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Abstract

The behaviors of two-person teams and individuals who repeatedly play
O’Neill’s (1987) game in the laboratory are analyzed. Teams are statistically
more rational than individuals in the sense that teams’ behaviors are more
consistent with the implications of the minimax play than individuals’ behav-
iors are. Furthermore, we investigate the source of difference in rationality
between teams and individuals. Individuals seem to have the limitation of
cognitive ability to recognize and to avoid their own unprofitable behavior.
On the other hand, teams can improve such limitation, and behave more
rationally.
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1 Introduction

In many real-life situations, decisions are made by groups or teams with two or

more individuals, such as families, boards of directors, legislatures or committees.

Similarly, political decisions, monetary policy decisions and some business decisions

are often taken by teams. Also, there are many economic and strategic situations

where individual’s decisions are reached through the reference to the expertise of,

for instance, lawyers or consultants. These decisions are also considered to be made
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Tokyo is gratefully acknowledged. Author is responsible for any errors that may occur.
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by teams. Thus, team’s decision making plays an important role in many economic

and game theoretic environments.

This paper reports the results of experiment in which common-purpose freely-

discussing minimum-size (two-person) teams and individuals repeatedly play the

two-person zero-sum game developed by O’Neill (1987). The results of experiments

are examined not only in terms of O’Neill’s original experiment but also of many

other experiments concerning the games with a unique mixed strategy equilibrium,

for example, those in Binmore, Swierzbinski and Proulx (2001), Shachat (2002),

Palacios-Huerta and Volij (2008) and so on.

In much of economic theory, game theory, and most experimental investigations

of these theories, there is no distinction between decisions by teams and individuals.

Only very recently, the importance of whether the decision maker is a team or an

individual caught attention. All studies in the past are done by the framework of

experimental economics with a variety of decision tasks and games such as dictator

game in Cason and Mui (1997), ultimatum game in Bornstein and Yaniv (1998), in-

vestment game in Cox (2002), centipede game in Bornstein, Kugler and Ziegelmeyer

(2004), monetary policy in Blinder and Morgan (2005), limit pricing game in Cooper

and Kagel (2005), beauty contest game in Kocher and Sutter (2005), common value

auction in Cox and Hayne (2006) and so on. In general, teams do the same or

somewhat better (more rational) than individuals in experimental economics with

the possible exceptions of Cason and Mui (1997) and Cox and Hayne (2006)1.

One of the interests for experimental economics researchers is whether the sub-

jects in the experiment behave rationally or how close their behaviors are to the

equilibrium predictions. When we think the “rationality” deeply, in particular from

the viewpoint of subjects, required abilities to behave “rationally”, that is, to be-

have in line with game-theoretic predictions differ depending on the game played.

For example, in a beauty contest game, players are required to apply greater depth

of reasoning. In a dictator game and/or an ultimatum game, there is a conflict

between the self-interest and fairness. This indicates that even though we could find

the difference in rationality between teams and individuals in one experiment, that

result may not be applicable to other experiments.

In the games with a unique mixed strategy equilibrium, players are required to

choose their actions that are i.i.d. drawings from a certain stationary multinomial

distribution over actions in order to behave rationally. In the psycological litera-

tures, it is known that human beings are not good at the i.i.d. drawings from a

stationaly distribution (see, for example, Wagenaar (1972) and Bar-Hillel and Wa-

genaar (1991) for the survey of subjective randomization in psychology). Human

1In Cason and Mui (1997), team choices tended to be dominated by the more other-regarding
member. In Cox and Hayne (2006), one treatment revealed that teams tend to be less rational
than individuals in the sense that their bids fell prey to the winner’s curse. Cooper and Kagel
(2005) provides the detailed review.
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produced sequences have too few symmetries and long runs, too many alternations

among events, and too much balancing of event frequencies over relatively short

regions (Lopes and Oden, 1987). Therefore, randomizing the own actions is a dif-

ficult and specialized ability for human beings. Our experiment can provide the

new evidence of the difference in rationality between teams and individuals in such

environment.

Existing laboratory experiments of the games with a unique mixed strategy equi-

librium found the significant evidence that the behaviors of subjects are quite incon-

sistent with the minimax theory, especially at each player level (O’Neill, 1997; Brown

and Rosenthal, 1990; Rapoport and Boebel, 1992; Rapoport and Budescu, 1992;

Mookherjee and Sopher, 1994; Binmore, Swierzbinski and Proulx, 2001; Walker

and Wooders ,2001; Shachat, 2002; Rosenthal, Shachat and Walker, 2003; Palacios-

Huerta and Volij, 2008). Main findings in these literatures are: 1) the aggregated

data from the experiment was close to some of implications of minimax solution, 2)

there is substantially more variation in choice frequencies across subjects than the

theory predicts, 3) subjects do not equate the winning rates across strategies and 4)

there exists a significant amount of serial correlation in the players’ choices across

time.

Our first research question is to investigate whether teams are more rational

than individuals under the game with a unique mixed strategy equilibrium. There

are two types of treatments in our experiment. The individual treatment is that

individuals interact with individuals. The team treatment is that teams of two

subjects each interact with other teams in which each subject are arrowed to discuss

freely with the teammate. In both treatments, subjects were asked to play O’Neill’s

(1987) game repeatedly. Our experimental results find that teams are more rational

than individuals in the sense that the more hypotheses under the minimax play

are not rejected in the team treatment compared with the case of the individual

treatment: 1) the aggregated data in both team and individual treatments are

close to implications of the minimax solution though some statistical tests reject

the minimax hypothesis, 2) in the team treatment, the choice frequencies for each

decision-maker level are consistently close to the prediction of the minimax theory,

while in the individual treatment they are deviated further from the prediction,

3) the winning rates across strategies are identical in the team treatment, which

is consistent with the implication of the minimax play, but not in the individual

treatment, and 4) the subjects’ choices are serially correlated in both treatments.

These findings may give one explanation for the source of a part of rationality

of professional sports players empirically observed in the field. The decisions of

professional sports players are indirectly, but highly influenced or sometimes deter-

mined by analyses, judgements or decisions of teams. Tennis players receive advises

from their coaches in their training and reflect those advises on their behaviors in

matches, incorporating their own judgments. Team staffs of soccer clubs collect
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the data of opponents’ players and analyse them, so soccer players can utilize the

results of those analysis in their matches. Hence, a part of the skills and experiences

of professional sports players would be achieved through analyses, judgements or

decisions of teams.

Walker and Wooders (2001) found that the winning rates of professional tennis

players are the same across directions of serve, though their choices are serially

correlated. Hsu, Huang and Tang (2007) extended Walker and Wooders (2001) by

analyzing a broader tennis data set and report that not only are the winning rates

are identical across strategies, but also the choices are serially independent. Palacios-

Huerta (2003) found that the winning rates of professional soccer players in penalty

kicks are the same across directions of kicks for each kicker and direction of jumps

for each goalkeeper, and player’s choices are serially independent. Furthermore,

Palacios-Huerta and Volij (2008) found that the professional soccer players behave

consistently with the equilibrium play in the laboratory, indicating that field skills

and years of experience can be transferred into unfamiliar laboratory setting.

Our analysis actually found that teams can equate their winning rates across

strategies, as observed in the field. This evidence is consistent with the idea that

team’s decision makings affect the skills and experiences of professional sports play-

ers. However, the choices of teams are serially correlated, which is different from

the ones observed in the field2. This indicates that the source of rationality of pro-

fessional sports players cannot perfectly explained by the team’s decision making.

The skills of professional players for randomizing the own action over time may be

achieved by the other sources.

Given the finding that teams are more rational than individuals, our second re-

search question is to investigate the source of difference in behavior between teams

and individuals, which leads to the difference in rationality between teams and indi-

viduals. First, examining the serial correlation in the outcomes of the game reveals

that a particular outcome (the outcome of (J, J)) tends to continue successively in

the individual treatment, while the team treatment does not have such tendency.

This indicates that a particular player role (player B) in the individual treatment

loses successively by playing a particular strategy (Joker), which leads to the bias

of the winning rates across strategies. Furthermore, this bias seems to affect the

relative frequencies of choice. Second, there are more individuals who adopt the

non-equilibrium equiprobable play than teams. This leads to the bias of winning

rates across strategies of their opponents in the individual treatment.

These results indicate that individuals have the limitation of cognitive ability

to detect more correct or profitable actions. Psychological experiments found that

teams generally perform better than individuals on the intellective tasks which have

a correct action (or actions) and ex-post evaluation criterion for the quality of per-

2Palacios-Huerta and Volij (2008) found that the choices of professional soccer player are also
serially independent in the laboratory setting.
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formance (see, for example, Davis (1992) and Kerr, MacCoun and Kramer (1996)

for a survey of general decision tasks). Our findings are consistent with these exist-

ing psychological literatures. Individuals have the limitation of cognitive ability to

recognize and avoid their own incorrect (unprofitable) behavior. On the other hand,

teams, which is only an aggregation of individuals with communication, can improve

the behavior than the case where each member works independently. This indicates

that teams can overcome some of the limitations of cognitive ability of individuals.

Also, the results indicate that teams behavior is consistent with the underling logic

of the minimax argument such that one needs to randomize strategies in order to

prevent exploitation by one’s opponent. Our experimental results suggest that the

theoretical concept of equilibrium may have greater predictive power than previously

considered.

The paper is organized as follows. Section 2 describes our experimental design,

which allows us to analyse the behaviors of teams and individuals. Section 3 provides

the results of a variety of statistical tests for the implications of minimax model.

There, we will find that teams are more rational than individuals in the sense that

the more implications of minimax hypothesis are not rejected in the team treatment

than in the individual treatment. Section 4 investigates the source of the general

difference in behaviors between teams and individuals, which explains the difference

in rationality between teams and individuals. Furthermore, we argue how the found

limitation of the cognitive ability to detect the more correct or profitable action for

individuals relates to the existing psychological literatures on the intellective tasks.

Section 5 concludes.

2 Experimental Design

There are two treatments in our experiment: one is to have individuals interact with

individuals (individual treatment), and another is to have teams of two subjects each

interact with teams (team treatment). In both treatments, subjects were asked to

play repeatedly O’Neill’s (1987) game. Each decision makers (teams/individuals)

were randomly assigned one of two player roles, player A and B. Players A and

B choose one of four actions {Red, Brown, Purple, Green} in each round3. The

winner is determined according to the following rules:

Player A wins if there is a match of Greens (two Greens played) or a

mismatch of other choices (Red-Brown for example); hence, player B

wins if there is a match of choices other than Green (Purple-Purple for

example) or a mismatch of a Green (one Green, one other choice).

3In O’Neill’s (1987) original design, subjects held four cards, Ace, Deuce, Trey and Joker, and
selected one of those. This design produced Ace bias. We follow the suggestion of Shachat (2002)
and use color labels in order to avoid this bias.
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This game rule was presented on the screen of a computer terminal, and hence we

did not use the payoff matrix framing. Subjects learned the game rules by practice.

Table 1 describes the payoff structure of the game.

[Table 1 here]

‘W ’ and ‘L’ denote a win and a loss for player A respectively. The stage and the

repeated games have a unique equilibrium which requires both players to randomize

their actions Red, Brown, Purple and Green with probabilities 0.2, 0.2, 0.2 and

0.4 respectively in each round. The value of the game that corresponds to the

probability of a win for player A in equilibrium is equal to 0.4.

Experimental sessions lasted about two hours and proceeded as follows. At

the beginning of each session, all participants were gathered in one room. Partici-

pants received written instructions, which were read aloud, offering participants the

opportunity to ask private questions. After having finished reading instructions,

participants were separated according to player roles (player A or B) and moved to

two distinct rooms. Hence, the opponent of each subject was not in the same room.

Subjects in the individual treatment were isolated from each other and were not

allowed to communicate, whereas each subject in the team treatment was seated with

his or her teammate at one computer terminal, was allowed to discuss face-to-face

and each team was demanded to reach a single decision in each round. The minimum

distance to the next team (computer terminal) was about 3 meters. Team members

were requested to speak with a low voice and were strictly forbidden to speak to

members of other teams. Assignment to an experimental treatment (individual or

team) and to a specific team in the team treatment was random.

Experiment was conducted on computer terminals. Decision makers were anony-

mously matched with a fixed opponent. They played 15 rounds for practice and then

150 rounds for real money. The winners of each round in the individual treatment

were paid 50 yen that is about 43 cents using the exchange rate at the time of

experiment. Winning teams were paid 100 yen, which was divided equally across

team members. Hence, we kept the per-subject monetary incentives constant across

the individual and team treatments. The loser of each round got nothing in both

treatments. Subjects were offered 1000 yen as a show-up fee.

The experiment was programmed and conducted with software z-Tree (Fis-

chbacher, 1999). The screen display of the decision making stage was as follows.

At the top, the number of the current round and the remaining time of the current

round were shown. Decision makers were requested to come up with a decision

within 30 seconds. In case they had not entered their decision after 30 seconds, a

red sign would pop up on the screen which asked them to reach a decision soon. At

the middle-left, game rules described earlier were displayed. At the middle-right of

the screen, there were four radio buttons labeled Red, Brown, Purple and Green

and decision makers were to choose their action by clicking one of buttons and then
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‘OK’ button. At the bottom, history information was shown. They included the

round number, the decision maker’s own choice, the opponent’s choice and the out-

come of the stage game (‘win’ or ‘loss’). After the decision maker chose the action,

the outcome was displayed, which included the decision maker’s own choice, the

opponent’s choice and the outcome of the game in that round.

There were two experimental sessions in each treatment. All experimental ses-

sions were conducted in August 2006 at the University of Tokyo. In total, 112 un-

dergraduate and graduate non-economics students participated in this experiment.

Of 112 students, 36 students were in the individual treatment and 76 students (38

teams) were in the team treatment. Hence we have 18 and 19 play pairs in the

individual and team treatments, respectively. None of the subjects participated in

more than one experimental session.

In one experimental session of the team treatment, one subjects had left the lab

in midstream of the experiment for personal reason. After that, only teammate of

this subject played against team. In data analysis, I decided to omit this play pair

in order to investigate pure team-versus-team behavior. Hence, we also have 18 play

pairs in the team treatment in data analysis.

Furthermore, In one experimental session, when subjects were making a decision

at the 133rd round, there was a computer trouble and the experiment stopped for

about 20 minutes. When recovered, history information was not correctly displayed

on the screen, which confused the subjects. So, I decided to use the data of the

first 132 rounds in data analysis which were not affected by the computer trouble.

Since data analysis for each decision maker level is one of the main concerns in

experiments with a mixed strategy equilibrium, I also use the data of the first 132

rounds in other experimental sessions in data analysis so as to keep the consistency

in experiments. Hence, we have in total 4752 choices (132 rounds times 36 decision

makers) in each treatment.

3 Data Analysis

This section provides the results of data analysis which test whether the behaviors

of team and individual are consistent with the implications of the minimax model.

These analyses allow us to evaluate how different, in the sense of rationality, the

behaviors of team and individual are. In what follows, actions will be referred to by

the names used in O’Neill’s experiment in order to avoid confusion and to facilitate

comparison with the literature: J (Joker) for Green, 1 for Red, 2 for Brown and 3

for Purple.

7



3.1 Aggregated Data

Tables 2 and 3 present aggregate statistics describing the outcomes of the experi-

ment.

[Tables 2 and 3 here]

Each interior cell in the top panel (panel A) reports the relative frequency with

which the outcome of the game corresponding to that cell occurred. To the right

and at the bottom, marginal frequencies with which players were observed to play

their choices were displayed. Each number in parenthesis is the expected relative

frequency of the corresponding cell predicted under the minimax hypothesis. In

bracket of each cell, standard deviation for the observed relative frequency under

the minimax model is shown. The bottom panel (panel B) reports the observed and

the minimax win percentages for player A and standard deviation for the observed

win percentage for player A under the minimax model. Since our experimental data

for analysis in each treatment involve 132 joint moves for each of 18 pairs of decision

makers, there were 2376 joint moves altogether.

One can see the rough adherence of the experimental data to the equilibrium

predictions in both treatments. Indeed, all of the joint moves are within 1 to 2 per-

centage points from the predicted frequencies. Nevertheless, a chi-square goodness-

of-fit test of the experimental data to the joint probability distribution implied by

the minimax solution can reject the null hypothesis of minimax play at the 10 per-

cent significant level in the team treatment. Test statistic is calculated to be 24.110,

has 15 degrees of freedom, and has a p-value of 0.063. Hence, while close to the

equilibrium predictions, joint moves in the team treatment are statistically different

from predictions. The same test using data in the individual treatment, on the

other hand, cannot reject the minimax hypothesis at the conventional significance

level. Test statistic is 16.072 whose associated p-value is 0.377. However, we cannot

reject the null hypothesis that the data from each treatment is generated by the

same probability distribution at the conventional significance level. A chi-square

test for homogeneity of two distributions produces a test statistic of 18.086 whose

p-value is 0.258. Therefore, although the joint moves are statistically different from

the minimax prediction in the team treatment but not in the individual treatment,

the difference between them is statistically slight.

The marginal frequencies for each player are also impressively close to the equi-

librium predictions in both treatments. For more detail analysis, table 4 reports the

results of chi-square goodness-of-fit tests of marginal frequencies of each player and

both players to equilibrium ones.

[Table 4 here]
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The choice mixtures of player A show a statistical consistency with the minimax

predictions in both treatments. P -values of the chi-square tests are 0.306 for the

team treatment and 0.419 for the individual treatment. Player B, on the other

hand, chooses their frequencies which, while close to the minimax prediction, are

statistically different from it. P -values are 0.051 for the team treatment and 0.041

for the individual treatment, which reject the minimax hypothesis at the 10 percent

level in both treatments. This leads to the inconsistency of pair-level choice mixtures

with equilibrium predictions. P -values of the chi-square tests for both players are

0.077 for the team treatment and 0.086 for the individual treatment, which again

reject the minimax hypothesis at the 10 percent level in both treatments.

Another feature of the aggregate data that is strikingly close to the implications

of minimax play is the win percentages of player A. In both treatments, the aggre-

gate win percentage of player A is less than one standard deviation away from the

theoretically expected value, which is 0.4.

Summarizing, the aggregated data do not show the clear difference in the sense

of rationality between team and individual. They are roughly close to the minimax

predictions though some of them are statistically different from the minimax pre-

dictions. This result is also observed in the existing literatures: that is, although

the aggregated data seem to be close to equilibrium predictions, the statistical tests

reject the minimax hypothesis4. Thus, our two subject pools replicated the results

of the existing experiments at the aggregate level.

3.2 Each Decision Maker Level Data

We next address how the choice mixtures of each team and individual conform well

to the equilibrium proportions. Tables 5 and 6 report the relative frequencies of

choices for each of 18 pairs and the results of the chi-square goodness-of-fit tests of

the minimax models conducted for each team and individual.

[Tables 5 and 6 here]

Last three columns of these tables report the p-values of the chi-square goodness-of-

fit tests of the minimax multinomial model for each player role and for both players:

that is, the null hypothesis is that each decision maker chooses (or both decision

makers in the pair choose) J , 1, 2 and 3 with probabilities of 0.4, 0.2, 0.2 and 0.2,

respectively. ** and * to the right of the relative frequency for a given choice denote

the rejections of the chi-square goodness-of-fit tests of the minimax binomial models

for the corresponding choice at the 5 and 10 percent significance level, respectively:

that is, the null hypothesis for the test of Joker choice is that the decision maker

chooses Joker and non Joker with probabilities of 0.4 and 0.6, and for the test of the

4See, for example, Brown and Rosenthal (1990) and Shachat(2002).
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number choice, he/she chooses that number and the other choices with probabilities

of 0.2 and 0.8.

In the team treatment (table 5), chi-square goodness-of-fit tests of minimax

multinomial model for player A, B and both players obtain 1, 2 and 1 rejections at

the 5 percent level and 2, 4 and 2 rejections at the 10 percent level, respectively.

Note that with 18 decision makers of each player role and hence 18 pairs, minimax

play would expect 0.9 and 1.8 rejections at the 5 percent and 10 percent significance

level in the tests for each player role and pair. Hence, the numbers of rejections in

the team treatment are almost precisely the ones to be expected according to the

theory. We reject the minimax binomial model for a given choice for 7 players at the

5 percent level and 16 players at the 10 percent level, respectively. Again note that,

with 18 decision makers of each player role with 4 choices, the minimax binomial

model indicates that we should expect 7.2 and 14.4 rejections at the 5 and 10 percent

significance level. So the numbers of the rejections are again almost precisely the

ones to be expected according to the theory. Therefore, teams’ behavior is quite

consistent with the minimax play.

In the individual treatment (table 6), on the other hand, chi-square goodness-of-

fit tests of minimax multinomial model for player A, B and both players obtain 5,

3 and 4 rejections at the 5 percent level and 6, 5 and 6 rejections at the 10 percent

level, respectively. Chi-square goodness-of-fit tests of the minimax binomial model

for a given choice obtain rejections for 18 players at the 5 percent level and 25 players

at the 10 percent level, respectively. These are larger number of rejections than the

ones expected under the minimax model. Therefore, in contrast to team treatment,

individuals’ behavior is inconsistent with the minimax play.

Our next task is to test the joint hypothesis that all 36 decision makers in

each treatment plays equilibrium play. At this level, we test two kinds of the null

hypotheses. The first null hypothesis is that the choices of all 36 decision makers

adhere to the equilibrium proportions. We can test this hypothesis by the chi-

square joint test using each of 36 chi-square goodness-of-fit tests for the minimax

multinomial model. The test statistic is simply the sum of the test statistics of 36

chi-square goodness-of-fit tests for the multinomial model, which is approximately

distributed as chi-square with 108 degrees of freedom under the minimax hypothesis.

Note that, if the choice mixtures of all decision makers are precisely equal to the

equilibrium mixtures, p-value of the chi-square joint test is equal to 1. We have the

test statistics of 116.731 and 163.625 with associated p-values of 0.266 and 0.0004 in

the team and the individual treatment. This indicates that actions of all teams are

statistically close to equilibrium proportions while those of all individuals are not.

The second null hypothesis is that each of all choices is adequately scattered

around the equilibrium proportions. Minimax play indicates that each action is a

random draw from the multinomial distribution equal to mixed strategy equilibrium.

Random draws mean that the realized actions of the minimax play are not always
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exactly equal to equilibrium proportions, though they are close to it. In other

words, we must reject the minimax hypothesis, for example, for the experimental

data in which the relative frequencies of all decision makers are exactly equal to

the equilibrium proportions. Speaking on the basis of the chi-square goodness-of-fit

test of the minimax multinomial model, minimax plays with 36 decision makers

imply that 36 test statistics are realizations of 36 random draws from the chi-square

distribution with 3 degrees of freedom. Equivalently, the p-values associated with

the realized test statistics should be 36 draws from the uniform distribution U [0, 1]

by the probability-integral transformation5.

Figure 1 provides the simple visual comparisons of the empirical cumulative

distribution function of 36 observed p-values with the uniform distribution for which

the cumulative distribution function is the 45◦ line.

[Figure 1 here]

It is obvious that the empirical and the theoretically predicted distributions are

strikingly close to one another in the team treatment. In the individual treatment,

on the other hand, the empirical c.d.f. is skewed upward than the theoretically

predicted distribution.

We formalize these comparisons of the two distributions by the Kolmogorov-

Smirnov one-sample test, which allows us to test the hypothesis that an empirical

c.d.f. of observed values is generated from a specified distribution. Test statistic

of Kolmogorov-Smirnov test is Kn =
√

n supx |Sn(x) − F (x)| which has a known

distribution, where Sn(x) is the empirical c.d.f. with the sample size of n and F (x)

is a hypothesized distribution6. In performing the Kolmogorov-Smirnov test for our

experimental data, n = 36 and the hypothesized c.d.f. is the uniform distribution,

F (x) = x for x ∈ [0, 1] and hence K36 =
√

36 supx∈[0,1] |S36(x) − x|. This value is

calculated as 0.754 and 1.437 with p-values of 0.621 and 0.032 in the team and the

individual treatment, respectively. Therefore, we cannot reject the null hypothesis

that the realized p-values are generated from the uniform distribution on [0, 1] in

the team treatment, which is consistent with the minimax play. On the other hand,

we can clearly reject this hypothesis in the individual treatment, because we have

many rejections from the chi-square goodness-of-fit test of the minimax multinomial

model at the low significance level, which leads to the distribution of the observed

p-values being skewed upward than the uniform distribution.

5The probability-integral transformation is the following property. Let X be a random variable
with c.d.f. FX . If FX is continuous, the random variable Y produced by the transformation
Y = FX(X) has the continuous uniform probability distribution over the interval [0,1].

6The empirical c.d.f. with the sample size of n, Sn(x) is defined as

Sn(x) =
number of sample values 6 x

n
.
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Summing up, teams are more rational than individuals based on the relative

frequencies for each decision maker level.

Furthermore, it is worth noting that teams’ behavior is quite consistent with

the theory. Existing laboratory experiments rarely supported the minimax hypoth-

esis for each decision maker level data. As in the individual treatment, there was

substantially more variation in choice frequencies across subjects than the theory

predicted (see O’Neill, 1987; Brown and Rosenthal, 1990; Rapoport and Boebel,

1992; Binmore, Swierzbinski and Proulx, 2001; Rosenthal, Shachat and Walker,

2003). In particular, of the experiments with many repetition of games (say, more

than 100), hence higher power of the statistical tests, the only exception that I am

aware of is Palacios-Huerta and Volij (2008) with the professional soccer players who

are considered to be familiar with the situations where they are predicted to choose

probabilistic mixtures. In our experiment, however, each team is an aggregation of

two college students who are unfamiliar with such situations. Therefore, our finding

has a clear distinction from the previously found evidences.

3.3 Testing for Equality of Winning Rates across Strategies

One of the implications of the minimax play is that the expected payoffs (win per-

centages in our case) are identical across strategies. Walker and Wooders (2001)

tested this hypothesis for the data from O’Neill’s (1987) experiment by the chi-

square test for homogeneity of two distributions. We follow their analysis here.

Tables 7 and 8 report the results of the chi-square tests.

[Tables 7 and 8 here]

As in Walker and Wooders (2001), we aggregate actions 1, 2 and 3 into a single

non-Joker action. In each of 36 chi-square tests, the null hypothesis is that Joker’s

and non Joker’s winning probabilities are the same. For each of 36 decision makers,

the two columns labeled “Test Statistic” and “p-value” at the right-hand side of the

tables report the value of the test statistic along with its associated p-value.

The team treatment (table 7) obtains 3 rejections at the 5 percent level and 3

rejections at the 10 percent level, respectively. Note that with 36 teams, the expected

number of rejections according to the theory is 1.8 rejections at the 5 percent level

and 3.6 rejections at the 10 percent level. Hence, the numbers of rejections at the 5

percent and 10 percent level are almost equal to the expected numbers of rejections

under the equilibrium play.

In the individual treatment (table 8), on the other hand, the hypothesis is re-

jected for 8 individuals at the 5 percent level and for 12 individuals at the 10 percent

level, respectively. Thus, we have a larger number of rejections than expected under

the minimax model.
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We turn to the joint hypothesis that all observations are generated by equilibrium

play. As in the previous subsection, we perform two kinds of tests. The first null

hypothesis is that all 36 decision makers’ winning probabilities are simultaneously

the same across Joker and non-Joker. We use again the chi-square joint test. A

test statistic is the sum of the test statistics of the chi-square test for the equality of

winning rates, which is distributed as chi-square with 36 degrees of freedom under

the null hypothesis. Those values are 36.095 and 78.288 with those associated p-

values of 0.464 and 0.00006 for the team and the individual treatment, respectively.

This indicates that, while the winning rates of all teams are simultaneously identical

across Joker and non Joker, those of all individuals are not.

The second null hypothesis is that the differences between Joker’s and non-

Joker’s winning probabilities for all decision makers are adequately scattered around

zero7. In other words, it is the null hypothesis that the 36 realized p-values from

the tests of equality of winning rates are generated from the uniform distribution

on [0, 1].

Figure 2 depicts the empirical and the hypothesized (i.e. uniform) distribution

of the p-values for the tests on the equality of winning rates.

[Figure 2 here]

The empirical c.d.f. in the team treatment conform well with the uniform c.d.f.,

while that in the individual treatment is skewed upward than the uniform c.d.f.. In

fact, test statistics of Kolmogorov-Smirnov one sample test for the empirical c.d.f.

of p-values to the uniform c.d.f. are 0.857 and 1.715 with p-values of 0.455 and 0.006

for the team and the individual treatment. Therefore, the behaviors of all teams are

consistently generated from the minimax play, while those of all individuals are not.

In summary, teams are again more rational than individuals based on the winning

rates across strategies.

Furthermore, teams’ behavior is quite consistent with the minimax theory. In

the existing laboratory experiments with college students, the hypothesis that the

winning rates are the same across strategies is often rejected for many subjects as

in our individual treatment (see Walker and Wooders, 2001; Palacios-Huerta and

Volij, 2008 with college students)8. Hence, teams behavior is quite different from

the results of those experiments. On the other hand, professional sports players can

equate the winning rates across strategies (see Walker and Wooders, 2001; Palacios-

Huerta, 2003; Hsu, Huang and Tang, 2007; Palacios-Huerta and Volij, 2008 with

professional soccer players). Our result is consistent with the idea that team’s

decision makings affect the skills and experiences of professional sports players.

7We must reject the minimax hypothesis, for example, for the experimental data in which
winning rates of all decision makers are exactly the same across strategies.

8Palacios-Huerta and Volij (2008) found that professional soccer players consistently equate
their winning rates.
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3.4 Serial Independence Hypothesis

Another aspect of the implications of minimax play is the serial independence hy-

pothesis. Equilibrium play indicates that a player should randomize his or her action

using the same distribution at each stage of the game. This implies that player’s

choices should be serially independent. To address this question, we perform the

runs test as in Walker and Wooders (2001). Tables 9 and 10 report the results of

runs tests for our experimental data.

[Tables 9 and 10 here]

As before, we pool three number choices into a single non-Joker choice. For each

decision maker, the column labeled “Runs r” reports the total number of runs in

the action sequence of Joker and non-Joker in the order of their occurrence. A run

is defined as a succession of one or more identical actions, which are preceded and

followed by a different action or no action at all. Two columns labeled F (r− 1) and

F (r) report the conditional probability of obtaining r− 1 and r or fewer runs under

the null hypothesis of serial independence given the number of occurrence of Joker

and non-Joker 9. At the 5 percent level, for example, the null hypothesis of serial

independence is rejected if either F (r) < 0.025 or 1 − F (r − 1) < 0.025.

In the team treatment, we obtain 5 rejections at the 5 percent level and 7 re-

jections at the 10 percent level, respectively. These numbers are larger number of

rejections than those expected under the null hypothesis of serial independence. In

the individual treatment, on the other hand, we have 3 and 5 rejections at the 5 and

10 percent level, which are slightly larger than expected.

For more detail analysis, we next address the joint hypothesis that the choices are

serially independent for each of all 36 decision makers. Walker and Wooders (2001)

point out that Kolmogorov-Smirnov test cannot be applied directly to the values in

either column F (r− 1) or F (r) since these values are neither identically distributed

(the distribution of r depends on the numbers of occurrence of Joker and non-

Joker) nor continuously distributed. They suggest that Kolmogorov-Smirnov test

can be developed by constructing a random draw d from the uniform distribution

U [F (r − 1), F (r)] for each decision maker, which is distributed as a U [0, 1] under

the null hypothesis of serial independence. Figure 3 shows the empirical c.d.f. of a

particular realization of 36 d statistics together with the hypothesized (i.e. uniform)

distribution.

[Figure 3 here]

In both treatments, the empirical cumulative distribution functions are skewed up-

wards than the uniform distribution, though the degree of skewness is slightly higher

9For more detail functional form of F (r), see, for example, Gibbons and Chakraborti (2003).
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in the team treatment than in the individual treatment. After performing ten thou-

sand trials with such random draws for each decision maker, the average p-values of

Kolmogorov-Smirnov test for the empirical c.d.f. against the uniform distribution

are 0.012 and 0.092 with a standard deviations of 0.005 and 0.027 in the team and

the individual treatments, respectively. Thus, the joint hypothesis that each of 36

decision makers is serially independent can be rejected, on average, at the 10 percent

level in both treatments.

Comparing these results, the choices are serially correlated in both the team and

the individual treatments, though the correlation is slightly less in the individual

treatment.

There are two ways that the number of runs can indicate the serial correlation,

one is too few runs and another is too many runs. In the runs test, rejection by that

F (r) is less than the half of the significance level indicates too few runs, and hence

positive serial correlation in choices. Rejection by that 1 − F (r − 1) is less than

the half of the significance level indicates too many runs, and hence negative serial

correlation in choices. Tables 9 and 10 show that our two subject pools generally

reveal positive serial correlation in choices. At the 10 percent level, 6 out of 7

rejections in the team treatment and all 5 rejections in the individual treatment

owned to positive serial correlation.

Overwhelming cognitive psychological and experimental economics literatures

found that, when people try to generate random sequence of actions, they gener-

ally switch the choices too often to be consistent with randomly generated choices,

which is called the negative recency effect (see, for example, Wagenaar (1972) and

Bar-Hillel and Wagenaar (1991) for the survey of literatures in psychology). This

indicates that their sequences often have negative serial correlation. Hence, our

experimental results are contrast to these existing literatures. However, some ex-

perimental economics literatures such as Rosenthal, Shachat and Walker (2003)

and Slonim, Erev and Roth (2003) reported evidence of positive serial correlation10.

Slonim, Erev and Roth (2003) speculates that the anonymity and computer interface

in their design may lend itself to less alternation in choices while the face-to-face flip-

ping of cards like O’Neill’s (1987) design may lend itself to greater alternation. Our

experimental design of the anonymity and computer interface may also accelerate

the players’ tendencies to repeat the same action.

In the last subsection (testing equal winning rates across strategies), we ar-

gue that a part of the skills and experiences of professional sports player might

be achieved through the team’s decision making. The result of testing serial inde-

pendence hypothesis in the present subsection, however, is different from the ones

observed in the field. This indicates that the source of rationality of professional

sports players cannot be perfectly explained by the team’s decision making. The

10One of the treatments in Mookherjee and Sopher (1994) also reveals positive serial correlation
in subjects’ choices.
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professional players’ skills for randomizing the own action over time may be achieved

by other sources.

4 Source of Difference in Rationality between Teams

and Individuals

Our experimental results have found that: 1) the aggregated data in both the team

and the individual treatment are basically close to the ones predicted the minimax

hypothesis, though some statistical tests reject it; 2) the choice frequencies for each

decision maker level are consistently close to the prediction of the minimax theory

in the team treatment, while those are far from it in the individual treatment; 3)

the winning rates across strategies are identical in the team treatment, which is

consistent with the implication of the minimax play, but it is not the case for the

individual treatment; and 4) the subjects’ choices are serially correlated in both

treatments. These findings suggest that teams are more rational than individuals

in the sense that the more implications are not rejected in the team treatment

than in the individual treatment. This section attempts to detect the source of the

general difference in behaviors between teams and individuals, and argues how this

difference yields the rationality of teams and the irrationality of individuals.

4.1 Serial Correlation in the Outcomes of the Game

In order to detect the general difference between team and individual, we pool the

data for each player role in each treatment. We focus on the serial correlation in the

outcome (J, J). Investigating the serial correlation in the outcome (J, J) can let us

detect the nature of bias in the winning rate of Joker. Joker is a special choice for

both players in O’Neill’s game, . Player A wins by choosing Joker only when player

B chooses Joker, or equivalently, player B wins by choosing Joker only when player

A does not choose Joker. Therefore, serial correlation of (J, J) causes the bias in

the winning rate of Joker.

More formally, we estimate the following logit model for each treatment,

(JJ)t = G[α + β(JJ)t−1 + γ(J1)t−1 + δ(J2)t−1 + ϵ(J3)t−1 +

+ζ(1J)t−1 + η(11)t−1 + θ(12)t−1 + ι(13)t−1 +

+κ(2J)t−1 + λ(21)t−1 + µ(22)t−1 + ν(23)t−1 +

+ξ(3J)t−1 + o(31)t−1 + π(32)t−1],

where the variable name (ik) denotes the dichotomous indicator of the outcome of

the stage game (i, k ∈ {J, 1, 2, 3}) where i and k are player A’s and B’s choice,
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respectively, and the subscripts t and t − 1 refer to the current and one-period

previous outcomes. The function G[x] denotes the function ex/(1 + ex). We omit

the outcome (33)t−1 in order to avoid the multicollinearity.

Table 11 reports the results of the estimation and the significance tests.

[Table 11 here]

In the team treatment, any coefficients are not rejected at the 10 percent or lower

significance level. From this, we can conclude that the (J, J) occurs independently

to any outcome in the previous period. In the individual treatment, on the other

hand, (J, J) in the previous period has statistically significant effect with positive

sign on occurring (J, J) in the current period. This indicates that the outcome (J, J)

tends to occur successively. In other words, since player A wins and player B loses

when the outcome is (J, J), player B tends to lose successively by choosing Joker11.

This finding lead us to infer that the adjustment process of pairs in the individual

treatment produces the bias in the winning rate of Joker. The direction of the bias

is that

win rate of Joker > win rate of non-Joker for player A, and (1)

win rate of Joker < win rate of non-Joker for player B. (2)

Let us go back to the results of testing for the equality of winning rates across

strategies in the individual treatment as shown in table 8. Most rejections at the 5

and 10 percent levels were rejected by either (1) or (2); 6 out of 8 rejections at the 5

percent level (B of pair 2, A and B of pair 4, A of pair 7, B of pair 8 and A of pair

11) and 8 out of 12 rejections at the 10 percent level (in addition to the subjects

listed earlier, B of pair 1 and B of pair 6). This is consistent with the inference

from the estimation result.

Continuation of (J, J) indicates that when player B has lost by choosing Joker,

he/she again tends to choose Joker, and his/her opponent (player A) detected that

behavior. This is explained by the both players’ belief about the excess confidence of

player B on Joker. In O’Neill’s game, Joker of player B and only this choice wins

against the three choices of player A. So, player B feels that his/her Joker looks to

be stronger. When he/she has lost the game by choosing Joker, he/she may believe

that he/she will win the next period by choosing Joker because Joker is intrinsically

stronger and player A will not choose Joker successively twice. However, player A

11We omitted the outcome (33)t−1 in this estimation in order to avoid multicollinearity. We
also performed the estimation with omitting one of the outcomes except (JJ)t−1. In the team
treatment, a few cases (4 out of 14 estimations) reveals that (JJ)t−1 has an significant effect on
(JJ)t with positive sign. In the individual treatment, on the other hand, such cases were 10 out
of 14 estimations. Hence, the effect of (JJ)t−1 on (JJ)t is a little in the team treatment while it
is robust in the individual treatment.
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also knows that player B thinks that his/her Joker is stronger. So, player A may

also choose Joker for the next period in order to defeat his/her opponent.

If the argument above is true, the choice frequencies of such pairs may also

be affected by the belief in the excess confidence of player B on Joker. In fact,

comparing the table 8 with table 6, either a player or his/her opponent or both who

are rejected at the 10 percent level in testing for equality of winning rates across

strategies by either (1) or (2) are also necessarily rejected in the chi-square test of

the minimax multinomial or binomial model at the 10 percent level (A of pair 1,

A of pair 2, A and B of pair 4, A of pair 6 (rejected only in the binomial model

of Joker), B of pair 7, A and B of pair 8 and B of pair 11). Furthermore, these

subjects choose Joker relatively more frequently, such as more than 0.5 in some

cases. This is consistent with the idea that these pairs have the belief that player B

has excess confidence on Joker.

Summing up, there is a significant difference in the adjustment processes of pairs

between team and individual: In the adjustment processes of pairs in the individual

treatment, there is a tendency that subjects of player B lose successively by playing

Joker, while the adjustment processes of pairs in the team treatment do not have

such tendency. This produces the bias of winning rate of Joker in the individual

treatment, while not in the team treatment. Most rejections in testing for equality

of winning rates in the individual treatment can be explained by this bias, which

may be produced by both players’ belief that player B has excess confidence on own

Joker. This bias also produces the inconsistency in the relative frequencies of either

the subjects’ or the opponents’ or both players’ choices.

4.2 Another Source of Difference: Equiprobable Play of the

Opponent

The cause of most rejections in testing for equality of winning rates across strategies

in the individual treatment can be explained by the finding that the outcome (J, J)

tends to occur successively. However, this explanation cannot be applied to all

rejections because a few (B of pair 12, B of pair 16 and A and B of pair 18) are

rejected at the 5 or the 10 percent level by the bias that

win rate of Joker < win rate of non-Joker for player A, and (3)

win rate of Joker > win rate of non-Joker for player B. (4)

Such subjects and only such subjects have in common that the opponents seem

to choose each action probabilistically equally, that is, they choose each action

withe probability of 0.25. Table 12 re-describes the relative frequencies of play-

ers’ choices in the individual treatment, and at this time, reports the results of

chi-square goodness-of-fit test of the multinomial and binomial equiprobable play.
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[Table 12 here]

Last two columns report the p-values of the chi-square goodness-of-fit tests of the

multinomial equiprobable play for each player role: that is, the null hypothesis is

that the subject chooses J , 1, 2 and 3 with probability 0.25 each, respectively. **

and * to the right of the relative frequency for a given choice denote the rejections

of the chi-square goodness-of-fit tests of the binomial equiprobable play at the 5 and

10 percent significance level, respectively: that is, the null hypothesis is that the

subject chooses the given choice and the other choices with probabilities 0.25 and

0.75.

While the null hypotheses are clearly rejected for most subjects, player A of

pair 12, player A of pair 16 and player A and B of pair 18 are not rejected neither

in the test for the multinomial equiprobable play nor in the test for the binomial

equiprobable play at the 10 percent level. Hence, the behaviors of these subjects

are consistent with the equiprobable play. Furthermore, these subjects are perfectly

equivalent to the opponents of the subjects who are rejected in testing for equality

of winning rates across strategies at the 5 or 10 percent level by either (3) or (4).

If player B chooses the actions with equal probabilities, the winning probabilities

of Joker and non-Joker for player A are 0.25 and 0.5, respectively. If player A

chooses the actions with equal probabilities, the winning probabilities of Joker and

non-Joker for player B are 0.75 and 0.5, respectively. Hence, (3) and (4) hold. In

fact, the null hypothesis that the winning rate of Joker is equal to 0.25 and that of

non-Joker is equal to 0.5 for player A or the null hypothesis that the winning rate

of Joker is equal to 0.75 and that of non-Joker is equal to 0.5 for player B is not

rejected at the 10 percent level for these subjects. P -values are 0.377 for player B

of pair 12, 0.346 for player B of pair 16, 0.289 for player A of pair 18 and 0.289 for

player B of pair 18, respectively12. Hence, we can conclude that the equiprobable

play of the opponent causes the rejections in testing for equality of winning rates

across strategies by either (3) or (4).

In the team treatment, only player B of pair 11 is rejected in testing for equal-

ity of winning rates across strategies by (4)13. This team is also affected by the

equiprobable play of the opponent. Table 13 also reports the relative frequencies of

teams’ choices and the results of the chi-square goodness-of-fit test of the equiprob-

able play.

[Table 13 here]

Player A of pair 11 and only this player is not rejected neither in the test for the

multinomial equiprobable play nor in the test for the binomial equiprobable play

12Note that test statistic is approximately distributed as chi-square with two degree of freedom
under the null hypothesis.

13No one is rejected by (3) in the team treatment.
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at the 10 percent level. Hence, the behavior of this player is consistent with the

equiprobable play. Furthermore, the null hypothesis that the winning rate of Joker

is equal to 0.75 and that of non-Joker is equal to 0.5 is not rejected at the 10 percent

level for player B of pair 11 (p-value is 0.459). Hence, we can again conclude that

the equiprobable play of player A of pair 11 causes the rejections for player B in

testing for equality of winning rates across strategies by (4).

Most players who adopt the equiprobable play in our experiment are player A (4

out of 5 players). In O’Neill’s game, Joker of player A wins only against Joker of

player B. This gives player A the impression that his/her Joker is weaker, and so

player A may hesitate to choose Joker. This consideration may reduce the frequency

of player A choosing Joker, which, as a result, would lead to the equiprobable play.

These findings indicate another source of the difference between teams and in-

dividuals: that is, there are relatively larger number of decision makers who choose

according to the equiprobable play in the individual treatment than in the team

treatment (4 players in the individual treatment against 1 player in the team treat-

ment). This fact leads to a larger number of rejections in testing for the equality of

winning rates across strategies by either (3) or (4) in the individual treatment than

in the team treatment.

4.3 Discussion: Teams’ Superiority on Intellective Tasks in

terms of Psychology

We have found the sources of the differences in behaviors between teams and in-

dividuals. It is that pairs of individuals follow the behavioral pattern by which

player B has tendency to lose successively by playing Joker, while teams do not

have such tendency. Another is that a larger number of individuals (mostly player

A role) adopt the equiprobable play than teams. Individuals seem to have the limi-

tation of cognitive ability to recognize and to avoid their own unprofitable behavior.

This limitation leads individuals to the successive loss of a particular player and

non-equilibrium equiprobable play. On the other hand, teams seem to be able to

improve some of such limitations, and behave more rationally.

Why could not individuals of player B role perceive that they are detected of

tendency to choose Joker just after they have lost by playing Joker? Why did

individuals choose the irrational equiprobable play, which gives their opponent the

opportunity to win the game more (relative to the equilibrium prediction)? Or con-

versely, why could teams, which are only an aggregation of two individuals with

communication, avoid such behaviors? These questions may be answered by the

findings from the psychological literatures that compare the decision makings be-

tween groups and individuals.

The conventional wisdom of group superiority has been challenged by numerous
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psychological experiment14. When we separate the types of decision tasks into judg-

mental tasks and intellective tasks, we can find some specific differences between

groups and individuals. Judgmental tasks are settings where there is no correct ac-

tion and so lacks a clear ex-post evaluation criterion for the quality of performance.

They involve, for example, studies comparing the attitudes of groups and individuals

toward risk. On judgmental tasks, there does not seem to be a systematic differ-

ence between groups and individuals in terms of performance. On the other hand,

intellective tasks have a correct action (or actions) and clear ex-post evaluation cri-

terion for the quality of performance. On intellective tasks, we can find that groups

typically perform better than individuals, meaning that groups more often guess

correctly than individuals, or groups are, on average, closer to the correct solution

than individuals15.

In our experiment, subjects are involved in the settings where they try to seek the

own and the opponent’s behavioral pattern, which allow them to defeat the oppo-

nent or make harder for opponent to predict their behavior. They can evaluate their

performance from the stream of the outcome (either win or loss) as the experiment

proceeds. Hence, we can interpret that our subjects work on the intellective tasks

which endogenously occur through the interaction. Therefore, teams’ superiority

on the intellective tasks might work in such situation and lead teams to rational

behaviors: that is, many individuals might not be able to perceive that a partic-

ular outcome continues or to detect that there are other profitable plays than the

equiprobable play, while many teams could find and avoid those. It also indicates

that teams behavior is consistent with the underlying logic of the minimax argument

such that one needs to randomize strategies in order to prevent exploitation by one’s

opponent.

5 Concluding Remarks

This paper has compared the behaviors between teams and individuals who play

the game with a unique mixed strategy equilibrium. The focus of this paper is on

differences in rationality and its source between two-person teams versus individual

subjects. Teams are statistically more rational than individuals in the sense that the

more implications of the minimax play are not rejected in the team treatment than

in the individual treatment. This finding may give one explanation for the source of

a part of rationality for professional sports players empirically observed in the field.

Furthermore, we have found the source of the difference in rationality between

teams and individuals. Individuals seem to have the limitation of cognitive ability to

14See Davis (1992) and Kerr, MacCoun and Kramer (1996) for the survey.
15In particular, on intellective tasks whose correctness of action are highly demonstrable to

others, this is clearly the case, because in such situations, the group members can easily confirm
the correctness of the action and are most likely to adopt the correct solution.
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recognize and to avoid their own unprofitable behavior. This limitation lead individ-

uals to the successive loss of a particular player and non-equilibrium equiprobable

play. On the other hand, teams, each of which is only an aggregation of two individ-

uals with communication, can improve such limitation, and behave more rationally.

However, team formation also have bound on their improving of team behavior.

There was a significant serial correlation in teams’ choice. The choices of professional

sports player in the field are observed to be serially independent. Hence, achievement

of such skill of randomization of professional sports players cannot be explained by

team’s decision making.

From the viewpoint of theory, the broader range of team’s behaviors are very

close to the equilibrium one, so the theoretical concept of equilibrium may have

greater predictive power than previously considered.

As an implication of our experimental results to reality, there is a significant

advantage in forming a team when players confront with the strictly competitive

situations. Also, our research provides the reasonable reason for the fact that the

decisions are made by teams in many real-life social and economic environments.

Our research should be extended in a variety of directions. In particular:

1. Are teams more rational than individuals in other strategic environments? Al-

though, there is growing number of literatures comparing the difference in be-

havior between teams and individuals in experimental economics, economists

still know too little on under which strategic environments teams can behave

more rationally than individuals. As noted in the introduction, required abil-

ities are different depending on the game played in order to behave rationally.

Teams might not perform better than individuals in other games.

2. What is the optimal size of teams in order to behave rationally? We have

examined the behavior of teams which is an aggregation of two individuals. It

would be interesting to investigate whether increasing number of teammates

promote the rationality of teams. The effects may include not only the capa-

bility of more information processing, but also increasing costs for reaching a

decision.

3. How do teams reach the decision? In our experiment, the contents of the

conversations within a team are not clear. It would be interesting to know

what kind of conversations is exchanged within a team until they reach the

decision. In particular, one of the interests in this context is whether there

is a leadership in a team or not. It would be also interesting to investigate

whether there is the difference in rationality between teams with and without

leadership. Such investigation may clarify which configuration of a team is

more appropriate.
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Table 1: O’Neill’s Game

Player B

Green Red Brown Purple
Green W L L L

Player A
Red L L W W

Brown L W L W
Purple L W W L

‘W ’ and ‘L’ denote a win and a loss for player A respectively.



Table 2: Relative Frequencies of Choices and Win Percentages in the Team Treat-
ment

A. Frequencies

Player B’s Choice Marginal
frequencies

J 1 2 3 for player A

0.178 0.078 0.082 0.081 0.419
J (0.160) (0.080) (0.080) (0.080) (0.400)

[0.008] [0.006] [0.006] [0.006] [0.010]

0.082 0.035 0.037 0.042 0.196
1 (0.080) (0.040) (0.040) (0.040) (0.200)

Player A’s [0.006] [0.004] [0.004] [0.004] [0.008]
Choice

0.078 0.045 0.040 0.029 0.191
2 (0.080) (0.040) (0.040) (0.040) (0.200)

[0.006] [0.004] [0.004] [0.004] [0.008]

0.085 0.035 0.042 0.031 0.194
3 (0.080) (0.040) (0.040) (0.040) (0.200)

[0.006] [0.004] [0.004] [0.004] [0.008]

Marginal 0.424 0.192 0.201 0.183
frequencies (0.400) (0.200) (0.200) (0.200)
for player B [0.010] [0.008] [0.008] [0.008]

B. Win Percentages

Observed player A win percentage: 0.409
Minimax player A win percentage: 0.400
Minimax player A win std. deviation: 0.010

In panel A, the numbers in parentheses represent minimax predicted relative frequen-
cies, whereas those in brackets represent standard deviations for observed relative
frequencies under the minimax hypothesis. In panel B, minimax player A win per-
centage and std. deviation are the mean and the standard deviation of the observed
mean percentage win under the minimax hypothesis for player A.



Table 3: Relative Frequencies of Choices and Win Percentages in the Individual
Treatment

A. Frequencies

Player B’s Choice Marginal
frequencies

J 1 2 3 for player A

0.171 0.075 0.074 0.085 0.406
J (0.160) (0.080) (0.080) (0.080) (0.400)

[0.008] [0.006] [0.006] [0.006] [0.010]

0.087 0.043 0.041 0.039 0.209
1 (0.080) (0.040) (0.040) (0.040) (0.200)

Player A’s [0.006] [0.004] [0.004] [0.004] [0.008]
Choice

0.085 0.030 0.037 0.037 0.189
2 (0.080) (0.040) (0.040) (0.040) (0.200)

[0.006] [0.004] [0.004] [0.004] [0.008]

0.082 0.035 0.040 0.039 0.195
3 (0.080) (0.040) (0.040) (0.040) (0.200)

[0.006] [0.004] [0.004] [0.004] [0.008]

Marginal 0.425 0.182 0.192 0.201
frequencies (0.400) (0.200) (0.200) (0.200)
for player B [0.010] [0.008] [0.008] [0.008]

B. Win Percentages

Observed player A win percentage: 0.392
Minimax player A win percentage: 0.400
Minimax player A win std. deviation: 0.010

In panel A, the numbers in parentheses represent minimax predicted relative frequen-
cies, whereas those in brackets represent standard deviations for observed relative
frequencies under the minimax hypothesis. In panel B, minimax player A win per-
centage and std. deviation are the mean and the standard deviation of the observed
mean percentage win under the minimax hypothesis for player A.



Table 4: Results of Chi-square Goodness-of-fit Test of Marginal Frequencies of Each
Player and Both Players to Equilibrium Mixtures

Player Player Both
A B Players

Team
Test Statistic 3.616 7.767 11.383

p-value 0.306 0.051* 0.077*

Individual
Test Statistic 2.825 8.268 11.092

p-value 0.419 0.041** 0.086*

** and * denote rejections of the minimax multinomial model at the 5 and 10 percent
level. Test statistics for the tests of each player and both players are approximately
distributed as χ2(3) and χ2(6) respectively under the minimax hypothesis.



Table 5: Relative Frequencies of Choices for Each Team and Results of Chi-square Goodness-of-fit Tests for the Minimax Models

Player A’s Choice Player B’s Choice
p-values of χ2 tests of

minimax multinomial models
Pair

J 1 2 3 J 1 2 3
Player Player Both

# A B Players
1 0.386 0.227 0.205 0.182 0.402 0.220 0.174 0.205 0.853 0.871 0.960
2 0.379 0.174 0.205 0.242 0.318* 0.227 0.220 0.235 0.618 0.289 0.476
3 0.477* 0.197 0.182 0.144 0.477* 0.174 0.235 0.114** 0.234 0.043‡ 0.054†
4 0.477* 0.227 0.136* 0.159 0.379 0.242 0.189 0.189 0.101 0.686 0.259
5 0.576** 0.144 0.136* 0.144 0.492** 0.144 0.144 0.220 0.001‡ 0.065† 0.000‡
6 0.455 0.159 0.220 0.167 0.417 0.174 0.189 0.220 0.380 0.835 0.685
7 0.394 0.227 0.212 0.167 0.402 0.258* 0.235 0.106** 0.721 0.032‡ 0.119
8 0.470 0.174 0.182 0.174 0.417 0.242 0.174 0.167 0.441 0.484 0.525
9 0.439 0.159 0.189 0.212 0.500** 0.129** 0.197 0.174 0.618 0.069† 0.181
10 0.432 0.197 0.212 0.159 0.462 0.205 0.167 0.167 0.673 0.431 0.637
11 0.295** 0.258* 0.235 0.212 0.439 0.205 0.197 0.159 0.082† 0.651 0.215
12 0.379 0.205 0.197 0.220 0.402 0.167 0.242 0.189 0.935 0.573 0.877
13 0.371 0.205 0.174 0.250 0.386 0.242 0.182 0.189 0.498 0.673 0.688
14 0.379 0.167 0.227 0.227 0.424 0.144 0.212 0.220 0.601 0.454 0.611
15 0.424 0.182 0.197 0.197 0.462 0.189 0.182 0.167 0.935 0.513 0.843
16 0.402 0.212 0.205 0.182 0.447 0.174 0.212 0.167 0.954 0.573 0.887
17 0.364 0.205 0.189 0.242 0.417 0.167 0.205 0.212 0.634 0.817 0.852
18 0.439 0.212 0.144 0.205 0.394 0.159 0.258* 0.189 0.441 0.337 0.415

** and * denote rejections of the minimax binomial model for a given choice at the 5 and 10 percent levels, respectively. Test statistic
is approximately distributed as χ2(1) under the minimax hypothesis. Similarly, ‡ and † denote rejections of the minimax multinomial
model at those levels. Test statistics for the tests of each player and both players are approximately distributed as χ2(3) and χ2(6)
respectively under the minimax hypothesis.



Table 6: Relative Frequencies of Choices for Each Individual and Results of Chi-square Goodness-of-fit Tests for the Minimax Models

Player A’s Choice Player B’s Choice
p-values of χ2 tests of

minimax multinomial models
Pair

J 1 2 3 J 1 2 3
Player Player Both

# A B Players
1 0.508** 0.212 0.136* 0.144 0.409 0.159 0.212 0.220 0.034‡ 0.686 0.119
2 0.530** 0.152 0.144 0.174 0.470 0.197 0.174 0.159 0.022‡ 0.369 0.046‡
3 0.424 0.220 0.182 0.174 0.432 0.197 0.174 0.197 0.776 0.853 0.930
4 0.515** 0.167 0.136* 0.182 0.523** 0.136* 0.182 0.159 0.046‡ 0.030‡ 0.009‡
5 0.417 0.197 0.167 0.220 0.386 0.258* 0.205 0.152 0.780 0.282 0.557
6 0.492** 0.152 0.182 0.174 0.402 0.182 0.159 0.258* 0.170 0.319 0.201
7 0.432 0.159 0.227 0.182 0.523** 0.159 0.144 0.174 0.542 0.035‡ 0.097†
8 0.455 0.265* 0.129** 0.152 0.508** 0.083** 0.227 0.182 0.034‡ 0.004‡ 0.001‡
9 0.386 0.227 0.220 0.167 0.447 0.197 0.129** 0.227 0.673 0.206 0.411
10 0.356 0.189 0.227 0.227 0.409 0.144 0.250 0.197 0.638 0.289 0.487
11 0.424 0.189 0.174 0.212 0.508** 0.159 0.182 0.152 0.849 0.082† 0.277
12 0.295** 0.250 0.212 0.242 0.341 0.189 0.220 0.250 0.088† 0.372 0.139
13 0.432 0.159 0.197 0.212 0.371 0.182 0.235 0.212 0.673 0.708 0.817
14 0.379 0.220 0.220 0.182 0.364 0.205 0.227 0.205 0.831 0.812 0.934
15 0.341 0.212 0.197 0.250 0.485** 0.159 0.205 0.152 0.406 0.168 0.242
16 0.280** 0.295** 0.205 0.220 0.333 0.242 0.159 0.265* 0.012‡ 0.087† 0.007‡
17 0.333 0.227 0.250 0.189 0.432 0.189 0.159 0.220 0.298 0.622 0.487
18 0.311** 0.273** 0.205 0.212 0.311** 0.242 0.212 0.235 0.101 0.193 0.090†

** and * denote rejections of the minimax binomial model for a given choice at the 5 and 10 percent levels, respectively. Test statistic
is approximately distributed as χ2(1) under the minimax hypothesis. Similarly, ‡ and † denote rejections of the minimax multinomial
model at those levels. Test statistics for the tests of each player and both players are approximately distributed as χ2(3) and χ2(6)
respectively under the minimax hypothesis.



Table 7: Testing for Equality of Winning Rates across Strategies in the Team Treat-
ment

Mixtures Win Rates Test
Pair # Player J Non-J J Non-J Statistic p-value

1
A 0.386 0.614 0.373 0.296 0.828 0.363
B 0.402 0.598 0.642 0.696 0.432 0.511

2
A 0.379 0.621 0.380 0.476 1.153 0.283
B 0.318 0.682 0.548 0.567 0.042 0.837

3
A 0.477 0.523 0.540 0.435 1.451 0.228
B 0.477 0.523 0.460 0.565 1.451 0.228

4
A 0.477 0.523 0.333 0.435 1.430 0.232
B 0.379 0.621 0.580 0.634 0.384 0.535

5
A 0.576 0.424 0.474 0.375 1.280 0.258
B 0.492 0.508 0.446 0.687 7.772 0.005**

6
A 0.455 0.545 0.317 0.306 0.019 0.891
B 0.417 0.583 0.655 0.714 0.535 0.465

7
A 0.394 0.606 0.500 0.438 0.495 0.482
B 0.402 0.598 0.509 0.557 0.288 0.591

8
A 0.470 0.530 0.387 0.400 0.023 0.880
B 0.417 0.583 0.564 0.636 0.711 0.399

9
A 0.439 0.561 0.517 0.324 5.006 0.025**
B 0.500 0.500 0.545 0.636 1.128 0.288

10
A 0.432 0.568 0.474 0.427 0.290 0.590
B 0.462 0.538 0.557 0.549 0.009 0.926

11
A 0.295 0.705 0.333 0.344 0.014 0.905
B 0.439 0.561 0.776 0.568 6.279 0.012**

12
A 0.379 0.621 0.520 0.512 0.008 0.931
B 0.402 0.598 0.509 0.468 0.214 0.643

13
A 0.371 0.629 0.449 0.434 0.029 0.865
B 0.386 0.614 0.569 0.556 0.022 0.883

14
A 0.379 0.621 0.500 0.463 0.167 0.683
B 0.424 0.576 0.554 0.500 0.371 0.543

15
A 0.424 0.576 0.411 0.355 0.421 0.516
B 0.462 0.538 0.623 0.620 0.001 0.970

16
A 0.402 0.598 0.377 0.367 0.014 0.905
B 0.447 0.553 0.661 0.603 0.475 0.491

17
A 0.364 0.636 0.375 0.393 0.041 0.839
B 0.417 0.583 0.673 0.571 1.389 0.239

18
A 0.439 0.561 0.379 0.338 0.244 0.621
B 0.394 0.606 0.577 0.688 1.681 0.195

** and * denote rejections at the 5 and 10 percent levels respectively.



Table 8: Testing for Equality of Winning Rates across Strategies in the Individual
Treatment

Mixtures Win Rates Test
Pair # Player J Non-J J Non-J Statistic p-value

1
A 0.508 0.492 0.388 0.385 0.002 0.968
B 0.409 0.591 0.519 0.679 3.487 0.062*

2
A 0.530 0.470 0.371 0.274 1.415 0.234
B 0.470 0.530 0.581 0.757 4.663 0.031**

3
A 0.424 0.576 0.429 0.342 1.024 0.311
B 0.432 0.568 0.579 0.653 0.762 0.383

4
A 0.515 0.485 0.500 0.266 7.639 0.006**
B 0.523 0.477 0.507 0.730 6.902 0.009**

5
A 0.417 0.583 0.491 0.468 0.070 0.791
B 0.386 0.614 0.471 0.556 0.906 0.341

6
A 0.492 0.508 0.400 0.388 0.020 0.888
B 0.402 0.598 0.509 0.671 3.463 0.063*

7
A 0.432 0.568 0.544 0.333 5.877 0.015**
B 0.523 0.477 0.551 0.603 0.371 0.543

8
A 0.455 0.545 0.533 0.333 5.359 0.021**
B 0.508 0.492 0.522 0.631 1.587 0.208

9
A 0.386 0.614 0.412 0.346 0.586 0.444
B 0.447 0.553 0.644 0.616 0.107 0.744

10
A 0.356 0.644 0.404 0.424 0.046 0.830
B 0.409 0.591 0.648 0.538 1.579 0.209

11
A 0.424 0.576 0.518 0.303 6.256 0.012**
B 0.508 0.492 0.567 0.646 0.862 0.353

12
A 0.295 0.705 0.282 0.398 1.592 0.207
B 0.341 0.659 0.756 0.575 4.192 0.041**

13
A 0.432 0.568 0.316 0.307 0.013 0.911
B 0.371 0.629 0.633 0.723 1.172 0.279

14
A 0.379 0.621 0.380 0.439 0.445 0.505
B 0.364 0.636 0.604 0.571 0.135 0.714

15
A 0.341 0.659 0.444 0.345 1.251 0.263
B 0.485 0.515 0.688 0.559 2.320 0.128

16
A 0.280 0.720 0.405 0.484 0.665 0.415
B 0.333 0.667 0.659 0.477 3.901 0.048**

17
A 0.333 0.667 0.409 0.375 0.144 0.705
B 0.432 0.568 0.684 0.560 2.108 0.147

18
A 0.311 0.689 0.244 0.418 3.684 0.055*
B 0.311 0.689 0.756 0.582 3.684 0.055*

** and * denote rejections at the 5 and 10 percent levels respectively.



Table 9: Runs Tests in the Team Treatment

Choices Runs
Pair # Player J Non-J r F (r − 1) F (r)

1
A 51 81 53 0.021 0.032*
B 53 79 59 0.140 0.185

2
A 50 82 62 0.382 0.451
B 42 90 60 0.599 0.665

3
A 63 69 76 0.935 0.954
B 63 69 53 0.006 0.009**

4
A 63 69 69 0.613 0.678
B 50 82 58 0.149 0.194

5
A 76 56 71 0.815 0.859
B 65 67 71 0.731 0.785

6
A 60 72 69 0.640 0.704
B 55 77 64 0.382 0.451

7
A 52 80 60 0.204 0.258
B 53 79 55 0.035 0.052

8
A 62 70 67 0.482 0.552
B 55 77 53 0.011 0.018**

9
A 58 74 63 0.265 0.327
B 66 66 81 0.991** 0.994

10
A 57 75 64 0.343 0.410
B 61 71 50 0.001 0.002**

11
A 39 93 50 0.091 0.124
B 58 74 60 0.123 0.163

12
A 50 82 68 0.793 0.840
B 53 79 57 0.074 0.104

13
A 49 83 60 0.280 0.343
B 51 81 61 0.283 0.350

14
A 50 82 63 0.451 0.528
B 56 76 64 0.361 0.429

15
A 56 76 56 0.037 0.054
B 61 71 63 0.235 0.292

16
A 53 79 54 0.024 0.035*
B 59 73 71 0.773 0.823

17
A 48 84 53 0.035 0.053
B 55 77 61 0.200 0.255

18
A 58 74 50 0.002 0.003**
B 52 80 62 0.322 0.388

** and * denote rejections at the 5 and 10 percent levels respectively.



Table 10: Runs Tests in the Individual Treatment

Choices Runs
Pair # Player J Non-J r F (r − 1) F (r)

1
A 67 65 76 0.932 0.952
B 54 78 57 0.066 0.093

2
A 70 62 73 0.843 0.882
B 62 70 59 0.074 0.101

3
A 56 76 73 0.895 0.925
B 57 75 67 0.551 0.621

4
A 68 64 58 0.049 0.070
B 69 63 66 0.405 0.475

5
A 55 77 56 0.041 0.060
B 51 81 62 0.350 0.418

6
A 65 67 75 0.906 0.932
B 53 79 64 0.432 0.502

7
A 57 75 66 0.481 0.551
B 69 63 64 0.278 0.340

8
A 60 72 64 0.301 0.365
B 67 65 64 0.271 0.332

9
A 51 81 67 0.702 0.765
B 59 73 68 0.587 0.654

10
A 47 85 52 0.029 0.043*
B 54 78 68 0.686 0.746

11
A 56 76 64 0.361 0.429
B 67 65 59 0.069 0.095

12
A 39 93 52 0.178 0.228
B 45 87 58 0.293 0.357

13
A 57 75 69 0.686 0.747
B 49 83 63 0.487 0.566

14
A 50 82 58 0.149 0.194
B 48 84 60 0.313 0.378

15
A 45 87 56 0.176 0.226
B 64 68 54 0.009 0.015**

16
A 37 95 41 0.002 0.004**
B 44 88 43 0.000 0.001**

17
A 44 88 59 0.403 0.488
B 57 75 73 0.884 0.916

18
A 41 91 52 0.112 0.150
B 41 91 48 0.022 0.033*

** and * denote rejections at the 5 and 10 percent levels respectively.



Table 11: Comparison of Serial Correlation in Outcomes between the Team and the
Individual Treatment

Variable Team Individual
Name Treatment Treatment

Constant
−1.529*** −1.804***
(0.306) (0.299)

(JJ)t−1
0.289 0.719**

(0.328) (0.320)

(J1)t−1
−0.514 0.039
(0.384) (0.367)

(J2)t−1
−0.358 −0.141
(0.374) (0.376)

(J3)t−1
−0.191 −0.194
(0.366) (0.370)

(1J)t−1
0.150 0.461

(0.355) (0.346)

(11)t−1
−0.051 −0.108
(0.424) (0.422)

(12)t−1
−0.196 0.195
(0.429) (0.406)

(13)t−1
−0.129 0.246
(0.410) (0.406)

(2J)t−1
0.304 0.532

(0.353) (0.344)

(21)t−1
−0.262 −0.004
(0.414) (0.454)

(22)t−1
−0.145 −0.329
(0.416) (0.462)

(23)t−1
−0.133 0.287
(0.449) (0.407)

(3J)t−1
0.131 0.025

(0.353) (0.362)

(31)t−1
−0.168 −0.156
(0.430) (0.451)

(32)t−1
0.143 −0.117

(0.395) (0.430)
Log −1093.737 −1058.997

Likelihood

Variable (ik)t−1 denotes the outcome of the stage game in the previous period (i, k ∈
{J, 1, 2, 3}) where i and k are player A’s and B’s choices respectively. Numbers in
parenthesis are the standard errors. ***, ** and * denote rejections at the 1, 5 and
10 percent levels respectively.



Table 12: Relative Frequencies of Choice and Results of Chi-square Goodness-of-fit Tests for the Equiprobable Play in the Individual
Treatment

Player A’s Choice Player B’s Choice
p-values of χ2 tests of

equiprobable play for all choices
Pair

J 1 2 3 J 1 2 3
Player Player

# A B
1 0.508** 0.212 0.136** 0.144** 0.409** 0.159** 0.212 0.220 0.000‡ 0.000‡
2 0.530** 0.152** 0.144** 0.174** 0.470** 0.197 0.174** 0.159** 0.000‡ 0.000‡
3 0.424** 0.220 0.182* 0.174** 0.432** 0.197 0.174** 0.197 0.000‡ 0.000‡
4 0.515** 0.167** 0.136** 0.182* 0.523** 0.136** 0.182* 0.159** 0.000‡ 0.000‡
5 0.417** 0.197 0.167** 0.220 0.386** 0.258 0.205 0.152** 0.000‡ 0.001‡
6 0.492** 0.152** 0.182* 0.174** 0.402** 0.182* 0.159** 0.258 0.000‡ 0.000‡
7 0.432** 0.159** 0.227 0.182* 0.523** 0.159** 0.144** 0.174** 0.000‡ 0.000‡
8 0.455** 0.265 0.129** 0.152** 0.508** 0.083** 0.227 0.182* 0.000‡ 0.000‡
9 0.386** 0.227 0.220 0.167** 0.447** 0.197 0.129** 0.227 0.003‡ 0.000‡
10 0.356** 0.189 0.227 0.227 0.409** 0.144** 0.250 0.197 0.038‡ 0.000‡
11 0.424** 0.189 0.174** 0.212 0.508** 0.159** 0.182* 0.152** 0.000‡ 0.000‡
12 0.295 0.250 0.212 0.242 0.341** 0.189 0.220 0.250 0.598 0.079†
13 0.432** 0.159** 0.197 0.212 0.371** 0.182* 0.235 0.212 0.000‡ 0.011‡
14 0.379** 0.220 0.220 0.182* 0.364** 0.205 0.227 0.205 0.007‡ 0.026‡
15 0.341** 0.212 0.197 0.250 0.485** 0.159** 0.205 0.152** 0.086† 0.000‡
16 0.280 0.295 0.205 0.220 0.333** 0.242 0.159** 0.265 0.369 0.042‡
17 0.333** 0.227 0.250 0.189 0.432** 0.189 0.159** 0.220 0.118 0.000‡
18 0.311 0.273 0.205 0.212 0.311 0.242 0.212 0.235 0.255 0.416

** and * denote rejections of tests of equiprobable play for a given choice at the 5 and 10 percent levels, respectively. Test statistic
is approximately distributed as χ2(1) under the equiprobable hypothesis. Similarly, ‡ and † denote rejections of tests of equiprobable
play for all choices at those levels. Test statistic is approximately distributed as χ2(3) under the equiprobable hypothesis.



Table 13: Relative Frequencies of Choice and Results of Chi-square Goodness-of-fit Tests for the Equiprobable Play in the Team
Treatment

Player A’s Choice Player B’s Choice
p-values of χ2 tests of

equiprobable play for all choices
Pair

J 1 2 3 J 1 2 3
Player Player

# A B
1 0.386** 0.227 0.205 0.182* 0.402** 0.220 0.174** 0.205 0.003‡ 0.001‡
2 0.379** 0.174** 0.205 0.242 0.318* 0.227 0.220 0.235 0.005‡ 0.343
3 0.477** 0.197 0.182* 0.144** 0.477** 0.174** 0.235 0.114** 0.000‡ 0.000‡
4 0.477** 0.227 0.136** 0.159** 0.379** 0.242 0.189 0.189 0.000‡ 0.005‡
5 0.576** 0.144** 0.136** 0.144** 0.492** 0.144** 0.144** 0.220 0.000‡ 0.000‡
6 0.455** 0.159** 0.220 0.167** 0.417** 0.174** 0.189 0.220 0.000‡ 0.000‡
7 0.394** 0.227 0.212 0.167** 0.402** 0.258 0.235 0.106** 0.001‡ 0.000‡
8 0.470** 0.174** 0.182* 0.174** 0.417** 0.242 0.174** 0.167** 0.000‡ 0.000‡
9 0.439** 0.159** 0.189 0.212 0.500** 0.129** 0.197 0.174** 0.000‡ 0.000‡
10 0.432** 0.197 0.212 0.159** 0.462** 0.205 0.167** 0.167** 0.000‡ 0.000‡
11 0.295 0.258 0.235 0.212 0.439** 0.205 0.197 0.159** 0.572 0.000‡
12 0.379** 0.205 0.197 0.220 0.402** 0.167** 0.242 0.189 0.008‡ 0.000‡
13 0.371** 0.205 0.174** 0.250 0.386** 0.242 0.182* 0.189 0.008‡ 0.003‡
14 0.379** 0.167** 0.227 0.227 0.424** 0.144** 0.212 0.220 0.005‡ 0.000‡
15 0.424** 0.182* 0.197 0.197 0.462** 0.189 0.182* 0.167** 0.000‡ 0.000‡
16 0.402** 0.212 0.205 0.182* 0.447** 0.174** 0.212 0.167** 0.001‡ 0.000‡
17 0.364** 0.205 0.189 0.242 0.417** 0.167** 0.205 0.212 0.020‡ 0.000‡
18 0.439** 0.212 0.144** 0.205 0.394** 0.159** 0.258 0.189 0.000‡ 0.001‡

** and * denote rejections of tests of equiprobable play for a given choice at the 5 and 10 percent levels, respectively. Test statistic
is approximately distributed as χ2(1) under the equiprobable hypothesis. Similarly, ‡ and † denote rejections of tests of equiprobable
play for all choices at those levels. Test statistic is approximately distributed as χ2(3) under the equiprobable hypothesis.



Figure 1: Empirical Cumulative Distribution Function for Observed P -values from
Chi-square Goodness-of-fit Tests of Minimax Multinomial Model in the Team Treat-
ment (Left) and the Individual Treatment (Right).
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Figure 2: Empirical Cumulative Distribution Function for Observed p-values from
Chi-square Tests for Equality of Winning Rates across Strategies in the Team Treat-
ment (Left) and the Individual Treatment (Right).
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Figure 3: Empirical Cumulative Distribution Function for a Particular Realization
of Statistics drawn from U [F (r − 1), F (r)] for Each Decision Maker in the Team
Treatment (Left) and the Individual Treatment (Right).
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