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Abstract. A general production theory with friction is provided in which a firm employs multiple workers facing

search friction representable by a vacancy cost function robust against any small perturbations. With such a vacancy

cost function, the path outside of unbounded steady state is not only significant as transition but actually essential

in the sense that the unbounded steady state is generally never reached. Analysis of out of unbounded steady state

requires various novel tools which are also represented in this paper: employment of integral equations to obtain wages,

optimization on state constraints and a particular change of coordinates which is generally applicable in solving this type

of problems. Moreover, the market outcome of such a model, even though the hiring cost can be infinitesimally small for

a given amount of job posting, is that a generalized effective demand principle must be effective for a market equilibrium

to exist. This result comes from the fact that the marginal profit value of labor is always strictly positive, which results

in persistent excess demand in the labor market and excess supply in the goods market, whereas the existence of search

friction prohibits adjustment of employment toward infinity by optimality. It should be noted that any price or wage

rigidity is not assumed to obtain this result.

1. Introduction

The present paper studies optimal employment policy of a firm under the presence of a convex vacancy cost

function in the labor market, and its implication on employment distribution and market equilibrium. It is a

generalization of a search model from one-to-one matching to one-to-many matching. A convex vacancy cost

function ——a function which literally relates number of job vacancy posting to cost—— is chosen since it is the

only class the derivative of which is monotone, which is robust against any small perturbations and which does

not diverge in equilibrium. Requirement of robustness on a vacancy cost function would be natural. There is no

logically strong, a priori reason that a vacancy cost function must have a particular functional form. Any results

derived from an unrobust assumption in this respect are unlikely to hold in reality.

It will be shown that marginal wage cost value determined by bargaining is always strictly smaller than the

marginal production value of labor as far as employment is below an unbounded steady state. On the other

hand, the optimal employment policy under a convex vacancy cost function does not allow the path to jump to an

unbounded steady state. Therefore, a firm is willing to accommodate all the demand directed to it ——let us call it

potential demand to distinguish it from effective demand—— unless it is strictly larger than the unbounded steady

state. For an economy to be directed to an unbounded steady state, economic agents must share a dynamically
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persistent common sense that the economy ultimately reaches to an unbounded steady state. However, until the

economy reaches to the unbounded steady state, production and income continue to be strictly below potential

demand, and thus this view solely depends on optimistic expectation on future, which is not guaranteed to hold

under competitive environment. Here, we have a generalized principle of effective demand to dynamics. Namely,

national income is determined by the production achievable by the current level of employment and its growth is

bounded by the employment technology and the growth of potential demand which reflects the state of expectation

of economic agents. The unbounded steady state is equivalent to the one sometimes had been called a “state in the

long run”, thus it might be safely said that we are all dead before such a state is visited unless our expectation is

coordinated.

The model presented in this paper is a generalization of a Mortensen-Pissarides model which assumes that

production is undertaken by a pair of a worker and a job. Such a model can be interpreted that it assumes a “firm”

employing multiple workers is decomposable to independent units of jobs. Since it assumes cost of vacancy

posting is constant, it actually hypothesizes a linear vacancy cost function. It assumes that the size of employment

in the economy is determined by the entry condition that the value of vacancy equals zero. However, under the

assumption that each production pair always successfully earns constant income, the size of employment this

condition requires can be “huge”, possibly exceeding our population. Potential entrepreneurs cease job posting

because labor market tightness makes waiting time for the arrival of a worker too long compared to vacancy cost.

Although it is not necessarily clear what kind of costs are included in vacancy cost, from the view point that cost

to post information to various media is negligible in this IT society, and also from the fact that cost required for

selection of applicants should decrease as market condition becomes tight because applicants decreases, the VU

ratio must be extremely high in equilibrium. The waiting time must be long enough to make entrepreneurs give

up the existing production opportunity.

Section 2 summarizes the structure of the model. Section 3 studies how the value of unemployment which

operates as a threat point in wage bargaining is determined. Section 4 studies the outcome of wage bargaining.

It is shown that integral equation is useful to solve non-stationary value functions. Section 5 studies the firm’s

optimal employment behavior. Section 6 rationalizes the assumptions made in Section 3 are actually consistent

with the whole model. Section 7 analyzes the behavior on the demand constraint when the constraint is stationary.

Section 8 provides some conclusional remarks.

2. TheModel

2.1. Firm. A competitive firm under the presence of search friction in the labor market is considered. Labor is

known to be heterogeneous so that optimal search behavior is not trivial. It uses multiple workers of potentially

multiple types. In general, we can presume two kinds of “types”, declarable and non-declarable. Declarable types

are those which can be prescribed as hiring requirements, such as possession of driver’s license and academic

background. Non-declarable types are those which cannot be documented such as personality and suitability
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to particular corporate culture, therefore it cannot be observed until, for example, a firm holds an interview.

Therefore, it would be natural to assume non-declarable types are matching-specific. The types of workers are

generally combination of these declarable and non-declarable types. Let (i, j) denote a bundle of labor types in

which declarable type is i and non-declarable type is j. Different types are clearly distinguished from each other.

For simplicity, it is assumed that workers cannot choose their declarable types, abstracting the effect of the choice

of education and training. Any workers of the same type are perfectly homogeneous for the firm. The production

function of a firm is f (l) where l = (l1, . . . , lL) and li = (li1, . . . , liMi ) are vectors of the number of employed workers

such that li j is that of (i, j)-type labor, ∂ f /∂li j > 0, ∂2 f /∂l2i j < 0 and ∂2 f /∂ fi j∂ fi′ j′ > 0 where i′ , i and j′ , j. We

also assume Inada condition around the origin: ∂ f /∂li j → +∞ as li j → 0.

A firm decides how much internal resources to spend on recruiting labor force in the labor market. After the

choice of the level of recruiting activities m = (m1, . . . ,mL) for each declarable type, it would observe a variety of

applicants to arrive stochastically.1 A matching session proceeds in a way that firms post job advertisement first

and workers apply to a preferred job. Such a matching mechanism is a natural equilibrium of such environment

that, while many characteristics of a firm is declarable, that of a worker is non-declarable, as in Yokota (2004). It

results in the same outcome as random matching, so that the probability that a firm receives applications per job

posting is a decreasing function of VU ratio θi in the labor market of declarable type i and denoted by ψ(θi) ∈ R+.2

On the other hand, non-declarable types of workers are distributed in a way that share of non-declarable type j is

gi j ∈ (0, 1) for declarable type i such that
∑

j gi j = 1. Therefore, if a firm exerts recruiting effort mi on declarable

type i in the labor market, it will receive gi jψ(θi)mi applications from type (i, j) worker.

On the other hand, a pair of a firm and a worker breaks up for external reasons to the firm. Suppose that a

separation event occurs with time-variant Poisson arrival with parameter σi j(t) > 0 at time t for i = 1, . . . , L and

j = 1, . . . , Mi.3 In addition, a firm can dismiss type (i, j) workers by xi j. Note that it can specify which type to

dismiss as it already knows non-declarable characteristics of workers. Then, a firm can control the time derivative

of type i employment with control variables mi and xi j so that

(2.1) l̇i j = gi j ψ(θi) mi − σi jli j − xi j ∀i = 1, . . . , L.

For simplicity, the notation φi j(t) := gi j(t)ψ(θi(t)) is sometimes used.

Job posting is assumed to be costly. Smith (1999) assumed a linear vacancy cost function, so that a firm

employs all necessary workers to reach to the steady state in the first period, and then it maintains the steady state

forever. With this carefully arranged setup, adjustment process to the steady state is virtually abstracted. However,

as described in Section 1, its assumption is not robust against small perturbations to the functional form. With

1By equation (2.1), mi is directly related to the increase of labor force. It is labeled as “level of recruiting activities” instead of “number of job
vacancies” to abstract the strategic behavior to announce more job posts than actually wanted.
2This is a special case of Yokota (2004) when the threshold that a firm declines an applicant becomes zero to conform the current problem.
Here, a firm can employ multiple job-seekers and the choice which applicants to decline is detached to the choice of xi.
3It may be more natural to assume that the quality of a match gradually turns out on the job as in Jovanovic (1979). However, we abstract
internal working of separation.



PRODUCTION THEORY WITH FRICTION 4

a minimalist principle, we are induced to assume a convex vacancy cost function, since its derivative is simply

monotone and its equilibrium outcome is implied not to diverge. It would be also natural from the viewpoint that

a vacancy cost function should be regarded as an adjustment cost function. In practical application, the cost may

be interpreted as including the cost for orientation, training and deterioration of productivity that arises from on-

the-job training and inexperience of new workers, as well as the cost necessary for actual recruiting. Modifying

the functional form of the vacancy cost function in this way surely complicates the analysis than that of Smith

(1999), but it also should be pointed out that such a model based on robust assumptions brings significantly

different macroeconomic implications. We denote the vacancy cost function for declarable type i = 1, . . . , L by

κi(mi, t) : R+ × R+ → R+ where κi ≥ 0, ∂κi/∂mi ≥ 0, ∂2κ/∂m2
i > 0, κi(0, t) = ∂κi/∂mi(0) = 0, and for simple

notation, the second argument will be omitted from now on: κi(·) := κi(·, t). In this way, κi is allowed to depend

on θi. A firm pays wages to each type of workers. Under the presence of search friction, wage payment is

determined in a way that workers and a firm share pseudo-rent which an already-formed group possesses. As

shown later, wage rate is a function of employment. A firm decides the amount of employment knowing the wage

schedule it faces. We denote the wage function of type (i, j) by wi j(l). Normalizing the price of output to one, the

instantaneous profit of a firm π is given by

π = f (l) − w (l) · l −
L∑

i=1

κi (mi) .

Again, for simple notation, it is sometimes used ci j(l) := wi j(l) li j for any (i, j).

Before examining the intertemporal optimal behavior of a firm, we need to examine the wage function. Bar-

gaining between a firm and workers is done by sharing pseudo-rent represented by the present value of matched

status discounting all possible future status. After deriving the bargaining rule in terms of value functions in

Section 3, we derive the wage function in Section 4.

2.2. Workers. Workers are in either state, employed or unemployed. An unemployed worker of type (i, ·) at time

t receives instantaneous unemployment benefit bi(t). An employed worker of type (i, j) will be paid instantaneous

wage wi j(t). We denote by Ui(t) the value of unemployment of type (i, ·) at time t and denote by Ei j(t) the value

of employment of a type (i, j) worker at time t. Matching sessions between job-seekers and vacancies open at any

moment. Matching probability of an unemployed worker is µi(t). A matching session is time-consuming, and its

length is random. While an agent joins in it, he cannot attend any other sessions that will be held at the same

time.4 If an unemployed worker of type i is successfully matched at time t and it turns out that his undeclarable

type is j, then he moves to the state of employment of type (i, j). Namely, he receives the “value” of employment

of type (i, j) at time t, Ei j(t). We assume that a worker is risk neutral. Then, the Bellman equation for the value of

4If matching sessions open continuously and end instantaneously, all agents in the labor market will be matched immediately almost surely.
The best analogy for matching in a continuous context would be to regard it as two “drains” which has a limited and the same capacity attached
to different tanks of “workers” and “firms”.
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unemployment becomes

(2.2) r(t) Ui(t) = bi (t) + µi(t)E j

[
Ei j(t) − Ui(t)

]
+ U̇i(t)

where r is interest rate and Ej

[
Ei j(t) − Ui(t)

]
:=

∑Mi
j=1 gi jEi j(t) −Ui(t). Similarly, the value of employment of type

i at time t is given by

(2.3) r(t) Ei j(t) = wi j(t) − σi j

[
Ei j(t) − Ui(t)

]
+ Ėi j(t)

for all i = 1, 2.

3. Bargaining over Coalitional Rent

When there exists friction in the labor market, pseudo-rent arises in an existing firm-workers group. The rent

comes from the fact that any firms or workers who have not formed a group yet must enter a costly process of

search. It makes a room for bargaining over the rent between a firm and workers who have already formed a group.

Therefore, production should be regarded as coalitionally undertaken by the going concern and the present and

future employees and distributed by bargaining. It would be reasonable to regard the bargaining as based on the

contribution of each participant, which leads us to focus on nucleolus and Shapley value as bargaining outcome.5

Coalition of a firm and each type of workers with measure li j will get an intertemporal payoff F which is the value

of

F(l) =
∫ ∞

t

 f
(
l(ξ)

) − L∑
i=1

κi
(
mi(ξ)

) e−R(t,ξ)dξ

where R(t, ξ) :=
∫ ξ

t r(τ) dτ, and which is obtained when the firm follows its own optimal policy. Then, bargaining

is made among continuously many players. For the moment, we proceed with the argument in a general setup

which function F should satisfy, to facilitate future extension. The bargaining among continuously many players

should be obtained as a limit of the games with finite players.

Let Ω be a set of all players. Let Υ := {Υ1, . . . ,ΥL} where Υi := {1, . . . , Mi} (i = 1, . . . , L) for given Mi ∈

N ∪ {∞}, and Ψi j := {1, 2, . . . ,Ni j} where Ni j ∈ N ∪ {∞} is given for any (i, j) ∈ Υ. Define a vector N :=

(N1, . . . ,NL) where Ni := (Ni1, . . . ,NiMi ). Structure of players is that there exist partition S 0, {S i j}(i, j)∈Υ ⊂ Ω such

that Ω = S 0 +
∑

(i, j)∈Υ S i j where S 0 = {s0(1)} and S i j = {si j(1), si j(2), . . . si j(Ni j)}. si j(n) has measure dli j for all

(i, j) ∈ Υ and n ∈ Ψi j. There also exists a fixed vector (l11, . . . , lLML ) such that Ni jdli j = li j for all Ni j, dli j and

(i, j) ∈ Υ. Let Xh : 2Ω → R‖2Ω‖ be a multi-valued (pre)imputation function of h-th game where J := Xh ({s0(1)})

is a payoff of player s0(1) and Ei j(n) := Xh

({
si j (n)

})
is that of player si j(n). For given N, we define a series of

reduced coalitional games as follows.

5Pissarides (1985) assumed that, in the case that production is undertaken by a pair of a firm and a worker, they divide the rent by a Nash
bargaining solution. It would have been an option to generalize it to a multiple-worker environment adopting n-player Nash equilibrium as an
equilibrium notion. However, as the present model contains significant asymmetry between a firm and workers, it seems more natural to take
coalitional rationality into account.
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Definition 3.1. Define a series of coalitional games {aN(Sh, Xh)}h∈N for given N when coalition family S ⊂ 2Ω is

given with the following properties.

(1) The set of players is Ω ∩
{
si j(n) : Xh

({
si j(n)

})
= 0

}
and feasible coalition is given by Sh.

(2) The characteristic function v has the property that, for any coalition A ∈ Sh,

v(A) =



F
(
l′11, . . . , l

′
LML

)
−∑

si j(n)∈A Xh

({
si j(n)

})
if c ∈ A and ∀(i, j),∃n, si j(n) ∈ A

− Xh (S 0) if {c} = A∑
i Ui

∥∥∥∥A ∩
(
∪ jS i j

)∥∥∥∥ −∑
si j(n)∈A Xh

({
si j(n)

})
if c < A or ∃(i, j),∀n, si j(n) < A

where l′i j =
∥∥∥A ∩ S i j

∥∥∥ dli j for all (i, j), F is an increasing function and concave in terms of each variable.

F is common for all S ⊂ Ω and Ui common for all ∪ jS i j.6

(3) The transition of games is given by the following rule.

(a) S0 = 2Ω and X0(A) = 0 for all A ∈ S0.

(b) Find εi = min max {v (S ) − X (S )}. Let Th = {S ∈ Sh : X (S ) = v (S ) − εh} for h = 1, 2, . . .. Then, the

transition of games is given by Sh+1 = Sh \ Th and

Xh+1(S ) =


v (S ) − εh if S ∈ Th

0 otherwise

aN(2Ω, X0) defines the game itself for given N. Our objective here is to obtain a bargaining solution for

a∞(2Ω, X0) where ∞ := (∞, . . . ,∞) ∈ NM . The game is superadditive and, in addition, player s0(1) has discrete

influence on coalitional payoff. In that sense, player c is a “mass” player. Obviously, C = {s0(1)} refers to a firm

and S i j to a set of type (i, j) workers in our context. Note that the properties of F is sufficient to hold at the current

level of employment only from below.

Lemma 3.2. Core is nonempty if ∂F/∂li j ≥ Ui for all i, j.

Proof. Consider an imputation that any player in
∪

i, j S i j is allocated by si j(n) = Ui for all (i, j) and n and player

c is allocated by π = F − ∑
i, j UiNi jdli j. Such an imputation is always feasible. Obviously, any coalition which

doesn’t consist of player c satisfies coalitional or individual rationality. So does any coalition S which consist

of player c because if S consists of ni j players from each subset S i j, its imputation yields π +
∑

i, j,n si j(n) = F −∑
i, j Ui(Ni j−ni j)dli j ≥ F−∑i, j(∂F/∂li j)dli j−o(dli j) > F(l11−(N11−n11)dl11, . . . , lLML−(NLML−nLML )dlLML ) = v(S ),

which implies that this imputation is located in core. �

Theorem 3.3. If ∂F/∂li j ≥ Ui for (i, j) ∈ Υ in game a∞
(
2Ω, X0

)
, the following imputation is supported by both

nucleolus and Shapley value, and also it is included in core.

(3.1) Ei j(t) =
1
2

(
Ui(t) +

∂F
∂li j

(t)
)

6Although U has common value for all A, it is allowed to fluctuate over time when dynamics is considered in later sections.
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Step 1. Proof of nucleolus. First, we prove that (3.1) is nucleolus starting from the following lemma.

Lemma 3.4. Consider a coalitional game aN(S, X) for any S ⊂ 2Ω, X and N. Then, if ∂F/∂li j ≥ Ui for all (i, j),

the least core Γ(ε) is characterized by

ε = −1
2

(
∂F
∂l(i, j)∗

− U
)

dl(i, j)∗ −
1
2

o
(
dl(i, j)∗

)
≤ 0

where (i, j)∗ = arg min(i, j) F − F
(
. . . , li j − dli j, . . .

)
and ∂F/∂li j is evaluated at ∂F/∂li j = F.

Proof of Lemma 3.4. Suppose
{
si j(n)

}
∈ S for some (i, j) ∈ Υ, n ∈ Ψi j. We start by considering a trivial coalition

that contains only player si j(n). Consider a (pre)imputation in an ε-core X for given excess ε. The condition of an

ε-core requires Ei j(n) to be

(3.2) Ei j(n) ≥ v
(
si j(n)

)
− ε = Uidli j − ε

for all n ∈ Mi j and (i, j) ∈ Υ. Note that any players in the same subset S i j are symmetric players. Similarly,

consider a coalition Ω \
{
si j(n)

}
. Its coalitional payoff is, by total rationality, F(l11, . . . , lLML )−∑

i, j,n Xh

({
si j (n)

})
−

Ei j(n). The condition of an ε-core requires

F −
∑
i, j,n

Xh

({
si j (n)

})
− Ei j(n) ≥ v

(
Ω \

{
si j(n)

})
− ε = F

(
. . . , li j − dli j, . . .

)
−

∑
i, j,n

Xh

({
si j (n)

})
− ε,

where we write the value of F(l1, l2, . . . , lM) simply as F for concise notation. Then, we obtain

Ei j(n) ≤ F − F
(
. . . , li j − dli j, . . .

)
+ ε(3.3)

=
∂F
∂li j

dli j + o
(
dli j

)
+ ε

where o
(
dli j

)
≥ 0 by concavity of F. In the space of preimputation {X ∈ R

∑
i, j Ni j+1}, consider a Cartesian product

of an interval on axis Ei j(n) which satisfies coalitional rationality for both
{
si j(n)

}
and Ω\

{
si j(n)

}
for given excess

ε, and R in all other axes. Then, consider an intersection of the above domain with a simplex manifold ∆ :=
{
X ∈

R
∑

i, j Ni j+1 : J +
∑

(i, j)∈Υ
∑

n∈Ψi j
Ei j(n) = F

(
l11, . . . , lLML

)}
. We call it B(

{
si j(n)

}
n∈Ψi j,(i, j)∈Υ

, ε). From inequalities (3.2)

and (3.3),

(3.4) B
({

si j(n)
}
n∈Ψi j,(i, j)∈Υ

, ε
)
=



{
X ∈ ∆ : Uidli j − ε ≤ Ei j(n) ≤ ∂F

∂li j
dli j + o

(
dli j

)
+ ε

}
if ε ≥

U −
[
F − F

(
. . . , li j − dli j, . . .

)]
2

dli j

∅ otherwise

Now, consider a coalition S which consists of more than one player si j(n). Suppose that S consists of ni j ∈ N

players from each S i j such that 0 ≤ ni j ≤ Ni j for all (i, j) and ni j > 0 for some (i, j). Then, the payoff of coalition
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Ω \ S , F −∑
i, j,n Xh

({
si j (n)

})
−∑

S Ei j(n), is

F −
∑
i, j,n

Xh

({
si j (n)

})
−

∑
S

Ei j(n) ≥ F
(
l11 − n11dl11, . . . , lLML − nLML dlLML

) −∑
i, j,n

Xh

({
si j (n)

})
− ε(3.5)

= F −
∑

(i, j)∈Υ

∂F
∂li j

ni j dli j −
∑

(i, j)∈Υ
o
(
ni jdli j

)
−

∑
i, j,n

Xh

({
si j (n)

})
− ε

where o
(
ni jdli j

)
≥ ni jo

(
dli j

)
≥ 0 by concavity of F. The first inequality is strict if there is (i, j) such that ni j > 1.

On the other hand,

(3.6)
∑

S

Ei j (n) ≥ Ui

∑
(i, j)∈Υ

ni j dli j − ε.

We define domain B(S , ε) in the simplex manifold which satisfies coalitional rationality for S and Ω\S for

given excess ε. Denote the set of players’ identity numbers for those who belong to both S and Ψi j by Φi j :={
n ∈ Ψi j : si j(n) ∈ S

}
. From equation (3.5) and (3.6), it is given by

B(S , ε) =

X ∈ ∆ :
∑

(i, j)∈Υ
Uini j dli j − ε ≤

∑
(i, j)∈Υ

∑
n∈Φi j

Ei j(n) ≤
∑

(i j)∈Υ

∂F
∂li j

ni j dli j +
∑

(i, j)∈Υ
o
(
ni jdli j

)
+ ε

(3.7)

Note that a symmetric relation

(3.8) B(S , ε) = B(Ω\S , ε)

holds for all S ∈ 2Ω and ε ∈ R.

We show that, for any S ∈ 2Ω, B(S , ε) comprehends the intersection of B
({

si j(n)
}
n∈Ψi j,(i, j)∈Υ

, ε
)

for all n ∈ Φi j

and (i, j) ∈ Υ, namely

(3.9)
∩

n∈Φi j,(i, j)∈Υ
B

({
si j(n)

}
, ε

)
⊆ B (S , ε)

for any S . By symmetric relation (3.8), it is sufficient to consider S such that c < S . Pick up a point y ∈∩
n∈Φi j,(i, j)∈Υ B

({
si j(n)

}
, ε

)
. Then, from (3.4), Uidli j − ε ≤ Ei j(n) ≤ ∂F

∂li j
dli j + o

(
dli j

)
+ ε for all n ∈ Φi j and

(i, j) ∈ Υ. Summing up this for all (i, j) and n, we obtain
∑

(i, j)∈ΥUini jdli j − ε
∑

(i, j)∈Υ ni j ≤
∑

(i, j)∈Υ
∑

n∈Φi j
Ei j(n) ≤∑

(i, j)∈Υ
∂F
∂li j

ni jdli j +
∑

(i, j)∈Υ ni jo
(
dli j

)
+ ε

∑
(i, j)∈Υ ni j. Since ε ≤ 0 from Lemma 3.2 and from concavity of F, it

implies that (3.9) holds and B(S , ε) , ∅.

From the above argument, to characterize the ε-core, it is sufficient to focus on coalitional rationality of the

family of
{
si j(n)

}
n∈Φi j,∀(i, j)∈Υ

and
{
Ω\

{
si j(n)

}}
n∈Φi j,∀(i, j)∈Υ

. Any conditions given by other coalitions are redundant.

It implies that ε-core is characterized by
∩

n∈Φi j,∀(i, j)∈Υ B
({

si j(n)
}
, ε

)
. Define an interval Ii j(n, ε) :=

{
Ei j(n) :

Uidli j − ε ≤ Ei j(n) ≤
(
∂F/∂li j

)
dli j + o

(
dli j

)
+ ε

}
. Then, it is equivalent to find an intersection of the interval

×i, j,n Ii j(n, ε) and the simplex ∆. Then, the least core Γ(ε) is obtained by setting ε so that I j∗ (n, ε) degenerates

to a point where (i, j)∗ is the type (i, j) which has the smallest (discrete) marginal value of production among

(i, j) ∈
{
(i, j) ∈ Υ : Xh

({
si j(n)

})
= 0

}
. Namely, Ui dli j − ε = F − F

(
. . . , l(i, j)∗ − dl(i, j)∗ , . . .

)
+ ε, from which we



PRODUCTION THEORY WITH FRICTION 9

obtain

ε = −1
2

[
F − F

(
. . . , l(i, j)∗ − dl(i, j)∗ , . . .

)
− Ui∗dl(i, j)∗

]
= −1

2

(
∂F
∂l(i, j)∗

− Ui∗

)
dl(i, j)∗ −

1
2

o
(
dl(i, j)∗

)
.

�

Continuation of Step 1 of Theorem 3.3. All types of workers whose wage rate is such that the present value of

employment exceeds that of their marginal productivity will not be employed at all. Therefore, the game is zero-

monotone, and the nucleolus coincides with the lexicographic center (Maschler et al. (1979)). By Lemma 3.4,

workers of type (i, j)∗ whose present value of discrete marginal productivity is the smallest have the maximum

excess which equals to ε in a(Sh, Xh). Their payoff E(i, j)∗ (n) is

E(i, j)∗(n) = v
(
s(i, j)∗(n)

)
− εh =

1
2

(
U +

∂F
∂l(i, j)∗

)
dl(i, j)∗ +

1
2

o
(
dl(i, j)∗

)
.

By rule (3) of 3.1, the next reduced game aN(Sh+1, Xh+1) is characterized by Sh+1 = Sh \ Th where Th = {S ∈

Sh : Xh(S ) = v(S ) − εh} and Xh+1 − Xh = v(S ) − εh if S ∈ Th and Xh+1 − Xh = 0 otherwise. In this new game,

note that (3.4) and (3.7) are independent from Xh. Therefore, exactly the same logic applies to aN(Sh+1, Xh+1) as

in aN(Sh, Xh), leading to

E(i, j)∗∗ = v
(
s(i, j)∗∗ (n)

)
− εh+1 =

1
2

(
U +

∂F
∂l(i, j)∗∗

)
dl(i, j)∗∗ +

1
2

o
(
dl(i, j)∗∗

)
where (i, j)∗∗ is the type (i, j) which has the smallest discrete marginal productivity among (i, j) ∈ {(i, j) ∈ Υ :

Xh+1

({
si j(n)

})
= 0}. Repeating the logic above in every reduced games until we get aN(S∞, X∞), it will be found

in limit that

Ei j(n) =
1
2

(
U +

∂F
∂li j

)
dli j +

1
2

o
(
dli j

)
for all (i, j). In a∞

(
2Ω, X0

)
, the last term becomes negligible, obtaining the result.

Step 2. Proof of Shapley value. Choose a player si′ j′ (q) for some (i′, j′) ∈ Υ and n′ ∈ Ψi′ j′ and consider any

coalition S̃ (n11, . . . , nLML ; nc) which contains si′ j′(n′) where the number of players of type (i, j) ∈ Υ joining in S̃

by ni j and the number of firm joining in S̃ by nc (i.e. nc = 0 or 1). Then,
∥∥∥S̃

∥∥∥ = ∑
i, j ni j + nc and the “weights”

γ(S̃ ) for possible contribution of si′ j′(n′) in S̃ is given by

γ(S̃ ) =
(
∑

i, j ni j + nc − 1)!(
∑

i, j

∥∥∥S i j

∥∥∥ + 1 −∑
i, j ni j − nc)!

(
∑

i, j

∥∥∥S i j

∥∥∥ + 1)!

= B

∑
i, j

ni j + nc,
∑
i, j

(∥∥∥S i j

∥∥∥ − ni j

)
+ (1 − nc) + 1


where B(·, ·) is a Beta function. Now, suppose that si′, j′(n′) is the last player joining S̃ (n11, . . . , nLML ; nc). There

are two cases in his contribution to S̃ (n11, . . . , nLML ; nc).

Case 1)
(
∃(i∗, j∗) , (i, j) ∈ Υ, ∀n ∈ Ψi∗ j∗ , si∗ j∗ (n) < S̃

)
∨

(
c < S̃

)
: Contribution of player si′ j′(n′) is Ui re-

gardless of
∥∥∥S̃

∥∥∥.
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Case 2)
(
∀(i, j) ∈ Υ, ∃n ∈ Ψi j, si j(n) ∈ S̃

)
∧

(
c ∈ S̃

)
: Contribution of player si′ j′(n′) is

F
(
n11dl11, . . . , ni′ j′dli′ j′ , . . . , nLML dlLML

)
− F

(
n11dl11, . . . ,

(
ni′ j′ − 1

)
dli′ j′ , . . . , nLML dlLML

)
where F(·, . . . , ·) =

(∥∥∥S̃
∥∥∥ − nc

)
U if ∃i, ni = 0.

Therefore, Shapley value of player si′ j′ (n′), φ(i′, j′),n′ , defined as a density function in terms of the measure of the

type (i′, j′) player is

φ(i′ j′),n′dli′ j′ =
∑
{S̃ : nc=0}

γ
(
S̃
)

Ui dli′ j′(3.10)

+
∑
{S̃ : nc=1}

γ
(
S̃
) [

F
(
. . . , ni′ j′dli′ j′ , . . .

)
− F

(
. . . ,

(
ni′ j′ − 1

)
dli′ j′ , . . .

)]
dl11 · · · dlLML

=
U
2

dli′ j′ +
∑
{S̃ : nc=1}

γ
(
S̃
) [

F
(
. . . , ni′ j′dli′ j′ , . . .

)
− F

(
. . . ,

(
ni′ j′ − 1

)
dli′ j′ , . . .

)]
dl11 · · · dlLML

where
∑
{S̃ : nc=1} γ

(
S̃
)
= 1/2. Using the relation

γ
(
n11dl11, . . . , nLML dlLML

)
= B

 ∑
(i, j)∈Υ

ni jdli j

li j

∥∥∥S i j

∥∥∥ + nc,
∑

(i, j)∈Υ

(
1 −

ni jdli j

li j

) ∥∥∥S i j

∥∥∥ + 1

 ,
with a slight abuse of notation,

γ
(
n11dl11, . . . , nLML dlLML

) →

∞ if ni jdli j = li j for all (i, j)

0 otherwise

as dl11, . . . , dlLML → 0 keeping
∥∥∥S i j

∥∥∥ dli j = li j for all (i, j) ∈ Υ. It implies that γ is expressed, using generalization

of Dirac’s δ to multiple dimensions, by

γ
(
L11, . . . , LLML

)
= δ

(
1 − L11

l11
, . . . , 1 − LLML

lLML

)
where

δ(x11, . . . , xLML ) =


∞ if x11 = · · · = xLML = 0

0 otherwise

and
∫ 1

0 · · ·
∫ 1

0 δ(l11, . . . , lLML ) dl11 · · · dlLML = 1. Therefore, from (3.10), we obtain

φ(i′, j′),n′ =
Ui′

2
+

1
2
∂F
∂li′ j′

for all n ∈ Ψi′ j′ .

Step 3. Proof of core. From Lemma 3.4, ε ≤ 0 if ∂F/∂li j ≥ Ui for the least core of aN(Ω), which implies that

the core includes a nucleolus solution.

�
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The above distribution of rent is achieved through wage payment to workers in each period, retaining the rest

as profit on the firm side. To obtain a wage function from the above result, we have to obtain an explicit form of

Ei and U for any time t, which will be done in Section 4.

4. Wage Function

Taking zi j := Ei j − Ui for all (i, j) ∈ Υ in Bellman equations (2.2) and (2.3), the dimension of the dynamics

defined by (2.2) and (2.3) is reduced by one:

(4.1) żi(t) = Ai(t) zi(t) − fi(t)

where zi(t) :=



zi1(t)

zi2(t)
...

ziMi (t)


, Ai(t) :=



r(t) + σ(t) + gi1µi(t) gi2µi(t) · · · gLMLµi(t)

gi1µi(t) r(t) + σ(t) + gi2µi(t) gLMLµi(t)
...

. . .
...

gi1µi(t) gi2µi(t) · · · r(t) + σ(t) + gLMLµi(t)



and f(t) :=



w11(t) − b1(t)

w12(t) − b1(t)
...

wLML (t) − bL(t)


. Note that A(t) has eigenvalues r(t) + σ(t) with multiplicity (M − 1) and r(t) +

σ(t) + µ(t) with multiplicity one.7 It can be confirmed that the following provides the elementary matrix Φ(t, s):

Φi(t, s) := e
∫ t

s Ai(q)dq = e
∫ t

s β(q) dq
[
I +

(
e
∫ t

s µi(q) dq − 1
)

G
]

where I is an identity matrix, β(q) := r(q) + σ(q) and Gi is an “expectation matrix”

Gi =


gi1 gi2 · · · giMi

...
...

...

gi1 gi2 · · · giMi

 .

Namely, zi(t) = Φi(t, s) c for any c ∈ R2 solves the accompanying homogeneous equation to (4.1). Then, the

solution to (4.1) is given by z(t) = Φ(t, 0)[z0 −
∫ t

0 Φ(s, 0)−1 f(s) ds] = e
∫ t

0 A(q)dq[z0 −
∫ t

0 e−
∫ s

0 A(q)dq f(s) ds] for any

initial value z(0) = z0 = (z10, z20). Note that Φ(t, s)−1 = e−
∫ t

s A(q)dq. For the no-Ponzi game condition to hold, the

initial value must be set at z0 =
∫ ∞

0 Φ(s, 0)−1 f(s) ds in which integration is bounded. For such an initial value,

z(t) =
∫ ∞

t Φ(s, t)−1 f(s) ds =
∫ ∞

t e−
∫ s

t A(q)dq f(s) ds. Using the fact that [I + (α − 1)G]−1 = I + (α−1 − 1)G for any

scholar α, it is found that

Φi (s, t)−1 = e−
∫ s

t β(q) dq
[
I +

(
e
∫ s

t −µi(q) dq − 1
)
Gi

]
.

7To obtain this simple result, it is critical to assume that separation rate is common for all worker types. We still continue to use the notation
σi j in other places for future extension, however, it should be understood that σi j = σ for all i, j.
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U anticipates the fluctuation of µ with time lag.

Figure 4.1. Response of U(t)

Namely,

(4.2) zi j (t) =
∫ ∞

t
e−

∫ s
t (r+σ)

[(
wi j − bi

)
− E j

(
wi j − bi

)
+ e−

∫ s
t µi E j

(
w j − bi

)]
where expectation E is taken over all possible worker types. Solving differential equation (2.2) for Ui using (4.2),

Ui(t) =
∫ ∞

t
e−

∫ s
t r(q)dq

[
bi(s) + µi(s)

∫ ∞

s
E j

(
wi j(ξ) − bi(ξ)

)
e−

∫ ξ

s αi(q)dqdξ
]

ds(4.3)

Similarly, we obtain the value function of employment for each type.

Ei j(t) =
∫ ∞

t
e−

∫ s
t r(q) dqwi j(s)ds(4.4)

+

∫ ∞

t
ds

∫ ∞

s
e−

∫ ξ

t r(q) dqσ(s)e−
∫ ξ

s σ(q)dq
[
−

(
wi j − bi

)
+

(
1 − e−

∫ ξ

s µi(q)dq
)

E j

(
wi j(ξ) − bi(ξ)

)]
dξ

The unemployment value function is the sum of the discounted series of unemployment benefit and the expected

discounted series of capital gain arising from matching. Note that the value of unemployment responds to the

change of matching probability with time lag. Suppose that the capital gain of matching, unemployment benefit

and interest rate are fixed over time and only matching probability periodically fluctuates, say µ(t) = (1 + sin t)/2.

Then, the value of unemployment becomes U(t) = a + b(r sin t + cos t) where a and b are fixed coefficients (see

Figure 4.1). It implies the bargaining power of workers fluctuates with time lag before the change of matching

probability under rational forecast, which may make the adjustment via wage rate in the labor market imperfect.

This is not mere a special case when intertemporal fluctuation of µ has a sine curve. If µ has a general func-

tional form which is absolute integrable in terms of time, it is shown that the same property holds by Fourier

transformation.

Proposition 4.1. Wage rate at time t is given by

wi j(t) = EhFih(t) − 1
2

(
Fi j(t) − bi(t)

)
− 1

2
σ(t)

∫ ∞

t

(
EhFih(ξ) − Fi j(ξ)

)
e−

∫ ξ

t r(q)dqdξ

+
1
2

(
µ(t)
2
− σ(t)

) ∫ ∞

t
(EhFih(ξ) − bi(ξ)) e−

∫ ξ

t (r(q)+3µi/2)dqdξ
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where Fi is capital gain of marginal value of production, i.e. Fi j := r∂F/∂li j − ∂2F/∂t∂li j.

Proof. Theorem 3.3 implies ∂2F/∂t∂li = 2Ėi − U̇. Applying (2.2), (2.3) and (3.1),

∂2F(t)
∂t∂li j

= r(t)
∂F(t)
∂li j

−
(
2wi j(t) − bi(t)

)
+ 2σ(t)zi j(t) − µi(t)Eh (wih − bi)(4.5)

Taking difference of (4.5) for any i and j , i, we obtain a Volterra integral equation of the second kind concerning

w1 and w2.8

(4.6)
(
wi j(t) − wih(t)

)
− σi(t)

∫ ∞

t

(
wi j(ξ) − wih(ξ)

)
e−

∫ ξ

t (σi+r)dξ =
1
2

[
r(t)

(
∂F(t)
∂li j

− ∂F(t)
∂lih

)
−

(
∂2F(t)
∂t∂li j

− ∂
2F(t)
∂t∂lih

)]
On the other hand, taking expectation of (4.5) yields

(4.7)

Eh (wih(t) − bi(t)) −
(
σi(t) −

µi(t)
2

) ∫ ∞

t
Eih (wih(ξ) − bi(ξ)) e−

∫ ξ

t (r+σi+µi)dξ =
1
2

Eh

(
r(t)

∂F(t)
∂lih

− ∂
2F(t)
∂t∂lih

− bi(t)
)

The above operations suggest that it is beneficial to define new variables Yi j(t) ( j = 1, 2, . . . , Mi) as follows.



Yi1(t)

Yi2(t)

Yi3(t)
...

YiMi (t)


:=



gi1 gi2 gi3 · · · giMi

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1





wi1(t) − bi(t)

wi2(t) − bi(t)

wi3(t) − bi(t)
...

wiMi (t) − bi(t)


Observe that the above conversion matrix is the same as the eigenvector matrix of Ai(t). By this change of

variables, we can “diagonalize” the simultaneous integral equations concerning w1 and w2 (4.6) and (4.7). Namely,
Yi1(t)
...

YiMi (t)

 −
∫ ∞

t


Ki

11(t, ξ) O
. . .

O Ki
MM(t, ξ)




Yi1(ξ)
...

YiMi (ξ)

 dξ =
1
2


hi1

...

hiM


where

Ki
11(t, ξ) :=

(
σi(t) −

µi(t)
2

)
e−

∫ ξ

t (r+σi+µi)

Ki
j j(t, ξ) := σi(t) e−

∫ ξ

t (r+σi) (for all j = 2, . . . , M)

hi1(t) := Eh

(
r(t)

∂F(t)
∂lih

− ∂
2F(t)
∂t∂lih

− bi(t)
)

hi j(t) := r(t)
(
∂F(t)
∂li j

− ∂F(t)
∂l1 j

)
−

(
∂2F(t)
∂t∂li j

− ∂
2F(t)
∂t∂l1 j

)
(for all j = 2, . . . , M)

8Note that it is impossible to obtain a differential equation by taking time derivative of this equation since t resides inside of the integration. It
is a general consequence of non-stationarity.
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and the integration is applied element-wise. Then, the solution to this equation is given by
Yi1(t)
...

YiMi (t)

 =
1
2


hi1(t)
...

hiMi (t)

 −
1
2

∫ ∞

t


Gi

11(t, ξ) O
. . .

O Gi
MM(t, ξ)




hi1(ξ)
...

hiMi (ξ)

 dξ

where Gi
j j(t, ξ) := −∑∞

h=1

∗
Ki

j j
h
(t, ξ) for j = 1, 2, . . . , Mi. Iterated kernel

∗
Kn is defined by

∗
Kn := K ∗ K ∗ · · · ∗ K︸             ︷︷             ︸

n

and K ∗ L denotes the composition of the first kind defined as K(t, ξ) ∗ L(t, ξ) =
∫ ξ

t K(t, τ) L(τ, ξ) dτ (see Yokota

(2006) for example). Since

∗
(Ki

11)
n
(t, ξ) =

(
σi(t) −

µi

2
(t)

)
e−

∫ ξ

t (r+σi+µi)

[∫ ξ

t

(
σi(s) − µi(s)

2

)
ds

]n−1

(n − 1)!

∗
(Ki

j j)
n
(t, ξ) = σi(t)e−

∫ ξ

t (r+σi)

[∫ ξ

t σi(s) ds
]n−1

(n − 1)!
(for all j = 2, . . . , M),

we obtain

Gi
11(t, ξ) =

(
σi(t) −

µi(t)
2

)
e−

∫ ξ

t (r+2σi+µi/2)

Gi
j j(t, ξ) = −σi(t) e−

∫ ξ

t (r+2σi) (for all j = 2, . . . , M)

and the solution for Yi j(t).

Yi1(t) =
1
2

hi1(t) +
1
2

(
σi(t) −

µi(t)
2

) ∫ ∞

t
e−

∫ ξ

t (r+3µi/2)hi1(ξ) dξ

Yi j(t) =
1
2

hi j(t) −
1
2
σi(t)

∫ ∞

t
e−

∫ ξ

t rhi j(ξ) dξ (for all j = 2, . . . , M)

Inverting back to wi j(t) using

wi1(t) − bi(t)

wi2(t) − bi(t)
...

wiM(t) − bi(t)


=





1 gi2 · · · giMi

1 gi2 · · · giMi

...
...

...

1 gi2 · · · giMi


−



0 0 · · · 0

0 1 O
...

. . .

0 O 1







Yi1(t)

Yi2(t)
...

YiMi (t)


,

the result of the proposition is derived. �

Now, we can present some of the properties about wages. Generally, the expected present value of wages is

greater than that of unemployment benefits as far as the marginal contribution to the value of production is greater

than the value of unemployment. In addition, if the marginal contribution to the value of production is decreasing

over time, wage rate is greater than unemployment benefit.

Proposition 4.2. If ∂F/∂li j > Ui for all (i, j), then
∫ ∞

t E jwi j(s)e−
∫
αi(q)dqds >

∫ ∞
t bi(s) e−

∫
αi(q)dqds.
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Proof. From Theorem 3.3, the condition ∂F/∂li j > Ui implies zi j = (∂F/∂li j − Ui)/2 > 0. Namely,

zi j =

∫ ∞

t
Eh [wih − bi] e−

∫
αi(q) dqds −

∫ ∞

t

{
Eh [wih − bi] −

(
wi j − bi

)}
e−

∫
β(q) dqds > 0

must hold for all (i, j) from (4.2), which yields∫ ∞

t
Eh [wih − bi] e−

∫
αi(q) dqds > max

j

∫ ∞

t

{
Eh [wih − bi] −

(
wi j − bi

)}
e−

∫
β(q) dqds ≥ 0

to obtain the result. �

Proposition 4.3. If ∂2F/∂t∂li j − U̇i ≤ 0, then wi j(t) > bi(t) for all (i, j) ∈ Υ and t.

Proof. From Theorem 3.3,

(4.8) Ėi j(t) =
1
2

(
U̇i(t) +

∂2F
∂t∂li j

(t)
)

which yields

Ėi j(t) − U̇i(t) =
1
2

(
∂2F
∂t∂li j

(t) − U̇i(t)
)
≤ 0

From (2.2) and (2.3)

wi j − bi = (r + σi)
(
Ei j − Ui

)
+ µEh [Eih − Ui] −

(
Ėi j − U̇i

)
> 0.

�

The condition of Proposition 4.3 obviously holds at a steady state either when the demand constraint is binding

or unbinding. On the other hand, when b is expected to rise only for a sufficiently short period of time from now

on, it can happen that wage rate becomes temporarily smaller than unemployment benefit whereas Ei > U still

holds and thus workers do not willing to quit the current jobs.

5. Production Plan

The result of the previous section shows that wage is a function of employment. Knowing the wage schedule,

a firm determines optimal policy on vacancy post and dismissal. The optimal problem for a firm is given by

J (l, y) = max
m,x

∫ ∞

t

 f (l) − w(l) · l −
L∑

i=1

κi(mi)

 exp
[
−

∫ ξ

t
r(τ)dτ

]
dξ(P)

subject to

l̇i j = gi jψ(θi) mi − σi jli j − xi j, ∀i = 1, . . . , L; j = 1, . . . , Mi(5.1)

0 ≤ xi j ≤ X ∀i, j(5.2)

mi ≥ 0 ∀i(5.3)
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f (l) ≤ y(5.4)

li j ≥ 0 ∀i, j(5.5)

li j(0),∀i, j given.

where l ∈ R
∑L

i Mi
+ is a vector of labor such that l := (l1, . . . , lL) and li := (li1, . . . , liMi ), parameters y, g, θ, σ are

generally time-dependent and X is an arbitrarily large number. We assume that X is large enough so that a firm

can accommodate any negative change of y. Also, it is assumed that r is bounded and r(t) 9 0 as t → ∞ and

y is differentiable up to second degree concerning to time as far as it is expected. Note that it will be proven

later that labor market is always in the state of excess demand. Walras Law implies that the goods market is

always in the state of excess supply regardless the relative price between output goods and labor. On the other

hand, the presence of a convex vacancy cost function prohibits discrete increase of employment, which implies

that aggregate production and income can grow only continuously from the current level, and thus the excess

supply in the goods market will not be resolved. In general, y should be interpreted as potential demand which

is the level of current demand that economic agents believe to exist and it becomes effective demand once the

constraint becomes binding in equilibrium. The state that potential demand strictly exceeds effective demand is

the state where there is coordination of expectation among economic agents. They somehow believe ——it may

be because there is some intertemporally binding factor on the demand side or may be simple enthusiasm——

that the current economy can accept production up to the size of y. If such “potential” part of demand is already

exhausted, differential change of demand from the current state totally depends on the coordinated differential

change of expectation among economic agents. Therefore, the demand constraint (5.4) is required. Removing this

constraint can lead the model to inconsistency.

The assumption that production capacity cannot exceed the demand constraint at any moment is obviously

too strict. If downward shock of demand is expected to be only temporary, it would be optimal for a firm to

keep current labor force if hiring cost in future exceeds wage payment to redundant labor force for the period

of temporary recession. However, incorporating this possibility introduces indifferentiability in the performance

index,9 which would significantly complicate the analysis. Therefore, knowing that the model presented here

retains characteristics that it tends to respond too sharply to high-frequency business cycles downward than the

more “realistic” model, we are going to adopt the former to make extensive analysis feasible.

Suppose that the density function of potential demand in the market is given by nt(·) at time t. Then, the

aggregate potential demand Y is given by Y =
∫ ∞

0 n(y) dy. In general, Y changes intertemporally, however there is

no definitive rule how change of Y alters functional form of n(·). It seems that the present model allows a room for

product differentiation and various sales strategies in a competitive environment. If there is a potential entrepreneur

whose technology ——including technology of production, design, marketing, etc.—— is so attractive that he gets

9The model should be formulated in such a way that the instantaneous profit function is min {y, f (l1, l2)}−∑
wili−κ(m) and the state constraint

(5.4) is removed.
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potential demand y � 0, on the day he appears in the market he immediately attracts that size of demand. He need

not start the business with potential demand in neighborhood of zero. Therefore, the no-entrant condition should

be given by J(0, 0, y) = 0 for all y ∈ R+.

Denote the costate variables corresponding to each transition equation of li j by λ̃i j. An augmented Hamiltonian

H is defined by

H (ξ) := f (l) − w (l) · l −
L∑

i=1

κi(mi) +
∑
i, j

λi j

(
φi jmi − σi jli j − xi j

)
(5.6)

+ µ0

ẏ −∑
i=i j

∂ f
∂li j

l̇i j

 +∑
i, j

µ1
i jxi j +

∑
i, j

µ2
i j

(
X − xi j

)
+

∑
i

γimi

where R(t, ξ) :=
∫ ξ

t r(τ) dτ and µ0, µ
n
i j ≥ 0 for ∀i, j, n and γi ≥ 0 for ∀i are Lagrange multipliers such that any

terms including them are zero. From maximization of Hamiltonian function, optimal conditions for mi are given

by

κ′i (mi) =
∑

j

φi j

(
λi j − µ0 fi j

)
+ γi(5.7)

γimi = 0(5.8)

λi j − µ0 fi j = µ1
i j − µ2

i j(5.9)

where fi j := ∂ f /∂li j, and costate dynamics is given by

λ̇i j =
(
r + σi j

)
λi j + µ0

(
ḟi j − σi j fi j

)
−

(
fi j − ci j

)
∀i, j(5.10)

where ḟi j :=
∑

a,b(∂2 f /∂li j∂lab) l̇ab, µ0 > 0 when the demand constraint is binding and µ0 = 0 when not.

5.1. Optimal control.

(a) Unsaturated demand case. If the demand condition (5.4) is not binding, we have µ0 = 0. Then, the optimal

condition for x is given by

(5.11) xi j =


0 if λi j > 0

X if λi j < 0
∀i, j

Proposition 5.1. When f (l) < y, if
∑

j φi jλi j > 0, then mi > 0. If
∑

j φi jλi j ≤ 0, then mi = 0.

Proof. If
∑

j φiλi > 0, the right-hand side of equation (5.7) is strictly positive, which implies mi > 0. If
∑

j φi jλi j <

0, then γi > 0 since the left-hand side of equation (5.7) must be non-negative. From equation (5.8), it implies

mi = 0. If
∑

j φi jλi j = 0, then equation (5.7) becomes κ′ (mi) e−R(t,ξ) = γi. If we assume γi > 0, equation (5.7)

implies mi > 0, contradicting equation (5.8). Thus, γi = mi = 0. �

Corollary 5.2. When f (l) < y, if xi j > 0 for all j, then m = 0. Equivalently, if mi > 0, then xi j = 0 for all j.
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It shows that if all types of workers are abundant, there will be no vacancy posting. Optimal combination of mi

and xi is characterized by domains in the space of λ’s separated by (Mi + 1) planes:
∑

j φi jλi j = 0 and λi j = 0 for

j, as shown in Figure 5.1 for Mi = 2 case.

(b) Saturated demand case. When the effective demand condition (5.4) is binding, the Hamiltonian function is

maximized under the constraint on controls
∑

i, j fi j l̇i j = ẏ or

(5.12)
∑

i

∑
j

φi j fi j

 mi = ẏ +
∑
i, j

(
σi jli j + xi j

)
with other binding constraints. Of course, the effective demand constraint also must hold as far as the path is on

the surface of the constraint, however it is redundant except a point of the path which provides an initial condition.

Proposition 5.3. Define ki
ab(λa, λb; l) := λia/ fia − λib/ fib.

(1) If
∑

a φia fiaki
a j ≤ κ′i (m̄i) for all i and j where m̄i is a solution to

ẏ =
∑

i

∑
j

φi j fi j

 m̄i −
∑

i

∑
j

σi j fi jli j∑
a φiaλia − κ′i (m̄i)∑

a φia fia
=

∑
a φi′aλi′a − κ′i′ (m̄i′)∑

a φi′a fi′a
, ∀i, i′,

then m∗i = m̄i and xi j = 0 for all i and j.

(2) If set S := {(i, j) :
∑

a φia fiaki
a j > κ

′
i (m̄i)} is non-empty, then mi is determined by

κ′i′ (mi′) =
∑

a

φi′a fi′a

(
λi′a

fi′a
−
λi′ j

fi′ j

)
> κ′i′ (m̄i′ ) ∀i′ ∈ S∑

a φiaλia − κ′i (m̄i)∑
a φia fia

=

∑
a φi′aλi′a − κ′i′(m̄i′ )∑

a φi′a fi′a
, ∀i < S .

On the other hand, xi j = 0 for all (i, j) < S and xi′ j′ for all (i′, j′) ∈ S is given by

∑
(i′, j′)∈S

fi′ j′ xi′ j′ =
∑

i

∑
j

φi j fi j

 m̄i −
∑

i

∑
j

σi j fi jli j − ẏ

and distribution among xi′ j′’s is indeterminate.

Proof. Define Ai j := λi j − µ0 fi j. From (5.9),

xi j =



0 if Ai j > 0

[0, X] if Ai j = 0

X if Ai j < 0
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λi1

λi2

O

xi1 = 0xi1 = X

xi2 = 0

xi2 = X

mi > 0

−φi1

φi2
mi = 0

λ̂1

λ̂2

x1 = 0
x2 > 0

x1 > 0
x2 = 0

(m > 0 for all λ̂1 and λ̂2)

f1

f2
grad m

grad m

λ̂2 =
f2
f1
λ̂1

x1 = x2 = 0
m is constant for all λ’s in this region.

x1 = X
x2 = 0

x1 = 0
x2 = X

O

λ̂2 =
f2
f1
λ̂1 +

1
φ2
κ′

(
σ1 f1 l1+σ2 f2 l2
φ1 f1+φ2 f2

)λ̂2 =
f2
f1
λ̂1 +

1
φ2
κ′

(
σ1 f1 l1+σ2 f2 l2+ f1X

φ1 f1+φ2 f2

)

λ̂2 =
f2
f1
λ̂1 − f2

φ1 f1
κ′

(
σ1 f1 l1+σ2 f2 l2+ f2X

φ1 f1+φ2 f2

)

λ̂2 =
f2
f1
λ̂1 − f2

φ1 f1
κ′

(
σ1 f1 l1+σ2 f2 l2
φ1 f1+φ2 f2

)

A

B

C

D

A
B

C

D

Figure 5.1. Optimal control

It is assumed that X is extremely large and the condition x ≤ X is never binding, which implies that Ai j ≥ 0 for all

i, j and thus
∑

a φiaAia ≥ 0 for all i. Then, since γi = 0 for all i,

κ′i (mi) =
∑

a

φiaAia.

Solving this obtains

(5.13) µ0 =

∑
a φiaλia − κ′i (mi)∑

a φia fia

for all i.

First, suppose Ai j > 0 for all i and j. Then, xi j = 0 for all i and j. (5.12) and (5.13) together with xi j = 0

determines mi which is common for all range in Ai j > 0. Let us denote it by m̄i. Then, the range Ai j > 0, ∀i, j is

equivalent to
∑

a φia fiaki
a j < κ′i (m̄i) for all i and j. Next, suppose that there exist some i′ and j′ such that Ai′ j′ = 0.

Then, from µ0 = λi′ j′/ fi′ j′ ,

κ′i′ (mi′) =
∑

a

φi′a fi′a

(
λi′a

fi′a
−
λi′ j′

fi′ j′

)
From the demand constraint (5.12),

∑
i
(∑

a φia fia
)

(mi − m̄i) > 0. On the other hand, from (5.13), if mi R m̄i for

some i, then m j R m̄ j for any j. These leads to mi > m̄i for all i. �

Optimal control for each λ for the case of two undeclarable types is shown in Figure 5.1. |ki
ab| can be interpreted

as pressure that represents the necessity of structural change in employment composition between type a and b. If

the pressure is relatively weak, the structural change is achieved solely through the adjustment of new employment

and natural separation. As the pressure grows, the firm is compelled to adopt dismissal. The bandwidth of the

domain x1 = x2 = 0 positively depends on l’s.

Note that the analysis made here does not fully characterize a more general case in which more than three kinds

of labor are used for production. Adjustment of employment composition without dismissal will be used in the

two-labor case to move toward the direction of a bounded steady state, which is reasonable because redundant
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λ1

λ2

f1

f2
grad m

grad m

λ2 =
f2
f1
λ1

O

A

B

C

D

A
B

C

D

Figure 5.2. Vector field in the conjugate space brought by the demand constraint in the config-
uration space such that its Hamiltonian is the first integral in the original Hamiltonian field

job posting is costly and the dynamics on the surface is one-dimensional. However, when the surface manifold

has more than two dimension, the direction toward a bounded steady state can be different from the one toward

a long-run optimal state. The conjecture in such a general case is that there would appear a turnpike property in

dynamics.

The linear structure of the optimal control on the demand constraint shown in Figure 5.1 is a direct consequence

of the presence of the demand constraint. Note that all borders that separate the domains of the optimal control

in Figure 5.1 are drawn as parallel lines with the same slope f2/ f1. This is not mere a coincidence. Consider a

transformation of variables along these borders. Namely, introduce new variables (Λ11, . . . ,ΛMN) defined by

(5.14)


Λ11

...

ΛMN

 =

λ11

...

λMN

 +


f11

...

fMN

 s =: ϕs

where s is an arbitrary parameter. Obviously, the optimal control is invariant under this transformation ϕs. More-

over, it is easily confirmed that ϕs also leaves the value of Hamiltonian invariant, which means that this transfor-

mation is a canonical transformation. Now, consider a vector field XG attached to equation (5.14). Then, ϕs is a

one-parameter group of transformation with parameter s which vector field XG generates. The vector field XG can

be obtained by the infinitesimal transformation of this group which is

dϕs

ds

∣∣∣∣∣
s=0
=

∑
i, j

fi j
∂

∂λi j

where ∂/∂λi j is the basis of the tangent space. Then, we find out that Hamiltonian G of the vector field XG is

actually G = f (l) − y. By Noether’s Theorem, G satisfies the relation {G,H} = 0 where {·} is the Poisson’s braces,

which implies that G is a first integral of the Hamilton dynamics given by H.
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5.2. Costate dynamics out of bounded surface. λ is an influence function which shows the impact of the mar-

ginal change of the initial state value l on the present value of profits J. It equals the present value of a sequence

of marginal profit of labor in which discount rate is the sum of interest rate and separation rate when the demand

constraint is unbinding.

Proposition 5.4. Let t̄e ∈ T e is the first entering time after t. Costate variables when the state constraint is not

binding is given by

(5.15) λi j(t) =
∫ t̄e

t

 ∂ f
∂li j
−

L∑
j=1

∂ci j

∂li j

 e−R(t,ξ)−S i(t,ξ)dξ +Ci(t̄e)

for (i, j) ∈ Υ where Ci j(t̄e) = 0 and t̄e = ∞ if T e = ∅.

Proof. Equations (5.10) with µ0 = 0 yields equation (5.15) with Ci undetermined. �

5.3. Costate dynamics on the demand constraint. Costate dynamics on the effective demand constraint can be

solved by focusing on “pressure to change employment structure” ki
ab. As mentioned above, this fact is no more

than the other side of the coin (literally!) that the model has a demand constraint in the configuration space. Please

observe the symmetricity between canonically conjugate coordinates. The key is that the following transformation

Φ : Ω → ω should be applied to the model where Ω = (L1, . . . ,LL,Λ1, . . . ,ΛL), ω = (l1, . . . , lL, λ1, . . . , λL),

Li = (Li1, . . . , LiMi ), Λi = (Λi1, . . . ,ΛiMi ), li = (li1, . . . , liMi ) and λi = (λi1, . . . , λiMi ). Note that one can always

choose j∗(i) such that
∑

a φia fiaki
a j∗(i) ≥ 0 for all i by taking j∗(i) = arg min j λi j/ fi j for given i:

Φ :



li1
...

li, j∗(i)
...

liMi


=



Li1

...

g(t,L)
...

LiMi


and



λi1

...

λi2

...

λiMi


=



Λi, j∗(i) + fi, j∗(i)Λi1

...

fi, j∗(i)Λi, j∗(i)

...

Λi, j∗(i) + fi, j∗(i)ΛiMi


for all i.

where g : R+ × · · · × R+ → R+ is a function that satisfies y(t) − f (. . . , Li, j∗(i)−1, g(t,L), Li, j∗(i)−1, . . .) = Li, j∗(i). This

is a point transformation and therefore is a special case of canonical transformation. A canonical transformation

is defined to be a transformation the pull-back of which maps a second order differential form to itself and it is

known to be preserving the Hamiltonian function.10 A point transformation is a type of canonical transformation

in which the transformation of the configuration subspace is limited to itself.

10See Arnol’d (1989) and Ito (1998) for analytical mechanics.
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The construction of Φ can be easily observed by the following arguments. Suppose λi1/ fi1 = mina λia/ fia for

given i without loss of generality. We construct a point transformation Φ : (L;Λ)→ (l; λ) = (ϕ(L); λ) such that

ϕ−1 :



Li1

Li2

...

LiMi


=



y(t) − f (l)

li2
...

liMi


or equivalently ϕ :



li1

li2
...

liMi


=



g(t,L)

Li2

...

LiMi


.

For it to be a point transformation, Hamiltonian must be invariant with this except for the “time-variant” term.

Therefore, 

Λi1

Λi2

...

ΛiMi


= tϕL



λi1

λi2

...

λiMi


=



− 1
f1

0 · · · 0

− f2
f1

1 O
...

. . .

− fMi
f1

O 1





λi1

λi2

...

λiMi


=



− λ1
f1

λ2 − f2
f1
λ1

...

λMi −
fMi
f1
λ1


must hold, which implies 

λi1

λi2

...

λiMi


=



− f1Λ1

Λ2 + f2Λ1

...

ΛMi + fMiΛ1


.

Note that, with this choice of j∗(i), it becomes possible to make
∑

a φiaΛia ≥ 0 so that the transformation does not

conflict with the limitation that κ′−1(·) is defined only on domain R+.

The Hamiltonian K on the new coordinates is given by

K(t, L,Λ) = H(t,Φ(t, L,Λ)) −
〈
ϕt,

(
tϕL

)−1
Λ

〉
which simplifies to

(5.16) K = f
(
. . . , Li, j∗−1, g(t, L), Li, j∗+1, . . .

)
− c

(
. . . , Li, j∗−1, g(t, L), Li, j∗+1, . . .

)
−

∑
i

κi

(
mi

∑
a, j∗

φiaΛia

) +∑
i

∑
a, j∗
Λia

(
φiam

∑
b, j∗

φibΛib

 − σiaLia

)

where m(·) := κ′−1(·). The equation does not contain Λ j∗ , showing that L j∗ is an cyclic coordinate. This is an

energy surface on which a path is restricted. When L = 1 and M1 = 2, it implicitly but fully characterizes the

solution. Note that λ j∗ is indeterminant on the demand surface.

5.4. Costate discontinuity on junction points.

Entering condition to the demand constraint. Let C ⊂ RM be a configuration space. Define an entering time

te ∈ R to a state constraint surface B ⊂ C such that the costate variable µ0 adjoint to the state constraint B yields

µ0(te) = µ0(te−ε) = 0 and µ0(te+ε) > 0 for any arbitrarily small ε > 0. Let z(t) : R→ C be a path, i.e. a trajectory
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projected onto the configuration space. Then, z(te) is called an entering point. Similarly, leaving time tl ∈ R from

a state constraint B is defined to be µ0(tl) = µ0(tl + ε) = 0 and µ0(tl − ε) > 0 for any arbitrarily small ε > 0. z(tl)

is called a leaving point. Denote a set of all entering times by T e and and a set of all leaving time by T l. We also

call t j ∈ T e ∩ T l a junction time and z(t j) a junction point. In general, costate variables are time-discontinuous

either at entering points to or at leaving points from the state constraint. And generally, it is unknown whether

the discontinuity occurs at entering points or at leaving points (Bryson et al. (1963)). This is due to the fact that

a state constraint imposes restriction on controls in its derivative form. Its initial value can be be specified either

by a initial point or a terminal point. When costate variables are continuous at entering time and discontinuous at

leaving time, costate variables are interpreted as normals to neighborhood of the optimal trajectory on the limiting

surface when dynamics is controlled by optimal control after the entering time. However, in our problem, we will

find out that discontinuity should occur only at entering points. In other words, costate variables in this problem

are interpreted as normals to neighborhood of the optimal trajectory on the limiting surface when the neighborhood

is a transformation of the one at the leaving time and dynamics is controlled backward by optimal control tracing

back from the leaving time. This is due to the forward-looking property of economic dynamics.

At a junction point t ∈ T e ∩ T l,

λ−ia = λ
+
ia + ρ fia(5.17)

H− = H+ + ρẏ(5.18)

where ρ is an indeterminate variable adjoint to the state constraint y − f (l) = 0 and, for any variable A, we denote

A− := limt↑tJ A, A+ := limt↓tJ A. From (5.17),

ρ =
λ−ia − λ+ia

fia

for all i and a, which implies

(5.19) ∆ki
ab =

∆λia

fia
− ∆λib

fib
= 0

for all i, a and b such that a , b. Namely, the jump at junction points occurs along contour lines in Figure 5.1 so

that ki
ab does not change.

Noting that π+ = π−, we obtain, from (5.18),

∑
i, j

λ−i j

(
φi jm−i − σi jli j − x−i j

)
−

∑
i

κi
(
m−i

)
=

∑
i, j

λ+i j

(
φi jm+i − σi jli j − x+i j

)
−

∑
i

κi
(
m+i

)
+ ρẏ

Using (5.17), it turns out

∑
i

κi
(
m+i

) −∑
i

κi
(
m−i

) −∑
i, j

(
φi jλ

−
i j

) (
m+i − m−i

)
+

∑
i, j

(
x+i j − x−i j

)
λ−i j =


0 if t ∈ T e

ρ
(
ẏ − f1 l̇+1 − f2 l̇+2

)
if t ∈ T l

(5.20)
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Or, the same relation can be expressed as

∑
i

κ
(
m−

) −∑
i

κ
(
m+

) −∑
i, j

(
φi jλ

−
i j

) (
m− − m+

)
+

∑
i, j

(
x−i j − x+i j

)
λ−i j =


ρ
(
ẏ − f1 l̇−1 − f2 l̇−2

)
if t ∈ T e

0 if t ∈ T l

(5.20’)

Proposition 5.5. At both entering and leaving points, mi is continuous at mi = m̄i. xi j is continuous at xi j = 0 at

leaving points and also at entering points when ẏ ≥ −∑
i, j σi jli j. If ẏ < −∑

i, j σi jli j, x+i j > 0 for some (i, j) possibly

showing discontinuity.

Proof. When t ∈ T e, λ−i j ≥ 0 for ∀i, j. If λ−i j < 0 for some i and j, then x−i j = X, which implies
∑

i, j fi j l̇−i j � ẏ,

violating the entering condition
∑

i, j fi j l̇−i j > ẏ. First, suppose λ−i j > 0 for some i and j. Then, (5.20) becomes

∑
i

κi
(
m+i

)
=

∑
i

κi
(
m−i

)
+

∑
i

κ′i
(
m−

) (
m+i − m−i

) −∑
i, j

x+i jλ
−
i j

when t ∈ T e. However, since κi is a convex function and x ≥ 0, the above relation is only possible when m+i = m−i

and x+i j = 0 for all i and j. On the other hand, if λ−i j = 0 for all i and j, (5.20) yields
∑

i κi(m+i ) =
∑

i κi(m−i ) = 0 and

again mi is continuous at zero for all i. In this case, ki
ab(te) = λ+ia/ fia − λ+ib/ fib = λ−ia/ fia − λ−ib/ fib = 0 for all i, a, b

which implies xi j = 0 for all i, j as far as ẏ ≥ −∑
i, j σi jli j by Proposition 5.3. If ẏ < −∑

i, j σi jli j, some of xi j are

strictly positive according to (2) of Proposition 5.3.

At leaving points, (5.20’) becomes

∑
i

κi
(
m−i

)
=

∑
i

κi
(
m+i

)
+

∑
i

κ′i
(
m+i

) (
m−i − m+i

) −∑
i, j

x−i jλ
+
i j

when t ∈ T l. However, since κ is a convex function and x ≥ 0, the above relation is only possible when m+i = m−i

and x−i j = 0 for all i and j.

Since xi j = 0 for all i, j, mi = m̄i for all i, for both entering and leaving points from Proposition 5.3, �

Corollary 5.6. An entering point locates on a closed interval
∑

j

(
φi jλ

−
i j

)
= κ′(m̄i) where λ−i j ≥ 0 Moreover, if

ẏ ≥ 0, λi j∗ = 0 for j∗ = arg min j λ j.

Proof. Since x+i j = 0 from Proposition 5.5, ki
ab must be such that

∑
a φia fiaki

a j ≤ κ′i (m̄i) at the entering points

(Proposition 5.3 (1)). Since mi is continuous at mi = m̄i from Proposition 5.5, the entering point must be located

on a closed segment
∑

j φi jλ
−
i j = κ

′
i (m̄i) in the conjugate space with the condition

∑
a φia fiaki

a j ≤ κ′i (m̄i) for all j.

Suppose that the entering point was an inner point of {λ :
∑

a φia fiaki
a j ≤ κ′i (m̄i)}. Then, by the continuity of

λ, optimal control at t = te + ε is unchanged: mi(te + ε) = m̄i(te + ε) and xi j = 0. Since ẏ ≥ 0, it implies that

mi(te + ε) > m̄i(te). If we hypothetically assume that the path is unbounded after the entering time, κ′i (mi(te + ε)) =∑
j φi jλi j(te + ε) <

∑
j φi jλi j(te) = κ′i (mi(te)), since λ̇i j < 0. It implies that mi(te + ε) < m̄i(te). It implies that the

constraint is actually unbinding immediately after entering time. Therefore, the entering point must be located on

the border of {λ :
∑

a φia fiaki
a j ≤ κ′i (m̄i)}. It implies that the equality must be set for j∗ = arg min j λ j. �
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dl2/dl1

φ2
φ1

O mσ1
φ1

l1

m

Figure 5.3. Change of the slope of displacement vector when m ↓ m

Note that, since ρ = −λ+i j/ fi j, the costate variables are generally discontinuous at the entering points. From

Proposition 5.5, entering points locate in domain
∑

a φia fiaki
a j ≤ κ′i (m̄i). It implies that the entering to the demand

constraint must be “smooth” in the configuration space. Namely, growth of labor must slow down as employment

approaches to the demand constraint. The next proposition shows that the slowdown accompanies revolution in

the configuration subspace between different undeclarable types.

Proposition 5.7. If an entering point is located in domain {(lia, lib) : (σia/φia)lia < (σib/φib)lib}, the path prior to

entering shows clockwise revolution. If entering occurs in domain {(lia, lib) : (σia/φia)lia > (σib/φib)lib}, the path

prior to entering shows counterclockwise revolution.

Proof. The displacement vector when the state constraint is unbinding is given by

(dlia, dlib) = dlia

1, l̇−ib
l̇−ia

 = dlia

1, φib

φia

1 + σia
φia

lia − σib
φib

lib
m − σia

φia
lia


Since l̇ia > 0 before entering, if (σia/φia)lia < (σib/φib)lib, then d2lib/dliadt < 0. This can be observed by Figure

5.3. The case for (σia/φia)lia > (σib/φib)lib is obtained by symmetricity and d2lib/dliadt > 0. �

The behavior between different declarable labor types prior to entering is more complex. In such a case, the

displacement vector is characterized by dl−ia/dl−jb = (φiami−σialia)/(φ jbm j−σ jbl jb) the movement of which is also

affected by the relative convergence speed of mi and m j, not only relative size of labor.

Leaving condition from the demand constraint. Leaving points exist in the interior of
∑

a φia fiaki
a j ≤ κ′i (m̄i). Note

that leaving from the demand constraint never occurs so far as ẏ ≤ 0. Leaving occurs when catchup to the growth

of demand becomes too costly in terms of accompanying vacancy cost.

As ẏ becomes too large, it becomes suboptimal to stick to the surface of the demand constraint. What happens

is that as ẏ grows, the band B ≥ k ≥ C (
∑

a φia fiaki
a j ≤ κ′i (m̄i)) in Figure 5.1 widens while the width of other bands

are kept constant. It implies that for given k, it becomes more likely to fall in the domain B ≥ k ≥ C. Unless
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the value of ẏ is such that corresponding optimal control keeps the state variables exactly on the surface of the

demand constraint, as soon as k falls in the domain B ≥ k ≥ C, the state variables leaves the demand constraint.

The leaving is more likely to happen if |k| is small.

Proposition 5.8. Leaving points locate in the interior domain
∑

a φia fiaki
a j < κ′i (m̄i) and λ’s are continuous on

those points.

Proof. Similar to Proposition 5.6,
∑

a φia fiaki
a j ≤ κ′i (m̄i) must hold. However, if

∑
a φia fiaki

a j = κ
′
i (m̄i), λ+i = 0 for

some i. This is impossible. Therefore, leaving points locate in interior domain
∑

a φia fiaki
a j < κ

′
i (m̄i).

Next, suppose that λ’s are discontinuous at leaving points, i.e. λ+i j , λ−i j for all i, j. Since µ0 = 0 at leaving

points, κ′i (m
+
i ) =

∑
j φi jλ

+
i j and κ′i (m

−
i ) =

∑
j φi jλ

−
i j, which implies that m+i < m−i (opposite inequality is impossible

because the path is leaving below the constraint). Now, since λ’s are continuous except junction points, we can

take sufficiently small ε > 0 such that states at time tl − ε remain interior of domain III and

κ′i (mi(tl − ε)) =
∑

j

φi jλi j(tl − ε) − µ0(tl − ε)
∑

j

φi j fi j > κ
′
i (m
+
i (tl))

where µ0(tl − ε) > 0 and converges to zero as ε→ 0. Therefore, we have

mi(tl − ε) > m+i (tl)

xi j(tl − ε) = xi j(tl) = 0 ∀i, j.

Then,

ẏ(tl − ε) =
∑

i


∑

j

φi j fi j

 mi(tl − ε) −
∑

j

σi j fi jli j(tl − ε)


>

∑
i


∑

j

φi j fi j

 m+i (tl) −
∑

j

σi j fi jli j(tl − ε)


→

∑
i


∑

j

φi j fi j

 m+i (tl) −
∑

j

σi j fi jli j(tl)

 = ẏ(tl)

as ε ↓ 0. Namely, ẏ− > ẏ+ at leaving points. This contradicts the assumption that ẏ is continuous. Therefore, λ’s

must be continuous at leaving points. �

6. Rationale ofWage Function

λ is an influence function of l on the value of the optimand in the maximization problem for a firm. To justify a

wage function derived in Section 3 and 4, however, we need to know the marginal impact of change in l on

F(l) =
∫ ∞

t

 f −
∑

i

κi

 e−Rdξ

instead of J, when l follows the optimal employment path for a firm. Actually, it can be shown that a new “influ-

ence” function of l on F can be constructed based on the derivation of λ. Let the new influence function denoted
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by λ∗. The above equation can be rewritten

(6.1) F(l) =
∫ ∞

t

(
H + c + λ̇∗ · l

)
e−Rdξ − λ∗(∞) · l(∞) + λ∗(t) · l(t)

using the new costate variable λ∗. Taking total derivative11

δF =
∫ ∞

t

[(
∂H
∂l
+
∂c
∂l
+ λ̇∗

)
δl(ξ) +

∂H
∂u

δu(ξ)
]

dt − λ∗(∞) · δl(∞) + λ∗(t) · δl(t)

where u = (m, x1, x2). We want to set λ so that we can neglect the effect of δl(ξ) (t < ξ < ∞) on δJ. Then,

dynamics of λ∗ should be given by

λ̇∗ = −∂H
∂l
− ∂c
∂l
= λ̇ − ∂c

∂l

and the new λ∗(t) which follows the above dynamics is the “influence” of l upon the payoff of the total coalition.

It implies

(6.2) λ∗i j =

∫ te

t
fi j e−

∫
(r+σi j)ds +C

from µ0 = 0 in equation (5.10). When distribution between workers and a firm is bargained, marginal impact of de-

crease in coalition matters. When an agent leaves the coalition, bounded demand becomes unbinding. Therefore,

regardless whether demand constraint is binding, (6.2) is pertinent to the problem.

Theorem 6.1. F has the property that ∂F/∂li j− > 0 and ∂2F/∂l2i j− < 0 for all (i, j).

Proof. From equation (6.2),

∂λ∗i j

∂li j(t)
=

∫ te

t

∑
h

∂2 f (s)
∂lih(s)2

∂lih(s)
∂li j(t)

e−
∫

(r+σ)ds +
∂te

∂li j(t)
∂ f (t)
∂li j(t)

< 0

for all (i, j) ∈ Υ in either case that the demand constraint is binding or not binding. Note that after the change of

li j(t), for all s > t, ∂li j(s)/∂li j(t)− > 0 and dlih(s)/∂li j(t)− < 0 where j , h since x = 0 is optimal control after

the shock. Also, ∂te/∂l(t) < 0. Since ∂2F/∂li j(t)2 = ∂λ∗i j/∂li j(t), it implies that function F is ∂F/∂li j > 0 and

∂2F/∂l2i j < 0. �

Theorem 6.1 shows that the present value of the coalition F satisfies the condition of Definition 3.1. Namely, we

proved that the fundamental game between workers and a firm presented in Section 3 is consistent with the model.

The next theorem completes the argument that there will be excess demand for labor if the demand constraint

is unbinding which is the source of the (modified) principle of effective demand. Since increase of labor always

amplifies profit of firm, it is always willing to accommodate additional potential demand as far as it is smaller than

the unbounded steady state level.

Theorem 6.2. If the demand constraint is unbinding and l is smaller than the unbounded steady state, dJ/dl > 0.

Moreover, if ∂F/∂t∂li j − U̇i ≤ 0, then wi j(t) < ∂ f (t)/∂li j for all (i, j) ∈ Υ and t.

11The differential operator is denoted by δ to distinguish it from the infinitesimal increment in integration.
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Proof. The first statement is obvious from the fact that λi j > 0 for all i, j when the demand constraint is unbinding

and l is smaller than the unbounded steady state. The second statement comes from the following. From ∂F/∂li =

λ∗i , λ̇∗i j = − fi j + (r + σi j)λ∗i j. Equation (4.5) yields

fi j − wi j =
(
wi j − bi

)
+ σiλ

∗
i j + µi

∫ ∞

t
Eh [wih − bi] e−

∫
αds − 2σi(Ei j − Ui)

=
(
wi j − bi

)
+ µi

∫ ∞

t
Eh [wih − bi] e−

∫
αi ds + σiUi

> 0

where the second line is obtained using Ei j −Ui = (λ∗i j −Ui)/2 and the last inequality comes from Proposition 4.2

and Proposition 4.3. �

7. Steady State on the Demand Surface

The model allows for an analysis of a perpetually moving economy. However, to settle down the endpoint

of costate variables, it is convenient to analyze the steady state. The previous analyses showed that unless there

is coordinated expectation among economic agents which persists for infinite length of time, the economy will

not reach to an unbounded steady state. However, an economy can find out a steady state on a binding demand

constraint with reasonable size of demand. There is at least one candidate for it —— if we can think of an economy

which has stabilized effective demand, it will find a steady state with the current level of output. Suppose ẏ = 0.

Then, it is found out that strictly positive amount of rejection of job application will occur at the steady state unless

parameters satisfy a relation which has a zero measure in the parameter space.

It will be shown that a bounded steady state maximizes the profit when initial state of labor can be chosen

directly and when labor —which is an asset— is discounted by interest rate. Consider the following problem.

(P’) max
l,m,x

 f (l) − w (l) · l −
L∑

i=1

κi(mi)


subject to

φi jmi = (r + σi j)li j + xi j, ∀i, j(5.1’)

y = f (l)(5.4’)

Theorem 7.1. Steady-state solution of problem (P) is equivalent to the solution of (P’).

Proof. The optimality condition of the problem (P’) is given by

κ′i (mi) =
∑

j

φi jλ̂i j(5.7’)

λ̂i j =
fi j − ci j

r + σi j
− µ̂0

fi j

r + σi j
(5.10’)
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xi j =


0 if λ̂i j > 0

X if λ̂i j < 0
(5.11’)

and the constraints where λ̂i j and µ̂0 are costate variables adjoint to equations (5.1’) and (5.4’), respectively. From

(5.7’) and (5.10’),

(7.1) µ̂0 =

∑
j

φi j

r+σi j
( fi j − ci j) − κ′i (mi)∑

j
φi j

r+σi j
fi j

Since X is arbitrarily large and therefore the steady state condition for li j does not hold when xi j = X, λ̂i j < 0 is

impossible for all i. Thus, λ̂i j > 0 or λ̂i j = 0. If there exist (i, j) such that λ̂i j = 0, then for such (i, j)’s

(7.2) µ̂0 =
fi j − ci j

fi j
∀(i, j), λ̂i j = 0

and for other (i, j)’s such that λ̂i j > 0,

(7.3) xi j = 0 ∀(i, j), λ̂i j > 0

holds. Then, the solution is completely characterized by (5.1’), (5.4’), (7.1), (7.2) and (7.3).

On the other hand, the bounded steady state solution to the original problem (P) is given by imposing steady

state condition l̇ = λ̇ = ḟi j = 0 to each optimal condition. Imposing it on (5.1) and (5.4) obtains the same condition

as (5.1’) and (5.4’). From (5.10) and the steady state conditions,

(5.10”) λi j =
fi j − ci j

r + σi j
+ µ0

σi j fi j

r + σi j
.

Substituting this to (5.7) derives

(7.1’) µ0 =

∑
j

φi j

r+σi j
( fi j − ci j) − κ′i (mi)

r
∑

j
φi j

r+σi j
fi j

,

which is equivalent to (7.1) if we define µ̂0 = rµ0. From (5.10’) and (5.10”), λi j = λ̂i j + µ0 fi j, which results in

equivalence relation between

xi j =


0 if Ai j > 0

[0, X] if Ai j = 0
in problem (P) ⇐⇒ xi j =


0 if λ̂i j > 0

[0, X] if λ̂i j = 0
in problem (P’).

All of the above equivalences show that problem (P’) is equivalent to problem (P). �

The next theorem shows that, in general, the point in which long-run profit is maximized does not coincide with

the point in which a bounded steady state is achieved with no-firing. It means that either dismissal or rejection of

job application will occur at a bounded steady state.
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Theorem 7.2. If
∑L

i=1 Mi ≥ 2, the set of parameters (φ, σ) that brings xi j = 0 for all (i, j) at steady state has zero

measure in the parameter space for given f and κ.

Proof. From Theorem 7.1, the proposition can be proved via problem (P’). x which appears in (P’) can be viewed

as a slack variable substituting equality of equation (5.1’) with inequality. Namely, it is equivalent to the following

problem:

(P”) min
l,m

w(l) · l +
L∑

i=1

κi(mi)


subject to

φi jmi ≥
(
r + σi j

)
li j, ∀i, j(5.1”)

y = f (l)(5.4’)

Obviously, mi maximizes the maximand when it is set to mi = min j{(r +σi j)li j/φi j} in equation (5.1”). Maximiza-

tion on l with this condition completely determines solution for l. However, in general,

r + σi j

φi j
li j ,

r + σi j′

φi j′
li j′

for any j′ , j, making xi j′ > 0 for any j′ such that j′ , arg min j{(r + σi j)li j/φi j}. Even when the condition

(7.4)
r + σi j

φi j
li j =

r + σi j′

φi j′
li j′

for all j, j′, i holds, it fails to hold once any small perturbation is added on one of r,σ or φ keeping other parameters.

Namely, a set of parameters which satisfies (7.4) does not contain inner points, which implies that it has zero

measure in the parameter space when
∑L

i=1 Mi ≥ 2. �

The above theorem shows that dismissal or rejection of application generically occurs at least in one of the

labor types not only in transition on the demand constraint surface but also at steady state, when there exist more

than two labor types in the economy.

Figure 7.1 shows typical dynamics toward steady state when L = 1 and M1 = 2. Paths starting from initial

points A1, A2 and A3 converges to a steady state C when steady state demand level is y1. The paths starting from A1

and A2 enter the demand surface with clockwise motion whereas the one starting from A3 shows counterclockwise

movement. If demand unexpectedly shifts up to y = y2 when the state is in neighborhood of C, the path starts to

move toward the new demand surface and after counterclockwise entering, it continues with zero dismissal until

it crosses a line which passes through the origin. After crossing over the line, it starts to dismiss type 1 workers

and converges to a new steady state D.
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l1

l2

O

Iso-profit curves

(Unbounded steady state)Iso-quant curves

A1 B

C

D

E

y = y1

y = y2

σ2
φ2

l2 =
σ1
φ1

l1 − ẏ
φ2 f2

(ẏ = 0 is assumed in this figure)

A2

A3

Counterclockwise entering

Clockwise entering

Figure 7.1. Unexpected shift of the demand constraint

8. Concluding Remarks

This paper showed that if there is search friction representable by a convex vacancy cost function ——however

small cost for a given amount of hiring——, the economy obeys the effective demand principle. Wage rate is al-

ways smaller than marginal productivity, and a direct attempt to lower wage rate will not remove unemployment,

as the old Keynesian arguments suggest. It should be noted that any kinds of sticky price is not assumed in this

model. The existence of convex vacancy cost prohibits convergence to an unbounded steady state, or an equilib-

rium in the long run, without persistent coordination of expectation. Wage rate is flexible reflecting redundant

resources in the labor market.

In search models, profit of a firm is strictly positive even when the commodity market is competitive. The fact

that an entrepreneur earns non-zero profit and that he has massive power in bargaining as suggested in this paper

raises a fundamental question that who really is the “entrepreneur”. The question cannot be neglected when one

undertakes to specify the demand side explicitly because it affects distribution of income. There can be two most

straightforward but extreme ways of extension: one is to assume that income level has no impact on consumption

behavior. The other is to assume that there are two classes, workers and entrepreneurs in a Kaldorian way. The

latter literally assumes that the entrepreneur (and his successor) embodies all the knowledge needed to manage

firm and it will never be transferred to workers. It enables the analysis of distribution impact in a simple but

extreme way. In the model presented in this paper, the equilibrium condition V = 0 does not have an explicit role.

A similar condition is still effective, although now V is a function of potential demand as well as other related

variables. Therefore, it is not the ultimate condition which determines the number of firms. Rather, the size

of potential demand limits it. The decision whether a potential entrepreneur should start a business depends on

future expectation of the marketability of his own technology and business. It should be immediately added that

the model naturally allows for product differentiation in a competitive environment, since allocation of effective

demand is inevitable.
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The model only determines relative wages at each moment as the wage bargaining is based on rational expecta-

tion on both sides. With a help of a consumer theory which contains intertemporal decisions, it determines relative

prices between output goods at different moments. Note that there is no built-in mechanism which brings the

economy back to a natural level of output nor natural rate of unemployment. In such an economy, inflation can be

a non-monetary phenomenon. Also, the widely observed long-run stability of unemployment rate might be attrib-

uted to more long-run factors instead of natural rate, such as industrial structure. It should be noted that autarky,

or agriculture in a broader sense, always possesses a special role as a fall-back option for workers, especially in a

traditional society.
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