framework. 

Under the null, the coefficients in the regression for ℎ ൌ 0 (i.e., backcasts of the last quarter are also 

provided by SPF participants) should all be zeroes. Intuitively, when all forecasters observe realized 

inflation in the same way, the deviation of their backcasts from the mean should not be persistent.14  We 

implement this test in Table 2. We find that none of the coefficients are significant when the regression is 

estimated on the full sample. Although some coefficients are statistically significant when we estimate 

specification (26) decade by decade, the estimates are economically small and R2 stays close to zero.  These 

results suggest that information is noisy because of forward signals rather than signals about the current 

state of the fundamental.  

To explore the importance of forward information further, we estimate specification (26) for longer 

horizons (ℎ ൐ 0) and test the restrictions implied by specification (27). As reported in Table 3, the 

coefficients on ൫𝑥௧ା௛|௧ିଵ
௜ െ 𝑥௧ା௛|௧ିଵ൯, which represent diagonal elements, are strongly significant. But in 

each estimation, there is at least one additional coefficient that is highly significant, despite the fact that 

regressors tend to be correlated. In other words, we have at least one non-zero off-diagonal element in each 

row of the gain matrix (columns in Table 3 correspond to rows in the matrix 𝐼 െ 𝐺). This is consistent with 

SPF forecasters utilizing forward signals. Furthermore, information criteria suggest that including other 

horizons in specification (26), as opposed to (27), improves the fit considerably, which is consistent with 

important forward information. Although it is hard to provide economic interpretation for the estimated 

coefficients, we estimate specification (26) on simulated data to check if the estimates in Table 3 are 

plausible. We find (Appendix C) that in the more realistic case, where the variance of the noise increases 

in the horizon, the simulation provides patterns that are similar to Table 3.15 For example, the dominant 

coefficients are those that correspond to the diagonal elements in ሺ𝐼 െ 𝐺ሻ and they tend to increase along 

the diagonal, namely, when the specification is estimated for longer horizons. The standard noisy 

information model cannot reproduce this pattern. In summary, forward information appears to be 

quantitatively important.  

 

5. Forward information: Measurement and applications 

 
14   More formally, the null imposes a restriction on the last row of the gain matrix, specifically,  𝐆ுାଵ ൌ
ሾ0 0 ⋯ 1ሿ. Hence, the corresponding row in ሺ𝐼 െ 𝐺ሻ, estimated by (23), should be a vector of zero coefficients. 
The tractable example in Section 3.1. implies such a restriction. See also the analysis in Appendix B.2.   
15 In Appendix C, we also verify that truncation of longer horizons with additional information, which can happen in 
practice, does not raise concerns about the available coefficient estimates. 



18 
 

Measurement of news about the future is usually a challenging task that requires structural restrictions or 

additional variables. We propose an alternative approach to recover forward information from expectations 

data. We first illustrate how the quantification of forward information directly follows from our framework, 

and then use several applications to demonstrate our method, focusing on SPF inflation forecasts.   

5.1.  Quantifying forward information  

We can re-write equation (22) in the following form: 

𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜ ൅ 𝐹𝐼௧ା௛|௧
௜ , (28) 

where  

𝐹𝐼௧ା௛|௧
௜ ≡ ൫𝑥௧ା௛|௧ିଵ

௜ െ 𝜌𝑥௧ା௛ିଵ|௧ିଵ
௜ ൯ ൅ ሺ𝐆௛ାଵ െ 𝜌𝐆௛ሻ൫𝒙௧ െ 𝒙௧|௧ିଵ

௜ ൯ ൅ ሺ𝐆௛ାଵ െ 𝜌𝐆௛ሻ𝝂௧
𝒊  

and 𝐹𝐼௧ା௛|௧
௜  represents the adjustment to the forecast induced by forward information. The expression for 

𝐹𝐼௧ା௛|௧
௜  has three terms. The first term in the expression is forward information inherited from the previous 

period. The second term is new information from observing 𝒙௧. The last term is the noise contained in the 

signal about 𝒙௧. One can also use equation (11) to re-write 𝐹𝐼௧ା௛|௧
௜  as: 

𝐹𝐼௧ା௛|௧
௜ ൌ ෍൫𝑊௞,௛ െ  𝑊௞,௛ିଵ൯

௄

௞ୀଵ

𝑆𝑖𝑔𝑛𝑎𝑙௞,௧ା௛|௧
௜ , (29) 

which underscores that forward information is a function of signals about the future.  

Although signals in equation (29) are not observed, one can readily recover forward information 

using equation (28): 

𝐹𝐼௧ା௛|௧
௜ ൌ 𝑥௧ା௛|௧

௜ െ 𝜌𝑥௧ା௛ିଵ|௧
௜ . (30) 

By taking the average across forecasters, we obtain an aggregate time series of forward information: 

𝐹𝐼௧ା௛|௧ ൌ 𝑥௧ା௛|௧ െ 𝜌𝑥௧ା௛ିଵ|௧ . (31) 

Equation (31) suggests a simple method for quantifying forward information. To illustrate how it works, 

suppose we are interested in constructing forward information at horizon ℎ ൌ 0. To this end, we compute: 

𝐹𝐼௧|௧ ൌ 𝑥௧|௧ െ ሺ𝑐̂௧ିଵ ൅ 𝜌ො௧ିଵ𝑥௧ିଵሻ, (32) 

where 𝑐௧ and 𝜌௧ are time-varying intercept and slope that generalize equation (31) by applying the following 

steps: 

(i) Forecast data: For 𝑥௧|௧, we use the average inflation forecasts for the current quarter. The 

backcast 𝑥௧ିଵ|௧ that refers to inflation in the previous quarter is replaced by actual lag 𝑥௧ିଵ. As 
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we show above, the information on realized inflation is almost perfect, making 𝑥௧ିଵ equivalent 

to the backcast. 

(ii) Persistence parameter: Because forecasters may use persistence 𝜌 that it is different from the 

actual value, we need to recover 𝜌 from forecasts. As we show above, 𝜌 estimated by OLS 

varies with the horizon because OLS is biased when forward information is present. However, 

as we increase the forecast horizon, one may expect forward information to become less precise 

and thus the bias in the OLS estimate of 𝜌 should decline. Consistent with this notion, we 

observe that 𝑅ଶ and 𝜌ො increase with the horizon and stabilize at long horizons. Because some 

forecasts are missing at ℎ ൌ 4, we use ℎ ൌ 3 to estimate 𝜌, that is, we regress 𝑥௧ାଷ|௧
௜  on 𝑥௧ାଶ|௧

௜  

and we essentially use the time-varying estimates in Figure 2. Note that we use 𝜌ො௧ିଵ rather than  

𝜌ො௧ to recover 𝐹𝐼௧|௧ because the time-varying 𝜌ො௧ may contain some news with respect to changes 

in the persistence parameter (𝜌ො௧ will be used to evaluate 𝐹𝐼௧ା௛|௧ for ℎ ൐ 0). 

(iii) Constant parameter: The AR(1) state equation in equation (16) (and equation (31)) did not include 

a constant. In practice, we include a constant that can capture time-varying trend inflation. The 

constant is estimated by the time-varying regressions from the previous step, and we take again 

a lag 𝑐̂௧ିଵ, due to news about changes in trend inflation that are embedded in 𝑐̂௧.
 16  

Using the same logic, we can recover forward information for other horizons from: 

𝐹𝐼௧ା௛|௧ ൌ 𝑥௧ା௛|௧ െ ൫𝑐̂௧ ൅ 𝜌ො௧𝑥௧ା௛ିଵ|௧൯. (33) 

Note that this equation measures only the “marginal” forward information across horizons.17 

 Figure 6 plots the series of forward information produced by equations (32) and (33) for CPI 

inflation and the corresponding projections in the SPF. Panel A shows a strong co-movement of 𝐹𝐼௧|௧ and 

actual inflation. In particular, times of high variation in forward information corresponds to times of high 

variation in inflation. Other panels show series for ℎ ൌ 1, … ,4. The series of forward information fluctuate 

quite closely to each other and variation diminishes as the horizon increases.  

More generally, equations (28) and (29) suggest several properties for forward information. First, 

the variation of forward information over time decreases in the horizon. This pattern is in line with 

diminishing information in forward signals for longer horizons. It is also driven by the decay in weight 

 
16  The results are quite similar though, when employing 𝑐̂௧ and 𝜌ො௧, as well as when employing the survey backcasts 
instead of the actual lag 𝑥௧ିଵ.   
17 Although we stick here to a simplified AR(1) process, our method can be easily extended to processes of higher 
order by the same principles. For example, the representation of equation (32) for VAR (1) would be 𝐹𝐼௧|௧ ൌ 𝑥௧|௧ െ
ሺ𝑐̂௧ିଵ ൅ 𝝆ෝ௧ିଵ𝒙௧ିଵሻ where 𝒙௧ିଵ is a vector of variables and 𝝆ෝ௧ିଵ is a vector of coefficient estimates. The coefficients 
will again be estimated using forecast data, by regressing 𝑥௧ା௛|௧ on a vector of forecasts 𝒙௧ା௛ିଵ|௧. 
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differentials ൫𝑊௞,௛ െ  𝑊௞,௛ିଵ൯ across horizons. As illustrated in Section 3, 𝑊௞,௛ିଵ approaches 𝑊௞,௛, as the 

horizon increases. Second, the series for forward information are correlated across horizons because the 

same signals are applied at each horizon. The correlation should eventually decay due to the diminishing 

variation.  Third, series for forward information should be serially correlated due to the overlap in forward 

signals over time. That is, previous forward signals which look beyond time 𝑡 are still useful for the forecast 

made at time 𝑡. These properties are broadly supported by the summary statistics presented in Table 4.18 

5.2. Forward information and predictability of inflation 

If useful, forward information should help to predict future inflation. To assess the quality of forward 

information, we regress future values of inflation on lagged inflation and forward information. We report 

results in Table 5. Column (2) provides estimates for the nowcast. This regression has two predictors: the 

lagged inflation and forward information 𝐹𝐼௧|௧. The coefficient on forward information is highly significant 

and 𝑅ଶ rises dramatically by ≈0.6 compared to a regression without 𝐹𝐼௧|௧ (column (1)). Thus, forward 

information can explain a large share of current inflation.   

Each subsequent column reports estimates from a regression of inflation at time 𝑡 ൅ ℎ on lagged 

inflation and all forward information components available at time 𝑡, which refer to future periods up to 

𝑡 ൅ ℎ. We find a significant coefficient for 𝐹𝐼௧ାଵ|௧. For longer horizons the effect is not significant, but so 

is the effect of lagged inflation. Overall, these findings are in line with the evidence in Section 2. As 

demonstrated above, the estimates of persistence regressions in Figure 2 were biased due to forward 

information, which is more dominant at the shorter horizons. The results in Figure 2 illustrate that the 

horizons with the main biases are ℎ ൌ 0,1. Thus, the main predictability of forward information should be 

obtained for these horizons.19  

Another way to gauge the importance of forward information is to examine the ratio 

ට∑ ൫𝐹𝐼௧ା௛|௧൯
ଶ

௧ ට∑ ൫𝑥௧ା௛|௧൯
ଶ

௧൘  where the numerator is the variation in marginal forward information (that 

is, information that applies only to horizon ℎ) and the denominator is the variation in the consensus forecast 

𝑥௧ା௛|௧. A higher value of the ratio represents a larger contribution of forward information to forecasts. Table 

 
18 Another related implication of our measure of forward information, based on the theoretical analysis in Section 3, 
is that variation in news over time may induce variations in expectations' persistence, especially at the shorter horizons. 
In times of big events, with potentially high provision of forward information, this biasing effect can be particularly 
strong, even at longer horizons. Appendix E explores such events and reports evidence in this direction, especially 
following the outbreak of COVID-19. 
19 In Appendix E we present another related application in which we analyze the impulse response to our inflation 
forward information in VARs. We also compare our approach to the approach of news shocks in Barsky and Sims 
(2011). 
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4 reports that the variance of 𝐹𝐼௧|௧ is relatively close to the variance of actual inflation which points toward 

a high contribution of forward information. We find that the ratio for the nowcast is 0.356 for the full sample 

but the ratio has been increasing over time.20 For longer horizons, the ratio is 0.157 for ℎ ൌ 1 and declines 

to 0.033 for ℎ ൌ 4. The results suggest that professional forecasters have a lot of additional information 

about current and near-future inflation but the quality of (marginal) forward information rapidly declines 

in forecast horizon.  

5.3. Forward information and disagreement 

As we discussed above, variation in forward information across agents can be a source of disagreement in 

forecasts. Although previous subsections focus on consensus forecasts, we can apply the same algorithm to 

the data at the forecaster level. In particular, we can estimate persistence 𝜌௜ and intercept 𝑐௜ for each 

forecaster 𝑖 and then compute the “model” component of the forecast with ൫𝑐̂௧
௜ ൅ 𝜌ො௧

௜𝑥௧ା௛ିଵ|௧
௜ ൯ and hence 

express forward information as 𝐹𝐼௧ା௛|௧
௜ ൌ 𝑥௧ା௛|௧

௜ െ ൫𝑐̂௧
௜ ൅ 𝜌ො௧

௜𝑥௧ା௛ିଵ|௧
௜ ൯.21 In the next step, we compare the 

cross-sectional variation in forecasts (𝑥௧ା௛|௧
௜ ) with the cross-sectional variation in forward information 

(𝐹𝐼௧ା௛|௧
௜ ). We report results in Table 6.  

 We find that forward information accounts for a large fraction of cross-sectional variation in the 

data. For example, nowcasts and one-step-ahead forecasts are characterized by 𝑣𝑎𝑟൫𝐹𝐼௧ା௛|௧
௜ ൯ ൐

𝑣𝑎𝑟൫𝑥௧ା௛|௧
௜ ൯. This pattern also underscores the negative correlation between forward information (“the error 

term” in equation (28)) and the model-implied forecast (𝑐̂௧
௜  

൅𝜌ො௧
௜𝑥௧ା௛ିଵ|௧

௜ ), which rationalizes the bias in the estimates of inflation persistence. As we increase the 

horizon, the cross-sectional variation in forward information declines faster than the cross-sectional 

variation in forecasts, which yields 𝑣𝑎𝑟൫𝐹𝐼௧ା௛|௧
௜ ൯ ൏ 𝑣𝑎𝑟൫𝑥௧ା௛|௧

௜ ൯ for ℎ ൒ 2. However, even at longer 

horizons ("marginal") forward information accounts for more than a third of the variation in forecast 

disagreement and thus remains a meaningful contributor to forecast dispersion.  

5.4. Forward information and the Taylor rule            

 
20 Appendix Figure G.5. presents time series for the ratio for the nowcast. The ratio fluctuates between 18% to 66% 
over the sample period. The contribution of forward information deteriorates following the years of high inflation 
which can result from a growing inattention to inflation following the Great Moderation and the decline in trend 
inflation. However, the ratio recovers in the recent years which can result from higher provision of informative forward 
signals in recent years, potentially due to forward guidance provided by the central bank. 
21  We also follow the analysis in Figure 4 and estimate time-varying persistence and intercept for each forecaster. 
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If forward information helps predict inflation, one may expect policymakers to act on this information. 

Indeed, given that monetary policy affects the economy with significant lags, policymakers should react to 

news about changes in future inflation rather than wait until changes in inflation materialize. Following 

Romer and Romer (2004) and Coibion and Gorodnichenko (2011), we apply the following specification to 

test this prediction:  

𝑟௧ ൌ 𝑐 ൅ 𝛾𝜋௧|௧
ீ஻ ൅ 𝜃ଵ𝑔𝑎𝑝௧|௧

ீ஻ ൅ 𝜃ଶ𝑔𝑟௧|௧
ீ஻ ൅ 𝜌ଵ

௥𝑟௧ିଵ ൅ 𝜌ଶ
௥𝑟௧ିଶ ൅ 𝜀௧ , (34) 

where 𝑟௧ is the federal funds rate,  𝜋௧|௧
ீ஻ is expected CPI inflation (nowcast) and 𝑔𝑎𝑝௧|௧

ீ஻ and  𝑔𝑟௧|௧
ீ஻ are 

expectations (nowcast) of the output gap and GDP growth, respectively. We use forecast data from the Fed 

Greenbooks (hence, the superscripts GB), which are prepared by the Fed's staff before FOMC meetings. 

Our focus is on the effect of 𝐹𝐼௧ା௛|௧, which we construct following equations (32) and (33).   

Table 7 presents estimation results of specification (34) for 1983Q1-2015Q4.22 Each column 

applies different measures of expected inflation. Column (1) presents results for the standard policy reaction 

function estimated in the literature. The estimates are broadly consistent with the results reported in earlier 

work. For example, the policy response is highly inertial (𝜌ොଵ ൅ 𝜌ොଶ ൎ 0.95) and the long-run response to 

inflation is generally consistent with determinacy (𝛾ො/ሺ1 െ 𝜌ොଵ െ 𝜌ොଶሻ ൎ 1.05). The dynamics of the fed funds 

rate is largely explained by macroeconomic conditions (𝑅ଶ ൌ 0.982).  

In column (2), we use 𝜋௧|௧
ீ஻ ൌ ሺ𝑐̂௧ିଵ ൅ 𝜌ො௧ିଵ𝜋௧ିଵሻ ൅ 𝐹𝐼௧|௧

ீ஻ (i.e., equation (32)) to separate the 

contributions due to the “model” component ሺ𝑐̂௧ିଵ ൅ 𝜌ො௧ିଵ𝜋௧ିଵሻ and forward information (𝐹𝐼௧|௧
ீ஻). We 

modify equation (34) to have different responses to these two components. We find that only the forward-

information component is significant, while the “model” component of 𝜋௧|௧
ீ஻ is not. These results suggest 

that, like nowcasts in the SPF, the Greenbook nowcasts for inflation contain information useful for 

policymakers and they respond to this information strongly.  

Column (3) presents results for an augmented specification where in addition to 𝐹𝐼௧|௧
ீ஻ we control 

for forward information at longer horizons. We find that policymakers significantly respond to 𝐹𝐼௧|௧
ீ஻ and 

𝐹𝐼௧ାଵ|௧
ீ஻ . The estimated coefficients are positive for longer horizons (ℎ ൐ 1 in column (3)) but they are 

imprecisely estimated. These findings are in line with our earlier results for the SPF, i.e., forward 

information is useful at short horizons but its ability to forecast at longer horizons is limited.  

 
22  The Greenbooks are published with a lag of five years. To apply (32) and (33) we use the time-varying estimates of 
𝑐̂௧ and 𝜌ො௧ that were obtained above using cross-sections of SPF forecasts. For this reason, the sample period starts at 
1983 which is also right after the Volcker disinflation. For lagged inflation, we take backcasts of the Greenbooks to 
align with the Greenbook's definition of quarterly inflation. There are 8 Greenbooks every year which precede the 
meetings of the FOMC, usually two in a quarter. In each quarter we take the forecasts from the earlier Greenbook 
which are provided around the same time of the SPF forecasts. The Greenbooks are available at the website of the 
Philadelphia Fed.    
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 To assess the stability of this pattern, we split the sample roughly in halves (1983-1999 and 2000-

2015) and report results in columns (4) and (5). We find that forward information can predict policy in both 

subsamples. However, forward information at longer horizons appears to be more important in the second 

subsample: the coefficient on 𝐹𝐼௧ାଶ|௧
ீ஻  is now also statistically significant. We conclude that forward 

information plays a significant role in shaping monetary policy.   

 

6. Evidence from additional macro forecasts 

To preserve space, our empirical analysis has been focused on inflation expectations from the SPF. This 

section briefly reports results for additional macroeconomic expectations. For a detailed description of the 

results, see Appendix F. 

More SPF forecasts. We examine forecast data of other measures of inflation (core, PCE, and GDP deflator 

inflation) and additional key variables (GDP growth, unemployment and interest rates). We first estimate 

the persistence regressions from Section 2 across the forecast horizons. The results broadly confirm the 

stylized patterns documented in Section 2: both the persistence estimate and the fit of the regression tend 

to increase with the forecast horizon.  Some variables show more sensitivity to the underlying process so 

that the pattern is more clearly demonstrated for higher-order AR processes. We also apply the direct 

approach proposed in Section 4. We again find evidence consistent with forward information. We then 

extract the forward information component for some variables, applying the method from Section 5. We 

find that this measure of forward information has significant predictive power for future movements in the 

corresponding variables.  

Fed forecasts. In Section 5.4, we estimate a Taylor rule using projections from the Fed’s Greenbooks. The 

availability of Greenbook forecasts for multiple horizons enables us to examine if the stylized pattern of 

persistence that was documented in the SPF (Section 2) also exists in forecasts of the Fed. Since there is no 

dispersion in Greenbook forecasts, we estimated time-series regressions. Yet, the pattern of increasing 

persistence across horizons is detected in Greenbook forecasts for several key variables (for comparison we 

also estimated similar time-series regressions with mean-level SPF forecasts). Thus, beyond the specific 

application of the Taylor rule, this evidence points to a more general utilization of forward information by 

the Fed staff.  

ECB SPF inflation forecasts. Another Survey of Professional Forecasters is managed by the European 

Central Bank. We investigate the presence of forward information in forecasts of European CPI inflation. 

In the U.S. SPF we used quarterly forecasts for multiple horizons which are not available in the ECB SPF. 
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Instead, we took advantage of two types of annual forecasts that are provided in each quarter: calendar 

forecasts referring to current and next calendar years and rolling forecasts referring to a year and two years 

ahead. We estimate persistence in both types of forecasts and document a new type of variation in the first 

type. Specifically, persistence in calendar-year forecasts decreases over the calendar quarters of the year. 

This pattern is consistent with the presence of forward information that varies across horizons. In the 

calendar forecasts, the horizon changes when moving from quarter to quarter so that forward information 

increases over the year with a biasing effect on the estimated persistence.  This pattern does not appear in 

the rolling-year forecasts, for which the horizon is fixed in each quarter. Interestingly, we find the same 

effect in annual forecasts of the U.S. SPF. These findings provide additional support for the presence of 

forward information in both surveys. 

   

7. Conclusion 

Although there has been an explosion of research on how expectations are formed and departures from full-

information rational expectations are increasingly clear, much remains to be learned. There is also a new sense 

of urgency to shed more light on expectations as central bankers and other government bodies must 

increasingly rely on tools based on the management of expectations (e.g., forward guidance) in the hopes of 

appropriately changing the beliefs about future macroeconomic aggregates and hence stabilize the economy. 

We propose a new approach to characterize the expectations formation process. We formalize the 

fact that projections are a combination of model-based prediction and add-factoring, which uses forward 

information that is not incorporated into the model and current/past values of macroeconomic variables. 

Specifically, we extend the canonical noisy-information model by introducing signals about future 

fundamentals (forward information) at multiple horizons. Thus, we emphasize information variation not 

only across agents but also across future horizons. We find that cross-sectional dispersion in SPF forecasts 

is driven by forward information. That is, forecasters disagree about the future while holding (almost) 

perfect information about the realized values. The presence of forward information can also rationalize why 

perceived persistence of fundamentals increases in the forecast horizon, an empirical pattern that we 

document in the SPF data. We propose a simple method to extract the forward information component in 

forecast data and demonstrate the usefulness of this direct measure for forecasting and policymaking. 

We view these findings as a first step in utilizing forward information to understand how economic 

agents form expectations. For example, we use forward information to directly measure the impact of central 

bank communication on the beliefs of economic agents. We focused on professional forecasters who are some 

of the most informed players in the economy and who likely place a lot of weight on forward information. 



25 
 

Consumers and firms may be less sophisticated and more inattentive to incoming macroeconomic data. As a 

result, they could be better characterized by a mix of noisy information about past, current and future 

fundamentals. To determine what type of information is a good description of consumers and firms, one may 

need to run customized surveys of these agents that mimic the structure of the SPF.   
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Figure 1: Persistence Across Forecast Horizons 

Panel A: 1981-2017 (full sample) 

 
Panel B. Results by decade 

 
Notes: The figure plots persistence coefficients and R-squared statistics, based on estimating specification (4) for different forecast 
horizons, using different CPI inflation forecasts from the SPF survey. The whiskers show the confidence interval around the point 
estimate, based on Driscoll and Kraay (1998) standard errors. P-values refer to the test of equality of coefficients across forecasting 
horizons. 
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Figure 2: Expectation-Based Persistence by Forecasting Horizon 

Panel A: Persistence Estimates 

 
Panel B: R-Squared of Persistence Regressions 

 
Notes: The figure plots smoothed estimates of persistence 𝜌ො (panel A) and R-squared measures (panel B) based on estimating 
specification (4) for different forecast horizons in the SPF survey. Each quarterly point is based on OLS estimation using the 
forecasts data from the last 8 quarters for a specific horizon. The smoother is a local mean which uses an Epanechnikov kernel. 
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Figure 3: Different Specifications 

 

Notes: The figure plots R-squared measures from four different specifications which were estimated for each quarter of the sample 
period, using SPF inflation forecasts. In panel A, inflation expectations follow an AR(1) process as in specification (4). In panel B 
inflation expectations follow an AR(4) process, by including forecasts for additional quarters as regressors. In panel C expectations 
of the inflation gap follow an AR(1) process. The forecasted inflation gap is computed as the difference between forecasts of inflation 
and 10-year inflation (sample starts on 1990Q2 because of 10-year forecasts). In panel D inflation expectations follow a VAR(4) 
process which augments the specification in panel B with four “lags” of unemployment and 3-month interest rate forecasts. All 
specifications are estimated for ℎ ൌ 3. Each point on the black lines is based on OLS estimation using the forecasts data from the 
last 8 quarters. The brown line is a local mean smoother which uses an Epanechnikov kernel. 
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Figure 4: Disagreement about Persistence 

Panel A: Disagreement about Persistence 

 

Panel B: Persistence Estimates 

 

Notes: The figure plots smoothed estimates of persistence 𝜌ො (Panel B) and cross-sectional standard deviations of persistence (Panel 
A) based on estimating specification (6) for individuals in the SPF survey. The specification is estimated for each forecaster who 
deliver at least 20 observations in a rolling window of 40 quarters. For each time window, the mean across forecasters of persistence 
estimates for a certain horizon is displayed in Panel B. The smoother is a local mean which uses an Epanechnikov kernel. The 
standard deviation of persistence estimates (at ℎ ൌ 4) across forecasters is displayed in Panel A. 
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Figure 5: Simulation Results 

Panel A: Persistence Estimates 

  

Panel B: R-Squared of Persistence Regressions 

 

Notes: The two panels in the figure show estimation results of specification (4) applied to a simulated data of forecasts, according 
to the model presented in section 3. Estimated persistence (panel A) and R-squared (panel B) are averaged across 1000 draws of the 
simulation. Each simulation applies a different value of persistence in the fundamental. The variance of the shock in the state process 
is standardized to one. Regressions were estimated for seven forecast horizons out of eight horizons for which noisy signals are 
available (two consecutive horizons in each regression). The noise-to-signal ratio at horizons ℎ ൌ 0, … ,7 is set to 0.2, 0.5, 1 ,2 ,3 ,4, 
100, 10000, respectively. 
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Figure 6: Inflation Forward Information 

 
Notes: The figure plots time series of forward information for inflation. Forward information is computed according to equations 
(32) and (33).   
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TABLE 1 
Summary of regression properties in the example of section 5.2 
 Forecast Horizon Persistence 
 ℎ ൌ 1 ℎ ൌ 2 ℎ ൌ 3 𝜌 ൌ 0 0 ൏ 𝜌 ൏ 1 𝜌 ൌ 1 

Estimated 
persistence 

0 
Positive but Biased. 
Bias decreases in 𝜎ଶ

ଶ 
if 𝜎ଶ

ଶ ൐ 𝜎ଵ
ଶ ൐ 𝜎ఠଶ . 

𝜌 0 
Increases in 𝜌 if 
𝜎ଶ
ଶ ൐ 𝜎ଵ

ଶ ൐ 𝜎ఠଶ . 
Positive but 

Biased 

R-squared 0 
Between 0 and 1. 
Increases in 𝜎ଶ

ଶ if 
𝜎ଶ
ଶ ൐ 𝜎ଵ

ଶ ൐ 𝜎ఠଶ . 
1 0 Increases in 𝜌  

Between 0 
and 1 

Notes: The table summarizes the theoretical predictions by the model analyzed in section 3.3. Model predictions 
refer to the estimated persistence 𝜌ො and R-squared of a regression of the forecast 𝑥௧ା௛|௧

௜  on 𝑥௧ା௛ିଵ|௧
௜ .    
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TABLE 2 
Regressions of the deviation from the mean backcast 

 

Dependent variable:  
𝑥௧|௧
௜ െ 𝑥௧|௧ (backcasts) 

Full 
Sample 

1980s  1990s  2000s 2010s 

𝑥௧|௧ିଵ
௜ െ 𝑥௧|௧ିଵ 0.018 0.118 0.017** -0.000 0.002** 

  (0.014)  (0.082)  (0.008)  (0.000)  (0.001) 

𝑥௧ାଵ|௧ିଵ
௜ െ 𝑥௧ାଵ|௧ିଵ 0.009 0.014 0.032** 0.000 0.002 

  (0.016)  (0.084)  (0.015)  (0.000)  (0.001) 

𝑥௧ାଶ|௧ିଵ
௜ െ 𝑥௧ାଶ|௧ିଵ -0.029 -0.202** -0.034*** 0.001 0.000 

  (0.018)  (0.085)  (0.013)  (0.001)  (0.003) 

𝑥௧ାଷ|௧ିଵ
௜ െ 𝑥௧ାଷ|௧ିଵ 0.009 0.078 0.013 -0.000 0.002 

  (0.018)  (0.123)  (0.015)  (0.001)  (0.002) 

𝑥௧ାସ|௧ିଵ
௜ െ 𝑥௧ାସ|௧ିଵ 0.001 -0.007 -0.009 -0.000 0.002** 

  (0.014)  (0.067)  (0.009)  (0.001)  (0.001) 

Constant 0.004 0.027 0.002 0.000 0.001 
  (0.005)  (0.037)  (0.002)  (0.000)  (0.002) 

Obs. 3,849 559 1,068 1,272 950 

𝑅ଶ 0.004 0.023 0.023 0.003 0.002 

Notes: The table reports coefficient estimates from regressions of the individual deviation from the mean backcast, based on 
specification (26) with ℎ ൌ 0.  Each column reports results for a specified sample period. Each panel refers to a different horizon. 
Driscoll-Kraay standard errors are in parentheses. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 
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TABLE 3  
Regressions of the deviation from the mean forecast 

Dependent variable: 𝑥௧ାଵ|௧
௜ െ 𝑥௧ାଵ|௧ 𝑥௧ାଶ|௧

௜ െ 𝑥௧ାଶ|௧  𝑥௧ାଷ|௧
௜ െ 𝑥௧ାସ|௧ 𝑥௧ାସ|௧

௜ െ 𝑥௧ାସ|௧ 

𝑥௧|௧ିଵ
௜ െ 𝑥௧|௧ିଵ -0.013 -0.013 -0.063*** -0.062*** 

  (0.025)  (0.021)  (0.012)  (0.020) 

𝑥௧ାଵ|௧ିଵ
௜ െ 𝑥௧ାଵ|௧ିଵ 0.220*** 0.003 0.021 0.032 

  (0.052)  (0.040)  (0.044)  (0.034) 

𝑥௧ାଶ|௧ିଵ
௜ െ 𝑥௧ାଶ|௧ିଵ 0.130*** 0.458*** -0.095** -0.056* 

  (0.050)  (0.057)  (0.046)  (0.032) 

𝑥௧ାଷ|௧ିଵ
௜ െ 𝑥௧ାଷ|௧ିଵ -0.126** -0.120** 0.486*** 0.103* 

  (0.061)  (0.057)  (0.069)  (0.059) 

𝑥௧ାସ|௧ିଵ
௜ െ 𝑥௧ାସ|௧ିଵ 0.071 0.056 0.037 0.362*** 

  (0.066)  (0.043)  (0.038)  (0.044) 

Constant -0.008 -0.001 0.005 0.007 
  (0.009)  (0.006)  (0.008)  (0.008) 

Obs. 3,854 3,856 3,855 3,853 

𝑅ଶ 0.053 0.146 0.213 0.178 
BIC 10,515 8,565 7,434 7,323 

BIC for specification (27) 10,822 8,763 7,635 7,484 
 
Notes: The table reports coefficient estimates from regressions of the individual deviation from the mean forecast, based on 
specification (26).  Each column reports results for a specified dependent variable, using the whole sample period. BIC reports 
the value of Bayes Information criterion for each specification as well as the BIC corresponding to specification (27). Driscoll-
Kraay standard errors are in parentheses. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 
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TABLE 4  

Summary statistics of series for actual inflation and forward information about inflation 

Variable: Mean Standard deviation Serial correlation  
Correlation 

between horizons 

𝐹𝐼௧|௧ -0.150 1.122 -0.275  

𝐹𝐼௧ାଵ|௧ -0.078 0.454 0.204 -0.258 

𝐹𝐼௧ାଶ|௧ -0.029 0.182 -0.073 0.324 

𝐹𝐼௧ାଷ|௧ -0.017 0.134 -0.209 0.069 

𝐹𝐼௧ାସ|௧ -0.010 0.104 0.011 -0.094 

Actual inflation 2.704 1.992 0.350  

 
Notes: The table reports summary statistics for the time series of (marginal) forward information computed according to 
equations (32) and (33). The correlation between horizons in the right column shows the correlation between 𝐹𝐼௧ା௛|௧ and 
𝐹𝐼௧ା௛ିଵ|௧. The sample period is 1983Q3-2007Q4. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 
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TABLE 5 
Inflation predictability and forward information 1983-2017 

 

Dependent variable: 𝜋௧ 𝜋௧ 𝜋௧ାଵ  𝜋௧ାଶ 𝜋௧ାଷ 𝜋௧ାସ 

 (1) (2) (3) (4) (5) (6) 

 

𝐹𝐼௧|௧    1.554*** 0.670*** -0.013 0.411 0.405** 

   (0.146) (0.140) (0.191) (0.257) (0.197) 

𝐹𝐼௧ାଵ|௧     1.275*** 0.405 0.415 0.853 

    (0.397) (0.437) (0.380) (0.605) 

𝐹𝐼௧ାଶ|௧      0.097 0.373 0.512 

     (0.936) (0.584) (1.112) 

𝐹𝐼௧ାଷ|௧       -0.134 0.191 

      (1.035) (1.814) 

𝐹𝐼௧ାସ|௧        -0.782 

       (1.033) 

𝜋௧ିଵ  0.349*** 0.758*** 0.368** 0.186 0.211 0.345** 

  (0.083) (0.095) (0.164) (0.193) (0.175) (0.165) 

Constant  1.757*** 0.877*** 1.898*** 2.210*** 2.192*** 1.856*** 

  (0.221) (0.295) (0.417) (0.432) (0.405) (0.405) 

𝑅ଶ  0.122 0.721 0.109 0.035 0.038 0.082 

 
Notes: The table reports coefficient estimates for regressions of current and future inflation on realized inflation and forward 
information. 𝑥௧ ≡ 𝜋௧ is CPI inflation. The forward information variables are computed according to equations (32) and (33). 
Newey-West standard errors are in parentheses. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 
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TABLE 6  

Cross-sectional variation in forecasts and forward information 

 𝑣𝑎𝑟ሺ𝑥௧ା௛|௧
௜ ሻ 𝑣𝑎𝑟൫𝑐̂௧

௜ ൅ 𝜌ො௧
௜𝑥௧ା௛ିଵ|௧

௜ ൯  𝑣𝑎𝑟൫𝐹𝐼௧ା௛|௧
௜ ൯ ඨ

𝑣𝑎𝑟൫𝐹𝐼௧ା௛|௧
௜ ൯

𝑣𝑎𝑟൫𝑥௧ା௛|௧
௜ ൯

 

ℎ ൌ 0 0.889 0.398 1.143 1.134 

ℎ ൌ 1 0.610 0.533 0.700 1.071 

ℎ ൌ 2 0.498 0.336 0.324 0.807 

ℎ ൌ 3 0.481 0.308 0.279 0.762 

ℎ ൌ 4 0.459 0.304 0.178 0.623 

 
Notes: The table reports cross-sectional variation in inflation forecasts and their two components: model ൫𝑐̂௧௜ ൅ 𝜌ො௧௜𝑥௧ା௛ିଵ|௧

௜ ൯ and 

forward information (𝐹𝐼௧ା௛|௧
௜ ). The components are computed according to equations (32) and (33) at the individual level in 

each quarter. Individual-level perceived parameters of inflation are estimated as in Figure 4 for each quarter, using rolling 
windows of 40 quarters. Within a window, the cross-section includes forecasters with at least 15 forecasts. The entries in the 
table report the mean of cross-sectional variation over the sample period. 
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TABLE 7 
Taylor Rule and Forward Information 1983-2015 

 

Dependent variable: 𝑟௧  
Full sample 

 1983-
1999 

2000-
2015 

)1(  )2( (3)  (4) (5) 

𝜋௧|௧
ீ஻  0.051**   

 
  

  (0.021)      

ሺ𝑐̂௧ିଵ ൅ 𝜌ො௧ିଵ𝜋௧ିଵሻ   0.031 0.124  0.310*** -0.021 

   (0.053) (0.083)  (0.085) (0.078) 

𝐹𝐼௧|௧
ீ஻   0.058*** 0.151***  0.286*** 0.088*** 

   (0.018) (0.039)  (0.079) (0.028) 

𝐹𝐼௧ାଵ|௧
ீ஻     0.176***  0.266** 0.096** 

    (0.059)  (0.107) (0.044) 

𝐹𝐼௧ାଶ|௧
ீ஻     0.069  0.112 0.208** 

    (0.087)  (0.136) (0.089) 

𝐹𝐼௧ାଷ|௧
ீ஻     0.134  0.165 0.276 

    (0.191)  (0.196) (0.440) 

𝐹𝐼௧ାସ|௧
ீ஻     0.205  0.223 -0.515* 

    (0.276)  (0.425) (0.302) 

𝑔𝑎𝑝௧|௧
ீ஻  0.025* 0.024 0.027  0.070*** 0.026 

  (0.014) (0.015) (0.017)  (0.021) (0.023) 

𝑔𝑟௧|௧
ீ஻  0.149*** 0.149*** 0.143***  0.216*** 0.135*** 

  (0.039) (0.039) (0.038)  (0.026) (0.046) 

𝑟௧ିଵ  1.134*** 1.151*** 1.089***  0.889*** 1.268*** 

  (0.099) (0.111) (0.128)  (0.155) (0.093) 

𝑟௧ିଶ  -0.184** -0.196** -0.185*  -0.028 -0.323*** 

  (0.089) (0.097) (0.103)  (0.116) (0.092) 

𝑅ଶ  0.982 0.982 0.984  0.962 0.980 

 
Notes: The table reports coefficient estimates for regressions based on specification (34). The quarterly 
forecasts are taken from the Fed Greenbooks. The “model” component of inflation forecasts, 
ሺ𝑐̂௧ିଵ ൅ 𝜌ො௧ିଵ𝜋௧ିଵሻ, uses time-varying persistence estimates from cross-sections of SPF forecasts, as 
explained in the text. The forward information variables are computed according to equations (32) and (33). 
Newey-West standard errors are in parentheses. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 
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Appendix A: Forward information with a common noise 

This appendix introduces a common signal to the forward information framework, presented in section 3, and shows 
how it affects the main results derived in sections 3 and 4.  

Consider the following state-space representation: 

State: 

𝒙௧ ≡ ൦

𝑥௧ାு
𝑥௧ାுିଵ

⋮
𝑥௧

൪ ൌ ൦

𝜌 0 ⋯ 0
1 0 0 0
⋱ ⋱ ⋱ ⋮
0 ⋱ 1 0

൪ 𝒙௧ିଵ ൅ 𝑆′𝜔௧ା் ൌ Ρ𝒙௧ିଵ ൅ 𝑆′𝜔௧ାு (A.1) 

 

where 𝜔௧ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ఠଶሻ and  𝑆 ൌ ሾ1 0 ⋯ 0ሿ, so that the variance-covariance matrix of  𝑆′𝜔௧ାு would be Σఠ ൌ
𝑆′𝑆𝜎ఠଶ . 

Measurement: 

𝒚௧
𝒊 ≡

⎣
⎢
⎢
⎢
⎡ 𝑦௧,௧ାு

௜

𝑦௧,௧ାுିଵ
௜

⋮
𝑦௧,௧
௜ ⎦

⎥
⎥
⎥
⎤
ൌ ൦

𝑥௧ାு
𝑥௧ାுିଵ

⋮
𝑥௧

൪ ൅

⎣
⎢
⎢
⎢
⎡ 𝜈௧,௧ାு

௜

𝜈௧,௧ାுିଵ
௜

⋮
𝜈௧,௧
௜ ⎦

⎥
⎥
⎥
⎤
൅ ൦

𝑒௧ାு
𝑒௧ାுିଵ

⋮
𝑒௧

൪ ൌ 𝒙௧ ൅ 𝝂௧
𝒊 ൅ 𝒆௧ (A.2) 

where 𝝂௧
𝒊  is an iid normally distributed idiosyncratic noise and Σఔ ൌ 𝑰ு𝝈ఔଶ with 𝝈ఔଶ

ᇱ
ൌ ሾ𝜎ு

ଶ 𝜎ுିଵ
ଶ ⋯ 𝜎଴

ଶሿ . We also 

introduce the common iid noise 𝒆௧ with a variance-covariance matrix Σ௘ ൌ 𝑰ு𝝈௘ଶ where the variance may also vary 
across horizons. All types of shocks are uncorrelated contemporaneously and at all leads and lags. 

To solve for the optimal forecast by the Kalman filter, we use the following Riccati equation: 

Ψ ൌ ΡሼΨ െ ΨሺΨ ൅ Σఔ ൅ Σ௘ሻିଵΨሽΡ′ ൅ Σఠ (A.3) 

where Ψ is the variance of the one-step ahead forecast error. The Kalman gain matrix, denoted by G (with dimension 
𝐻 ൅ 1), would then be obtained by:   

G ൌ ΨሺΨ ൅ Σఔ ൅ Σ௘ሻିଵ (A.4) 

Thus, the optimal forecast of an agent 𝑖 would be: 

𝒙௧|௧
௜ ൌ 𝒙௧|௧ିଵ

௜ ൅ G൫𝒚௧
𝒊 െ 𝒙௧|௧ିଵ

௜ ൯ (A.5) 

where 𝒙௧|௧
௜  is a vector of forecasts made at time 𝑡, with horizons running from 0 to 𝐻 steps ahead. The forecast takes the 

same form as the forecast in equation (20) in the main text, except that the gain matrix would be different and signals in 

𝒚௧
𝒊  also contain common noises.  

From (A.5), the ℎ step-ahead forecast 𝑥௧ା௛|௧
௜ , which is an element in 𝒙௧|௧

௜ , can be written as:  

𝑥௧ା௛|௧
௜ ൌ 𝑥௧ା௛|௧ିଵ

௜ ൅ G௝,ଵ൫𝑦௧,௧ାு
௜ െ 𝑥௧ାு|௧ିଵ

௜ ൯ ൅ G௝,ଶ൫𝑦௧,௧ାுିଵ
௜ െ 𝑥௧ାுିଵ|௧ିଵ

௜ ൯ ൅ ⋯

൅ G௝,ுାଵ൫𝑦௧,௧
௜ െ 𝑥௧|௧ିଵ

௜ ൯ 
(A.6) 

where the coefficients G௝,ଵ, G௝,ଶ, …, G௝,ுାଵ are elements of row 𝑗 ൌ 𝐻 െ ℎ ൅ 1 in the gain matrix G. 

As in the case without a common noise, when forecasting more than 𝐻 steps ahead (ℎ ൐ 𝐻), the forecast would simply 
be:  

𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜  (A.7) 
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which resembles equation (4) in the standard noisy information framework. We now examine the relationship between 

𝑥௧ା௛|௧
௜    and 𝑥௧ା௛ିଵ|௧

௜  for shorter horizons (0 ൏ ℎ ൑ 𝐻). From (A.5) the forecast 𝑥௧ା௛ିଵ|௧ would be  

𝑥௧ା௛ିଵ|௧
௜ ൌ 𝑥௧ା௛ିଵ|௧ିଵ

௜ ൅ G௝ାଵ,ଵ൫𝑦௧,௧ାு
௜ െ 𝑥௧ାு|௧ିଵ

௜ ൯

൅ G௝ାଵ,ଶ൫𝑦௧,௧ାுିଵ
௜ െ 𝑥௧ାுିଵ|௧ିଵ

௜ ൯ ൅ ⋯

൅ G௃ାଵ,ுାଵ൫𝑦௧,௧
௜ െ 𝑥௧|௧ିଵ

௜ ൯ 

(A.8) 

where the coefficients G௝ାଵ,ଵ, G௝ାଵ,ଶ, …, G௝ାଵ,ுାଵ are the elements of row 𝑗 ൅ 1 in the gain matrix G. Multiplying (A.8) 

by 𝜌 and subtracting it from (A.6), we obtain:  

𝑥௧ା௛|௧
௜ െ 𝜌𝑥௧ା௛ିଵ|௧

௜

ൌ 𝑥௧ା௛|௧ିଵ
௜ െ 𝜌𝑥௧ା௛ିଵ|௧ିଵ

௜ ൅ ൫G௝,ଵ െ 𝜌G௝ାଵ,ଵ൯൫𝑦௧,௧ାு
௜ െ 𝑥௧ାு|௧ିଵ

௜ ൯

൅ ൫G௃,ଶ െ 𝜌G௝ାଵ,ଶ൯൫𝑦௧,௧ାுିଵ
௜ െ 𝑥௧ାுିଵ|௧ିଵ

௜ ൯ ൅ ⋯

൅ ൫G௝,ுାଵ െ 𝜌G௝ାଵ,ுାଵ൯൫𝑦௧,௧
௜ െ 𝑥௧|௧ିଵ

௜ ൯ 

(A.9) 

Comparing to (A.7), the term 𝑥௧ା௛|௧
௜ െ 𝜌𝑥௧ା௛ିଵ|௧

௜  does not equal to zero. The RHS of (A.9) expresses the deviation from 

the relation 𝑥௧ା௛|௧ ൌ 𝜌𝑥௧ା௛ିଵ|௧, for each horizon in 0 ൏ ℎ ൑ 𝐻.  

To get a compact version of (A.9) that corresponds to the key result in equation (22) in the main text, denote the vector 
that is equal to row 𝑗 in matrix G by 𝐆௝. Moving 𝜌𝑥௧ା௛ିଵ|௧ to the RHS and using substitutes from (A.2.) we obtain:  

𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜ ൅ ൫𝑥௧ା௛|௧ିଵ
௜ െ 𝜌𝑥௧ା௛ିଵ|௧ି𝟏

௜ ൯ ൅ ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯൫𝒙௧ െ 𝒙௧|௧ିଵ
௜ ൯

൅ ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯𝝂௧
𝒊 ൅ ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯𝒆௧ 

(A.10) 

Thus, the forecast 𝑥௧ା௛|௧
௜  is a composition of a prediction based on the underlying process (𝜌𝑥௧ା௛ିଵ|௧

௜ ), and “subjective 

adjustment” which account for forward information. In the standard noisy information framework, as in section 2, the 

second component would be absent, so that the optimal forecast would obey 𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜ . The need for an 

adjustment component in the presence of forward signals is driven by the variation across horizons in the optimal 

weights placed on the signals. This variation is captured by the term ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯, where 𝐆௝ and 𝐆௝ାଵ are consecutive 

rows in the gain matrix. 

Hence, equation (A.10) has the same interpretation as equation (22). The only difference is the presence of an additional 

term ൫𝐆௝ െ 𝜌𝐆௝ାଵ൯𝒆௧ in the adjustment component, which represents the effect of the common noise. The empirical 

implications for the estimation of the parameter of persistence by specification (4) would also be similar: the adjustment 
component introduces an error to the regression. The error would bias the coefficient estimate from 𝜌 because it is 

correlated with the RHS forecast 𝑥௧ା௛ିଵ|௧
௜ . The common noise introduces another source of correlation, but only in the 

time dimension. In a cross-sectional estimation of specification (4), common noise can be captured by including a 

constant in the regression. In a panel estimation, the time correlation between 𝒆௧ and 𝑥௧ା௛ିଵ|௧
௜   can also be captured by 

time fixed-effects. Thus, the only remaining source of bias would be the idiosyncratic noise  𝝂௧
𝒊 , leading to the same 

empirical pattern that is addressed in the main text. Specifically, when estimating persistence by specification (4) for 
different horizons, the coefficient estimate would converge to 𝜌 and the fit of the regression will get close to perfect, for 
longer horizons, due to the decay in forward information at farther horizons. 

Next, we turn to specification (26) from Section 4 which is used to directly estimate the gain matrix in the forward 
information framework and to test this framework against the standard setup of noisy information. Specification (26) is 
derived by subtracting the mean forecast from the individual forecast. With common noise, the individual forecast from 
(A.5) could be written as (using a substitute from (A.2)): 

𝒙௧|௧
௜ ൌ ሺ𝐼 െ 𝐺ሻ𝒙௧|௧ିଵ

௜ ൅ 𝐺൫𝒙௧ ൅ 𝝂௧
𝒊 ൅ 𝒆௧൯ (A.11) 

Taking the average across individuals (denoted by dropping superscript 𝑖) we obtain: 
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𝒙௧|௧ ൌ ሺ𝐼 െ 𝐺ሻ𝒙௧|௧ିଵ ൅ 𝐺ሺ𝒙௧ ൅ 𝒆௧ሻ (A.12) 

Notice that only 𝝂௧
𝒊  is vanished in the mean forecast while the common noise 𝒆௧ remains. Thus, when subtracting the 

mean from the individual forecast, the common noise disappears, obtaining:  

𝒙௧|௧
௜ െ 𝒙௧|௧ ൌ ሺ𝐼 െ 𝐺ሻ൫𝒙௧|௧ିଵ

௜ െ 𝒙௧|௧ିଵ൯ ൅ 𝐺𝝂௧
𝒊  (A.13) 

which is similar to (25) in the main text. It follows that even in the presence of a common noise, specification (26) could 
be applied in the same way to estimate ሺ𝐼 െ 𝐺ሻ and to preform tests. The error component in the regression is only due 
to the individual-specific noise. 

In a mean-level estimation such as a regression of average forecast errors on average forecast revisions, which is 
discussed in section 3.1, the results would be affected by the presence of a common noise. Coibion and Gorodnichenko 
(2015) who proposed this mean level specification to estimate the Kalman gain in the standard noisy information setup, 
show that common noise introduces estimation bias. Similarly, common noise will affect the estimation properties under 
forward information. This highlights an additional advantage in using specification (26): since we take the deviation of 
individual forecasts from the mean,  the specification is not sensitive to the presence of common noise. This advantage 
is also highlighted by Goldstein (2021) in the context of quantifying information frictions under the standard noisy 
framework, as in equation (27).  
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Appendix B: Forward information model: Derivations 

 
B.1. Deriving the optimal forecasts 
In section 3.2., we consider the optimal forecasting for following state-space representation: 
State: 

𝒙௧ ≡ ൥
𝑥௧ାଶ
𝑥௧ାଵ
𝑥௧

൩ ൌ ൥
𝜌 0 0
1 0 0
0 1 0

൩ 𝒙௧ିଵ ൅ ൥
1
0
0
൩𝜔௧ାଶ ൌ Ρ𝒙௧ିଵ ൅ 𝑆′𝜔௧ାଶ (B.1) 

 
where 𝜔௧ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ఠଶሻ.  
Measurement: 

𝒚௧
𝒊 ≡ ൦

𝑦௧,௧ାଶ
௜

𝑦௧,௧ାଵ
௜

𝑦௧,௧
௜

൪ ൌ ൥
𝑥௧ାଶ
𝑥௧ାଵ
𝑥௧

൩ ൅ ቎
𝜈௧,௧ାଶ
௜

𝜈௧,௧ାଵ
௜

0

቏ ൌ 𝒙௧ ൅ 𝝂௧
𝒊  (B.2) 

where 𝜈௧,௧ାଵ
௜ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ଵ

ଶሻ and 𝜈௧,௧ାଶ
௜ ∼ 𝑖𝑖𝑑 𝑁ሺ0,𝜎ଶ

ଶሻ. 
Because 𝑥௧ is perfectly observed, the forecast for time 𝑡 would simply be  
𝑥௧|௧ ൌ 𝑥௧. The one step-ahead forecast 𝑥௧ାଵ|௧ should apply four useful signals: 

1. 𝜌𝑥௧, with ex-post forecast error equal to 𝜔௧ାଵ.  

2. 𝑦௧ିଵ,௧ାଵ
௜  (forward signal from the previous period), with ex-post forecast error equal to െ𝜈௧ିଵ,௧ାଵ

௜ . 

3. 𝑦௧,௧ାଵ
௜ , with ex-post forecast error equal to െ𝜈௧,௧ାଵ

௜ . 

4. 𝜌ିଵ𝑦௧,௧ାଶ
௜ , with ex-post forecast error equal to െ𝜌ିଵ൫𝜔௧ାଶ ൅ 𝜈௧,௧ାଶ

௜ ൯. 
All other noisy signals from previous periods are no longer useful after 𝑥௧ is perfectly observed. 
Accordingly, the one step-ahead forecast could be represented as a weighted sum of the four signals: 

𝑥௧ାଵ|௧
௜ ൌ 𝑊ଵ𝜌𝑥௧ ൅𝑊ଶ𝑦௧ିଵ,௧ାଵ

௜ ൅ 𝑊ଷ𝑦௧,௧ାଵ
௜ ൅𝑊ସ𝜌ିଵ𝑦௧,௧ାଶ

௜  (B.3) 

where ∑ 𝑊௞ ൌ 1ସ
௞ୀଵ . The forecaster should choose the weights which minimize the following expected squared error: 

 𝐸௧൛𝑥௧ାଵ െ 𝑥௧ାଵ|௧
௜ ൟ

ଶ
ൌ 𝐸௧ ቄ𝑊ଵ𝜔௧ାଵ ൅𝑊ଶ൫െ𝜈௧ିଵ,௧ାଵ

௜ ൯ ൅𝑊ଷ൫െ𝜈௧,௧ାଵ
௜ ൯ ൅𝑊ସ ቀെ𝜌ିଵ൫𝜔௧ାଶ ൅ 𝜈௧,௧ାଶ

௜ ൯ቁቅ
ଶ
ൌ ሺ𝑊ଵሻଶ𝜎ఠଶ ൅

ሺ𝑊ଶሻଶ𝜎ଶ
ଶ ൅ ሺ𝑊ଷሻଶ𝜎ଵ

ଶ ൅ ሺ𝑊ସሻଶ𝜌ିଶሺ𝜎ఠଶ ൅ 𝜎ଶ
ଶሻ 

Thus, the optimization problem can be written as: 

𝑚𝑖𝑛ௐೖ
ሼሺ𝑊ଵሻଶ𝜎ఠଶ ൅ ሺ𝑊ଶሻଶ𝜎ଶ

ଶ ൅ ሺ𝑊ଷሻଶ𝜎ଵ
ଶ ൅ ሺ1 െ𝑊ଵ െ𝑊ଶ െ𝑊ଷሻଶ𝜌ିଶሺ𝜎ఠଶ ൅ 𝜎ଶ

ଶሻሽ 

After setting 𝜎ఠଶ ൌ 1 for normalization, the FOCs are: 

 2𝑊ଵ ൌ 2ሺ1 െ𝑊ଵ െ𝑊ଶ െ𝑊ଷሻ𝜌ିଶሺ1 ൅ 𝜎ଶ
ଶሻ 

 2𝑊ଶ𝜎ଶ
ଶ ൌ 2ሺ1 െ𝑊ଵ െ𝑊ଶ െ𝑊ଷሻ𝜌ିଶሺ1 ൅ 𝜎ଶ

ଶሻ 
 2𝑊ଷ𝜎ଵ

ଶ ൌ 2ሺ1 െ𝑊ଵ െ𝑊ଶ െ𝑊ଷሻ𝜌ିଶሺ1 ൅ 𝜎ଶ
ଶሻ 

The solution to this system would obtain the following optimal weights: 

𝑊ଵ ൌ
𝜎ଶ
ଶ𝜎ଵ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ

𝑚
 

(B.4) 
𝑊ଶ ൌ

𝜎ଵ
ଶሺ1 ൅ 𝜎ଶ

ଶሻ
𝑚

 

𝑊ଷ ൌ
𝜎ଶ
ଶሺ1 ൅ 𝜎ଶ

ଶሻ
𝑚

 

𝑊ସ ൌ
𝜌ଶ𝜎ଶ

ଶ𝜎ଵ
ଶ

𝑚
, 

where 𝑚 ൌ 𝜎ଶ
ଶ𝜎ଵ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ ൅ 𝜎ଵ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ ൅ 𝜎ଶ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ ൅ 𝜌ଶ𝜎ଶ

ଶ𝜎ଵ
ଶ. 

Next, we follow the same steps to derive the two steps-ahead optimal forecasts 𝑥௧ାଶ|௧
௜ . The same four signals used in the 

one-step-ahead forecast apply for 𝑥௧ାଶ|௧
௜ , after multiplying by 𝜌 to adjust to the new horizon. Specifically, the four 

available predictions for two steps ahead are: 
1. 𝜌ଶ𝑥௧, with ex-post forecast error equal to ሺ𝜌𝜔௧ାଵ ൅ 𝜔௧ାଶሻ.  
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2. 𝜌𝑦௧ିଵ,௧ାଵ
௜ , with ex-post forecast error equal to ൫െ𝜌𝜈௧ିଵ,௧ାଵ

௜ ൅ 𝜔௧ାଶ൯. 

3. 𝜌𝑦௧,௧ାଵ
௜ , with ex-post forecast error equal to ൫െ𝜌𝜈௧,௧ାଵ

௜ ൅ 𝜔௧ାଶ൯. 

4. 𝑦௧,௧ାଶ
௜ , with ex-post forecast error equal to െ𝜈௧,௧ାଶ

௜ . 

Hence, we write the optimal forecast as 

𝑥௧ାଶ|௧
௜ ൌ 𝑤ଵ𝜌ଶ𝑥௧ ൅ 𝑤ଶ𝜌𝑦௧ିଵ,௧ାଵ

௜ ൅ 𝑤ଷ𝜌𝑦௧,௧ାଵ
௜ ൅  𝑤ସ𝑦௧,௧ାଶ

௜  (B.5) 

The expected squared error could therefore be expressed as follows: 

  𝐸௧൛𝑥௧ାଶ െ 𝑥௧ାଶ|௧
௜ ൟ

ଶ
ൌ 𝐸௧൛𝑤ଵሺ𝜌𝜔௧ାଵ ൅ 𝜔௧ାଶሻ ൅ 𝑤ଶ൫െ𝜌𝜈௧ିଵ,௧ାଵ

௜ ൅ 𝜔௧ାଶ൯ ൅ 𝑤ଷ൫െ𝜌𝜈௧,௧ାଵ
௜ ൅ 𝜔௧ାଶ൯ ൅

𝑤ସ൫െ𝜈௧,௧ାଶ
௜ ൯ൟ

ଶ
ൌ ሺ𝑤ଵሻଶ𝜌ଶ ൅ ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷሻଶ ൅ ሺ𝑤ଶሻଶ𝜌ଶ𝜎ଶ

ଶ ൅ ሺ𝑤ଷሻଶ𝜌ଶ𝜎ଵ
ଶ ൅ ሺ𝑤ସሻଶ𝜎ଶ

ଶ 

and the optimization problem is consequently: 
𝑚𝑖𝑛௪ೖ

ሼሺ𝑤ଵሻଶ𝜌ଶ ൅ ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷሻଶ ൅ ሺ𝑤ଶሻଶ𝜌ଶ𝜎ଶ
ଶ ൅ ሺ𝑤ଷሻଶ𝜌ଶ𝜎ଵ

ଶ ൅ ሺ𝑤ସሻଶ𝜎ଶ
ଶሽ 

The FOCs are: 
 2𝑤ଵ𝜌ଶ ൌ െ2ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷሻ ൅ 2ሺ1 െ 𝑤ଵ െ 𝑤ଶ െ 𝑤ଷሻ𝜎ଶ

ଶ 

 2𝑤ଶ𝜌ଶ𝜎ଶ
ଶ ൌ െ2ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷሻ ൅ 2ሺ1 െ 𝑤ଵ െ 𝑤ଶ െ 𝑤ଷሻ𝜎ଶ

ଶ 

 2𝑤ଷ𝜌ଶ𝜎ଵ
ଶ ൌ െ2ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷሻ ൅ 2ሺ1 െ 𝑤ଵ െ 𝑤ଶ െ 𝑤ଷሻ𝜎ଶ

ଶ  
and the solution for the optimal weights is:   

𝑤ଵ ൌ
𝜎ଶ
ଶ𝜎ଶ

ଶ𝜎ଵ
ଶ

𝑚
 

(B.6) 
𝑤ଶ ൌ

𝜎ଶ
ଶ𝜎ଵ

ଶ

𝑚
 

𝑤ଷ ൌ
𝜎ଶ
ଶ𝜎ଶ

ଶ

𝑚
 

𝑤ସ ൌ
ሺ1 ൅ 𝜌ଶሻ𝜎ଶ

ଶ𝜎ଵ
ଶ ൅ 𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶ

𝑚
 

When moving further to forecast three steps ahead, there is no further change in the optimal weights, and thus the optimal 

forecast obeys 𝑥௧ାଷ|௧
௜ ൌ 𝜌𝑥௧ାଶ|௧

௜ . The optimal weights do not change for ℎ ൒ 3, since there are no forward signals 

referring to these horizons. To see that, we repeat the same steps as above to derive 𝑥௧ାଷ|௧. Based on the same four 

signals,  the forecast 𝑥௧ାଷ|௧ uses the following predictions: 

1. 𝜌ଷ𝑥௧, with ex-post forecast error equal to ሺ𝜌ଶ𝜔௧ାଵ ൅ 𝜌𝜔௧ାଶ ൅ 𝜔௧ାଷሻ.  
2. 𝜌ଶ𝑦௧ିଵ,௧ାଵ

௜ , with ex-post forecast error equal to ൫െ𝜌ଶ𝜈௧ିଵ,௧ାଵ
௜ ൅ 𝜌𝜔௧ାଶ ൅ 𝜔௧ାଷ൯. 

3. 𝜌ଶ𝑦௧,௧ାଵ
௜ , with ex-post forecast error equal to ൫െ𝜌ଶ𝜈௧,௧ାଵ

௜ ൅ 𝜌𝜔௧ାଶ ൅ 𝜔௧ାଷ൯. 

4. 𝜌𝑦௧,௧ାଶ
௜ , with ex-post forecast error equal to ൫െ𝜌𝜈௧,௧ାଶ

௜ ൅ 𝜔௧ାଷ൯. 
The optimal forecast follows: 

𝑥௧ାଷ|௧
௜ ൌ 𝑤෥ଵ𝜌ଷ𝑥௧ ൅ 𝑤෥ଶ𝜌ଶ𝑦௧ିଵ,௧ାଵ

௜ ൅ 𝑤෥ଷ𝜌ଶ𝑦௧,௧ାଵ
௜ ൅  𝑤෥ସ𝜌𝑦௧,௧ାଶ

௜  (B.7) 

Note that in this case the expected squared error is expressed as:   

 𝐸௧൛𝑥௧ାଷ െ 𝑥௧ାଷ|௧
௜ ൟ

ଶ
ൌ 𝐸௧൛𝜌൫𝑥௧ାଶ െ 𝑥௧ାଶ|௧൯ ൅ 𝜔௧ାଷൟ

ଶ
ൌ 𝜌ଶ𝐸௧൛𝑥௧ାଶ െ 𝑥௧ାଶ|௧ൟ

ଶ
൅ 1 

So, minimizing 𝐸௧൛𝑥௧ାଷ െ 𝑥௧ାଷ|௧
௜ ൟ

ଶ
 is equivalent to the minimizing 𝐸௧൛𝑥௧ାଶ െ 𝑥௧ାଶ|௧

௜ ൟ
ଶ
 and produces the same optimal 

weights, 𝑤௞, derived above. The same reasoning holds for any horizon beyond the range of forward signals. Thus, the 

relationship 𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜  applies for any ℎ ൒ 3.  

B.2. Kalman filter representation 
In this section, we represent the optimal forecast in the Kalman filter framework. The filter is given by: 

𝒙௧|௧
௜ ൌ 𝒙௧|௧ିଵ

௜ ൅ G൫𝒚௧
𝒊 െ 𝒙௧|௧ିଵ

௜ ൯ (B.8) 

where the gain matrix G must be specified. Expanding the matrix notation, we have: 
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൦

𝑥௧ାଶ|௧
௜

𝑥௧ାଵ|௧
௜

𝑥௧|௧
௜

൪ ൌ ൦

𝑥௧ାଶ|௧ିଵ
௜

𝑥௧ାଵ|௧ିଵ
௜

𝑥௧|௧ିଵ
௜

൪ ൅ ቎
Gଵ,ଵ Gଵ,ଶ Gଵ,ଷ

Gଶ,ଵ Gଶ,ଶ Gଶ,ଷ

Gଷ,ଵ Gଷ,ଶ Gଷ,ଷ

቏ ൈ ൦

𝑦௧,௧ାଶ
௜ െ 𝑥௧ାଶ|௧ିଵ

௜

𝑦௧,௧ାଵ
௜ െ 𝑥௧ାଵ|௧ିଵ

௜

𝑦௧,௧
௜ െ 𝑥௧|௧ିଵ

௜

൪ (B.9) 

 
Each element in G corresponds to a weight placed on one of the current signals, in each of the three forecasts. Hence, 
we could use the optimal weights derived above to guess the elements in the gain matrix, using the fact that that the 
filter algorithm is also based on the minimization of the squared error. 

Specifically, the last row in the matrix should include 0, 0 and 1 in order to obtain 𝑥௧|௧
௜ ൌ 𝑦௧,௧

௜ ൌ 𝑥௧, which is due to the 

perfect signal of the realized fundamental at period 𝑡.  The second row corresponds to the weights in the forecast 𝑥௧ାଵ|௧. 

According to (B.3), the elements of this row should be  Gଶ,ଵ ൌ 𝑊ସ𝜌ିଵ, Gଶ,ଶ ൌ 𝑊ଷ and Gଶ,ଷ ൌ 𝑊ଵ𝜌. Similarly, the 

elements in the first row of the gain matrix should correspond to the optimal weights in (B.5). Thus, we get that  Gଵ,ଵ ൌ
𝑤ସ, Gଵ,ଶ ൌ 𝑤ଷ𝜌 and Gଵ,ଷ ൌ 𝑤ଵ𝜌ଶ and the gain matrix is therefore: 

𝐺 ൌ ቎
𝑤ସ 𝑤ଷ𝜌 𝑤ଵ𝜌ଶ

𝑊ସ𝜌ିଵ 𝑊ଷ 𝑊ଵ𝜌
0 0 1

቏ 

To validate this result, we derive the variance-covariance matrix Ψ of the one-step-ahead forecast error, by using G ൌ
ΨሺΨ ൅ Σఔሻିଵ, and then verify that Ψ solves the Riccati equation.  
It should be noted that in the Kalman filter representation of the optimal forecast there is no explicit reference for the 

signal 𝑦௧ିଵ,௧ାଵ
௜ , as in (B.3) and (B.5). However, this signal is implicit in the lagged forecasts in (B.9). For instance, the 

one-step-ahead forecast in the Kalman filter representation of (B.9) follows:   

𝑥௧ାଵ|௧
௜ ൌ 𝑥௧ାଵ|௧ିଵ

௜ ൅𝑊ଵ𝜌൫𝑦௧,௧
௜ െ 𝑥௧|௧ିଵ

௜ ൯ ൅𝑊ଷ൫𝑦௧,௧ାଵ
௜ െ 𝑥௧ାଵ|௧ିଵ

௜ ൯ ൅ 𝑊ସ𝜌ିଵ൫𝑦௧,௧ାଶ
௜ െ 𝑥௧ାଶ|௧ିଵ

௜ ൯  (B.10) 

The lagged forecasts on the right-hand-side follow 

 𝑥௧|௧ିଵ
௜ ൌ 𝑥௧|௧ିଶ

௜ ൅𝑊ଵ𝜌൫𝑦௧ିଵ,௧ିଵ
௜ െ 𝑥௧ିଵ|௧ିଶ

௜ ൯ ൅𝑊ଷ൫𝑦௧ିଵ,௧
௜ െ 𝑥௧|௧ିଶ

௜ ൯ ൅𝑊ସ𝜌ିଵ൫𝑦௧ିଵ,௧ାଵ
௜ െ 𝑥௧ାଵ|௧ିଶ

௜ ൯ 

 𝑥௧ାଵ|௧ିଵ
௜ ൌ 𝑥௧ାଵ|௧ିଶ

௜ ൅ 𝑤ଵ𝜌ଶ൫𝑦௧ିଵ,௧ିଵ
௜ െ 𝑥௧ିଵ|௧ିଶ

௜ ൯ ൅ 𝑤ଷ𝜌൫𝑦௧ିଵ,௧
௜ െ 𝑥௧|௧ିଶ

௜ ൯ ൅ 𝑤ସ൫𝑦௧ିଵ,௧ାଵ
௜ െ 𝑥௧ାଵ|௧ିଶ

௜ ൯ 

 𝑥௧ାଶ|௧ିଵ
௜ ൌ 𝜌𝑥௧ାଵ|௧ିଵ

௜  

Plugging into (B.10) and rearranging terms, we obtain: 

 𝑥௧ାଵ|௧
௜ ൌ 𝑊ଵ𝜌𝑦௧,௧

௜ ൅ ሾሺ1 െ𝑊ଷ െ𝑊ସሻ𝑤ସ െ𝑊ଵ𝑊ସሿ𝑦௧ିଵ,௧ାଵ
௜ ൅𝑊ଷ𝑦௧,௧ାଵ

௜ ൅𝑊ସ𝜌ିଵ𝑦௧,௧ାଶ
௜ ൅

𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠  
(B.11) 

where 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 represent all the signals in the lagged forecasts, which are not the signal 𝑦௧ିଵ,௧ାଵ
௜ . The signal 

𝑦௧ିଵ,௧ାଵ
௜  is the only lagged signal which is still informative in period 𝑡. All other lagged signals, which refer to period 𝑡 

and before, are not informative after 𝑥௧ is perfectly observed. 
By using the expressions for the optimal weights from (B.4) and (B.6), it can be verified that the term 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 in 

(B.11) is equal to zero. Furthermore, the coefficient on the lagged signal 𝑦௧ିଵ,௧ାଵ
௜  in (B.11), which is given by 

ሾሺ1 െ𝑊ଷ െ𝑊ସሻ𝑤ସ െ𝑊ଵ𝑊ସሿ, is just equal to 𝑊ଶ, which is the same weight placed on this signal in (B.3). Thus, the optimal 
forecast in (B.11), based on the Kalman filter, is the same optimal forecast derived in (B.3) by directly optimizing the weights 

to minimize the squared forecast error. In a similar way, it can be shown that the optimal forecast  𝑥௧ାଶ|௧
௜  according to the 

Kalman filter is the same forecast derived in (B.5). Thus, our guessed solution for the gain matrix is verified again.  
 

B.3. Patterns of regression properties across forecast horizons 
The simulation results, as presented in Figure 5, show that in a cross-sectional regression of 𝑥௧ା௛|௧

௜  on 𝑥௧ା௛ିଵ|௧
௜  with low 

ℎ (short horizon), the coefficient estimate and R-squared would be low, and as ℎ increases they would converge to the 
values of 𝜌 and 1, respectively. In our tractable example, because there are only three signals (one perfect signal of 
realized fundamental and two forward signals), this pattern is demonstrated in a compact form by increasing the horizon 
from ℎ ൌ 1 to ℎ ൌ 3.   

𝒉 ൌ 𝟏: Suppose that we run a cross-sectional regression of 𝑥௧ାଵ|௧
௜  on 𝑥௧|௧

௜ . Based on (13), the coefficient on 𝑥௧|௧
௜  is 𝜌. 

However, the OLS coefficient estimate would be zero. This is easily verified, when recalling that 𝑥௧|௧
௜ ൌ 𝑥௧, due to the 
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perfect signal 𝑦௧,௧
௜  in (B.2). so that there is no cross-sectional variation in 𝑥௧|௧

௜ .  It also follows that all the cross-sectional 

variation in 𝑥௧ାଵ|௧
௜  is determined by the “error term” specified in (13), and the 𝑅ଶ should therefore be 0.   

In the simulation presented in Figure 5, this limiting case was avoided by introducing some low degree of noise in the 

signal 𝑦௧,௧
௜  (𝜎଴

ଶ ൌ 0.2), thereby, allowing some variation in 𝑥௧|௧
௜ . Consequently, the simulated coefficient estimates and 

𝑅ଶ are positive but still very low.  

𝒉 ൌ 𝟑: At the other extreme, if we regress 𝑥௧ାଷ|௧
௜  on 𝑥௧ାଶ|௧

௜ , we should get a perfect fit where the OLS coefficient 

estimate is equal to 𝜌. As shown in Section B.1., the optimal weights in the two forecasts 𝑥௧ାଷ|௧
௜  and 𝑥௧ାଶ|௧

௜  are the same, 

so  𝑥௧ାଷ|௧
௜  is exactly equal to 𝜌𝑥௧ାଶ|௧

௜ . This applies to any ℎ ൒ 3. More generally, this second limiting case would apply 

when ℎ is sufficiently high so that there is no informative signal referring to that horizon. Also, recall that according to 
our simulation results, even if the noise in the forward signal is very high (but not infinite), the coefficient estimate 
would be very close to 𝜌, while the fit of the regression could be considerably far from a perfect fit. 

𝒉 ൌ 𝟐: This is the intermediate case, which is described by equation (11) in the main text. The coefficient on 𝑥௧ାଵ|௧
௜  should 

be 𝜌, but the OLS estimate would be biased since 𝑥௧ାଵ|௧
௜  is correlated with 𝑆𝑖𝑔𝑛𝑎𝑙௞,௧ାଶ

௜  in the error term. The 𝑅ଶ would be 

between 0 and 1. 
It is also interesting to examine how regression properties for ℎ ൌ 2 vary when increasing the noise of the two steps ahead 

signal, that is, when increasing 𝜎ଶ
ଶ. This is, in a sense, a way to imitate our above simulation in which the noise in forward 

signals increases when moving to longer horizons. As shown in section 3.1 in the main text, by combining (B.3) and (B.5), 

the relation between the optimal forecasts with consecutive horizons 𝑥௧ାଶ|௧ and 𝑥௧ାଵ|௧
௜  can be expressed as: 

𝑥௧ାଶ|௧
௜ ൌ 𝜌𝑥௧ାଵ|௧

௜ ൅෍ሺ𝑤௞ െ  𝑊௞ሻ
ସ

௞ୀଵ

𝑆𝑖𝑔𝑛𝑎𝑙௞,௧ାଶ
௜  (B.12) 

Thus, a deviation from the simple state relation of 𝑥௧ାଶ|௧
௜ ൌ 𝜌𝑥௧ାଵ|௧

௜  is due to changes in the optimal weights ሺ𝑤௞ െ  𝑊௞ሻ 

across forecast horizons. 

It is useful to begin with the special case where 𝜎ଶ
ଶ goes to infinity so that the signal 𝑦௧,௧ାଶ

௜  become meaningless. As a 

consequence, forecasts at time 𝑡 only apply two signals: the perfect signal about realized 𝑥௧ and the forward signal 

𝑦௧,௧ାଵ
௜ . The one-step-ahead forecast is then:   

𝑥௧ାଵ|௧
௜ ൌ 𝑊ଵ

௟௜௠𝜌𝑥௧ ൅𝑊ଷ
௟௜௠𝑦௧,௧ାଵ

௜  (B.13) 

where  𝑊ଵ
௟௜௠ ൅𝑊ଷ

௟௜௠ ൌ 1 .The expected squared forecast error is: 

  𝐸௧൛𝑥௧ାଵ െ 𝑥௧ାଵ|௧
௜ ൟ

ଶ
ൌ 𝐸௧൛𝑊ଵ

௟௜௠𝜔௧ାଵ ൅𝑊ଷ
௟௜௠൫െ𝜈௧,௧ାଵ

௜ ൯ൟ
ଶ
ൌ ൫𝑊ଵ

௟௜௠൯
ଶ
൅ ൫𝑊ଷ

௟௜௠൯
ଶ
𝜎ଵ
ଶ 

so that optimal weights which minimize the expected squared error are simply given by 𝑊ଵ
௟௜௠ ൌ 𝜎ଵ

ଶሺ1 ൅ 𝜎ଵ
ଶሻିଵ  and 

𝑊ଷ
௟௜௠ ൌ ሺ1 ൅ 𝜎ଵ

ଶሻିଵ. 
Similarly, the two-step-ahead forecast is also a weighted average of two signals: 

  𝑥௧ାଶ|௧
௜ ൌ 𝑤ଵ

௟௜௠𝜌ଶ𝑥௧ ൅ 𝑤ଷ
௟௜௠𝜌𝑦௧,௧ାଵ

௜ , (B.14) 

 where  𝑤ଵ
௟௜௠ ൅ 𝑤ଷ

௟௜௠ ൌ 1 .The expected squared forecast error is: 

 𝐸௧൛𝑥௧ାଶ െ 𝑥௧ାଶ|௧
௜ ൟ

ଶ
ൌ 𝐸௧൛𝑤ଵ

௟௜௠ሺ𝜌𝜔௧ାଵ ൅ 𝜔௧ାଶሻ ൅ 𝑤ଷ
௟௜௠൫െ𝜌𝜈௧,௧ାଵ

௜ ൅ 𝜔௧ାଶ൯ൟ
ଶ
ൌ ൫𝑤ଵ

௟௜௠൯
ଶ
𝜌ଶ ൅ ൫𝑤ଷ

௟௜௠൯
ଶ
𝜌ଶ𝜎ଵ

ଶ ൅

൫𝑤ଵ
௟௜௠ ൅ 𝑤ଷ

௟௜௠൯
ଶ
ൌ ൫𝑤ଵ

௟௜௠൯
ଶ
𝜌ଶ ൅ ൫𝑤ଷ

௟௜௠൯
ଶ
𝜌ଶ𝜎ଵ

ଶ ൅ 1 

Hence, the optimal weights which minimize the squared error should again be 𝑤ଵ
௟௜௠ ൌ 𝜎ଵ

ଶሺ1 ൅ 𝜎ଵ
ଶሻିଵ  and 𝑤ଷ

௟௜௠ ൌ
ሺ1 ൅ 𝜎ଵ

ଶሻିଵ.  This corresponds to the previous result that going beyond informative horizons, there will be no variation 

in the optimal weights across consecutive horizons and we obtain the simple relation of 𝑥௧ାଶ|௧
௜ ൌ 𝜌𝑥௧ାଵ|௧

௜ .  

More generally, we now show that, under the plausible assumption 𝜎ଶ
ଶ ൐ 𝜎ଵ

ଶ ൐ 𝜎ఠଶ=1, the gap between corresponding 

optimal weights 𝑊௞ and 𝑤௞ is getting closer to zero when 𝜎ଶ
ଶ increases, leading to the empirical patterns observed for the 

coefficient estimate and R-squared across horizons. From (B.4) and (B.6), it is easy to see that 𝑤௞ ൏  𝑊௞ for 𝑘 ൌ 1,2,3, 

while 𝑤ସ ൐ 𝑊ସ. Thus, we need to show that ሺ𝑤௞ െ  𝑊௞ሻ increases in 𝜎ଶ
ଶ for 𝑘 ൌ 1,2,3, while ሺ𝑤ସ െ  𝑊ସሻ decreases in 𝑘: 
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𝑘 ൌ 1: 
From (B.4) and (B.6) the difference between 𝑤ଵ and 𝑊ଵ is:    

𝑤ଵ െ  𝑊ଵ ൌ
𝜎ଶ
ଶ𝜎ଶ

ଶ𝜎ଵ
ଶ െ 𝜎ଶ

ଶ𝜎ଵ
ଶሺ1 ൅ 𝜎ଶ

ଶሻ
𝑚

ൌ
െ𝜎ଶ

ଶ𝜎ଵ
ଶ

𝑚
 

where the expression for 𝑚, as specified above, is:  

𝑚 ൌ 𝜎ଶ
ଶ𝜎ଵ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ ൅ 𝜎ଵ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ ൅ 𝜎ଶ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ ൅ 𝜌ଶ𝜎ଶ

ଶ𝜎ଵ
ଶ ൌ ሺ2 ൅ 𝜌ଶሻ𝜎ଵ

ଶ𝜎ଶ
ଶ ൅ ሺ𝜎ଶ

ଶሻଶ ൅ ሺ𝜎ଶ
ଶሻଶ𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶ ൅ 𝜎ଵ

ଶ 

Taking the derivative with respect to 𝜎ଶ
ଶ we obtain 

𝜕ሺ𝑤ଵ െ  𝑊ଵሻ

𝜕𝜎ଶ
ଶ ൌ

െ𝜎ଵ
ଶ𝑚 ൅ 𝜎ଶ

ଶ𝜎ଵ
ଶሾሺ2 ൅ 𝜌ଶሻ𝜎ଵ

ଶ ൅ 2𝜎ଶ
ଶ ൅ 2𝜎ଶ

ଶ𝜎ଵ
ଶ ൅ 1ሿ

𝑚ଶ  

Plugging 𝑚 into the derivative and rearranging we get:  

𝜕ሺ𝑤ଵ െ  𝑊ଵሻ

𝜕𝜎ଶ
ଶ ൌ

𝜎ଵ
ଶሺ𝜎ଶ

ଶሻଶ ൅ ሺ𝜎ଵ
ଶሻଶሺ𝜎ଶ

ଶሻଶ െ ሺ𝜎ଵ
ଶሻଶ

𝑚ଶ ൌ
𝜎ଵ
ଶሾሺ𝜎ଶ

ଶሻଶሺ1 ൅ 𝜎ଵ
ଶሻ െ 𝜎ଵ

ଶሿ
𝑚ଶ ൐ 0 

under the assumption of 𝜎ଶ
ଶ ൐ 𝜎ଵ

ଶ ൐ 𝜎ఠଶ=1. 
𝑘 ൌ 2: 
From (B.4) and (B.6) the difference between 𝑤ଶ and 𝑊ଶ is:    

𝑤ଶ െ  𝑊ଶ ൌ
𝜎ଶ
ଶ𝜎ଵ

ଶ െ 𝜎ଵ
ଶሺ1 ൅ 𝜎ଶ

ଶሻ

𝑚
ൌ
െ𝜎ଵ

ଶ

𝑚
 

Taking the derivative with respect to 𝜎ଶ
ଶ we obtain: 

𝜕ሺ𝑤ଶ െ  𝑊ଶሻ

𝜕𝜎ଶ
ଶ ൌ

𝜎ଵ
ଶሾሺ2 ൅ 𝜌ଶሻ𝜎ଵ

ଶ ൅ 2𝜎ଶ
ଶ ൅ 2𝜎ଶ

ଶ𝜎ଵ
ଶ ൅ 1ሿ

𝑚ଶ ൐ 0 

𝑘 ൌ 3: 
From (B.4) and (B.6) the difference between 𝑤ଷ and 𝑊ଷ is:    

𝑤ଷ െ  𝑊ଷ ൌ
𝜎ଶ
ଶ𝜎ଶ

ଶ െ 𝜎ଶ
ଶሺ1 ൅ 𝜎ଶ

ଶሻ
𝑚

ൌ
െ𝜎ଶ

ଶ

𝑚
 

Taking the derivative with respect to 𝜎ଶ
ଶ we obtain: 

𝜕ሺ𝑤ଷ െ  𝑊ଷሻ

𝜕𝜎ଶ
ଶ ൌ

െ𝑚 ൅ 𝜎ଶ
ଶሾሺ2 ൅ 𝜌ଶሻ𝜎ଵ

ଶ ൅ 2𝜎ଶ
ଶ ൅ 2𝜎ଶ

ଶ𝜎ଵ
ଶ ൅ 1ሿ

𝑚ଶ ൌ
1
𝜎ଵ
ଶ ⋅
𝜕ሺ𝑤ଵ െ  𝑊ଵሻ

𝜕𝜎ଶ
ଶ ൐ 0 

under the assumption of 𝜎ଶ
ଶ ൐ 𝜎ଵ

ଶ ൐ 𝜎ఠଶ=1, as demonstrated for the case of 𝑘 ൌ 1. 
𝑘 ൌ 4: 

Recall that   ∑ 𝑊௞
ସ
௞ୀଵ ൌ ∑ 𝑤௞

ସ
௞ୀଵ ൌ 1. Accordingly, we obtain: 

𝜕ሺ𝑤ସ െ  𝑊ସሻ

𝜕𝜎ଶ
ଶ ൌ

𝜕ሾെሺ𝑤ଵ െ  𝑊ଵሻ െ ሺ𝑤ଶ െ  𝑊ଶሻ െ ሺ𝑤ଷ െ  𝑊ଷሻሿ

𝜕𝜎ଶ
ଶ ൌ െ

𝜕ሺ𝑤ଵ െ  𝑊ଵሻ

𝜕𝜎ଶ
ଶ െ

𝜕ሺ𝑤ଶ െ  𝑊ଶሻ

𝜕𝜎ଶ
ଶ െ

𝜕ሺ𝑤ଷ െ  𝑊ଷሻ

𝜕𝜎ଶ
ଶ ൏ 0 

under the assumption 𝜎ଶ
ଶ ൐ 𝜎ଵ

ଶ ൐ 𝜎ఠଶ ൌ 1, by using our above results for 𝑘 ൌ 1,2,3. 

At the limit, all the weight-differentials converge to zero when 𝜎ଶ
ଶ goes to infinity, which again demonstrates why the 

estimated coefficient and the R-squared should converge to 𝜌 and 1, respectively, when the horizon becomes uninformative.  
Finally, we note that the sign of the bias in the coefficient estimate can change from negative to positive before the 
estimate eventually convergences to 𝜌. This possibility can be noticed in the simulation results presented in Figure 5. 

Here it is demonstrated using our tractable case, by increasing the noise 𝜎ଶ
ଶ. Using equations (B.3) – (B.6), we express 

the OLS coefficient estimate (for ℎ ൌ 2) as follows: 
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𝛽ை௅ௌ ൌ
𝐶𝑜𝑣ሺ𝑥𝑡൅2|𝑡, 𝑥𝑡൅1|𝑡ሻ

𝑉𝑎𝑟ሺ𝑥𝑡൅1|𝑡ሻ
ൌ
𝑊2𝑤2𝜌𝜎2

2 ൅𝑊3𝑤3𝜌𝜎1
2 ൅  𝑊4𝑤4𝜌

െ1𝜎2
2

𝑊2
2𝜎2

2 ൅𝑊3
2𝜎1

2 ൅  𝑊4
2𝜌െ2𝜎2

2

ൌ 𝜌
𝑊2𝑤2𝜎2

2 ൅𝑊3𝑤3𝜎1
2 ൅  𝑊4𝑤4𝜌

െ2𝜎2
2

𝑊2
2𝜎2

2 ൅𝑊3
2𝜎1

2 ൅  𝑊4
2𝜌െ2𝜎2

2

ൌ 𝜌 ൅
𝑊2ሺ𝑤2 െ𝑊2ሻ𝜌𝜎2

2 ൅𝑊3ሺ𝑤3 െ𝑊3ሻ𝜌𝜎1
2 ൅  𝑊4ሺ𝑤4 െ𝑊4ሻ𝜌െ1𝜎2

2

𝑊2
2𝜎2

2 ൅𝑊3
2𝜎1

2 ൅  𝑊4
2𝜌െ2𝜎2

2

ൌ 𝜌 ൅
െ𝜎1

2𝜎1
2ሺ1 ൅ 𝜎2

2ሻ𝜌𝜎2
2 െ 𝜎2

2𝜎2
2ሺ1 ൅ 𝜎2

2ሻ𝜌𝜎1
2 ൅ ሺ𝜎2

2𝜎1
2 ൅ 𝜎1

2 ൅ 𝜎2
2ሻ𝜌2𝜎2

2𝜎1
2𝜌െ1𝜎2

2

𝜎1
2ሺ1 ൅ 𝜎2

2ሻ𝜎1
2ሺ1 ൅ 𝜎2

2ሻ𝜎2
2 ൅ 𝜎2

2ሺ1 ൅ 𝜎2
2ሻ𝜎2

2ሺ1 ൅ 𝜎2
2ሻ𝜎1

2 ൅ 𝜌2𝜎2
2𝜎1

2𝜎2
2𝜎1

2𝜎2
2

ൌ 𝜌 ൅
െ𝜎1

2ሺ1 ൅ 𝜎2
2ሻ𝜌 െ 𝜎2

2ሺ1 ൅ 𝜎2
2ሻ𝜌 ൅ ሺ𝜎2

2𝜎1
2 ൅ 𝜎1

2 ൅ 𝜎2
2ሻ𝜌𝜎2

2

𝜎1
2ሺ1 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ ൅ 𝜎2

2ሺ1 ൅ 𝜎2
2ሻሺ1 ൅ 𝜎2

2ሻ ൅ 𝜌2𝜎2
2𝜎1

2𝜎2
2 ൌ

ൌ 𝜌 ൅
𝜌ሺ𝜎2

2𝜎2
2𝜎1

2 െ 𝜎1
2 െ 𝜎2

2ሻ

𝜎1
2ሺ1 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ ൅ 𝜎2

2ሺ1 ൅ 𝜎2
2ሻሺ1 ൅ 𝜎2

2ሻ ൅ 𝜌2𝜎2
2𝜎1

2𝜎2
2 ൌ

ൌ 𝜌 ൅
𝜌ሺ𝜎2

2𝜎2
2𝜎1

2 െ 𝜎1
2 െ 𝜎2

2ሻ

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2 

(B.15) 

Thus, we obtain an expression for the bias which consists of competing negative and positive terms: 

𝛽ை௅ௌ െ 𝜌 ൌ
െ𝜌ሺ𝜎1

2 ൅ 𝜎2
2ሻ

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2 ൅
𝜌𝜎2

2𝜎2
2𝜎1

2

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2 

Specifically, for low values of 𝜎ଶଶ, the negative bias dominates, whereas the positive bias dominates for high values of 

𝜎ଶଶ. Nevertheless, it is easy to see that both biases eventually converge to zero when 𝜎ଶ
ଶ goes to infinity.   

 

B.4. Patterns of regression properties when changing persistence in the state 
Another empirical pattern in the regression of 𝑥௧ା௛|௧

௜  on 𝑥௧ା௛ିଵ|௧
௜ , documented in section 2 and demonstrated by the 

simulation results in Figure 5, is the co-movement of the coefficient and R-squared. Apparently, this pattern is also 
associated with the differences in the optimal weights across forecasting horizons, as we illustrate with our tractable 
version of our model (see the right side of Table 1). We first look at the two extreme cases of 𝜌 ൌ 0 and 𝜌 ൌ 1. 
𝝆 ൌ 𝟎 : the lack of persistence in the state process implies that the forecasts are uncorrelated across horizons. That is, a 

forecast 𝑥௧ା௛|௧
௜  relies only on signals referring to 𝑡 ൅ h, and is uncorrelated with 𝑥௧ା௛ିଵ|௧

௜  (nor with 𝑥௧ା௛ାଵ|௧
௜ ). In terms 

of our system of equations, the optimal forecasts would be: 

𝑥௧|௧
௜ ൌ 𝑥௧ (B.16) 

𝑥௧ାଵ|௧
௜ ൌ 𝑊ଶ𝑦௧ିଵ,௧ାଵ

௜ ൅𝑊ଷ𝑦௧,௧ାଵ
௜   

𝑥௧ାଶ|௧
௜ ൌ 𝑤ସ𝑦௧,௧ାଶ

௜   

𝑥௧ାଷ|௧
௜ ൌ 0  

where 𝑊ଶ ൌ 1 െ𝑊ଷ ൌ 𝜎ଵ
ଶሺ𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶሻିଵ and 𝑤ସ ൌ 1. The forecasts are uncorrelated with each other since the 

fundamental is uncorrelated across different periods and the noise in forward signals is uncorrelated across horizons. 

It follows that in a cross-sectional regression of 𝑥௧ା௛|௧
௜  on  𝑥௧ା௛ିଵ|௧

௜ , the coefficient-estimate and R-squared should be 

zero. In terms of equation (B.12), for example, all cross-sectional variation in 𝑥௧ାଶ|௧
௜  is driven by the regression error 

term, which collapses to 𝑤ସ𝑦௧,௧ାଶ
௜   (according to (B.16)).   

𝝆 ൌ 𝟏 : When the fundamental follows a random walk, the general results obtained in Section B.3. would hold. This is 
not a limiting case where the coefficient and R-squared should converge to 1 (𝜌 ൌ 1). Rather, the regression properties 
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would depend on the forecast horizon in the same way described above. Specifically, for the short horizon ℎ ൌ 1 the 
coefficient-estimate and R-squared should still be zero, while for the long horizon ℎ ൌ 3 the fit becomes perfect.   The 
interesting case for investigating the response to change in persistence is the middle horizon, ℎ ൌ 2. As implied by 

equation (B.12), the coefficient on 𝑥௧ାଵ|௧
௜  should be 𝜌 ൌ 1, but the OLS estimate would be biased, due to the correlation 

of 𝑥௧ାଵ|௧
௜  with the error term, and the R-squared would be between zero and one. Nevertheless, the difference in 

regression properties between zero persistence and random walk still demonstrates an increase in the coefficient estimate 
and R-squared from zero to positive values, following a rise in persistence.  

More generally, we now show how the relation between 𝑥௧ାଶ|௧
௜  and 𝑥௧ାଵ|௧

௜ , as specified in (B.12) would vary when 

changing the persistence of the state process. First, notice that the difference between optimal weights placed on the 

same signals in 𝑥௧ାଶ|௧
௜  and 𝑥௧ାଵ|௧

௜ , which is ሺ𝑤௞ െ  𝑊௞ሻ, tends to diminish when the persistence 𝜌 increases. From our 

previous results, the weight differential can be expressed as weights can be expressed as  𝑤௞ െ  𝑊௞ ൌ 𝑎௞𝑚ିଵ. For 𝑘 ൌ
1,2,3, 𝑎௞(numerator) is negative and only 𝑚 (denominator) is a function of 𝜌. Hence, it is sufficient to show that the 
derivative of   𝑚ିଵ with respect to 𝜌 is negative:  

𝜕𝑚ିଵ

𝜕𝜌
ൌ
𝜕ሾሺ2 ൅ 𝜌ଶሻ𝜎ଵ

ଶ𝜎ଶ
ଶ ൅ ሺ𝜎ଶ

ଶሻଶ ൅ ሺ𝜎ଶ
ଶሻଶ𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶ ൅ 𝜎ଵ

ଶሿିଵ

𝜕𝜌
ൌ െ

2𝜌𝜎ଵ
ଶ𝜎ଶ

ଶ

𝑚ଶ ൏ 0 

Thus, the negative difference 𝑤௞ െ  𝑊௞, 𝑘 ൌ 1,2,3, diminishes as persistence increases.  For 𝑘 ൌ 4 the difference 𝑤ସ െ
 𝑊ସ is positive. Following the same above argument, this gap should decrease in 𝜌 because the weights 𝑤௞ and 𝑊௞ sum 

to one. Overall, this implies that the correlation between  𝑥௧ାଶ|௧
௜  and 𝑥௧ାଵ|௧

௜  will tend to be higher with more persistence 

since the error term in (B.12) would diminish due to the diminishing weight differential. 
Second, we show more formally that the (biased) OLS coefficient estimate and fit of the regression are increasing in 𝜌, 
even in the presence of a non-diminishing bias. Based on (B.16), we begin with:  

𝛽ை௅ௌ െ 𝜌 ൌ
െ𝜌ሺ𝜎1

2 ൅ 𝜎2
2ሻ

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2 ൅
𝜌𝜎2

2𝜎2
2𝜎1

2

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2 ൐
െ𝜌ሺ𝜎1

2 ൅ 𝜎2
2ሻ

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2 ൐ െ𝜌 

 Thus, the downward bias is no greater than െ𝜌, so that 𝛽ை௅ௌ should always be positive.   
Taking the derivative with respect to 𝜌, we get:   
 

𝜕𝛽ை௅ௌ
𝜕𝜌

ൌ 1 ൅
ሺ𝜎2

2𝜎2
2𝜎1

2 െ 𝜎1
2 െ 𝜎2

2ሻሾሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2ሿ
ሾሺ𝜎1

2 ൅ 𝜎2
2ሻሺ1 ൅ 𝜎2

2ሻ2 ൅ 𝜌2𝜎2
2𝜎1

2𝜎2
2ሿ2 െ

2𝜌2𝜎2
2𝜎1

2𝜎2
2ሺ𝜎2

2𝜎2
2𝜎1

2 െ 𝜎1
2 െ 𝜎2

2ሻ
ሾሺ𝜎1

2 ൅ 𝜎2
2ሻሺ1 ൅ 𝜎2

2ሻ2 ൅ 𝜌2𝜎2
2𝜎1

2𝜎2
2ሿ2

ൌ 1 ൅
ሺ𝜎2

2𝜎2
2𝜎1

2 െ 𝜎1
2 െ 𝜎2

2ሻ
ሺ𝜎1

2 ൅ 𝜎2
2ሻሺ1 ൅ 𝜎2

2ሻ2 ൅ 𝜌2𝜎2
2𝜎1

2𝜎2
2 െ

2𝜌2𝜎2
2𝜎1

2𝜎2
2ሺ𝜎2

2𝜎2
2𝜎1

2 െ 𝜎1
2 െ 𝜎2

2ሻ
ሾሺ𝜎1

2 ൅ 𝜎2
2ሻሺ1 ൅ 𝜎2

2ሻ2 ൅ 𝜌2𝜎2
2𝜎1

2𝜎2
2ሿ2

ൌ 1 ൅ ሺ𝛽ை௅ௌ െ 𝜌ሻ𝜌െ1 െ ሺ𝛽ை௅ௌ െ 𝜌ሻ
2𝜌𝜎2

2𝜎1
2𝜎2

2

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2

ൌ 𝛽ை௅ௌ𝜌െ1 െ ሺ𝛽ை௅ௌ െ 𝜌ሻ
2𝜌𝜎2

2𝜎1
2𝜎2

2

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2

ൌ 𝛽ை௅ௌ ቈ𝜌െ1 െ
2𝜌𝜎2

2𝜎1
2𝜎2

2

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2቉ ൅ 𝜌
2𝜌𝜎2

2𝜎1
2𝜎2

2

ሺ𝜎1
2 ൅ 𝜎2

2ሻሺ1 ൅ 𝜎2
2ሻ2 ൅ 𝜌2𝜎2

2𝜎1
2𝜎2

2 ൐ 0 

It is easy to see that the term in brackets is positive under the assumption 𝜎ଶ
ଶ ൐ 𝜎ଵ

ଶ. Since 𝛽ை௅ௌ is also positive as shown 
above, the derivative is positive. Thus, we can conclude that the coefficient-estimate 𝛽ை௅ௌ increases in 𝜌.  

The R-squared follows a similar pattern. The R-squared between 𝑥௧ାଶ|௧
௜  and 𝑥௧ାଵ|௧

௜  is given by: 

𝑅ଶ ൌ
ൣ𝐶𝑜𝑣ሺ𝑥௧ାଶ|௧ , 𝑥௧ାଵ|௧ሻ൧

ଶ

𝑉𝑎𝑟ሺ𝑥௧ାଵ|௧ሻ𝑉𝑎𝑟ሺ𝑥௧ାଶ|௧ሻ
ൌ

ሺ𝑊ଶ𝑤ଶ𝜌𝜎ଶ
ଶ ൅𝑊ଷ𝑤ଷ𝜌𝜎ଵ

ଶ ൅  𝑊ସ𝑤ସ𝜌ିଵ𝜎ଶ
ଶሻଶ

൫𝑊ଶ
ଶ𝜎ଶ

ଶ ൅𝑊ଷ
ଶ𝜎ଵ

ଶ ൅  𝑊ସ
ଶ𝜌ିଶ𝜎ଶ

ଶ൯ሺ𝑤ଶଶ𝜌ଶ𝜎ଶ
ଶ ൅ 𝑤ଷଶ𝜌ଶ𝜎ଵ

ଶ ൅  𝑤ସଶ𝜎ଶ
ଶሻ

 

After plugging in the optimal weights from (B.4) and (B.6) and rearranging, we can express the R-squared in the 
following way: 

𝑅ଶ ൌ
Βଶ

Βଶ ൅ Δ
  , 

Where: 
Β ൌ 𝑚ଶ𝐶𝑜𝑣൫𝑥௧ାଶ|௧ , 𝑥௧ାଵ|௧൯ ൌ 𝜎ଵ

ଶሺ𝜎ଶ
ଶሻଶሾ𝜌ଷ𝜎ଵ

ଶ𝜎ଶ
ଶ ൅ 𝜌ሺ1 ൅ 𝜎ଶ

ଶሻሺ𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶሻ ൅ 𝜌ሺ𝜎ଶ
ଶ𝜎ଵ

ଶ ൅ 𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶሻሿ 
Δ ൌ 𝜎ଵ

ଶሺ𝜎ଶ
ଶሻଶሺ𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶሻሾ𝜌ସሺ𝜎ଵ

ଶሻଶሺ𝜎ଶ
ଶሻଶ ൅ 2𝜌ଶ𝜎ଵ

ଶ𝜎ଶ
ଶሺ1 ൅ 𝜎ଶ

ଶሻሺ𝜎ଶ
ଶ𝜎ଵ

ଶ ൅ 𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶሻ ൅ ሺ1 ൅ 𝜎ଶ
ଶሻଶሺ𝜎ଶ

ଶ𝜎ଵ
ଶ ൅ 𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶሻଶሿ 



12 
 

Taking the derivative with respect to 𝜌 yields:   

𝜕𝑅ଶ

𝜕𝜌
ൌ

2Β
𝜕𝐵
𝜕𝜌 ሺΒ

ଶ ൅ Δሻ െ Βଶ ൬2Β
𝜕𝐵
𝜕𝜌 ൅

𝜕Δ
𝜕𝜌൰

ሺΒଶ ൅ Δሻଶ
ൌ
Β ൬2Δ

𝜕𝐵
𝜕𝜌 െ Β

𝜕Δ
𝜕𝜌൰

ሺΒଶ ൅ Δሻଶ
ൌ Κ ൬2Δ

𝜕𝐵
𝜕𝜌

െ Β
𝜕Δ
𝜕𝜌
൰ 

Where Κ ൌ Β ሺΒଶ ൅ Δሻଶ⁄ ൐ 0. The derivative, 𝜕𝐵 𝜕𝜌⁄ , can be expressed as:  
𝜕𝐵
𝜕𝜌

ൌ 𝐵𝜌ିଵ ൅ 2𝜌ଶሺ𝜎ଵ
ଶሻଶሺ𝜎ଶ

ଶሻଷ 

Plugging this into the derivative of 𝑅ଶ, we obtain: 
𝜕𝑅ଶ

𝜕𝜌
ൌ Κ ൜Β ൬2Δ𝜌ିଵ െ

𝜕Δ
𝜕𝜌
൰ ൅ 4Δ𝜌ଶሺ𝜎ଵ

ଶሻଶሺ𝜎ଶ
ଶሻଷൠ

ൌ ΚሼΒሾെ2𝜌ଷሺ𝜎ଵ
ଶሻଷሺ𝜎ଶ

ଶሻସሺ𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶሻ ൅ 2𝜌ିଵ𝜎ଵ
ଶሺ𝜎ଶ

ଶሻଶሺ𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶሻሺ1 ൅ 𝜎ଶ
ଶሻଶሺ𝜎ଶ

ଶ𝜎ଵ
ଶ ൅ 𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶሻଶሿ

൅ 4Δ𝜌ଶሺ𝜎ଵ
ଶሻଶሺ𝜎ଶ

ଶሻଷሽ
ൌ ΚሼΒ𝜎ଵ

ଶሺ𝜎ଶ
ଶሻଶሺ𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶሻሾെ2𝜌ଷሺ𝜎ଵ

ଶሻଶሺ𝜎ଶ
ଶሻଶ ൅ 2𝜌ିଵሺ1 ൅ 𝜎ଶ

ଶሻଶሺ𝜎ଶ
ଶ𝜎ଵ

ଶ ൅ 𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶሻଶሿ
൅ 4Δ𝜌ଶሺ𝜎ଵ

ଶሻଶሺ𝜎ଶ
ଶሻଷሽ 

The term in the squared brackets is positive, and consequently the whole derivative. It follows that the R-squared 
increases in 𝜌. Hence, the R-squared and the coefficient estimate should demonstrate a pattern of co-movement in 
response to a change in  𝜌. 
 
B.5. Predictability of forecast errors 
This section shows that forecast errors are predictable by forecast revisions at the aggregate level due to forward signals.  
Consider the one-step-ahead forecast error. Using (B.3), we obtain:  

𝑥௧ାଵ െ 𝑥௧ାଵ|௧
௜ ൌ 𝑊ଵ𝜔௧ାଵ ൅𝑊ଶ൫െ𝜈௧ିଵ,௧ାଶ

௜ ൯ ൅𝑊ଷ൫െ𝜈௧,௧ାଵ
௜ ൯ ൅𝑊ସ ቀെ𝜌ିଵ൫𝜔௧ାଶ ൅ 𝜈௧,௧ାଶ

௜ ൯ቁ   

By taking the average across agents, all terms with idiosyncratic noise drop out. Hence, we get: 
𝑥௧ାଵ െ 𝑥௧ାଵ|௧ ൌ 𝑊ଵ𝜔௧ାଵ ൅𝑊ସሺെ𝜌ିଵ𝜔௧ାଶሻ 

where 𝑥௧ାଵ|௧ (without superscript 𝑖) denotes the cross-sectional average.  

The forecast 𝑥௧ାଵ|௧ revises the forecast 𝑥௧ାଵ|௧ିଵ, which is the two-step-ahead forecast from the last period. Using (B.3) 

and (B.5), and averaging across agents, the revision to the average forecast could be expressed as (exploiting the property 
that the optimal weights amount to 1): 
 𝑥௧ାଵ|௧ െ 𝑥௧ାଵ|௧ିଵ ൌ ሺ𝑊ଵ𝜌𝑥௧ ൅𝑊ଶ𝑥௧ାଵ ൅𝑊ଷ𝑥௧ାଵ ൅  𝑊ସ𝜌ିଵ𝑥௧ାଶሻ െ ሺ𝑤ଵ𝜌ଶ𝑥௧ିଵ ൅ 𝑤ଶ𝜌𝑥௧ ൅ 𝑤ଷ𝜌𝑥௧ ൅  𝑤ସ𝑥௧ାଵሻ ൌ

𝑊ଵሺെ𝜔௧ାଵሻ ൅𝑊ସ𝜌ିଵ𝜔௧ାଶ ൅ 𝑤ଵሺ𝜌𝜔௧ ൅ 𝜔௧ାଵሻ ൅ ሺ𝑤ଶ ൅ 𝑤ଷሻ𝜔௧ାଵ ൌ 𝑤ଵ𝜌𝜔௧ ൅ ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷ െ𝑊ଵሻ𝜔௧ାଵ ൅
𝑊ସ𝜌ିଵ𝜔௧ାଶ  
Consider a regression of forecast error with the forecast revision as the explanatory variable. Then, the expected OLS 
coefficient estimate would be (setting 𝜎ఠଶ=1 and assuming 𝐸ሾ𝜔𝑡𝜔𝑡െ1ሿ)  : 

𝛽஼ீ ൌ
𝐶𝑜𝑣ሺ𝑥௧ାଵ െ 𝑥௧ାଵ|௧ , 𝑥௧ାଵ|௧ െ 𝑥௧ାଵ|௧ିଵሻ

𝑉𝑎𝑟ሺ𝑥௧ାଵ|௧ െ 𝑥௧ାଵ|௧ିଵሻ
ൌ
𝐸ൣ൫𝑥௧ାଵ െ 𝑥௧ାଵ|௧൯൫ 𝑥௧ାଵ|௧ െ 𝑥௧ାଵ|௧ିଵ൯൧

𝐸ൣሺ𝑥௧ାଵ|௧ െ 𝑥௧ାଵ|௧ିଵሻ
2൧

ൌ
𝐸ൣ൫𝑊ଵ𝜔௧ାଵ ൅𝑊ସሺെ𝜌ିଵ𝜔௧ାଶሻ൯ሺ 𝑤ଵ𝜌𝜔௧ ൅ ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷ െ𝑊ଵሻ𝜔௧ାଵ ൅𝑊ସ𝜌ିଵ𝜔௧ାଶሻ൧

𝐸ൣሺ𝑤ଵ𝜌𝜔௧ ൅ ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷ െ𝑊ଵሻ𝜔௧ାଵ ൅𝑊ସ𝜌ିଵ𝜔௧ାଶሻ
2൧

ൌ
𝑊ଵሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷሻ െ ሺ𝑊ଵሻଶ െ ሺ𝑊ସሻଶ𝜌ିଶ

ሺ𝑤ଵሻଶ𝜌ଶ ൅ ሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷ െ𝑊ଵሻଶ ൅ ሺ𝑊ସሻଶ𝜌ିଶ
 

  
We can further verify that the expected coefficient is positive by showing that the numerator is positive. Using the 
expressions for the optimal weights from (B.4) and (B.6), we obtain (𝑚 is defined in (B.4)): 

𝑊ଵሺ𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷሻ െ ሺ𝑊ଵሻଶ െ ሺ𝑊ସሻଶ𝜌ିଶ ൌ
𝜎ଶ
ଶ𝜎ଵ

ଶሺ1 ൅ 𝜎ଶ
ଶሻ𝜎ଶ

ଶ𝜎ଶ
ଶ െ 𝜌ଶ𝜎ଶ

ଶ𝜎ଵ
ଶ𝜎ଶ

ଶ𝜎ଵ
ଶ

𝑚ଶ ൌ

ൌ
𝜎ଶ
ଶ𝜎ଵ

ଶ𝜎ଶ
ଶ ቀሺ1 ൅ 𝜎ଶ

ଶሻ𝜎ଶ
ଶ െ 𝜌ଶ𝜎ଵ

ଶቁ

𝑚ଶ  

The expression in brackets ቀሺ1 ൅ 𝜎ଶ
ଶሻ𝜎ଶ

ଶ െ 𝜌ଶ𝜎ଵ
ଶቁ is positive due to 𝜎ଶ

ଶ ൐ 𝜎ଵ
ଶ ൐ 1 and 𝜌 ൑ 1. Consequently, the whole 

numerator is positive, making the coefficient on the forecast revision positive as well (𝛽஼ீ ൐ 0). 
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Appendix C: Simulations 

This appendix provides more details on the simulation results reported in Section 3.3. Figure 5 replicates the persistence 
regression of 𝑥௧ା௛|௧

௜  on 𝑥௧ା௛ିଵ|௧
௜  that was estimated in Section 2, using SPF inflation forecasts. The results in Figure 5 

are in line with the patterns documented in the SPF data along several dimensions. 

First, we observe in Panel A that the coefficient estimate is substantially lower than the true persistence for the short 
horizons. For example, when the true persistence is 0.5 the coefficient estimate is below 0.2 in the regression applied to 
ℎ ൌ 1. However, as we estimate the regression using forecasts with longer horizons (higher noise to signal ratios), the 
coefficient estimate gets closer to the persistence value and finally converges to it. It is important to note that the 
convergence is not monotonic, but rather takes somewhat hump-shaped path. This result illustrates the possibility of 
upward bias as well, although the bias in this direction is quite small in the simulation (the positive bias is also possible 
in our above tractable example. See Appendix B.3.). The hump shape is also consistent with the evidence in Figure 2, 
in which the lines corresponding to the two longest horizons are flipping over time. 

Second, there is a similar pattern of convergence for the R-squared statistic (Panel B). Interestingly, the fit is very poor 
in regressions with forecasts at short horizons, representing the higher role of forward information in the error term. The 
values of the R-squared start below 0.1 for each persistence value, but eventually increase towards a perfect fit. 
Furthermore, the convergence could be quite slow, especially in cases where the degree of persistence is low. For 
instance, with 𝜌 ൌ 0.2, the R-squared is below 0,5, even when estimating the regression for ℎ ൌ 6, for which the signal 
is effectively uninformative. This property is consistent with the low R-squared values documented in recent years, even 
for the longer horizons in the SPF (Figure 2, Panel B). 

Third, the simulation results in Figure 5 also demonstrate a dependence of the regression properties on the underlying 
degree of persistence. Importantly, not only does the coefficient-estimate increases in the degree of persistence (Panel 
A), but so does the R-squared statistic (Panel B). This pattern is consistent across the different horizons (horizontal axis), 
for which we estimate the regressions. The co-movement of the regression estimates and persistence resembles the 
pattern documented in Section 2, where the coefficient and the fit of the regression deteriorate over time along with the 
decline in inflation persistence. 

Appendix Figure G.2 describes results from another set of simulations, in which the variance of the noise is constant 
instead of monotonically increasing in the horizon. Overall, it seems that the patterns of the regression properties are 
similar to those in Figure 5. However, notice that the rate of convergence is different. Due to the concavity of the lines, 
the convergence rate is slow for the short horizons and becomes faster for the longer horizons. This type of convergence 
seems less consistent with the evidence in Figure 2. The next simulation provides further evidence that supports the 
more realistic pattern of increasing noisiness in forward signals.  

As mentioned in Section 4, we further simulate the estimation of specification (26) on simulated forecasts as in Section 
3.3, with 𝜌 set to 0.5. Appendix Table G.1. resembles the structure of Table 3, where each column is a simulated 
estimation for a certain horizon. The coefficient estimates are in bold, while the regular numbers report the true 
parameters from the matrix ሺ𝐼 െ 𝐺ሻ. Although 𝐻 ൌ 7 in the simulation, the regressions were estimated as if there were 
only 5 available horizons in the data, thereby, checking the sensitivity of the results to this practical limitation. The 
results confirm that such truncation is not a concern. However, the estimates in Appendix Table G.1. are still very close 
to the true values. Thus, the estimation of specification (26) seems very reliable despite a truncation. In addition, as in 
our results for the SPF the diagonal coefficients are very dominant. Interestingly, the simulation provides a good 
approximation even to the off-diagonal elements. In practice, as evident in Table 3 these estimates could still suffer from 
imprecision due to the small values, and some multicollinearity due to measurement error.  

Another useful point is demonstrated by the results in Appendix Table G.2., which are based on the simulation as in 
Appendix Figure G.2, where the variance of the noise stays constant across horizons. Compared to the previous 
simulation with increasing noise, there is a notable difference in the pattern of the diagonal elements across horizons. 
when noise increases in the horizon (Appendix Table G.1.), the diagonal estimates also increase in the horizon, while 
for fixed noise there is a decline. Our results in Table 3 for the SPF are in line with the first pattern. Thus, this result is 
another form of support for a general pattern of deterioration in forward information as the horizon gets longer.  

This result also sheds light on the estimation of the restricted specification in (27). Because this version focuses on the 
diagonal elements of ሺ𝐼 െ 𝐺ሻ in the forward information framework, the coefficients should tend to increase when the 
specification is estimated for longer horizons. This pattern was documented in the SPF data by Goldstein (2021). Thus, 
according to our simulation, this variation provides another form of evidence against the standard noisy information 
framework, in which the coefficient in (27) should not vary across horizons.   



14 
 

Appendix D: Estimating Persistence with Asymmetric Loss Function 

According to Elliot et al. (2008) and Capistrán and Timmerman (2009), biased forecast errors observed in surveys could 
result from asymmetric preference of positive over negative forecast errors or vise-versa. Different asymmetrical 
tendencies across individuals would explain forecast disagreement. More formally, following Capistrán and 
Timmermann (2009), this asymmetry is modeled by a LINEX loss-function over forecast errors: 

𝐿൫𝐹𝐸௧
௜𝑥௧ା௛;  𝜃௜൯ ൌ ൣ𝑒𝑥𝑝൫𝜃௜𝐹𝐸௧

௜𝑥௧ା௛൯ െ 𝜃௜ሺℎሻ𝐹𝐸௧
௜𝑥௧ା௛ െ 1൧ 𝜃௜

ଶ⁄  
where 𝐹𝐸௧

௜𝑥௧ା௛ ≡ 𝑥௧ା௛ െ 𝑥௧ା௛|௧
௜  is the forecast error of forecaster 𝑖 and 𝜃௜ is the asymmetry parameter. A positive value 

of 𝜃௜ corresponds to positive error loss-aversion, while a negative 𝜃௜ corresponds to the opposite. As 𝜃௜ shrinks to zero 
the function converges to the regular (symmetric) squared error loss-function. 
The optimal individual forecast which minimizes the specified loss-function is:  

𝑥௧ା௛|௧
௜ ൌ 𝐸௧𝑥௧ା௛ ൅

1
2
𝜃௜𝜎௧ା௛|௧

ଶ  (D.1) 

where the variable 𝑥 is assumed to be normally distributed with conditional mean, represented by the rational expectation 
term 𝐸௧𝑥௧ା௛, and with conditional variance 𝜎௧ା௛|௧

ଶ . Thus, the individual forecast is biased relative to the rational 
expectation by a term that depends on the asymmetric tendency parameter 𝜃௜, and the variance of the 𝑥. 
Similarly, the forecast for ℎ െ 1 steps ahead is:   

𝑥௧ା௛ିଵ|௧
௜ ൌ 𝐸௧𝑥௧ା௛ିଵ ൅

1
2
𝜃௜𝜎௧ା௛ିଵ|௧

ଶ  (D.2) 

Suppose that the fundamental follows an AR(1) process 𝑥௧ ൌ 𝜌𝑥௧ିଵ ൅ 𝜔௧, where 𝜔௧ ∼ 𝑖𝑖𝑑 𝑁൫0,𝜎௧|௧ିଵ
ଶ ൯. The implied 

rational expectation would therefore be: 

𝐸௧𝑥௧ା௛ ൌ  𝜌௛𝑥௧ ൌ 𝜌𝐸௧𝑥௧ା௛ିଵ ൌ 𝜌𝑥௧ା௛ିଵ|௧
௜ െ

1
2
𝜌𝜃௜𝜎௧ା௛ିଵ|௧

ଶ  

where we use (D.2) to substitute for 𝐸௧𝑥௧ା௛ିଵ. We then substitute this expression in (D.1) and rearrange to obtain 

𝑥௧ା௛|௧
௜ ൌ 𝜌𝑥௧ା௛ିଵ|௧

௜ ൅
1
2
𝜃௜൫𝜎௧ା௛|௧

ଶ െ 𝜌𝜎௧ା௛ିଵ|௧
ଶ ൯ (D.3) 

The last term on the right-hand side would correspond to the error term in a cross-sectional regression of the forecast 
𝑥௧ା௛|௧
௜  on the forecast 𝑥௧ା௛ିଵ|௧

௜ . The mean of the error term would be zero only if  𝜃௜ has a zero mean (symmetry). In 
the general case, where the mean of 𝜃௜ is  𝜃, which is different from zero, the regression would include a constant term 

and the error term would be 
ଵ

ଶ
ሺ𝜃௜ െ 𝜃ሻ൫𝜎௧ା௛|௧

ଶ െ 𝜌𝜎௧ା௛ିଵ|௧
ଶ ൯. 

In any case, it is clear from (D.2) that 𝜃௜ is positively correlated with 𝑥௧ା௛ିଵ|௧
௜ , so that the OLS estimate of the coefficient 

on  𝑥௧ା௛ିଵ|௧
௜  would be a biased estimate of the persistence parameter 𝜌. In fact, the OLS coefficient in a cross-sectional 

regression is unrelated to 𝜌, because heterogeneity in forecasts is driven only by the asymmetric bias component, while 
the persistence component, 𝜌௛𝑥௧ , is the same across agents. More formally:   

𝛽ை௅ௌ ൌ
𝐶𝑜𝑣ሺ𝑥𝑡൅ℎ|𝑡, 𝑥𝑡൅ℎെ1|𝑡ሻ

𝑉𝑎𝑟ሺ𝑥𝑡൅ℎെ1|𝑡ሻ
ൌ
𝐶𝑜𝑣ሺ𝜌௛𝑥௧ ൅

1
2 𝜃௜𝜎௧ା௛|௧

ଶ ,𝜌௛ିଵ𝑥௧ ൅
1
2𝜃௜𝜎௧ା௛ିଵ|௧

ଶ ሻ

𝑉𝑎𝑟ሺ𝜌௛ିଵ𝑥௧ ൅
1
2𝜃௜𝜎௧ା௛ିଵ|௧

ଶ ሻ
ൌ
𝐶𝑜𝑣ሺ

1
2𝜃௜𝜎௧ା௛|௧

ଶ ,
1
2𝜃௜𝜎௧ା௛ିଵ|௧

ଶ ሻ

𝑉𝑎𝑟ሺ
1
2𝜃௜𝜎௧ା௛ିଵ|௧

ଶ ሻ

ൌ
𝜎௧ା௛|௧
ଶ

𝜎௧ା௛ିଵ|௧
ଶ  

Thus, if the conditional variance of the fundamental is time-independent, the OLS coefficient in a cross-sectional 
regression of 𝑥௧ା௛|௧

௜  on 𝑥௧ା௛ିଵ|௧
௜  equals 1. Capistrán and Timmermann (2009) have assumed that the conditional variance 

follows a GARCH(1,1) process:  
𝜎௧ାଵ|௧
ଶ ൌ 𝛼଴ ൅ 𝛼ଵ𝜔௧

ଶ ൅ 𝛽ଵ𝜎௧|௧ିଵ
ଶ  

Thus, the resulting OLS coefficient (𝛼଴ 𝜎௧ା௛ିଵ|௧
ଶ⁄ ൅ 𝛼ଵ ൅ 𝛽ଵ) depends on the conditional variance. Still, it does not 

depend on 𝜌, nor does it follow a particular pattern of variation across forecast horizons. 
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Appendix E: More Applications of Forward Information 

In Section 6, we proposed a simple measure of forward information, based on the forward information component in 
forecast data. This appendix complements Section 6 with two additional applications of our measure, which are 
described briefly in Sections 6.2.1. and 6.2.3.  

E.1. Big news 
As demonstrated in the main text, our method for extracting forward information from forecasts and the forecast persistence 
regressions from Section 2 are closely related. The forward information component shifts the persistence estimates 
downward at the shorter horizons. Thus, it is expected that times of big news will induce big shifts in forecast persistence. 
A recent prominent example of a major event that should deliver a high amount of forward information is the outbreak of 
COVID-19. In terms of our framework, forecasters would interpret the outbreak of the pandemic as a series of multi-
horizon shocks that will hit the economy in the following quarters. According to our analysis, the adjustment of forecasts 
to such significant news may lead to a decline in the persistence of their forecasts at the various horizons. 

The results in Panel A of Appendix Figure G.3 support this conjecture. The figure shows estimates of forecast 
persistence before and after the outbreak of COVID-19, by applying specification (4) to the SPF waves of 2020Q1 and 
2020Q2. The forecasts in these waves were collected in February and May 2020, respectively, which is before and after the 
outbreak of the pandemic outside China. Interestingly, there is a substantial decline in the estimates of persistence in the 
survey wave of 2020Q2 relative to 2020Q1, for all four major macro variables presented in the figure (inflation, GDP growth, 
interest rate and unemployment). Moreover, the decline is observed not only in short-horizon estimates (ℎ ൌ 1, left graph), 
but also in estimates for the longer horizon (ℎ ൌ 3, left graph). This finding suggests that the scope of forward information 
embedded in the outbreak of COVID-19 is long enough to have a pervasive biasing effect even on the year-ahead estimates. 
Still, in line with the decaying effect of forward information across horizons, as demonstrated above, the decline in the 
estimates at the longer horizon is more moderate. Specifically, as shown in the figure, estimated persistence has declined by 
around 0.5 (!) in 2020Q2 relative to 2020Q1 for ℎ ൌ 1, and by around a half of this size for ℎ ൌ 3. 

As a reference to the evidence from COVID-19, Appendix Figure G.3 presents the results from a similar exercise 
applied to two other major events: the financial collapse on the eve of the Great Recession and the 9/11 terror attack 
(Panels B and C, respectively). For the collapse of the big US financial firms in September 2008, we compare the SPF 
waves of 2008Q3 and 2008Q4. For the terror attack of September 2001, we compare the SPF waves of 2001Q3 and 
2001Q4. In contrast to the COVID-19 results, the pattern of decline in persistence is much weaker, following these 
events, and it is not consistent across variables and horizons. Hence, the sharp pattern of decline in persistence following 
COVID-19, which was obtained despite a small sample of forecasters in single waves, points to an exceptional amount 
of forward information brought by the burst of this unprecedented crisis.     

E.2. Comparison with a methodology of news shocks 
This application provides a comparison of the forward-information measure of news with news shocks identified by a 
familiar method in the literature. For this purpose, we extend the analysis in Section 5.2 to a VAR framework. We 
estimate the effect of the series of forward information about inflation, 𝐹𝐼௧|௧, in a VAR with four macroeconomic 
variables, including the inflation rate, the unemployment rate, 3-month and 10-year treasury bill rates. The estimated 
impulse responses of the four variables to 𝐹𝐼௧|௧ are presented in panel A of Appendix Figure G.4. Again, we obtain a 
strong response of inflation to its forward information, despite taking into account the effect of other variables. The 
initial response is close to the estimates in Table 6 (column (2)) and then dies out quite quickly. The response of the 
other variables to forward information about inflation is quite weak and insignificant. 

We then identify inflation news shocks, using the influential method suggested in Barsky and Sims (2011). The 
idea of their approach is to identify a news shock as a shock orthogonal to the current innovation in the fundamental, 
which best explains future movements in that fundamental. In line with the literature on news shocks, they apply their 
method to identify technology shocks. Here, we implement their method to identify inflation news shocks, in a VAR 
framework that includes the same variables used above (inflation, unemployment, short and long-run interest rates).  
The estimated impulse responses to the identified inflation news shocks are reported in Panel B of Appendix Figure 
G.4. In contrast to our previous findings (Panel A), the news shocks identified by the Barsky-Sims method do not induce 
any significant response to it, even by inflation.  

Based on a forecast error variance decomposition, Appendix Table G.4 reports, for each method, the share of 
inflation volatility at various horizons which is explained by the news variable. The difference between the two methods 
is again very clear: While according to the Barsky-Sims method news shocks account for no more than 10% of the 
variation in inflation, the component quantified by the forward information approach can explain more than a half of 
the same variation. This comparison illustrates how the straightforward application of the notion of forward information 
to forecast data can be useful for quantifying predictive components that are important for explaining future movements 
in the fundamental beyond the standard VAR.    
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Appendix F: Forward information in forecasts of additional macro variables 

This appendix describes in more detail the evidence that was summarized in Section 6 in the main text.  
F.1. SPF forecasts 
The empirical evidence through the paper was based on inflation expectations, on which there is a particular focus by 
the literature, due to their main role in macroeconomic analysis. We examine how forward information is incorporated 
in expectations more generally, by first investigating SPF forecasts of additional key macroeconomic variables, as well 
as forecasts of other measures of inflation.   

We first examine if the patterns of persistence documented in Section 2, characterize forecasts of other 
macroeconomic variables as well. Thus, we regress the forecast x୲ା୦|୲

୧  on the forecast  x୲ା୦ିଵ|୲
୧ , using multi-horizon 

forecasts of other macroeconomic variables, available in the SPF. A pattern of increase in the coefficient estimates and 
R-squared across forecast horizons, as in Figure 2, would point to a utilization of forward information in expectations 
of other variables. Appendix Figure G.6 presents the results for SPF forecasts of unemployment rate, interest rate and 
real GDP growth. The results are presented in the same form as in Figure 2. Regressions are estimated quarter-by-
quarter, using the cross-sections of forecasts from the last eight quarters. For each variable, the figure describes the 
coefficient estimate (left side) and R-squared statistic (right side), estimated over time and across the different horizons 
available in the survey (ℎ ൌ 0,1,2,3,4. For GDP growth forecasts ℎ ൌ 0 is not available due to the conversion of level 
forecasts from the survey to growth forecasts).  Appendix Figure G.7 presents results for forecasts of additional measures 
of inflation: GDP deflator, PCE inflation and core inflation (due to a similar conversion of prices-level forecasts to 
inflation forecasts, ℎ ൌ 0 estimates are also not available for the GDP deflator). The sample period varies depending on 
the availability of forecast data for each variable: For unemployment, GDP growth and GDP inflation, the sample starts 
at the beginning of the 1970s. For the interest rate, the sample starts at the beginning of the 1980s and for PCE and core 
inflation, it begins in 2009 (eight quarters after the first available forecasts due to the small window size).  

For most variables, both the coefficient-estimate and R-squared demonstrate patterns of variation across 
horizons and convergence that are similar to the baseline results in Figure 2. For unemployment and interest rate 
forecasts (panels A and B in Appendix Figure G.6), the estimated persistence in the “convergence” region (longer 
horizons), is quite steady over the years, around the level of 1. Thus, SPF participants consistently associate a random 
walk process with movements in unemployment and interest rate. Notably, compared to inflation, the convergence of 
estimates across horizons for unemployment and interest rate forecasts is quite fast: the graphs for ℎ ൌ 2,3,4 are quite 
similar, whereas only for ℎ ൌ 0 the coefficient-estimates and R-squared are noticeably lower. The pattern of faster 
convergence suggests that utilization of forward information with respect to these variables might be lower, compared 
to inflation. This result may reflect a higher degree of attention to inflation by the forecasters or a greater availability of 
valuable forward signals about inflation, due to measures of central bank communication, especially in recent years. 
The convergence pattern could also be affected by the noise in realized data. Recall, that according to our above 
evidence, survey participants are well-informed about realized inflation. This, however, could be different for variables 
with more data releases such as unemployment, or a high-frequency variable such as the Treasury-Bill rate. This point 
will be examined later using the methodology proposed in Section 4.       

For the forecasts of PCE and core inflation (Panels B and C in Appendix Figure G.7), there is more variation 
across horizons and the convergence is around ℎ ൌ 3, 4, implying the availability of forward signals up to a year ahead, 
similar to the baseline findings for CPI inflation forecasts. The coefficient estimates for the longer horizons provides a 
measure of persistence that is quite steady over the years, since the data is available for these variables only for the last 
decade, after the great decline in inflation persistence. Also notice that the persistence in PCE inflation is around 0.6, 
which is close to the persistence in CPI inflation during these years, as described in Figure 2. For the core inflation, 
persistence is estimated at around 0.8. This higher degree of persistence in core inflation is in line with the notion that 
this measure approximates trend inflation, by excluding CPI components with high-frequency volatility. However, the 
measured persistence is still lower than 1.  

For two variables, there is no clear pattern across horizons in the persistence regressions: The GDP growth 
(Panel C in Appendix Figure G.6) and the inflation by GDP deflator (Panel A in Appendix Figure G.7). In order to 
understand the reason for this exception, we should recall that the pattern of convergence across horizons depends on 
two important factors: First, the structure of information and secondly, the underlying process, specifically, how well 
this process is approximated by AR(1). Considering the first issue, it should be noticed that unlike other variables in the 
SPF which are forecasted in terms of the rate of change, the original forecasts of GDP and GDP deflator are reported in 
levels. The original forecasts are then transformed to GDP growth and inflation rates, and the estimation is applied to 
the rate-of-change forecasts, as it is applied to forecasts of other variables. However, it is not clear if forward signals 
were applied by SPF forecasters to predict the level or the rate of change and this may obscure the pattern across 
horizons. For instance, suppose that the process in growth rates follows AR(1): 

𝑥௧ ൌ 𝜌𝑥௧ିଵ ൅ 𝜔௧ 
where 𝑥௧ ൌ Δ𝑧௧. Thus, the process in levels follows AR(2): 
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Δ𝑧௧ ൌ 𝜌Δ𝑧௧ିଵ ൅ 𝜔௧ ⟺ 𝑧௧ ൌ ሺ1 ൅ 𝜌ሻ𝑧௧ିଵ െ 𝜌𝑧௧ିଶ ൅ 𝜔௧ 
Forecasters receive multiple forward signals on the levels 𝑧௧ା௛ (ℎ ൌ 0,1, … ,𝐻) and apply the corresponding state-space 
representation in terms of 𝑧௧. Accordingly, they form Kalman filter level-forecasts 𝑧௧ା௛|௧

௜ . The appropriate persistence 
regression for this case would therefore be: 

𝑧௧ା௛|௧
௜ ൌ 𝑐 ൅ 𝜌ଵ𝑧௧ା௛ିଵ|௧

௜ ൅ 𝜌ଶ𝑧௧ା௛ିଶ|௧
௜ ൅ 𝑒𝑟𝑟𝑜𝑟௧ 

This specification also relates to the second issue mentioned above. We may not only need to estimate the 
specification using forecasts in levels, but also to expand the dynamics beyond AR(1) by including more “lags.” 
Appendix Figure G.8 shows the results of applying this specification to the original level forecasts of GDP and GDP 
deflator. It describes the persistence estimate as the sum of the coefficients (𝜌ଵ ൅ 𝜌ଶ) and the R-squared for the various 
horizons, where ℎ starts at 2 due to the additional “lag”. As opposed to the results in Appendix Figure G.6 (Panel C) 
and Appendix Figure G.7 (Panel A), the results from the modified specification are much closer to a pattern of “layers,” 
as was documented for the other variables. The big swings in the 1980s may indicate that more “lags” are still required. 
Indeed, the estimation of AR(4) persistence (adding the forecasts 𝑧௧ା௛ିଷ|௧

௜  and 𝑧௧ା௛ିସ|௧
௜ ሻ would diminish these swings, 

but the pattern of layers cannot be demonstrated with high-order dynamics. It should also be noted that some 
measurement issues are also possible since explicit forecasts of real GDP has been provided only since the beginning of 
the 1980s (see documentation at the SPF website). In sum, the results from the persistence regressions broadly confirm 
the patterns documented in Section 2. Forward information thus plays a more general role in expectations of 
macroeconomic variables. Our findings also demonstrate how patterns may change when the underlying process is more 
complex. 

We also apply the direct method proposed in section 4, for testing and estimating the role of forward 
information, to SPF forecasts of the above macro variables. First, we test the presence of noise in realization, according 
to the standard noisy information framework, by applying specification (26) to deviations of individual backcasts from 
the mean (ℎ ൌ 0, the test is not performed for GDP growth and GDP inflation because of the absence of backcasts for 
these variables, as noted above). The estimation results are reported in Appendix Table G.5. Recall that perfect 
information about realizations would imply zero coefficients, as obtained above for CPI inflation forecasts (Table 2). 
The same result is also obtained using forecasts of PCE and core measures of inflation.  For the unemployment and 
interest rate, some significance is documented for several coefficients, but the size of coefficient estimates is still very 
close to zero, as reported in Appendix Table G.5. Thus, information about realizations is close to perfect, even for these 
variables. At the same time, the limited amount of noise found in the backcasts of unemployment and interest rate is in 
line with the faster pattern of convergence across horizons in the persistence estimates, as documented above for the 
same variables. 

Second, we estimate specification (26) using the forecasts of each variable for the various available horizons 
and then compare it with the restricted version in specification (27), which rules out the availability of forward signals 
(zero coefficients on non-diagonal elements). Appendix Table G.6. presents the BIC statistics from the two 
specifications, for each variable and each forecasting horizon (ℎ ൌ 1,2,3, 4). Similar to the findings in section 4, the 
unrestricted specification (26) outperforms the restricted version. Hence, there is direct evidence for the presence of 
forward information, even in forecasts of GDP growth and GDP inflation, for which the indirect approach based on 
persistence patterns, provided less conclusive evidence.   

Finally. we briefly examine how our approach for quantifying forward information in Section 5 can identify 
forward information with predictive power in forecasts of additional variables. We employ SPF forecasts of 
unemployment, interest rate and GDP growth and estimate series of 𝐹𝐼௧|௧ for each variable using (32). As for inflation, 
it involves the estimation of quarter-by-quarter persistence for each variable with the proper horizon, based on the steps 
described above (constant term is also estimated). Appendix Table G.7. reports highly significant effects of those 
forward information series in a simple univariate AR. The significant effect obtained for highly persistent variables, 
such as the unemployment and interest rate also indicate the long-lasting impact of forward information on movements 
in macroeconomic fundamentals (We also considered the unit root possibility, by taking the differenced series of 
unemployment and interest rates and running them on the forward information series. The coefficient on forward 
information was again highly significant in these specifications.). 

F.2. Fed Forecasts 
The Greenbook forecasts of the Fed staff are available for multiple horizons, thus allowing us to examine if the patterns 
of persistence across horizons that were documented in the SPF also exists in forecasts of the Fed. Accordingly, we 
regress 𝑥௧ା௛|௧ on 𝑥௧ା௛ିଵ|௧ for ℎ ൌ 0, … ,4 as in Section 2, with the difference that only time-series regressions can be 
applied (no cross-section). The results are reported in Appendix Table G.3. for CPI inflation and additional variables 
with a comparison to the SPF (Panels A and B). Interestingly the same pattern of an increase in the coefficient over ℎ 
from Section 2 is documented in the Greenbook forecasts (and similarly in mean-level forecasts of the SPF). The 
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robustness of this pattern in Greenbook forecasts across several variables points to utilization of forward information by 
the Fed staff when preparing their periodic projections for the U.S. economy.  

We also note that in the Greenbooks, unlike in the SPF, the forecasts of both GDP and GDP deflator are 
originally in growth rates.  Indeed, the results reported in Appendix Table G.3. demonstrate an increase in persistence 
across horizons for both variables, when applying time-series regressions to the Greenbook forecasts (Panel B). Panel 
A further shows that a similar pattern arises in SPF mean-level forecasts of GDP growth based on a time-series 
regression, but not in the GDP inflation forecasts. These findings shed more light on issues that were raised above 
regarding the SPF micro-level evidence on these variables.         

F.3. ECB SPF inflation forecasts  
We also investigate inflation forecasts in the European SPF, managed by the European Central Bank since 1999Q1. The 
forecasts also refer to consumer inflation (the Harmonized Index of Consumer Prices across European countries), and 
like the US SPF, the survey is quarterly. Unlike the US SPF, though, there are no quarterly forecasts in the ECB SPF. 
Instead, all forecasts refer to annual changes. Specifically, participants provide rolling-year forecasts for the inflation a 
year from now, and the year afterwards. Additionally, they provide forecasts for calendar years, mainly for the current 
year and one year ahead. Thus, we cannot estimate persistence regressions across quarterly horizons as in Section 2. 
Rather, we can obtain only two persistence estimates: the persistence in the rolling-year forecasts and the persistence in 
calendar-year forecasts. Notice, however, that the forward information model implies an important distinction between 
the two estimations. If forward information is utilized by forecasters, the calendar-year persistence should vary across 
calendar quarters, while the rolling-year persistence should not. The reason is that the target years of calendar forecasts 
are fixed when advancing from Q1 to Q4 of the year. As a result, calendar forecasts apply more forward information 
from survey to survey, during the calendar year, thus, leading to more biased estimates of persistence, according to our 
above analysis. 

We examine this conjecture by estimating persistence regressions, for each calendar-quarter separately. 
Appendix Table G.8. reports the estimates for the two types of annual forecasts in Panels A and B (rolling and calendar 
forecasts, respectively). The results support the presence of a forward information effect. For the calendar-year forecasts, 
there is a sizable reduction in persistence estimates when moving from Q1 to the other quarters. The persistence for Q1 
surveys is 0.429, while the estimates using Q2, Q3 or Q4 surveys are between 0.355 and 0.397. The null of coefficient 
equality across calendar quarters is also strongly rejected. By contrast, with the rolling-year forecasts, coefficient 
estimates are higher and vary little across quarters, between 0.453 and 0.502. 

We can also check the variation across calendar quarters in the US SPF, since besides the quarterly forecasts it 
further provides forecasts for the calendar year, like the ECB SPF. Panel C in Appendix Table G.8. reports the results, 
using CPI inflation forecasts for the same period as for the European survey (1991Q1-2007Q4). Strikingly, we find even 
more clear pattern of reduction in the persistence estimates, across the calendar quarters. Notice also that when using 
Q1 forecasts, which should provide the least-biased estimation (longer horizons), the coefficient estimate for the US 
SPF is the same as the estimate for the ECB SPF – 0.429, implying a similar degree of inflation persistence in the two 
areas during the recent years, when considering a far enough horizon to rule out the forward information bias.  Finally, 
we note that the regression constant is a little bit higher for the US, in line with a small difference in trend inflation. 
Overall, these findings provide additional support for the presence of forward information in both surveys of 
professionals. 
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Appendix G: Additional figures and tables 

Figure G.1: Persistence Patterns with Various AR Orders  

Panel A: AR(2) 

  
Panel B: AR(3) 

Panel C: AR(2) 

  
Notes: The figure plots smoothed estimates of persistence 𝜌ො and R-squared measures, based on 
estimating augmented version of specification (4) for different forecast horizons in the SPF survey. 
The augmented version includes additional forecasts for previous quarters according to the order of 
the autoregression, as specified in each panel. Each quarterly point is based on OLS estimation using 
the forecast data from the last 8 quarters for a specific horizon. The smoother is a local mean which 
uses an Epanechnikov kernel. 
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Figure G.2: Simulation Results – Fixed Noise Across Horizons 

Panel A: Persistence Estimates 

 

Panel B: R-Squared of Persistence Regressions 

 
Notes: The two panels in the figure show estimation results of specification (4), applied to a simulated 
data of forecasts, according to the model presented in section 3. Coefficient estimate (panel A) and R-
squared (panel B) are averaged across 1000 draws of the simulation. Each simulation applies a different 
value of persistence in the state process. The variance of the shock in the state process is standardized to 
one. Regressions were estimated for seven forecast horizons out of eight horizons for which noisy signals 
are available (two consecutive horizons in each regression). The noise-to-signal ratio across all the 
horizons is set to 2. 
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Figure G.3: Forward Information about Major Events 

Panel A: COVID-19 

ℎ ൌ 3 ℎ ൌ 1 

  

Panel B: 2008 Financial Crisis 

ℎ ൌ 3 ℎ ൌ 1 

  

Panel C: 9/11 Attack 

ℎ ൌ 3 ℎ ൌ 1 

  
Notes: The figure plots estimates of persistence coefficients for specified quarters around three major 
events, based on specification (4). The estimation is applied to cross-sections of SPF forecasts of four 
macroeconomic variables in the specified quarters. Each circle presents a point estimate and whiskers 
show the 95% confidence interval. Blue and red estimates refer, respectively, to the surveys before 
and after the event became known. CPI = CPI inflation, GDP  = real GDP growth, INT = 3-month 
Treasury bill interest rate, UNEMP = unemployment rate. 
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Figure G.4: Impulse Responses to Inflation News 

Panel A: Forward Information Method 

  

  
Panel B: Barsky-Sims News-Shock Method 

  

  
Notes: The figure plots impulse responses to inflation news in a VAR system estimated on the 
1983Q1-2017Q4 sample. Inflation news is obtained by the forward information method in panel A, 
or by the Barsky-Sims news-shock method in panel B. The solid lines are the estimated impulse 
responses and the shaded areas show the 95% confidence interval based on bootstrap replications. 
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Figure G.5: Contribution of Forward Information over Time 

 
Notes: The figure plots the ratio between forward information and forecast variation, using 

ට∑ ൫𝐹𝐼௧|௧൯
ଶ

௧ ට∑ ൫𝑥௧|௧൯
ଶ

௧൘ . The component of forward information 𝐹𝐼௧|௧ is evaluated by equation (32).  

The ratio is computed with a rolling window of 40 obs. 
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Figure G.6: Persistence Patterns of Additional Macroeconomic Variables 

Panel A: Unemployment Rate 

  
Panel B: Interest Rate 

  
Panel C: Real GDP Growth 

  
Notes: The figure plots smoothed estimates of persistence 𝜌ො and R-squared measures based on 
estimating specification (4) for different forecast horizons, and using different macroeconomic 
variables from the SPF survey, as specified in each panel. Each quarterly point is based on OLS 
estimation using the forecast data from the last 8 quarters for a specific horizon. The smoother is a 
local mean which uses an Epanechnikov kernel. 
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Figure G.7: Persistence Patterns of Additional Inflation Variables 

Panel A: GDP Deflator 

  
Panel B: PCE Inflation 

Panel C: Core Inflation 

  
Notes: The figure plots smoothed estimates of persistence 𝜌ො and R-squared measures based on 
estimating specification (4) for different forecast horizons, and using forecasts for different inflation 
measures from the SPF survey, as specified in each panel. Each point on the lines is based on OLS 
estimation using the forecast data from the last 8 quarters. The smoother is a local mean which uses 
an Epanechnikov kernel. 
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Figure G.8: Real GDP and GDP Deflator – Levels and Higher Order 

Panel A: Real GDP 

  
Panel B: GDP Deflator 

Notes: The figure plots smoothed estimates of persistence 𝜌ො and R-squared measures for various 
forecast horizons, using level forecasts of GDP and GDP deflator from the SPF survey. The ℎ-step 
ahead forecast is regressed on ℎ െ 1 and ℎ െ 2-step ahead forecasts, as in AR(2), and the persistence 
is estimated as the sum of coefficients.  Each point on the lines is based on OLS estimation using the 
forecast data from the last 8 quarters. The smoother is a local mean which uses an Epanechnikov 
kernel. 
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TABLE G.1.  

Regressions of the deviation from the mean forecast: Simulation – Fixed noise across horizons 

Dependent variable: 𝑥௧|௧
௜ െ 𝑥௧|௧ 𝑥௧ାଵ|௧

௜ െ 𝑥௧ାଵ|௧ 𝑥௧ାଶ|௧
௜ െ 𝑥௧ାଶ|௧ 𝑥௧ାଷ|௧

௜ െ 𝑥௧ାସ|௧ 𝑥௧ାସ|௧
௜ െ 𝑥௧ାସ|௧ 𝑥௧ାହ|௧

௜ െ 𝑥௧ାହ|௧  𝑥௧ା଺|௧
௜ െ 𝑥௧ା଺|௧ 𝑥௧ା଻|௧

௜ െ 𝑥௧ା଻|௧ 

𝑥௧|௧ିଵ
௜ െ 𝑥௧|௧ିଵ 0.903 -0.010 -0.001 0.000 0.000 0.000 0.000 0.000 

 0.903 -0.011 -0.001 -0.001 0.000    

𝑥௧ାଵ|௧ିଵ
௜ െ 𝑥௧ାଵ|௧ିଵ -0.010 0.892 -0.013 -0.002 0.000 0.000 0.000 0.000 

 -0.010 0.892 -0.013 -0.002 -0.001    

𝑥௧ାଶ|௧ିଵ
௜ െ 𝑥௧ାଶ|௧ିଵ -0.001 -0.013 0.879 -0.016 -0.003 0.000 0.000 0.000 

 -0.001 -0.013 0.879 -0.017 -0.003    

𝑥௧ାଷ|௧ିଵ
௜ െ 𝑥௧ାଷ|௧ିଵ 0.000 -0.002 -0.016 0.862 -0.022 -0.004 -0.001 0.000 

 0.000 -0.002 -0.016 0.862 -0.025    

𝑥௧ାସ|௧ିଵ
௜ െ 𝑥௧ାସ|௧ିଵ 0.000 0.000 -0.003 -0.022 0.838 -0.031 -0.007 -0.002 

 0.000 -0.001 -0.005 -0.022 0.824    

𝑥௧ାହ|௧ିଵ
௜ െ 𝑥௧ାହ|௧ିଵ 0.000 0.000 0.000 -0.004 -0.031 0.804 -0.047 -0.016 

         

𝑥௧ା଺|௧ିଵ
௜ െ 𝑥௧ା଺|௧ିଵ 0.000 0.000 0.000 -0.001 -0.007 -0.047 0.749 -0.084 

         

𝑥௧ା଻|௧ିଵ
௜ െ 𝑥௧ା଻|௧ିଵ 0.000 0.000 0.000 0.000 -0.002 -0.016 -0.084 0.639 

         

Notes: The table reports true parameters and simulated coefficient estimates from regressions of the individual deviation from the mean forecast, based on 
specification (26).  Each column reports in bold the simulated regression results for a specified dependent variable, with truncation at horizon ℎ ൌ 4. The 
true parameters in each column correspond to separate rows in the matrix ሺ𝐼 െ 𝐺ሻ (right column corresponds to the first row and so on). Forecasts are 
simulated with 𝜌 ൌ 0.5 and noise-to-signal ratio of 2 for all signals. 
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TABLE G.2.  

Regressions of the deviation from the mean forecast: Simulation 

Dependent variable: 𝑥௧|௧
௜ െ 𝑥௧|௧ 𝑥௧ାଵ|௧

௜ െ 𝑥௧ାଵ|௧ 𝑥௧ାଶ|௧
௜ െ 𝑥௧ାଶ|௧ 𝑥௧ାଷ|௧

௜ െ 𝑥௧ାସ|௧ 𝑥௧ାସ|௧
௜ െ 𝑥௧ାସ|௧ 𝑥௧ାହ|௧

௜ െ 𝑥௧ାହ|௧  𝑥௧ା଺|௧
௜ െ 𝑥௧ା଺|௧ 𝑥௧ା଻|௧

௜ െ 𝑥௧ା଻|௧ 

𝑥௧|௧ିଵ
௜ െ 𝑥௧|௧ିଵ 0.513 -0.046 -0.007 -0.002 0.000 0.000 0.000 0.000 

 0.512 -0.045 -0.008 -0.002 -0.001    

𝑥௧ାଵ|௧ିଵ
௜ െ 𝑥௧ାଵ|௧ିଵ -0.018 0.618 -0.059 -0.013 -0.004 -0.002 -0.001 0.000 

 -0.020 0.618 -0.062 -0.016 -0.006    

𝑥௧ାଶ|௧ିଵ
௜ െ 𝑥௧ାଶ|௧ିଵ -0.001 -0.030 0.686 -0.072 -0.022 -0.009 -0.004 -0.002 

 0.000 -0.028 0.689 -0.070 -0.020    

𝑥௧ାଷ|௧ିଵ
௜ െ 𝑥௧ାଷ|௧ିଵ 0.000 -0.003 -0.036 0.764 -0.072 -0.028 -0.014 -0.007 

 -0.001 -0.003 -0.038 0.764 -0.071    

𝑥௧ାସ|௧ିଵ
௜ െ 𝑥௧ାସ|௧ିଵ 0.000 -0.001 -0.007 -0.048 0.783 -0.086 -0.043 -0.021 

 0.001 -0.002 -0.009 -0.055 0.751    

𝑥௧ାହ|௧ିଵ
௜ െ 𝑥௧ାହ|௧ିଵ 0.000 0.000 -0.002 -0.014 -0.064 0.776 -0.111 -0.055 

         

𝑥௧ା଺|௧ିଵ
௜ െ 𝑥௧ା଺|௧ିଵ 0.000 0.000 0.000 0.000 -0.001 -0.004 0.988 -0.006 

         

𝑥௧ା଺|௧ିଵ
௜ െ 𝑥௧ା଺|௧ିଵ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

         

Notes: The table reports true parameters and simulated coefficient estimates from regressions of the individual deviation from the mean forecast, based on 
specification (26).  Each column reports in bold the simulated regression results for a specified dependent variable, with truncation at horizon ℎ ൌ 4. The 
true parameters in each column correspond to separate rows in the matrix ሺ𝐼 െ 𝐺ሻ (right column corresponds to the first row and so on). Forecasts are 
simulated according to the details in Section 3, with 𝜌 ൌ 0.5.      
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TABLE G.3. 
Persistence across forecast horizons in time-series regression: SPF consensus and Greenbook 

Forecast horizon:  ℎ ൌ 0 ℎ ൌ 1  ℎ ൌ 2 ℎ ൌ 3 ℎ ൌ 4 

Panel A: SPF consensus 

CPI Inflation   0.395***  0.606***  0.942***  1.002***  0.999*** 
   (0.060)  (0.081)  (0.034)  (0.019)  (0.016) 
GDP Inflation    0.962***  1.003***  1.009***  0.957*** 
    (0.180)  (0.031)  (0.026)  (0.027) 
PCE Inflation   0.299***  0.299***  0.509***  0.572***  0.678*** 
   (0.052)  (0.043)  (0.055)  (0.055)  (0.052) 
Core CPI Inflation   0.454***  0.785***  0.868***  0.895***  0.866*** 
   (0.046)  (0.056)  (0.014)  (0.017)  (0.045) 
Interest Rate   0.986***  0.989***  0.989***  0.982***  0.978*** 
   (0.013)  (0.006)  (0.007)  (0.008)  (0.008) 
Unemployment Rate   0.971***  0.974***  0.970***  0.965***  0.960*** 
  (0.021)  (0.014)  (0.010)  (0.006)  (0.004) 

GDP Growth     0598***   0.571***  0.639***   0.790*** 

    (0.030)  (0.042) (0.056)  (0.069) 

Industrial Production     0520***   0.628***  0.693***   0.777*** 

    (0.032)  (0.072) (0.046)  (0.078) 

Panel B: Greenbook 

CPI Inflation    0.426***  0.366***  0.870***  0.995***  1.019*** 
    (0.061)  (0.079)  (0.055)  (0.025)  (0.014) 
GDP Inflation    0.555***  0.637***  0.898***  0.956***  0.975*** 
    (0.068)  (0.077)  (0.042)  (0.037)  (0.034) 
PCE Inflation    0.361***  0.183***  0.323***  0.842***  0.944*** 
    (0.082)  (0.060)  (0.127)  (0.063)  (0.064) 
Core CPI Inflation    0.588***  0.727***  0.983***  0.967***  0.953*** 
    (0.071)  (0.092)  (0.035)  (0.023)  (0.022) 
Unemployment Rate    0.982***  0.971***  0.968***  0.957***  0.949*** 
    (0.026)  (0.012)  (0.007)  (0.007) (0.006) 

GDP Growth    0.528***   0524***   0.598***  0.717***   0.808*** 
   (0.071)  (0.052)  (0.071) (0.096)  (0.112) 

Industrial Production    0.553***   0346***   0.491***  0.701***   0.739*** 
   (0.056)  (0.036)  (0.077) (0.130)  (0.105) 

Notes: The table reports coefficient estimates from regressions of mean forecasts 𝑥௧ା௛|௧ on 𝑥௧ା௛ିଵ|௧. Each entry reports 
an estimate from a different regression. The variable 𝑥 and forecast horizon ℎ that were applied in each regression are 
specified in the headers of the table's rows. Panels A and B use forecasts from SPF and Greenbook, respectively. The 
sample period is 1983Q1-2015Q4, except for PCE and core CPI inflation, for which the sample begins in 2007Q1. 
Newey-West standard errors are in parentheses. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 
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TABLE G.4.   

Share of inflation volatility explained by news 
Forecast Horizon Forward information method Barsky-Sims method 
   

1 54.3 2.5 
4 53.5 5.2 
8 51.8 8.4 

12 51.2 9.6 
20 50.6 10.0 

Notes: The table reports the share of inflation volatility explained by news from a variance 
decomposition applied to a VAR system estimated on the 1983Q1-2017Q4 sample. Inflation news is 
obtained by the forward information method, or by the Barsky-Sims news-shock method, as indicated 
in the columns' headers. 

 

 

 

 

TABLE G.5.  

Regressions of the deviation from the mean backcast 

 Unemployment Interest Rate PCE Inflation Core Inflation 

Dependent variable: 𝑥௧|௧
௜ െ 𝑥௧|௧ (backcasts) 

𝑥௧|௧ିଵ
௜ െ 𝑥௧|௧ିଵ 0.027*** 0.018*** -0.000 0.001 

 )0.006 (  )0.003 (  )0.000 (  )0.001 (  

𝑥௧ାଵ|௧ିଵ
௜ െ 𝑥௧ାଵ|௧ିଵ -0.012* -0.013*** -0.000 -0.001 

 )0.007 (  )0.003 (  )0.000 (  )0.001 (  

𝑥௧ାଶ|௧ିଵ
௜ െ 𝑥௧ାଶ|௧ିଵ 0.011* 0.012*** 0.000 0.000 

 )0.007 (  )0.003 (  )0.000 (  )0.001 (  

𝑥௧ାଷ|௧ିଵ
௜ െ 𝑥௧ାଷ|௧ିଵ -0.009 -0.010*** 0.000 -0.001 

 )0.007 (  )0.004 (  )0.000 (  )0.001 (  

𝑥௧ାସ|௧ିଵ
௜ െ 𝑥௧ାସ|௧ିଵ 0.003 -0.001 -0.000 0.001 

 )0.004 (  )0.002 (  )0.000 (  )0.001 (  

Constant 0.000 -0.000 -0.000 -0.000 

 )0.001 (  )0.000 (  )0.000 (  )0.000 (  

Obs. 5,476 3,825 1,288 1,394 

𝑅ଶ 0.006 0.019 0.001 0.005 

Notes: The table reports coefficient estimates from regressions of the individual deviation from the mean backcast, 
based on specification (26) with ℎ ൌ 0.  Each column reports results, using SPF forecasts for a specified 
macroeconomic variable. Driscoll-Kraay standard errors are in parentheses. ***, **, * denote significance at 0.01, 
0.05, and 0.10 levels. 
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TABLE G.6.   

Forward noisy information vs. the standard model: SPF forecasts of additional variables 

Dependent variable Forward 
information 

Standard 
framework 

Forward 
information 

Standard 
framework 

   
 Panel A: Unemployment Rate  Panel D: GDP Deflator 

𝑥௧ାଵ|௧
௜ െ 𝑥௧ାଵ|௧ -6962 -7247 16299 17522 
𝑥௧ାଶ|௧
௜ െ 𝑥௧ାଶ|௧ -3385 -3343 15099 16437 
𝑥௧ାଷ|௧
௜ െ 𝑥௧ାଷ|௧ -1085 -835 15626 16796 
𝑥௧ାସ|௧
௜ െ 𝑥௧ାସ|௧ 73 117 16489 16739 

   
 Panel B: Interest Rate  Panel E: PCE Inflation  

𝑥௧ାଵ|௧
௜ െ 𝑥௧ାଵ|௧ -1568 -1694 3129 3129 
𝑥௧ାଶ|௧
௜ െ 𝑥௧ାଶ|௧ 1079 1109 2267 2279 
𝑥௧ାଷ|௧
௜ െ 𝑥௧ାଷ|௧ 2277 2313 1557 1577 
𝑥௧ାସ|௧
௜ െ 𝑥௧ାସ|௧ 3164 3155 1453 1439 

   
 Panel C: Real GDP Growth  Panel F: Core Inflation  

𝑥௧ାଵ|௧
௜ െ 𝑥௧ାଵ|௧ 19336 20871 1247 1273 
𝑥௧ାଶ|௧
௜ െ 𝑥௧ାଶ|௧ 18891 20473 1058 1074 
𝑥௧ାଷ|௧
௜ െ 𝑥௧ାଷ|௧ 19047 20544 1043 1095 
𝑥௧ାସ|௧
௜ െ 𝑥௧ାସ|௧ 20541 20654 818 827 

Notes: The table reports BIC statistics associated with specifications (26) and (27), for the forward information and the 
standard noisy information framework, respectively. Each panel presents results for a specified macroeconomic variable, 
using the SPF forecasts. The specifications were estimated for several forecast horizons as indicated in the first column 
(ℎ ൌ 0,1,2,3). 
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TABLE G.7. 

Regressions of forward information: Additional variables 

 

Dependent Variable 

(𝑥௧):  
Unemployment Interest Rate Real GDP Growth 

 (1) (2)  (3) (4) (5) (6) 

𝐹𝐼௧|௧  1.110***  1.144***  1.146*** 

  (0.084)  (0.064)  (0.133) 

𝑥௧ିଵ 1.626*** 1.095*** 1.507*** 0.972*** 0.313*** 0.259*** 

 (0.090) (0.087) (0.094) (0.067) (0.074) (0.057) 

𝑥௧ିଶ -0.641*** -0.109 -0.479*** 0.084 0.108 0.062 

 (0.183) (0.105) (0.145) (0.094) (0.088) (0.076) 

𝑥௧ିଷ -0.008 0.013 -0.033 -0.165*** 0.027 0.011 

 (0.168) (0.082) (0.141) (0.046) (0.078) (0.069) 

𝑥௧ିସ -0.017 -0.044 -0.019 0.092** 0.008 0.007 

 (0.065) (0.046) (0.090) (0.038) (0.090) (0.070) 

Constant 0.256*** 0.186*** 0.066** 0.116*** 1.546*** 2.402*** 

 (0.078) (0.053) (0.033) (0.032) (0.379) (0.412) 

       

𝑅ଶ 0.975 0.989 0.985 0.996 0.142   0.442 

Notes: The table reports coefficient estimates from various regressions. The variable 𝑥௧ is indicated in the columns' 
headers. The forward information variable is computed according to (32).  The sample period is 1972Q1-2017Q4 for 
unemployment and GDP growth, and 1983Q3-2017Q4 for the interest rate. Newey-West standard errors are in 
parentheses. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 
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TABLE G.8. 

Persistence in ECB and US annual forecasts across calendar quarters (1999Q1-2017Q4) 

 Whole Sample Q1  Q2  Q3 Q4 

Panel A:  𝑥ଶ௒|௧
௜ ൌ 𝑐 ൅ 𝜌𝑥ଵ௒|௧

௜ ൅ 𝑢௧ (ECB SPF) 

Constant 0.956*** 0.940*** 1.000*** 0.927*** 0.959*** 

 (0.047) (0.060) (0.067) (0.037) (0.086) 

𝐹௧
௜𝑥ଵ௒ 0.483*** 0.488*** 0.457*** 0.502*** 0.484*** 

 (0.027) (0.033) (0.040) (0.023) (0.049) 

Obs. 3378 946 836 752 844 

𝑅ଶ 0.439 0.438 0.406 0.507 0.405 

Panel B:  𝑥ଶ஼|௧
௜ ൌ 𝑐 ൅ 𝜌𝑥ଵ஼|௧

௜ ൅ 𝑢௧  (ECB SPF) 

Constant 1.031*** 0.984*** 1.087*** 0.990*** 1.013*** 

 (0.039) (0.068) (0.029) (0.058) (0.063) 

𝐹௧
௜𝑥ଵ஼  0.379*** 0.429*** 0.355*** 0.397*** 0.370*** 

 (0.023) (0.035) (0.026) (0.040) (0.034) 

Obs. 4214 1067 1057 991 1099 

𝑅ଶ 0.560 0.492 0.509 0.631 0.600 

Panel C:  𝑥ଶ஼|௧
௜ ൌ 𝑐 ൅ 𝜌𝑥ଵ஼|௧

௜ ൅ 𝑢௧ (US SPF) 

Constant  1.617*** 1.391*** 1.521*** 1.673*** 1.689*** 

  (0.091) (0.179) (0.114) (0.103) (0.122) 

𝐹௧
௜𝑥ଵ஼   0.269*** 0.429*** 0.338*** 0.236*** 0.193*** 

  (0.041) (0.082) (0.043) (0.041) (0.042) 

Obs.  2753 667 686 656 744 

𝑅ଶ  0.183 0.361 0.280 0.161 0.091 

Notes: The table reports coefficient estimates for the specified equations at the top of each panel. 𝑥ଵ௒|௧
௜  and 𝑥ଶ௒|௧

௜  are 

rolling-year forecasts for one and two years ahead, respectively. 𝑥ଵ஼|௧
௜  and 𝑥ଶ஼|௧

௜  are calendar-year forecasts for the 
current and the next calendar years. Regressions were estimated for the period of 1999Q1-2017Q4 and separately for 
each of the calendar quarters in this period as indicated by columns' headers.  Standard errors of Driscoll and Kraay 
(1998) are in parentheses. ***, **, * denote significance at 0.01, 0.05, and 0.10 levels. 

 


