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Abstract

This note considers second-price, sealed-bid auctions with a buy price. We use
a simple two-bidder, two-type framework and examine how the introduction of buy
prices affects the seller’s equilibrium revenues. When we consider all equilibria, an
equilibrium revenue can be zero in the auctions without a buy price. On the contrary,
an equilibrium revenue is always positive in the auctions with a buy price.
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1 Introduction

This note considers second-price, sealed-bid auctions with a buy price. We analyze a simple
two-bidder, two-type framework and examine how the introduction of buy prices affects the
seller’s equilibrium revenues. To highlight the effects of buy prices, we contrast the case of
auctions without a buy price and the case of auctions with a buy price. Especially, we focus
on the maximum (or supremum) and the minimum (or infimum) of equilibrium revenues.
We consider all equilibria.1

When we consider the auctions without a buy price, as Maskin and Riley (1985) pointed
out, there are a lot of imperfect equilibria even in a two-bidder, two-type framework.2 Of
course, an equilibrium revenue is not unique. It can be zero, or greater than the one at the
weakly dominant strategy equilibrium.

Similarly, we have a lot of equilibria in the auctions with a buy price.3 The equilibrium
revenues, however, are not zero. That is, a seller can always obtain a positive equilibrium
revenue by introducing a buy price. On the contrary, the maximum of equilibrium revenues
does not change.

Several papers consider all equilibria, not all equilibrium revenues.4 Blume and Heidhues
(2004) derived all equilibria in second-price, sealed-bid auctions where there are at least
three bidders. Plum (1992) analyzed all equilibria in two-bidder auctions with various
payment rules. In second-price, sealed-bid auctions, however, he restricted their attention

∗I am grateful to Tadashi Sekiguchi for his guidance. This note is based on the section of my other paper,
“The Role of Partially Truth-telling Strategies in Buy Price Auctions.”

†E-mail: inami@toki.mbox.media.kyoto-u.ac.jp
‡Address: Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
1Many papers often limit their attention to equilibria where all bidders play weakly dominant strategies.

However, restrictions of this kind are not supported by theoretical or empirical results.
2Milgrom (1981) indicated that there are imperfect equilibria in continuous type distributions.
3Budish and Takeyama (2001) restricted their attention to the symmetric equilibrium where both bidders’

high-types bid a buy price and both bidders’ low-types bid their own valuations.
4To our knowledge, there is little related work on all equilibrium revenues.
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to undominated strategy equilibria. Bikhchandani and Riley (1991) and Lizzeri and Persico
(2000) analyzed interdependent value models.

The rest of this note is organized as follows. Section 2 describes the model. Section 3
presents the main result. And Section 4 concludes.

2 The model

We consider second-price, sealed-bid auctions with a buy price B ∈ [0, +∞).5 We assume
that bidders’ types are independently and identically distributed. Moreover, we assume that
bidders value the item depending on their own types.

Let N = {1, 2} be the set of bidders. The set of types is Ti = {vL, vH}, where vL < vH .
We denote by p the probability that bidder i is vL-type. We assume that p > 0.

In Internet auctions, bidders do not bid above the buy price B. We then assume that
bidders cannot bid above a buy price B. That is, the set of actions is Ai = [0, B]. Bidder
i’s payoff function is ui : A × Ti → R, where A = A1 × A2. Given ti ∈ Ti and a ∈ A, bidder
i’s payoff is:

ui(a; ti) =


ti − aj if ai ̸= B and ai > aj ,
ti − B if ai = B and ai > aj ,

1
2 (ti − ai) if ai = aj ,

0 if ai < aj .

If no one bids the buy price B, then the auction is the same as an ordinary second-price,
sealed-bid auction. That is, the highest bidder obtains the item and pays the second highest
bid (i.e., the other bidder’s bid). If only one bidder bids the buy price B, then he obtains
the item and must pay it to the seller. If both two bidders bid the same amount (It might
be the buy price B.), we adopt the tie-breaking rule that a winner is determined with equal
probability.

Bidder i’s strategy is σi : Ti → ∆(Ai), where ∆(Ai) is the set of probability distri-
butions over Ai.6 A solution concept is Bayesian Nash equilibrium: the strategy profile
σ = (σ1(·), σ2(·)) is a Bayesian Nash equilibrium if for all i ∈ N , all ti ∈ Ti, and all a′

i ∈ Ai,

E[ui(a; ti)|σi(·), σj(·), ρ(·)] ≥ E[ui(a′
i, aj ; ti)|σj(·), ρ(·)],

where σj(·) is the other bidder’s strategy and ρ(·) is the probability distribution over Tj .

3 Results

We examine the effects of buy prices on seller’s equilibrium revenues. To understand the
influences, we contrast the case of the auctions without a buy price B and the case of the
auctions with a buy price B. Specifically, we focus on the maximum (or supremum) and the
minimum (or infimum) of equilibrium revenues. We analyze all equilibria.

3.1 The auctions without a buy price B

We consider the auctions without a buy price B. When we analyze all equilibria, an equilib-
rium revenue is not unique. Then, we pay much attention to the maximum (or supremum)
and the minimum (or infimum) of equilibrium revenues.

First, we derive the minimum (or infimum) of equilibrium revenues. Indeed, the minimum
of equilibrium revenues is zero. For example, consider the following strategy profile σ =
(σ1(·), σ2(·)):

σ1(t1) = 0 for all t1 and σ2(t2) = vH for all t2.

5We do not consider the choice of a buy price by the seller.
6When σi(·) is a pure strategy, we often regard the range of σi(·) as Ai.
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The strategy profile σ is an equilibrium and the equilibrium revenue is zero.
Next, we derive the maximum (or supremum) of equilibrium revenues. Generally, to be

an equilibrium, one of the bidders’ vL-types must submit a bid below vL. It is because if
both bidders’ vL-types submitted bids strictly above vL with positive probability, one of the
bidders could increase his payoff by undercutting his bid. Here, without loss of generality,
let bidder 1 be the bidder whose vL-type bids below vL. Thus, the seller’s revenues are at
most vL when bidder 1 is vL-type.

For the same reason as the case in which both bidders are vL-type, one of the bidders’
vH -types must submit a bid below vH . Here let bidder 2 be the bidder whose vH -type bids
below vH . In addition, bidder 2’s vL-type can bid strictly above vL. Then, the seller’s
revenues are at most vH when bidder 1 is vH -type.7

From the above arguments, the maximum of equilibrium revenues is pvL + (1 − p)vH .
For example, consider the following strategy profile σ = (σ1(·), σ2(·)):

σ1(t1) =
{

b1H (> vH) if t1 = vH ,
t1 if t1 = vL and σ2(t2) = vH for all t2.

The strategy profile σ is an equilibrium and the equilibrium revenue is pvL +(1−p)vH . The
seller’s expected revenue at the weakly dominant strategy equilibrium, where each type of
bidders submits own valuation, is p(2− p)vL + (1− p)2vH . This equilibrium revenue is less
than pvL + (1 − p)vH .

Recall the strategy profile σ. Replacing bidder 1’s bids with b1 ∈ (0, vL], the modified
strategy profile is also an equilibrium and then the equilibrium revenue is b1 ∈ (0, vL].
Similarly, recall the strategy profile σ. Replacing bidder 2’s bids with b2 ∈ (vL, vH), the
modified strategy profile is also an equilibrium and then the equilibrium revenue is b2 ∈
(vL, pvL + (1 − p)vH).

To summarize, we have the following proposition.

Proposition 1. Consider the auctions without a buy price B. Then, the seller obtains an
equilibrium revenue in [0, pvL + (1 − p)vH ].

3.2 The auctions with a buy price B

Now, we consider the auctions with a buy price B ∈ (vL, vH ]. The auctions are roughly
divided into two classes. One is that the seller sets a buy price B ∈ (vL, B∗]. The other is
that the seller sets a buy price B ∈ (B∗, vH ].

Here we provide an explanation for the buy price B∗. When we consider the auctions, it
is natural to focus on the symmetric strategy profile where bidder’s vH -type bids a buy price
B and bidder’s vL-type bids own valuation. It is because a bidder whose type is greater
than, or equal to the buy price B actually bids it and because a bidder whose type is less
than the buy price B takes a weakly dominant action. This strategy profile is an equilibrium
if and only if

p(vH − B) +
1 − p

2
(vH − B) ≥ p(vH − vL) (1)

holds. The buy price B∗ is the highest one that satisfies (1).89

We consider each class and then analyze all equilibria. As well as the case of the auctions
without a buy price B, we pay much attention to the maximum (or supremum) and the
minimum (or infimum) of equilibrium revenues.

7If we let bidder 1 be the bidder whose vH -type bids below vH , we can only derive a supremum of
equilibrium revenues. It is because bidder 2’s vL-type does not bid above vH in this case.

8That is, (1) holds with equality. See Budish and Takeyama (2001) for details.
9We can always find a buy price B ∈ (vL, vH ] such that (1) holds.
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3.2.1 The auctions with a buy price B ∈ (vL, B∗]

We consider the case in which the seller sets a buy price B ∈ (vL, B∗]. Fix a buy price
B. At an equilibrium, in the same as the case of the auctions without a buy price B, both
bidders’ vL-types do not bid strictly above vL with positive probability. Without loss of
generality, let bidder 1 be the bidder whose vL-type bids below vL.

If both bidders’ vH -types bid the amount except the buy price B with positive probability,
one of the bidders could increase his payoff by bidding the amount that is slightly above the
other bidder’s bid. Therefore, only one of the bidders’ vH -types can randomize his action
between bidding the buy price B and bidding the amount except the buy price B. Here we
assume that the following condition holds:10

p(vH − vL) +
1 − p

2
(vH − vL) ≤ p(vH − 0). (2)

Then, there always exists 0 < b ≤ vL such that

p(vH − B) +
1 − p

2
(vH − B) = p(vH − b) (3)

holds. Note that (3) holds for b = vL when B = B∗.
First, we derive the minimum (or infimum) of equilibrium revenues. At an equilibrium,

bidder 2’s vH -type bids the amount except the buy price B with positive probability.11 If
each type of bidder 2 submits the amount except the buy price B and wins, then he pays
the other bidder’s bid (i.e., the bid of bidder 1’s vL-type). Here let bidder 1’s vL-type bid b
with probability 1.12

Suppose that bidder 2’s vH -type bids b2H ̸= B with probability β, and that bidder 2’s
vL-type bids b2L ∈ [vL, B). Since bidder 1’s vH -type bids the buy price B at an equilibrium,

β{p(vH − B) + (1 − p)(vH − B)} + (1 − β)
{

p(vH − B) +
(1 − p)

2
(vH − B)

}
≥ β{p(vH − b2L) + (1 − p)(vH − b2H)} + (1 − β)p(vH − b2L)

(4)

must hold. The LHS of (4) is the expected payoff that bidder 1’s vH -type obtains by bidding
the buy price B. The RHS of (4) is the maximum of expected payoffs that bidder 1’s vH -type
obtains by bidding the amount except the buy price B. Calculating (4), we have

β ≤
(1+p)

2 (vH − B) − p(vH − b2L)

(1 − p)(vH − b2H) − (1−p)
2 (vH − B)

, (5)

which is less than 1.13

From the above arguments, the equilibrium revenue is given by

R = p2b + p(1 − p)
{
βb + (2 − β)B

}
+ (1 − p)2B. (6)

By (5), we can derive the supremum of β, which is 1.14 Then, the infimum of equilibrium
revenues is given by

R = pb + (1 − p)B. (7)

By (3), b is monotone increasing with respect to the buy price B. Then, (7) is monotone
increasing with respect to the buy price B.

10In the Appendix B, we consider the case in which (2) does not hold. Even in this case, we still obtain
the main result.

11Indeed, it suffices to consider the case in which bidder 1’s vH -type bids the buy price B with probability
1. Our argument below includes the case in which bidder 1’s vH -type randomizes his action.

12One might think that to lower an equilibrium revenue, bidder 1’s vL-type randomizes his action such
that (3) holds. We argue this issue in the Appendix C.

13In the Appendix A, we prove that β is less than 1.
14We evaluate (5) at b2L ≈ B and b2H ≈ B.
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Proposition 2. The infimum of equilibrium revenues in the auctions with a buy price B is
monotone increasing with respect to the buy price B.

Next, we derive the maximum (or supremum) of equilibrium revenues. In the same as the
case of auctions without a buy price B, the seller’s revenue is at most vL when both bidders
are vL-type. To maximize an equilibrium revenue, each bidder’s vH -type must submit a buy
price B with probability 1. Therefore, the maximum of equilibrium revenues is given by

R = p2vL + (1 − p2)B. (8)

Recall the derivation of (7). Since β ∈ [0, 1), the equilibrium revenue is in (pb + (1 −
p)B, p2b + (1− p2)B]. Next, recall the derivation of (8). We have considered the symmetric
strategy equilibrium where bidder’s vH -type bids the buy price B and bidder’s vL-type bids
his own valuation. Here we consider the strategy profile where both bidders’ vH -types bid
the buy price B, one of the bidders’ vL-types bid his own valuation, but one of the bidders’
vL-types submits the bid in [b, vL). Without loss of generality, let bidder 1 be the bidder
whose vL-type submits the bid in [b, vL). Then, bidder 2’s vL-type takes a weakly dominant
action. The incentive constraint of bidder 1’s vH -type does not change and thus holds. By
(3), the incentive constraint of bidder 2’s vH -type also holds. Finally, bidder 1’s vL-type
does not have a profitable deviation. Therefore, such a strategy profile is also an equilibrium
and then the equilibrium revenue is in [p2b + (1 − p2)B, p2vL + (1 − p2)B).

To summarize, we have the following proposition.

Proposition 3. Consider the auctions with a buy price B ∈ (vL, B∗]. Then, the seller
obtains an equilibrium revenue in (pb + (1 − p)B, p2vL + (1 − p2)B].

3.2.2 The auctions with a buy price B ∈ (B∗, vH ]

We consider the case in which the seller sets a buy price B ∈ (B∗, vH ]. Fix a buy price
B. Then, there exists b > vL such that (3) holds. Since both bidders’ vL-types do not bid
strictly above vL with positive probability at an equilibrium, without loss of generality, let
bidder 1 be the bidder whose vL-type can bid above vL.

First, we consider the strategy profiles where both bidders’ vH -types bid the buy price
B with probability 1. In this case, the incentive constraint of bidder 1’s vH -type does not
hold because bidder 2’s vL-type must bid below vL at an equilibrium.

Next, we consider the strategy profiles where one of the bidders’ vH -types randomizes
his action between bidding the buy price B and bidding the amount except the buy price
B. In this case, from a similar argument to that of Subsubsection 3.2.1, bidder 2’s vH -type
can randomize his action. To guarantee the existence of such an equilibrium,

β{p(vH − B) + (1 − p)(vH − B)} + (1 − β)
{

p(vH − B) +
(1 − p)

2
(vH − B)

}
> β{p(vH − vL) + (1 − p)(vH − B)} + (1 − β)p(vH − vL)

(9)

must hold because bidder 2’s vH -type bids the amount except the buy price B with positive
probability and because bidder 2’s vL-type bids at most vL at an equilibrium. However, (9)
clearly does not hold.

We have already mentioned that such a strategy profile where each bidder’s vH -type
bids the amount except the buy price B with positive probability is not an equilibrium.
Therefore, we have the following proposition.

Proposition 4. Consider the auctions with a buy price B ∈ (B∗, vH ]. Then, there is no
equilibrium.

By Proposition 3 and 4, we have the main result.

Theorem 1. A seller can always obtain a positive equilibrium revenue by introducing a buy
price B.
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4 Conclusion

We have investigated how the introduction of buy prices affects the seller’s equilibrium
revenues. We have shown that an equilibrium revenue is always positive in the auctions
with a buy price, while it can be zero in the auctions without a buy price. This might be a
reason why a lot of sellers actually introduce a buy price in Internet auctions.

Appendix A

β is less than 1.

We prove by contradiction that β is less than 1. Suppose that

(1+p)
2 (vH − B) − p(vH − b2L)

(1 − p)(vH − b2H) − (1−p)
2 (vH − B)

> 1. (10)

Calculating (10), we have

(vH − B) > p(vH − b2L) + (1 − p)(vH − b2H),

which does not hold. This contradicts the assumption.

Appendix B

The case: (2) does not hold.

We consider the case in which (2) does not hold. There does not exist 0 ≤ b such that (3)
holds under the buy price B which is less than or equal to a certain threshold. Therefore,
in these cases, no bidder’s vH -type can randomize his action at an equilibrium. Then,
the minimum of equilibrium revenues is given by (1 − p2)B. The minimum of equilibrium
revenues is also increasing with respect to the buy price B.

Now we consider the least buy price B under which there exists b = 0 such that (3) holds.
In this case, the infimum of equilibrium revenues is (1 − p)B, which is less than (1 − p2)B.
Therefore, the minimum (or infimum) of equilibrium revenues jumps down at a certain buy
price B. In other words, we cannot obtain Proposition 2. However, we still obtain the main
result.

Appendix C

The case: bidder 1’s vL-type randomizes his action.

We consider the case in which bidder 1’s vL-type randomizes his action. Suppose that bidder
1’s vL-type bids 0 ≤ b1L < b (resp. b < b1L) with probability α (resp. 1 − α). Since (3)
must hold, α is determined as follows:

b = αb1L + (1 − α)b1L. (11)

Calculating (11), we have

α =
b1L − b

b1L − b1L

.

Indeed, it is classified into two cases.
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Case 1: b1L ≤ vL.
In this case, the equilibrium revenue is given by

R = p2
{
αb1L + (1 − α)b1L

}
+ p(1 − p)

[
β
{
αb1L + (1 − α)b1L

}
+ (2 − β)B

]
+ (1 − p)2B.

Since b = αb1L + (1 − α)b1L for all pairs (b1L, b1L), it suffices to consider (7).

Case 2: vL < b1L.
When bidder 2’s vL-type bids vL, bidder 1’s vL-type wins the auction with probability 1−α
and pays vL to the seller. Therefore, the equilibrium revenue is given by

R = p2
{
αb1L + (1 − α)vL

}
+ p(1 − p)

[
β
{
αb1L + (1 − α)b1L

}
+ (2 − β)B

]
+ (1 − p)2B.

(12)

Given β. Then, plugging α = (b1L − b)/(b1L − b1L) into (12) and partially differentiating
with respect to b1L, we have

p2(b1L − b)(b1L − vL)
(b1L − b1L)2

> 0.

Similarly, partially differentiating with respect to b1L, we have

−p2(b − b1L)(vL − b1L)
(b1L − b1L)2

< 0.

Therefore, we obtain the infimum of (12) at (b1L, b1L) = (0, B). Note that bidder 1’s vL-type
actually cannot bid B. In this case,

α∗ =
B − b

B
. (13)

Next, we derive the supremum of β. By (5),

β∗ =
(1 + p)(vH − B) − 2p(vH − vL)

(1 − p)(vH − B)
. (14)

Note that bidder 2’s vL-type must bit vL at an equilibrium. Therefore, the infimum of
equilibrium revenues is given by

R = p2(1 − α∗)vL + p(1 − p)
{
β∗b + (2 − β∗)B

}
+ (1 − p)2B. (15)

Now, we examine when (7) is the infimum of equilibrium revenues in all cases. It suffices
to consider when (15) > (7). By (3),

b = vH − (1 + p)
2p

(vH − B). (16)

Thus, by (13), (14), and (16), we have

(15) − (7) =
p(B − vL)

2B

{
(1 − p)vH + (1 − 3p)B

}
.

Therefore, to go through with the argument in the text, we need to check additionally
whether the following condition holds:

(1 − p)vH + (1 − 3p)vL ≥ 0 if p < 1
3 ,

no condition if p = 1
3 ,

(1 − p)vH + (1 − 3p)B∗ ≥ 0 if p > 1
3 .

Note that even if the condition does not hold, by (15), we still obtain the main result.
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