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Abstract

A group of agents with a common prior receive informative signals about
an unknown state repeatedly over time. If these signals were public, agents’
beliefs would be identical and commonly known. This suggests that if signals
were private, then the more correlated these are, the greater the commonality of
beliefs. We show that, in fact, the opposite is true. In the long run, condition-
ally independent signals achieve greater commonality of beliefs than correlated
ones. We then apply this result to binary-action, supermodular games.

1 Introduction

What kind of information increases the possibility of coordination? If a group of
agents with a common prior receive public signals about an unknown state, they will
have identical beliefs and moreover, these beliefs will be commonly known, thereby
facilitating coordination. This suggests that if agents’signals are private, then the
more correlated these are, the easier it will be for agents to coordinate.
Here we examine this intuition in the context of the common learning framework

of Cripps, Ely, Mailath and Samuelson (2008, henceforth CEMS), where informative
signals comes repeatedly over time. CEMS (2008) showed that if agents’signals were
independently and identically distributed over time, then regardless of the degree
of correlation among agents’signals, the realized state would, in the limit, become
(approximately) commonly known. Frick, Iijima and Ishii (2022) have recently shown
that when the number of signals each individual sees is large enough, the rate of
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common learning is the same regardless of the degree of correlation among agents’
signals.
Does correlation have any role to play in determining the commonality of beliefs?

We begin by examining this question in the context of a canonical game where a high
degree of common belief is needed for coordination.

Example 1 Two players simultaneously choose whether to invest or not in the face
of uncertainty. Specifically, there are two equally-likely states of nature "good" (G)
or "bad" (B). The cost of investment is c and a player’s investment is successful and
yields a gross return of 1 if and only if the state is G and the other player also invests.
If a player invests and the other does not, then the gross return is 0.
The information available to players is generated as follows. Let X = (X1, X2) ∈

{0, 1}2 be a pair of binary random variables. In state G, X1 and X2 are symmet-
rically and independently distributed with Pr [Xi = 0 | G] = 1

5
. In state B, the joint

distribution of the signals is degenerate– with probability 1, both players receive a
signal of 0.
Prior to making decisions, player i sees two serially independent realizations of

Xi, say X1
i and X

2
i . It is routine to verify that if c <

24
25
, then there is an equilibrium

in which player i invests if X1
i +X2

i ≥ 1.
Now consider an alternative situation in which the players’signals are correlated.

Specifically, suppose Y = (Y1, Y2) ∈ {0, 1}2 is a pair of random variables that in state
G, have the joint distribution

Y2 = 0 Y2 = 1
Y1 = 0 3

25
2
25

Y1 = 1 2
25

18
25

Notice that while the marginal distributions of Yi and Xi are the same, the signals
Y are positively correlated. In state B, the joint distribution of (Y1, Y2) is again
degenerate, with Pr [(Y1, Y2) = (0, 0) | B] = 1.
Again, there are two serially independent realizations of Y , say Y 1 and Y 2. Player

i observes Y 1
i and Y

2
i prior to making an investment decision. Now we claim that if

c > 47
50
, then the unique equilibrium is for neither player to invest regardless of her

information. This follows from a standard infection argument. First, if Y 1
i + Y 2

i = 0
then, given the cost, it is dominant to not invest because Pr [G | Y 1

i + Y 2
i = 0] = 1

6
<

c. Next, if Y 1
i + Y 2

i = 1, it is iteratively dominant to not invest either because if
j 6= i, Pr

[
Y 1
j + Y 2

j ≥ 1 | Y 1
i + Y 2

i = 1
]

= 47
50
< c as well. Finally, given the behavior

of those with Y 1
j + Y 2

j ≤ 1, it is optimal even for a player with Y 1
i + Y 2

i = 2 to not
invest because Pr

[
Y 1
j + Y 2

j = 2 | Y 1
i + Y 2

i = 2
]

= 81
100

< c.

So we obtain that if c ∈
(

47
50
, 48

50

)
, under two independent signals X, there is an

equilibrium in which both players invest when they know the state is G while under
two correlated signals Y , the unique equilibrium is that no player ever invests. Thus,
for these costs, correlated information signals hinders coordination!
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Why is this? Compared to the case of (conditionally) independent signalsX, with
correlated signals Y , a player that gets a positive signal assigns a higher probability
that the other player also received a positive signal and becomes optimistic about the
prospects of coordination. But the opposite is true for a player that gets a zero signal.
With correlated signals, she assigns a higher probability that the other player also
received a zero signal and so becomes pessimistic. Here the second effect dominates.
In fact, a player with one positive signal and one zero is more pessimistic when signals
are correlated than when they are independent, that is,

Pr
[
Y 1
j + Y 2

j ≥ 1 | Y 1
i + Y 2

i = 1
]
< Pr

[
X1
j +X2

j ≥ 1 | X1
i +X2

i = 1
]

Now suppose that players receive T serially independent signals X t
i and Y

t
i (in the

example above T = 2) prior to making decisions. It is easy to see that for all T ≥ 2,

Pr
[∑

t Y
t
j ≥ 1 |

∑
t Y

t
i = 1

]
< Pr

[∑
tX

t
j ≥ 1 |

∑
tX

t
i = 1

]
(1)

and it can be argued in a manner similar to that above, that for any cost c in between
the two sides of (1), coordination is possible with the independent signals X but not
with the correlated signals Y.
While the common learning result of CEMS (2008) implies that both sides of

(1) tend to 1 as T → ∞, away from the limit, correlation reduces the prospects for
coordination.

In the remainder of this paper, we explore this phenomenon in the common learn-
ing setting of CEMS (2008). There is an unknown fundamental state of nature
θ ∈ {G,B} that is of concern to a group of I ≥ 2 agents. The state is realized
in period 0 and remains fixed. There are T additional periods and in each period
t, agents receive private signals X t

i that are informative about θ. We are interested
in the degree of commonality of agents beliefs– that is, how close are the agents to
achieving common knowledge about the state of nature θ.
In this paper, we show that the phenomenon demonstrated in the example above

is general. Informally stated, our main result is1:

Theorem Commonality of information is detrimental to commonality of beliefs.

In what follows, "commonality of information" means the degree of correlation
among agents’ information. Precisely, correlation is measured using a multivariate
positive dependence order. "Commonality of beliefs" is formalized using the notion of
common p-belief introduced by Monderer and Samet (1989). An event E is common
p-believed if (1) everyone assigns at least probability p to E, and (2) also assigns
at least probability p to the event that everyone assigns at least probability p to E,
and also (3) assigns at least probability p to the event that everyone assigns at least
probability p to the event that everyone assigns at least probability p to E and so on.

1This is formalized in various settings as Theorems 1, 2 and 3.
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Binary and Conclusive Signals We begin by considering a case where agents’
signals are (i) binary (either 0 or 1); and (ii) conclusive in the sense that even one
1-signal reveals that the state is G. This special case is useful because first-order
uncertainty– that is, concerning the state θ– is resolved once a 1-signal is received.
This means that the focus is then solely on higher-order uncertainty– that is, con-
cerning others’knowledge about θ, etc.2

We first show that in our model the type that is most pessimistic about the event
that everyone else knows G is one that gets exactly one positive signal. This one
positive signal is conclusive evidence that the state is G but the other T − 1 signals
of 0 make this type pessimistic that others know G as well. Fix a T and let q denote
the belief of this most pessimistic type about the event that everyone knows G. Now
for any p ≤ q, since the most pessimistic type assigns a probability of at least p to
the event that everyone knows G, all other types do so as well. It is then simple to
see that if everyone gets at least one positive signal– and so everyone knows G– then
this event is common p-believed (Proposition 3.1).
We then show that the converse is true as well: for any p > q, it is impossible

for G to be common p-believed. The reasoning here is more delicate. Clearly, the
most pessimistic type cannot assign a probability higher than p to the event that
everyone knows G. But what about more optimistic types? We show that in fact, the
pessimism of the type with only one positive signal "infects" the beliefs of all other
types and so G cannot be common p-believed (Proposition 3.1).
The final step is to show that higher correlation decreases the threshold belief

q when T is large (Proposition 3.2). As argued above, the most pessimistic type is
the one who receives only one positive signal. Since this type sees a preponderance
of 0 signals, higher correlation makes her believe that other agents also received a
preponderance of 0 signals, thereby increasing her pessimism. These results then lead
to Theorem 1.
Kajii and Morris (1997) have shown a close connection between common p-beliefs

and p-dominant equilibria of games, under assumptions equivalent to ours that signals
are conclusive.3 Thus, our result on how commonality of information affects common
p-beliefs has implications for information design in games. Specifically, consider a
planner who wishes agents to play a particular action profile a∗ which is a p-dominant
equilibrium of the game in state G, in an equilibrium of the incomplete information
game. Our result then suggests that the planner should choose a less-correlated
information structure over a more correlated one.
In Section 4 we consider the class of binary-action, supermodular games where a

tight connection between a generalized version of common beliefs, due to Morris and
Shin (2007), and equilibria of games can be made (Oyama and Takahashi, 2020). This
class includes, of course, the pure coordination game considered in the introduction

2The signals in Rubinstein’s E-Mail game are also binary and conclusive.
3An action profile a∗ is p-dominant if every player i wishes to play a∗i whenever she assigns a

probability p or greater to the event that others will play a∗−i.
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but also allows for more general situations of interest– for instance, games of regime
change and currency attacks. As an example, consider an investment game in which
investment is successful if at least 2/3 of the players invest and the state is G. In
such situations, common p-belief is too strong a requirement because now it is not
necessary that all players are optimistic enough, only that suffi ciently many are.
Theorem 2 extends the reach of Theorem 1 to such games and shows that correlation
can have a detrimental effect even in situations where common p-belief is not the
right notion.

General Signals In Section 5 we relax the assumption that signals are binary
and conclusive. In this more general environment, the results are similar but not as
sharp. The reason is that first-order uncertainty also plays a role now. We show
that one part of Theorem 1 remains almost unchanged but the infection argument
underlying the other part no longer goes through. But it is still the case that higher
correlation now weakly decreases the threshold beliefs (Theorem 3).

Informativeness Finally, for the case of two agents and general signals, we
show that our results can be recast in the language of Blackwell informativeness. Say
that Y is more informative than X, if agent i’s signal Yi is more informative about
agent j’s signal Yj than Xi is about Xj (see Section 6 for a precise definition). In
the same vein as above, it can be shown that in fact, more informative signals are
detrimental to common learning.

Related literature The importance of higher-order uncertainty in game theory
was brought to the fore by Rubinstein’s (1989) E-Mail game. The literature on
common learning asks whether such uncertainty can be made to disappear over time.
As mentioned above, Cripps, Ely, Mailath and Samuelson (2008) show that if the set
of signals is finite and these are independent over time, then common learning occurs
in the limit.4

In a subsequent paper, Cripps et al. (2013) the same authors show that com-
mon learning may fail if signals are not serially independent and find some more
general suffi cient conditions for common learning. Steiner and Stewart (2011) con-
sider a version of the common learning model in which signals– which are binary and
conclusive– arrive at random times. They ask how communication between agents
affects common learning and show that under certain conditions it prevents common
learning. In our model, common learning always occurs in the limit. We are inter-
ested in examining agents’beliefs away from the limit and how these are affected by
correlation.
In the CEMS framework, Frick, Iijima and Ishii (2021) study how common learn-

ing is affected by the underlying information structure. Consider two information
4They also show that if the set of signals is infinite then common learning may fail if agents’

signals are correlated.
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structures X and Y such that X is more informative about the state θ than is Y .
Frick et al. (2021) show that when T is large enough,X results in greater commonal-
ity of beliefs than does Y . In particular, how correlated either information structure
is does not matter in the long run. In our work we compare information structuresX
and Y that are equally informative about θ and show that when T is large enough,
correlation is, in fact, detrimental to commonality of beliefs.
There is, of course, a close connection between common beliefs and equilibria

of games. This connection has been explored in various manners by Monderer and
Samet (1989), Kajii and Morris (1997) and more recently by Oyama and Takahashi
(2020). Along these lines, in Section 4 we study the effect of correlation on equilibria
of a class of games studied by Oyama and Takahashi (2020).
A related strand of work concerns the problem of information design in games.

Mathevet, Perego and Taneva (2020) outline a general framework for this problem
and study some interesting examples. Hoshino (2022) considers games that have a p-
dominant equilibrium– where different players may have different pi’s and where the
sum of the pi’s is less than one. He shows that for such games, a designer can always
choose an information structure to implement the p-dominant equilibrium outcome
as the unique rationalizable outcome in a suitable incomplete information version of
the original game. Of course, the existence of a p-dominant equilibrium satisfying the
condition is not guaranteed. Morris, Oyama and Takahashi (2022) study information
design in binary-action supermodular games as do Li, Song and Zhao (2019). Our
results from Section 4 indicate that a designer who wishes players to coordinate on
a p-dominant/high-action equilibrium via private signals should choose information
structures that are (conditionally) independent. On the other hand, a designer who
wishes players to not coordinate, thereby resulting in a unique equilibrium with low
actions (as in Li, Song and Zhao, 2019), should choose information structures that
are highly correlated.

2 Model

A group of agents i ∈ I = {1, 2, ..., I} face an uncertain fundamental state of nature
θ ∈ Θ that can take on two possible values G and B with commonly known prior
probabilities ρ ∈ (0, 1) and 1 − ρ, respectively. We will suppose that G and B take
on numerical values such that G > B, say G = 1 and B = 0.
Time is discrete and there is a finite number of periods, denoted by t = 0, 1, 2, ...T.

At time t = 0, nature chooses θ ∈ Θ = {G,B} and this choice remains fixed for all
the remaining periods.
At time t ≥ 1, each agent i receives private information about the state of nature

θ.
Specifically, let X = (X1, X2, ..., XI) be a random vector of signals where each

Xi takes values in an ordered, finite set X = {0, 1, 2, ..., K} . Let P ∈ ∆
(
Θ×X I

)
denote the joint distribution of the state of nature θ and the signals X. We will
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assume that P (· | θ = G) 6= P (· | θ = B) so that the signals carry information about
θ. Moreover, conditional on θ, the signals X are symmetrically distributed– that is,
P (x | θ) = P (xπ | θ) for any permutation xπ of x.
Let Xθ denote the random vector X in state θ, that is, conditional on θ.We will

also suppose that XG has full support, that is, for all x ∈ X I ,

P (x | θ = G) > 0

Note that the full support assumption guarantees that signals are not public.
Conditional on θ, the signals X t are independently and identically distributed

over time according to the distribution P (· | θ). At any time t, agent i privately sees
the realization of X t

i .
Thus, the signals X t

i are independent across time but may be correlated across
agents.
In what follows, we will assume that

Condition 1 The random variables (θ,X) are affi liated, that is,

P (θ,x)× P (θ′,x′) ≤ P (θ ∨ θ′,x ∨ x′)× P (θ ∧ θ′,x ∧ x′)

where x∨x′ is the component-wise maximum of x and x′ and x ∧ x′ is the component-
wise minimum.

Correlation In what follows, we will compare two information structures (θ,X)
and (θ,Y ) , say, such that the signals Y ∈ X I are "more correlated" than X. We
will only compare signals with the property that for all k ∈ X and θ ∈ Θ,

Pr [Xi = k | θ] = Pr [Yi = k | θ] (2)

This condition guarantees that

Pr [θ = G | Xi = k] = Pr [θ = G | Yi = k]

as well, so that agents’beliefs about θ are the same in (θ,X) as in (θ,Y ) .
Since correlation itself is a bivariate concept, we will use the following multivariate

generalization of positive correlation (see Shaked and Shantikumar, 2008).

Definition 1 Y is greater than X in the positive quadrant dependence (PQD) or-
der, written Y <PQD X, if for any z ∈ X I ,

Pr [X ≤ z] ≤ Pr [Y ≤ z] (3)

and
Pr [X ≥ z] ≤ Pr [Y ≥ z] (4)
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The PQD order is weaker than all other orders of positive dependence discussed
in Shaked and Shantikumar (2008) and Meyer and Strulovici (2012). For instance,
the PQD order is weaker than the supermodular order or the weak associative order.
Note that it follows from (3) and (4) that if Y <PQD X, then X and Y have the

same univariate marginals, that is, for all z, Pr [Xi ≤ z] = Pr [Yi ≤ z] .
In what follows, we will use the following strict version of the PQD order. We

will say that Y is strictly greater than X in the PQD order, and write Y �PQD X,
if the inequality (3) is strict for z 6= (K,K, ...,K) and the inequality (4) is strict for
z 6= 0.

Common beliefs A state of the world ω, hereafter simply state,

ω =
(
θ,x1,x2, ...,xT

)
determines the state of nature θ as well as a list of the agents’signal realizations xt ∈
X I (slanted bold x) in each period. Alternatively, we can write ω = (θ,x1,x2, ...,xI)
where xi ∈ X T (upright bold x) is a list of the T signals received by i. The set of
states is denoted by

Ω = Θ×X I × ...×X I

Following Monderer and Samet (1989), given any event E ⊆ Ω and probability p,
the event Bp

i (E) consists of the set of states ω ∈ Ω in which i p-believes E, that is, i
assigns probability exceeding p to the event E given her information xi. Next, write
Bp (E) = ∩iBp

i (E) as the set of states in which everyone p-believes E.
Now for r = 1, 2, ... define the operator Bp,r recursively by

Bp,r (E) = Bp
(
Bp,r−1 (E)

)
where Bp,0 (E) = E and finally,

Cp (E) = ∩rBp,r (E)

Thus, Cp (E) is the set of states in which E is common p-believed. In other words, (i)
everyone assigns probability exceeding p to the event E, and also (ii) assigns probabil-
ity exceeding p to the event that everyone assigns probability exceeding p to the event
E, and also (iii) assigns probability exceeding p to the event that everyone assigns
probability exceeding p to the event that everyone assigns probability exceeding p to
the event E, and so on.
In what follows, we will be interested in the set Cp

(
ΩG
)
after T periods, where

ΩG = {ω : θ = G} . In other words, we will be interested in the set of states where G
is common p-believed.
The common learning result of CEMS (2008) implies that for any p < 1,

lim
T→∞

Pr
[
Cp
(
ΩG
)
| θ = G

]
= 1
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3 Binary and Conclusive Signals

We begin by considering a special case of the general model in which

1. signals are binary, so that X = {0, 1} ; and

2. a signal Xi = 1 is conclusive about G– that is, Pr [Xi = 0 | B] = 1.

Because signals are independently and identically distributed over time, an agent’s
type can effectively be represented by the total number of 1-signals received, that is,
with binary signals, a type can be represented simply as ni =

∑
t x

t
i. This means that

with binary signals the set of types of can be linearly ordered.
The assumption of conclusive signals allows us to focus solely on higher-order

uncertainty– an agent who gets even one signal xti = 1 knows for sure that the state
is G but remains unsure about whether others know G, whether others know that
she knows G, etc.
This higher-order uncertainty is captured via agents’beliefs about the set

Ω+ = {ω : ∀j, nj ≥ 1}

that is, the set of states in which every agent j received a signal of xtj = 1 at some
time t. Since even one signal is conclusive about G, at any state in Ω+ everyone knows
that the state is G. Formally, Ω+ ⊆ ΩG.

3.1 Main result

The main result of this section, for binary and conclusive signals is

Theorem 1 If Y G �PQD XG, then for T large enough,
(i) for all p,

Cp
Y

(
ΩG
)
⊆ Cp

X

(
ΩG
)

(ii) for p in a non-empty open interval, under Y , G cannot be common p-believed:

Cp
Y

(
ΩG
)

= ∅

whereas under X, G is common p-believed whenever everyone knows G:

Cp
X

(
ΩG
)

= Ω+

Theorem 1 says that for large T , greater commonality of information actually
reduces the commonality of beliefs. Before proving the theorem, a few remarks are
in order.
First, since we have assumed that Y G has full support, (θ,Y ) is not a public

information structure– that is, the signals are not perfectly correlated. If the signals

9

Electronic copy available at: https://ssrn.com/abstract=4114760



-s

s
s s s s s s s s

s
s

s s s s s s s s

0.8

0.9

1.0

1 5 10

qX

qY

T

Figure 1: Threshold Beliefs for the Information Structures in Example 1

Y were perfectly correlated– that is, for all k ∈ X , Pr [Yj = k | Yi = k] = 1– then
we would have that for all p, Cp

Y

(
ΩG
)

= Ω+, which would run counter to (ii). But
what if Y is "nearly" perfectly correlated– that is, for some small ε, for all k ∈ X ,
Pr [Xj = k | Xi = k] > 1 − ε? Is there a discontinuity at ε = 0? Here the order of
quantifiers in the theorem is important. For a fixed T, it may be that if Y is nearly
perfectly correlated, it leads to greater commonality of beliefs than X. What the
theorem says is that this cannot persist once T is large enough. Figure 1 depicts the
threshold beliefs qX and qY as functions of T for the two information structures in
Example 1 from the Introduction– the (conditionally) independent structure (θ,X)
and the correlated (θ,Y ) .
Second, part (i) of the theorem does not imply that the probability of the event

that G is common p-believed under Y is smaller than that under X. This is because
X and Y have different probability distributions. Of course, in part (ii) under Y the
probability of common p-belief is zero while under X it is positive.
Third, the result does not conflict with the CEMS (2008) result that common

learning occurs in the limit regardless of the commonality of signals. Theorem 1
requires T to be large enough but not infinite. Note also that T must be at least
2– the conclusion of the theorem cannot hold for T = 1.

3.2 Proof of Theorem 1

The proof of Theorem 1 has two components. We first show that with binary, conclu-
sive signals the set Cp

(
ΩG
)
has a "bang-bang" property. When p is above a certain

threshold, Cp
(
ΩG
)
is empty– that is, θ = G cannot be p-believed– and when p is
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below the threshold, Ω+ ⊆ Cp
(
ΩG
)
– that is, whenever everyone knows θ = G, it is

also common p-believed. This is Proposition 3.1 below.
The second step in the proof of Theorem 1 then shows that when T is large

enough, the threshold decreases with an increase in the "correlation" among agents’
signals– specifically, an increase in positive quadrant dependence. This is Proposition
3.2 below.
As above, let Ni =

∑T
t=1X

t
i denote the random variable which is the number of

positive signals received by agent i and define

q = Pr [∀j,Nj ≥ 1 | Ni = 1]

= Pr
[
Ω+ | Ni = 1

]
(5)

as the belief of type Ni = 1 about the event that everyone else saw at least one
positive signal– and so also knows that θ = G.
Since signals are affi liated, for all k ≥ 1,

Pr
[
Ω+ | Ni = k

]
≥ Pr

[
Ω+ | Ni = 1

]
= q (6)

as established in Lemma A.2 in the Appendix. In other words, among all those that
know that θ = G, the type Ni = 1 is most pessimistic about the event that everyone
knows θ = G.

3.2.1 Threshold beliefs

Our first result is that q is the "threshold" belief such that if p ≤ q, then in all
states in which everyone gets at least one signal xti = 1, the event θ = G is common
p-believed. This is rather intuitive– if the belief about Ω+ = {ω : ∀j, nj ≥ 1} of the
most pessimistic type exceeds p, then the beliefs of all types exceed p and in fact
θ = G is common p-believed.
The result below says that, in a strong sense, the converse is true as well– if the

belief about Ω+ of the most pessimistic type is smaller than p, then it is impossible
that the event θ = G is common p-believed. The assumption that signals are binary
and conclusive is important for the converse.
Define

ρ0 = Pr
[
ΩG | Ni = 0

]
be the belief about G of an agent who only receives 0-signals in each of the T periods.
Note that as T increases, ρ0 goes to zero.

Proposition 3.1 (i) If p ≤ q, then

Ω+ ⊆ Cp
(
ΩG
)

(ii) If ρ0 < q < p, then
Cp
(
ΩG
)

= ∅
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Proof of Proposition 3.1 (i) Since the right-hand side of (6) is just q, all types
of agent i with ni ≥ 1 assign at least probability q to the event Ω+ that everyone got
at least one positive signal. Formally,

{ω : ni ≥ 1} ⊆ Bq
i

(
Ω+
)

and since Ω+ = {ω : ∀j, nj ≥ 1} ⊂ {ω : ni ≥ 1} , we have

Ω+ ⊆ Bq
i

(
Ω+
)

In the language of Monderer and Samet (1989) this says that Ω+ is evident q-
believed (or is q-evident, for short). Proposition 3 in Monderer and Samet (1989) now
implies that Ω+ is common q-believed at any ω ∈ Ω+. Formally,

Ω+ ⊆ Cq
(
Ω+
)

Since signals are conclusive Ω+ ⊂ ΩG. Moreover, since the Cq operator is monotone
and p ≤ q, we have

Ω+ ⊆ Cp
(
ΩG
)

This completes the proof of part (i) of Proposition 3.1.

Proof of Proposition 3.1 (ii) Now suppose p > q. We will argue that now
Cp (Ω+) = ∅ and then that Cp

(
ΩG
)

= ∅ as well.
As a first step, we show that every additional signal makes an agent more pes-

simistic about the event that all other agents got an additional signal as well.

Lemma 3.1 Suppose signals are binary. For any k ≥ 1,

Pr [∀j,Nj ≥ k + 1 | Ni = k + 1] ≤ Pr [∀j,Nj ≥ k | Ni = k]

Proof. Again, since signals are serially independent, without loss of generality, sup-
pose that the conditioning events are such that

∑T−1
t=1 X

t
i = k and then on the left-

hand side XT
i = 1 whereas on the right-hand side XT

i = 0. In other words, the
additional 1-signal received by i occurs in period T.
For j 6= i,define Mj =

∑T−1
t=1 X

t
j to be the random variable that is the sum of the

first T − 1 signals received by j and letM−i =
∑T−1

t=1 X
t
−i denote the corresponding

vector random variable of the sum of the signals of agents other than i. Then Nj =
Mj +XT

j .
If Mj < k − 1, then both Nj = k and Nj = k + 1 are impossible.
If Mj = k − 1, then Nj = k is possible while Nj = k + 1 is impossible.
If Mj = k, then Nj = k occurs with probability 1 while Nj = k + 1 occurs with

probability less than one.
If Mj > k, then both Nj = k and Nj = k + 1 occur with probability one.
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Thus, in all cases the probability that Nj ≥ k occurs is at least as large as the
probability that Nj ≥ k + 1 occurs and so for all m−i,

Pr
[
∀j,mj +XT

j ≥ k + 1 |
∑T−1

t=1 X
t
i = k,XT

i = 1
]

≤ Pr
[
∀j,mj +XT

j ≥ k |
∑T−1

t=1 X
t
i = k,XT

i = 0
]

Finally, since the probability distribution ofM−i =
∑T−1

t=1 X
t
−i is independent of

XT
i , integrating both sides of the inequality over the mj, we have

Pr
[
∀j,Mj +XT

j ≥ k + 1 |
∑T−1

t=1 X
t
i = k,XT

i = 1
]

≤ Pr
[
∀j,Mj +XT

j ≥ k |
∑T−1

t=1 X
t
i = k,XT

i = 0
]

which establishes the result.

Lemma 3.2 Suppose signals are binary and conclusive and ρ0 < q. For any p > q,

Cp
(
Ω+
)

= ∅

Proof. Define
Ω(k) = {ω : ∃j, nj < k}

as the set of states in which at least one agent gets fewer than k signals. Clearly, for
any k, Ω(k) ⊂ Ω(k+1) and ∪T+1

k=1 Ω(k) = Ω.
We will argue by induction that if p > q, then for all k,

Ω(k) ∩ Cp
(
Ω+
)

= ∅ (7)

First, since Ω(1) = {ω : ∃j, nj = 0} , in any state ω ∈ Ω(1), there is an i who never
gets a positive signal and so assigns probability ρ0 to ΩG. Since signals are conclusive,
Ω+ ⊂ ΩG, and so i assigns a probability no more than ρ0 to Ω+. Since ρ0 < q < p, this
implies that any such ω /∈ Bp

i (Ω+) and so ω /∈ Cp (Ω+) . Thus, Ω(1) ∩ Cp (Ω+) = ∅
Next, Ω(2) = {ω : ∃j, nj < 2} . Let ω ∈ Ω(2)\Ω(1). At any such ω, there is an i such

that ni = 1. But by definition, Pr [Ω+ | Ni = 1] = q and so for any p > q, ω /∈ Bp
i (Ω+)

and hence ω /∈ Cp (Ω+) as well. Thus, we have shown that Ω(2) ∩ Cp (Ω+) = ∅.
Now suppose that Ω(k) ∩ Cp (Ω+) = ∅. This implies that

Cp
(
Ω+
)
⊂ Ω�Ω(k) = {ω : ∀j, Nj ≥ k}

Let ω ∈ Ω(k+1) \Ω(k). At any such ω, there is an i with ni = k, that is, i gets exactly
k 1-signals. By the induction hypothesis

Pr
[
Cp
(
Ω+
)
| Ni = k

]
≤ Pr [∀j, Nj ≥ k | Ni = k]
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Lemma 3.1 now implies that

Pr
[
Cp
(
Ω+
)
| Ni = k

]
≤ Pr [∀j, Nj ≥ 1 | Ni = 1] = q

and so ω /∈ Bp
j (Cp (Ω+)) and hence ω /∈ Cp (Ω+) . Thus, we have argued that Ω(k+1)∩

Cp (Ω+) = ∅ and hence established (7).
Now since Ω(k)∩Cp (Ω+) = ∅ for all k and ∪∞k=1Ω(k) = Ω, we have that Cp (Ω+) =

∅.

To complete the proof of Proposition 3.1 (ii), first note that if p > q > ρ0, then
for all i,

Bp
i

(
ΩG
)

= {ω : ni ≥ 1} (8)

that is, i assigns probability exceeding p to G if and only if i gets at least one
positive signal. To see this, observe that if i gets a signal, then she knows for sure
that θ = G and so assigns probability 1 to θ = G. On the other hand, if i did
not get a positive signal, then the posterior probability of θ = G is ρ0 < p and so
Bp
i

(
ΩG
)
⊆ {ω : ni ≥ 1} .

Now using (8),

Bp
(
ΩG
)

= ∩iBp
i

(
ΩG
)

= {ω : ∀i, ni ≥ 1}
= Ω+

and since Cp
(
ΩG
)

= ∩rBp,r
(
ΩG
)
we have from Lemma 3.2,

Cp
(
ΩG
)

= Cp
(
Ω+
)

= ∅

This completes the proof of Proposition 3.1.

3.2.2 Correlation increases pessimism

Proposition 3.1 establishes that with binary and conclusive signals, the maximum
commonality of beliefs– that is, the highest p for which ΩG can be common p-
believed– is exactly q, the belief of the most pessimistic type among all those who
know that θ = G. In this section, we compare two information structures (θ,X) and
(θ,Y ) such that Y G �PQD XG. We show that a change from X to Y increases the
pessimism of the most pessimistic type Ni = 1.
For binary and conclusive signals, we then have

Proposition 3.2 If Y G �PQD XG, then for T large enough,

qX = PrX
[
Ω+ | NX

i = 1
]
> PrY

[
Ω+ | NY

i = 1
]

= qY

where NX
i =

∑
tX

t
i and N

Y
i =

∑
t Y

t
i .
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Proof. Follows from Lemma A.3 and Lemma B.1 (see (13)) in the Appendix.

The result is rather intuitive. Consider a type Ni = 1 who gets one 1-signal in
period 1 and in every subsequent period t > 1 gets signal 0. What happens if signals
become more correlated? At the end of period 1, under Y , this type ismore optimistic
about the event that other agents also know G. However, when T is large this initial
optimism is overwhelmed by the increased pessimism resulting from a string of T − 1
zeros. Formally, while

Pr [Xj = 1 | Xi = 1] < Pr [Yj = 1 | Yi = 1]

at the same time

Pr [Xj = 1 | Xi = 0] > Pr [Yj = 1 | Yi = 0]

and for large enough T, the second inequality dictates the effect of greater "correla-
tion" on the beliefs of type Ni = 1.

Propositions 3.1 and 3.2 together prove Theorem 1 since part (ii) of the theorem
holds if p ∈ (qY , qX) and when T is large enough, ρ0 = Pr

[
ΩG | Ni = 0

]
< qY .

4 Binary-action Supermodular Games

Consider any binary action, symmetric, supermodular game Γ where each player i
chooses an action ai ∈ {0, 1} . Because of symmetry we can write the payoff function,

ui (a1, a2, ..., aI) = ui (ai, s−i)

where s−i is the number of other players playing aj = 1. It will be convenient to write

ui (1, s−i)− ui (0, s−i) = h (s−i)− c
where c is a parameter. Supermodularity ensures that h (·) is increasing and we
suppose that

h (I − 1) > c

In other words, everyone playing ai = 1 is an equilibrium of Γ.
Following Kajii and Morris (1997), let G be an elaboration of the complete infor-

mation game where there are two states θ = {G,B} and where in state G, the game
is Γ and in state B, the game is Γ′ in which action ai = 0 is strictly dominant. Oyama
and Takahashi (2020) have studied the relationship between a generalized version of
common beliefs and equilibria of binary-action supermodular games.
As in the previous section, suppose signals are binary and conclusive. Player types

are again Ni =
∑
X t
i .
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Consider the strategies that specify: play ai = 1 if Ni ≥ 1. If such strategies
constitute an equilibrium of G, then we will call such an equilibrium maximal. This
is because in such an equilibrium, the only types that may possibly play ai = 0 are
those with Ni = 0.

Theorem 2 If Y G �PQD XG, then for T large enough,
(i) for all c, if there is a maximal equilibrium under Y , then there is also such an
equilibrium under X;
(ii) there is a non-empty, open set of c’s such that there is a maximal equilibrium
under X, while under Y , the only rationalizable outcome is ai = 0.

Theorem 2 extends the reach of Theorem 1 to the game context. For games of
pure coordination, like Example 1 in the introduction, Theorem 1 provides condi-
tions under which there is a maximal equilibrium. Precisely, in the example such
an equilibrium exists if and only if G is common q-believed for q ≥ c. Moreover,
correlation reduces the threshold belief q. Theorem 2 shows that correlation can have
a detrimental effect any binary-action, symmetric, supermodular game.

4.1 Proof of Theorem 2

It is useful to define the set

Sk−i = {j 6= i : Nj ≥ k} (9)

as the set of players other than i, who receive at least k positive signals and let #Sk−i
denote the cardinality of Sk−i.

Proposition 4.1 (i) If E[h
(
#S1

−i
)
| Ni = 1] ≥ c, then there is a maximal equilib-

rium of G.
(ii) If E[h

(
#S1

−i
)
| Ni = 1] < c and ai = 0 is dominant for a player with Ni = 0,

then the unique rationalizable outcome of G is that all play ai = 0.

Proof. (i) Suppose E[h
(
#S1

−i
)
| Ni = 1] ≥ c. Define H (x−i) = h

(
#S1

−i
)
and then

note that H is non-decreasing. Since (X1,X2, ...,XI) are affi liated (Lemma A.1), we
have that for any xi ≥ e1,

E [H (X−i) | Xi = xi] ≥ E
[
H (X−i) | Xi = e1

]
which is equivalent to: for any k ≥ 1,

E[h
(
#S1

−i
)
| Ni = k] ≥ E[h

(
#S1

−i
)
| Ni = 1]

and so if all players j 6= i follow the strategy of playing aj = 1 whenever they receive
at least one positive signal, it is a best response for player i to do so as well.

16

Electronic copy available at: https://ssrn.com/abstract=4114760



(ii) By assumption, it is dominant for any player with Ni = 0 to play ai = 0.
Thus only those who receive at least one positive signal may play ai = 1. But since
E[h

(
#S1

−i
)
| Ni = 1] < c, any player that gets exactly one positive signal will also

play ai = 0.
Now Lemma B.2 in the Appendix guarantees that E[h

(
#S2

−i
)
| Ni = 2] <

E[h
(
#S1

−i
)
| Ni = 1] and so if those with Ni = 0 and Ni = 1 play ai = 0, then

it is in the interests of those with Ni = 2 to do so as well.
Proceeding in this way, repeated application of Lemma B.2 implies that for all k,

all those with Ni = k will play ai = 0.

Proposition 4.2 Suppose Y G �PQD XG. For T large enough,

EY [h
(
#S1

−i
)
| NY

i = 1] < EX [h
(
#S1

−i
)
| NX

i = 1]

where NX
i =

∑
tX

t
i and N

Y
i =

∑
t Y

t
i .

Proof. From Lemmas A.3 and B.1 in the Appendix we know that if for s =
0, 1, ..., I − 1, qX (s) = Pr

[
#S1

−i = s | Ni = 1
]
and qY (s) is similarly defined, then

the distribution qX (·) (strictly) stochastically dominates qY (·) . Since h (·) is a non-
decreasing, but not constant, function, the result follows.

Propositions 4.1 and 4.2, together with the fact that when T is large ρ0 =
Pr [G | Ni = 0] goes to zero, complete the proof of Theorem 2.

5 General Model

The sharp result in Theorem 1 was derived for the case of binary and conclusive sig-
nals. With conclusive signals, we were able to focus solely on higher-order uncertainty–
that is, agents’beliefs about the beliefs of other agents etc. When signals are not
conclusive, first order uncertainty– that is, agents’beliefs about the state θ– also
plays a role. We now turn to consider the general case where the set of signals
X = {0, 1, 2, ..., K}. Here we will assume that conditional on θ ∈ {G,B} , the signals
have full support.
Let e1 = (1, 0, ..., 0) ∈ X T be the unit vector and define

qX = min
{

PrX
[
Ω+ | Xi = e1

]
, PrX

[
ΩG | Xi = e1

]}
(10)

where, as before, Ω+ = {ω : ∀j,xj 6= 0} is the set of states in which everyone got at
least one non-zero signal. Thus, qX is the smaller of the belief of type Xi = e1 about
Ω+ and her belief that θ = G. The latter represents first-order uncertainty.
If signals were conclusive, as in the previous section, then Pr

[
ΩG | Xi = e1

]
= 1

and so in that case, the definition above reduces to the one in (5).
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Once again we will compare two information structures (θ,X) and (θ,Y ) where
Y is "more correlated" thanX. Let qX be defined as above and let qY be analogously
defined for (θ,Y ) . Recall that because we only compare information structures where
Pr [Xi | θ] = Pr [Yi | θ] (see (2)),

PrX
[
ΩG | Xi = e1

]
= PrY

[
ΩG | Yi = e1

]
and note that this probability goes to zero as T →∞.

5.1 Main result

We will say that Y �PQD X if for each θ ∈ {B,G} , Y θ �PQD Xθ

For general information structures, we have the following result:

Theorem 3 If Y �PQD X, then for T large enough, qY ≤ qX and for p ∈ (qY , qX) ,

Cp
Y

(
ΩG
)
( Cp

X

(
ΩG
)

= Ω+

Comparing Theorem 3 to Theorem 1, we see that the latter reaches a much
stronger conclusion. First, part (i) of Theorem 1 has no counterpart in the gen-
eral model– it is no longer the case that for all p, Cp

Y

(
ΩG
)
⊆ Cp

X

(
ΩG
)
. For instance,

in Example 2 below, for p close to 1, Cp
X

(
ΩG
)

= ∅ while Cp
Y

(
ΩG
)
6= ∅. Moreover,

without the assumption of binary signals, there is no analog of the infection argu-
ment underlying part (ii) of Theorem 1 that leads to the conclusion that for p > qY,
Cp
Y

(
ΩG
)

= ∅.
Note however, that the strong conclusion of Theorem 1 would continue to hold if

signals were binary and "nearly conclusive". Precisely, suppose (θ,X) and (θ,Y ) are
binary and conclusive information structures satisfying the conditions of Theorem 1
and that T is such that the conclusion holds. Now if we perturb both information
structures so that they are "nearly conclusive"– for a small ε, Pr [Xi = 1 | B] ≤ ε–
then the conclusion of Theorem 1 would continue to hold.

5.2 Proof of Theorem 3

Like Theorem 1, the proof of Theorem 3 is in two parts. We first prove, for general
signals, an analog of Proposition .3.1. With general signals, the conclusion reached
is weaker.
Recall that ρ0 = Pr

[
ΩG | Ni = 0

]
,

Proposition 5.1 (i) If p ≤ q, then

Ω+ ⊆ Cp
(
ΩG
)
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that is, if everyone got at least one positive signal, then G is common p-believed.
(ii) if ρ0 < q < p, then

Cp
(
ΩG
)
( Ω+

that is, if G is common p-believed, then everyone got at least one positive signal (but
there are states where everyone gets at least one positive signal but G is not common
p-believed).

Proof. (Part i) Since p ≤ q (defined in (10)) we have that p ≤ Pr
[
ΩG | Xi = e1

]
.

Since X1,X2, ...,XI are affi liated (Lemma A.1), this implies that for any xi 6= 0,
Pr
[
ΩG | Xi = e1

]
≤ Pr

[
ΩG | Xi = xi

]
and so for any xi 6= 0, p ≤ Pr

[
ΩG | Xi = xi

]
as well. Thus,

{ω : xi 6= 0} ⊆ Bp
i

(
ΩG
)

Taking the intersection over i, we have

Ω+ ⊆ Bp
(
ΩG
)

and operating by Bp
i ,

Bp
i

(
Ω+
)
⊆ Bp

i

(
Bp
(
ΩG
))

Moreover, as above, affi liation implies that for any xi 6= 0, Pr [Ω+ | Xi = e1] ≤
Pr [Ω+ | Xi = xi] and so p ≤ Pr [Ω+ | Xi = xi] as well. Thus,

{ω : xi 6= 0} ⊆ Bp
i

(
Ω+
)

Taking intersections over i, we have that

Ω+ ⊆ Bp
(
Ω+
)

that is, the event Ω+ is p-evident. Since Ω+ ⊆ Bp
(
ΩG
)
it follows that

Ω+ ⊆ Cp
(
ΩG
)

(Part ii) First, note that when ρ0 < p, then

Cp
(
ΩG
)
⊆ Ω+

To see this, note that if ω /∈ Ω+, then there exists an agent, say 1, such that x1 = 0
and since Pr [G | X1 = 0] = ρ0 < p,

ω /∈ Bp
1

(
ΩG
)

and so
ω /∈ Cp

(
ΩG
)

Thus, we have that Cp
(
ΩG
)
⊆ Ω+.
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Next we argue that the inclusion is strict. In particular, if ω′ ∈ Ω+ is such that
x1 = e1, then ω′ /∈ Cp

(
ΩG
)
.

There are two cases to consider. Since p > q, either (a) p > Pr
[
ΩG | X1 = e1

]
or

(b) p > Pr [Ω+ | X1 = e1] or both.
If (a), then ω′ /∈ Bp

1

(
ΩG
)
and so ω′ /∈ Cp

(
ΩG
)
.

If (b), then ω′ /∈ Bp
1 (Ω+) and so ω′ /∈ Cp (Ω+) . But since

Cp
(
ΩG
)
⊆ Ω+

operating on both sides by Cp and using the fact that Cp
(
ΩG
)
is a fixed point of the

operator CP ,
Cp
(
ΩG
)
⊆ Cp

(
Ω+
)

and so ω′ /∈ Cp
(
ΩG
)
.

5.2.1 Correlation increases pessimism

Theorem 1 showed that with conclusive signals, an increase in correlation (as mea-
sured by the PQD order) made the most pessimistic type even more pessimistic. Here
we show that modulo some minor qualifications, the same is true in general– that is,
even when signals are not conclusive.
As before we will compare the information structure (θ,X) with another infor-

mation structure (θ,Y ) with the same level of individual learning. Lemmas A.3 and
C.1 in the Appendix imply the result that if Y �PQD X, then there exists a T such
that for all T > T ,

PrX
[
Ω+ | Xi = e1

]
> PrY

[
Ω+ | Xi = e1

]
Recall that

qX = min
{

PrX
[
Ω+ | Xi = e1

]
,PrX

[
ΩG | Xi = e1

]}
and similarly,

qY = min
{

PrY
[
Ω+ | Yi = e1

]
,PrY

[
ΩG | Yi = e1

]}
and the assumption thatX and Y have the same extent of individual learning implies
that

PrX
[
ΩG | Xi = e1

]
= PrY

[
ΩG | Yi = e1

]
Thus, we obtain

Proposition 5.2 Suppose that Y �PQD X. Then there exists a T such that for all
T > T ,

qX ≥ qY (11)

Unlike in the case of conclusive signals, the inequality (11) is weak.
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Example 2 We now consider an example in which there are more than two signals
and these are non-conclusive– every signal occurs with positive probability in each
state of nature θ. The purpose of the example is to show that the conclusion of
Theorem 3 can hold for a non-empty, open set of p’s.
Suppose that the set of signals X = {0, 1, 2} . There are two agents and the two

states B and G are equally likely.
Consider a correlated information structure (θ,Y ) with the following joint distri-

butions conditional on the state θ, where ε > 0 is a small number.

P (· | G) =

Y2 = 0 Y2 = 1 Y2 = 2
Y1 = 0 0.1 0.08 ε3

Y1 = 1 0.08 0.7− 2ε− 2ε3 ε
Y1 = 2 ε3 ε 0.04

P (· | B) =

Y2 = 0 Y2 = 1 Y2 = 2
Y1 = 0 0.997− 3ε3 − 2ε4 0.001 ε4

Y1 = 1 0.001 0.001 ε3

Y1 = 2 ε4 ε3 ε3

When ε is small enough, the random variables (θ,Y ) are affi liated. In fact, all the
(non-trivial) affi liation inequalities are strict.
Consider an alternative information structure (θ,X) where for each θ, the condi-

tional distribution Pr [Xi | θ] = Pr [Yi | θ] and

Pr [Xi = k,Xj = l | θ] = Pr [Xi = k | θ]× Pr [Xj = l | θ]

In other words, conditional on θ, the signals X are independently distributed.
Suppose that T = 2, so that signals are generated twice. Now we have that when

ε close to zero,

ρ0 = Pr
[
ΩG | X = 0

]
= Pr

[
ΩG | Y = 0

]
≈ 3.12× 10−2

whereas

qY ≈ 0.936

qX ≈ 0.954

so that qY < qX .
If p ∈ (qY , qX) , then from Theorem 3, we know that

Cp
X

(
ΩG
)

= Ω+ = {ω : ∀i, xi 6= 0}

and it may be verified that

Cp
Y

(
ΩG
)

=
{
ω : ∀i, maxt y

t
i = 2

}
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that is, Cp
Y

(
ΩG
)
consists of those states in which both players receive at least one

signal k = 2.
Finally, when ε ≈ 0,

PrY
[
Cp
Y

(
ΩG
)]
≈ 0.039

whereas
PrX [Cp

X (ΩG)] ≈ 0.468

Thus, in the example, we not only have

∅ 6= Cp
Y

(
ΩG
)
( Cp

X

(
ΩG
)

but
0 < PrY

[
Cp
Y

(
ΩG
)]
< PrX [Cp

X (ΩG)]

as well.
But there are large p’s for which Cp

X (ΩG) = ∅ while Cp
Y

(
ΩG
)
6= ∅. Thus, with

non-conclusive signals it is not the case that for all p, Cp
Y

(
ΩG
)
⊆ Cp

X (ΩG) .

6 Blackwell Informativeness

When there only two agents, our main result can be reinterpreted in the language of
Blackwell’s (1951) informativeness notion. Blackwell’s setting, of course, is that of
a single agent facing a decision whose payoff is influenced by an unknown state of
nature. In what follows, signals need not be binary nor need they be conclusive.
In the two-agent case, we first adopt the perspective of agent 1, say. Suppose P

is the joint distribution of (θ,X1, X2) . Let P θ be the joint distribution of (X1, X2)
conditional on θ. For fixed θ, from agent 1’s perspective, the signal X2 of agent 2 can
be interpreted as a "state of nature" and X1 as agent 1’s informative signal about X2.
The conditional distribution P θ (X1 | X2) is then a Blackwell experiment. The same
is true if we adopt the perspective of agent 2 and treat X1 as a "state of nature" and
X2 as agent 2’s signal about X1.5

Now consider another pair of signals (Y1, Y2) and suppose P joint distribution
(θ, Y1, Y2) . Again let P

θ
be the joint distribution of (Y1, Y2) conditional on θ. As

above, for fixed θ, P
θ

(Y1 | Y2) is also a Blackwell experiment.
We will say that

Definition 2 Suppose I = 2.The information structure (θ,Y ) is mutually more
informative than (θ,X) if for all θ, P

θ
(Yj | Yi) is Blackwell more informative than

P θ (Xj | Xi).

5This reinterpretation cannot work when there are more than two agents. For instance, suppose
signals are binary and I = 3. Now from agent 1’s perspective the state of nature is (X2, X3) .
Blackwell’s informativeness criterion would require that if Y is another signal structure, then for all
i, the distribution of (X2, X3) be the same as the distribution of (Y2, Y3) . Together with symmetry,
this can hold only if the distribution of Y is the same as the distribution of X.
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Note that this definition focuses on how informative one agent’s signals are about
the other agent’s signals. Also, this guarantees that conditional on θ, X and Y have
the same univariate marginal distributions.

Lemma 6.1 Suppose that conditional on θ, X and Y are both affi liated. If (θ,Y )
is mutually more informative than (θ,X), then

Pr [X1 = 0, X2 = 0 | θ] ≤ Pr [Y1 = 0, Y2 = 0 | θ] (12)

Proof. Fix θ. From Blackwell, we know that if P
θ

(Y1 | Y2) is more informative
than P θ (X1 | X2) , then the posteriors from Y are a mean-preserving spread of the
posteriors from X.
Formally, if we define for every k and l in X ,

pkl = P θ [X2 = l | X1 = k]

and
pk =

(
pkl
)
l∈X ∈ ∆ (X )

to be the vector of posterior beliefs of agent 1 with signal X1 = k about the signals
X2 of agent 2. Similarly, define

pk ∈ ∆ (X )

to be the vector of posterior beliefs of agent 1 with signal Y1 = k about the signals
Y2 of agent 2.
Now Blackwell’s Theorem implies that for all k,

pk ∈ co{pm : m ∈ X}

the convex hull of the set of posterior vectors from Y.
Moreover, since (X1, X2) are affi liated, for any k > 0, the distribution pk ∈ ∆ (X )

stochastically dominates the distribution p0 ∈ ∆ (X ) . Similarly, for any k > 0, the
distribution pk ∈ ∆ (X ) stochastically dominates the distribution p0 ∈ ∆ (X ) .
Since p0 ∈ co{pm : m ∈ X} we can write

p0 =
∑K

m=0
αmp

m

where αm ∈ [0, 1] and
∑K

m=0 αm = 1.
We claim that the distribution p0 ∈ ∆ (X ) stochastically dominates p0 ∈ ∆ (X ) .

This is the same as, for any L ∈ X ,∑L

l=0
p0
l =

∑L

l=0

∑K

m=0
αmp

m
l

=
∑K

m=0
αm

(∑L

l=0
pml

)
≤

∑K

m=0
αm

(∑L

l=0
p0
l

)
=

∑L

l=0
p0
l
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where the inequality in the third line follows from the fact that the distribution for
all m > 0, pm stochastically dominates p0.
In particular, for L = 0, this implies that

p0
0 ≤ p0

0

which is equivalent to

P θ [X2 = 0 | X1 = 0] ≤ P
θ

[Y2 = 0 | Y1 = 0]

and since P θ [X1 = 0] = P
θ

[Y1 = 0] , the result follows.

Lemma 6.1 implies that when there are two agents, in all of the results of the
earlier sections, the condition that "Y �PQD X" can be replaced with the condition
"Y is mutually more informative than X," provided that the inequality in (12) is
strict. This is because Lemmas B.1 and C.1 only require (the strict version) of the
inequality.

A Appendix: Affi liation and PQD Order

Recall that a vector of random variables X ∈ X I with joint probability distribution
P is said to be affi liated if for all x and x′ in X I

P [x]× P [x′] ≤ P (x ∨ x′)× P (x ∧ x′)

Also recall the notation that if x = (xti)i∈I,t∈T is a realization of all I signals in all T
periods, then

xt =
(
xti
)
i∈I

(slanted bold) is the I-vector of all I signal realizations in period t, while

xi =
(
xti
)
t∈T

(upright bold) is the T -vector of i’s signals over the T periods.

Lemma A.1 Suppose that the variables X ∈ X I are affi liated with distribution P .
If X1,X2, ...,XT are independently and identically distributed according to P , then
(X1,X2, ...,XI) ∈

(
X I
)T
are also affi liated.

Proof. Suppose x = (x1,x2, ...,xI) and x′ = (x′1,x
′
2, ...,x

′
I) are both in

(
X I
)T
.

Because of independence
Pr [x] =

∏T
t=1 P

(
xt
)

and
Pr [x′] =

∏T
t=1 P

(
x′t
)
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and so

Pr [x] Pr [x′] =
∏T

t=1 P
(
xt
)∏T

t=1 P
(
x′t
)

=
∏T

t=1 P
(
xt
)
P
(
x′t
)

≤
∏T

t=1 P
(
xt ∨ x′t

)
P
(
xt ∧ x′t

)
=

∏T
t=1 P

(
xt ∨ x′t

)∏T
t=1 P

(
xt ∧ x′t

)
= Pr [x ∨ x′] Pr [x ∧ x′]

Lemma A.2 Suppose that the variables X ∈ X I are affi liated. For any xi 6= 0,

Pr
[
Ω+| Xi = xi

]
≥ Pr

[
Ω+| Xi = e1

]
Proof. Clearly, the indicator function IΩ+ :

(
X T
)I → {0, 1} of the set Ω+ =

{ω : ∀j,xj 6= 0} is non-decreasing. For any xi 6= 0 there is a permutation xπi of
xi such that xπi ≥ e1. Since the set Ω+ is permutation invariant

Pr
[
Ω+| Xi = xi

]
= Pr

[
Ω+| Xi = xπi

]
= E [IΩ+ (X) | Xi = xπi ]

≥ E
[
IΩ+ (X) | Xi = e1

]
= Pr

[
Ω+| Xi = e1

]
The inequality in the third line is the result of the following argument. First, since

the random variables X = (X t
i ) are affi liated (Lemma A.1), the probability distribu-

tion of X−i conditional on Xi = xπi dominates the distribution of X−i conditional on
Xi = e1 in the multivariate likelihood order, as defined in Section 6.E of Shaked and
Shantikumar (2008). Their Theorem 6.E.8 now implies that the two distributions are
also ranked by the usual stochastic order.

Lemma A.3 Suppose that Y θ �PQD Xθ. Then, for any subset S ⊂ I

Pr [XS = 0 | θ] < Pr [Y S = 0 | θ]

where XS = (Xi)i∈S .

Proof. Recall that if Y θ �PQD Xθ then for z 6= (K,K, ...,K) ,

Pr [X ≤ z | θ] < Pr [Y ≤ z | θ]

If we choose z such that for all i ∈ S, zi = 0 and zj = K, for all j /∈ S, then the
conclusion follows.
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B Appendix: Binary and Conclusive Signals

Recall that from (9) that
S1
−i = {j 6= i : Nj ≥ 1}

is the set of agents other than i, who receive at least one positive signal and let #A
denote the cardinality of A.
Now define for s = 0, 1, ..., I − 1

qX (s) = Pr
[
#S1

−i = s | Ni = 1
]

as the probability assigned by a type who saw only one positive signal to the event
that s other agents saw positive signals so that

I−1∑
s=0

qX (s) = 1

Note that qX (I − 1) is the same as qX , as defined in (5) in Section 3.

Lemma B.1 Suppose that for any subset S ⊂ I

Pr [XS = 0 | G] < Pr [Y S = 0 | G]

For T large enough, for all m < I − 1,

m∑
s=0

qX (s) <
m∑
s=0

qY (s)

and so
qX (I − 1) > qY (I − 1) (13)

In other words, the distribution qX (·) strictly stochastically dominates qY (·) .

Proof. We will, in fact, prove the stronger statement that when T is large enough,
for all s < I − 1,

qX (s) < qY (s)

Without loss of generality, we will suppose that i = 1 and so for any n < I − 1,

qX (s) =
(
I−1
s

)
P [xs+2 = 0,...,xI = 0]

−
(
I−1
s

) s−1∑
m=0

(
s
m

)
P
[
x2 6= 0, ...,xm+1 6= 0,xm+2 = 0, ..,xI = 0

]
where for any event A,

P [A] = Pr [A | N1 = 1]
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The formula for qX (s) then just uses the fact that the event {ω : xs+2 = 0,...,xI = 0}
is the union of mutually exclusive events in which some subset consisting of m agents
from the set {2, 3, ..., s+ 1} get non-zero signals. In the expression above, we have
used symmetry to write the probability of each of these events in a way that for the s
players i = 2, 3, ...,m+ 1, xi 6= 0 whereas for the I − 1−m agents j > m+ 1, xj = 0.
Similarly,

qY (s) =
(
I−1
s

)
P [ys+2 = 0,...,yI = 0]

−
(
I−1
s

) s−1∑
m=0

(
s
m

)
P
[
y2 6= 0, ...,ym+1 6= 0,ym+2 = 0, ..,yI = 0

]
where for any event A,

P [A] = Pr
[
A | Y1 = e1

]
The ratio of the two is then

qX (s)

qY (s)

=
P [xs+2 = 0,...,xI = 0]−

∑s−1
m=0

(
s
m

)
P
[
x2 6= 0, ...,xm+1 6= 0,xm+2 = 0, ..,xI = 0

]
P [ys+2 = 0,...,yI = 0]−

∑s−1
m=0

(
s
m

)
P
[
y2 6= 0, ...,ym+1 6= 0,ym+2 = 0, ..,yI = 0

]
=

α− β
α− β

where

α = P [xs+2 = 0,...,xI = 0]

β =
s−1∑
m=0

(
s
m

)
P
[
x2 6= 0, ...,xm+1 6= 0,xm+2 = 0, ..,xI = 0

]
and α and β are similarly defined but for P .
First, observe that

α

α
=

Pr [X1 = e1,Xs+2 = 0,...,XI = 0]

Pr [Y1 = e1,Ys+2 = 0,...,YI = 0]

=
Pr [X1 = 1, Xs+2 = ... = XI = 0]

Pr [Y1 = 1, Ys+2 = ... = YI = 0]
×
(

Pr [X1 = 0, Xs+2 = ... = XI = 0]

Pr [Y1 = 0, Ys+2 = ... = YI = 0]

)T−1

and by hypothesis, the term raised to the power of T − 1 is less than one. Thus as T
increases, the ratio above goes to zero.
Second, since we have assumed that α > β, we have that β

α
= α

α
× β

α
goes to zero

as well.
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Finally, for any m ≤ s− 1,

P
[
y2 6= 0, ...,ym+1 6= 0,ym+2 = 0, ..,yI = 0

]
P [ys+2 = 0,...,yI = 0]

= Pr
[
Y2 6= 0, ...,Ym+1 6= 0,Ym+2 = 0, ...,Ys+1= 0 | Y1 = e1,Ys+2 = 0,...,YI = 0

]
< Pr

[
Ys+1 = 0 | Y1 = e1,Ys+2 = 0,...,YI = 0

]
= Pr

[
Ys+1 = 0 | Y1 = e1,Ys+2 = 0,...,YI = 0

]
which also goes to zero since conditional on Y1 = e1, and hence also conditional on
θ = G, the probability than Ys+1 = 0 goes to zero. Thus, we also have that β

α
goes

to zero as T increases.
Combining all these and using the fact s ≤ I − 1, we obtain for T large enough,

for all s < I − 1
qX (s)

qY (s)
< 1

We now establish a generalization of Lemma 3.1. Recall from (9) that

Sk−i = {j 6= i : Nj ≥ k}
is the set of players other than i, who receive at least k positive signals where #Sk−i
denotes the cardinality of Sk−i. Define

q
(k)
X (s) = Pr

[
#Sk−i = s | Ni = k

]
be the probability assigned by an agent with k positive signals to the event that s
other agents received at least k positive signals. Note that

∑I−1
s=0 q

(k)
X (s) = 1.

Lemma B.2 The distribution q(k)
X (·) stochastically dominates q(k+1)

X (·) .
Proof. Stochastic dominance is the same as

1−
I−1∑
s=m

q
(k)
X (s) ≥ 1−

I−1∑
s=m

q
(k+1)
X (s)

or equivalently

Pr [# {j 6= i : Nj ≥ k} ≥ m | Ni = k] ≥ Pr [# {j 6= i : Nj ≥ k + 1} ≥ m | Ni = k + 1]

Let Mj =
∑T−1

t=1 X
t
j be a random variable that counts the number of 1-signals

received by agent j in the first T − 1 periods. Thus, Nj = Mj +Xj.
If Mj < k − 1, then both Nj = k and Nj = k + 1 are impossible.
If Mj = k − 1, then Nj = k is possible while Nj = k + 1 is impossible.
If Mj = k, then Nj = k occurs with probability 1 while Nj = k + 1 occurs with

probability less than one.
If Mj > k, then both Nj = k and Nj = k + 1 occur with probability one.
Thus, in all cases the probability that Nj ≥ k occurs is at least as large as the

probability that Nj ≥ k + 1 occurs.
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C Appendix: Non-conclusive signals

We begin by developing a formula for the joint probability

Pr
[
X1 = e1,Ω+

]
= Pr

[
X1 = e1,∀j,Xj 6= 0

]
(14)

= Pr
[
X1 = e1

]
− Pr

[
X1 = e1,∃j,Xj = 0

]
If we define Aj = {ω : x1 = e1,xj = 0} as the set of states in which 1’s type is e1 and
j’s type is 0, then

Pr
[
X1 = e1, ∃j,Xj = 0

]
= P [∪j 6=1Aj]

where P is joint distribution of (θ,X) .
By the inclusion-exclusion principle,

P [∪j 6=1Aj] =
∑
1<j

P [Aj]−
∑

1<j<k

P [Aj ∩ Ak] +
∑

1<j<k<l

P [Aj ∩ Ak ∩ Al]− ... (15)

But since agents are symmetric, we have

P [∪j 6=1Aj] =
(
I−1

1

)
P [A2]− P [A2 ∩ A3] +

(
I−1

3

)
P [A2 ∩ A3 ∩ A4]− ...

=
I∑
l=2

(−1)l
(
I−1
l−1

)
P [A2 ∩ A3 ∩ ... ∩ Al]

Now, since conditional on θ, the signals are independent over time

P [A2] = P
[
X1 = e1,X2 = 0

]
= ρ

(
P [(X1, X2) = (1, 0) | G]× (P [(X1, X2) = (0, 0) | G])T−1

)
+ (1− ρ)

(
P [(X1, X2) = (1, 0) | B]× (P [(X1, X2) = (0, 0) | B])T−1

)
In general, for all l = 2, 3, ..., I

P [A2 ∩ A3 ∩ ... ∩ Al] = P
[
X1 = e1,X2 = X3 = ... = Xl = 0

]
= ρ (P [(X1, X2, , ..., Xl) = (1, 0, ...0) | G]

× (P [(X1, X2, , ..., Xl) = (0, 0, ...0) | G])T−1
)

+ (1− ρ) (P [(X1, X2, , ..., Xl) = (1, 0, ...0) | B]

× (P [(X1, X2, , ..., Xl) = (0, 0, ...0) | B])T−1
)

It will be convenient to define, for l = 2, 3, ..., I and θ = G,B,

αθl = P [(X1, X2, , ..., Xl) = (1, 0, ...0) | θ]
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and
βθl = P [(X1, X2, , ..., Xl) = (0, 0, ...0) | θ]

and so we can rewrite (15) more compactly as

P [∪j 6=1Aj] =

I∑
l=2

(−1)l
(
I−1
l−1

) (
ραGl

(
βGl
)T−1

+ (1− ρ)αBl
(
βBl
)T−1

)
(16)

Note that for θ = G,B, both αθl and β
θ
l are non-increasing sequences since the

event that X2 = X2 = ... = Xl = 0 includes the event that X2 = X2 = ... = Xl =
Xl+1 = 0. Moreover, if conditional on θ, signals have full support, then αθl and β

θ
l are

strictly decreasing.
Analogously, if (θ,Y ) are distributed according to P , then we have

P [∪j 6=1Aj] =
I∑
l=2

(−1)l
(
I−1
l−1

) (
ραGl (β

G

l )T−1 + (1− ρ)αBl (β
B

l )T−1
)

(17)

where αθl and β
θ

l are defined in the same manner as α
θ
l and β

θ
l but for the probability

distribution P of Y . As above, both αθl and β
θ

l are decreasing sequences.

Lemma C.1 Suppose (θ,X) and (θ,Y ) are two non-conclusive, full-support infor-
mation structures such that for θ = G,B

Pr [Xi = 0, Xj = 0 | θ] < Pr [Yi = 0, Yj = 0 | θ] (18)

Then there exists a T such that for all T > T ,

PrX
[
Ω+ | Xi = e1

]
> PrY

[
Ω+ | Yi = e1

]
Proof. From (16) and (17) we have that the ratio

P [∪j 6=1Aj]

P [∪j 6=1Aj]
=

∑I
l=2 (−1)l

(
I−1
l−1

) (
ραGl

(
βGl
)T−1

+ (1− ρ)αBl
(
βBl
)T−1

)
∑I

l=2 (−1)l
(
I−1
l−1

)(
ραGl

(
β
G

l

)T−1

+ (1− ρ)αBl

(
β
B

l

)T−1
)

Dividing the numerator and denominator by
(
β
B

2

)T−1

> 0, we obtain

P [∪j 6=1Aj]

P [∪j 6=1Aj]
=

∑I
l=2 (−1)l

(
I−1
l−1

)(
ραGl

(
βGl

β
B
2

)T−1

+ (1− ρ)αBl

(
βBl

β
B
2

)T−1
)

∑I
l=2 (−1)l

(
I−1
l−1

) (
ραGl (β

G
l

β
B
2

)T−1 + (1− ρ)αBl (β
B
l

β
B
2

)T−1
) (19)
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and observe that since both (θ,X) and (θ,Y ) are affi liated,

βG2 = Pr [(X1, X2) = (0, 0) | G] ≤ Pr [(X1, X2) = (0, 0) | B] = βB2

β
G

2 = Pr [(Y1, Y2) = (0, 0) | G] ≤ Pr [(Y1, Y2) = (0, 0) | B] = β
B

2

Moreover, (18) implies that

βB2 = Pr [(X1, X2) = (0, 0) | B] < Pr [(Y1, Y2) = (0, 0) | B] = β
B

2

βG2 = Pr [(X1, X2) = (0, 0) | G] < Pr [(Y1, Y2) = (0, 0) | G] = β
G

2

Thus, for all l,
βGl ≤ βG2 < β

G

2 ≤ β
B

2

and since βBl is a strictly decreasing sequence, for l > 2,

βBl < βB2 < β
B

2

These inequalities in turn imply that in the numerator of (19), for all l

βGl

β
B

2

< 1 and
βBl

β
B

2

< 1

and so as T →∞, the numerator goes to zero.
Moreover, for all l > 2

β
G

l

β
B

2

<
β
G

2

β
B

2

≤ 1

and for l > 2,

β
B

l

β
B

2

< 1

and so as T →∞, all the terms with l > 2 in the denominator of the right-hand side
of (19) go to zero. The l = 2 term in the denominator, however, stays positive (the
l = 2 term in the denominator is at least (1− ρ)αBl > 0).
So we have that when T is large enough,

Pr [X1 = e1,∃j,Xj = 0]

Pr [Y1 = e1,∃j,Yj = 0]
=
P [∪j 6=1Aj]

P [∪j 6=1Aj]
< 1

Now sinceX and Y have the same univariate marginals, Pr [X1 = e1] = Pr [Y1 = e1]
and so from (14)

Pr
[
∀j,Xj 6= 0 | X1 = e1

]
> Pr

[
∀j,Yj 6= 0 | Y1 = e1

]
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