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1 Introduction

The study of cartel stability is a traditional topic in oligopoly theory. In particu-
lar, collusive pricing behavior, whether it is a result of overt agreement, has been
viewed as “the only feasible means of assuring parallel actions among sellers”
(Markham (1951, p. 901)); moreover, price leadership cartels have received con-
siderable attention for decades. Although there is an extensive literature on price
leadership models with one leader and one follower,1 studies on the price leader-
ship cartel with many firms are inadequate. In this paper, we study the stability of a
price leadership cartel in an oligopolistic market with many (but, finite) symmetric
firms.

One of the earliest contributions to the research on the stability of the price
leadership cartel is d’Aspremont, Jacquemin, Gabszewicz, and Weymark (1983),
which had been a starting point for subsequent studies by other authors. In their
model, it is assumed that there is only one cartel in the role of the price leader that
announces and sets the price (the size of the cartel in terms of the number of firms
in it varies endogenously through entry-exit by firms) and that, taking the price
set by the leader as given, the other fringe firms behave in a competitive fashion;
in other words, they follow the price-equal-marginal-cost principle.2 Knowing the
responses of the fringe firms, the cartel can derive the residual demand function
by subtracting the total supply by the fringe firms from the total demand. Taking
account of the derived residual demand, the cartel members determine the price to
maximize the (joint) profit.

Let the profits of cartel firms and fringe firms in the price leadership cartel
model be denoted byπ∗c (k) ≡ πc(k, p∗(k)) andπ∗f (k) ≡ πf (p∗(k)), respectively,
whereπc(k, p) andπf (p) are the profits of cartel firms and fringe firms when size
k cartel sets the pricep, andp∗(k) is the optimal price of the sizek cartel. In
d’Aspremont et al. (1983), a certain sizek of the cartel is considered to be “stable”
if (i) π∗c (k) = π∗f (k−1), i.e., no firm in the existing sizek cartel finds it profitable to
exit from the cartel, and (ii)π∗f (k) = π∗c (k+1), i.e., no fringe firm can be better off
by entering the existing cartel. There exists a stable size of the cartel in the sense
of d’Aspremont et al. (1983) because if there does not exist sizek, 1 5 k 5 n,
satisfying condition (i), size0 cartel (i.e., the situation where the cartel does not

1There are several studies that explore why there is a firm in the position of the price leader.
Deneckere and Kovenock (1992) and Furth and Kovenock (1993) have considered a model with the
firms’ capacity constraints. Pastine and Pastine (2004) have used the endogenous timing model of
Hamilton and Slutsky (1990) to examine endogenous role assignment of a leader and follower. van
Damme and Hurkens (2004) have also used the endogenous timing model with firms’ risk consider-
ation by Harsanyi and Selten (1988).

2Ono (1978) regarded such behavior of fringe firms as the optimal. He argued that because, given
the price set by the leader, a fringe firm can set a price infinitesimally lower than the one set by the
leader and sellqf that satisfies the price-equal-marginal-cost condition, the fringe firm can maximize
its profit. However, there is some difficulty in justifying such behavior of fringe firms in a rigorous
non-cooperative game model with finite players, because there must be an interaction among fringe
firms. Tasnadi (2000) shows that such behavior can be justified in a non-atomic model of the fringe
firms.
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exist) is stable since fork = 0, (i) automatically holds and (ii) holds byk = 1 not
satisfying condition (i). If there exists sizek, 0 5 k 5 n− 1, satisfying condition
(i) but thisk does not satisfy condition (ii), the latter implies sizek+1 also satisfies
condition (i). By repeating this process, we can find sizek satisfying (i) and (ii)
because the number of the firms,n, is finite and forn, condition (ii) automatically
holds.

Although the model in d’Aspremont et al. (1983) is simple and their results
are clear, in their analysis, there remains an inadequacy concerning the foresight
of the firms, pointed out by Diamantoudi (2005). She argued that the analysis by
d’Aspremont et al. (1983) exhibited a certain inconsistency between an implicit
assumption of the firms’ brightness embedded in the model and the stability crite-
rion that assumes the firms’ myopic view. Consider a firm in the cartel consisting
of k firms. When the firm contemplates the deviation (exiting from the cartel), it
compares the current profitπ∗c (k) = πc(k, p∗(k)) (the profit of a firm in the size
k cartel) with the profitπ∗f (k − 1) = πf (p∗(k − 1)) under a new pricep∗(k − 1)
set by a new cartel established after its deviation (the profit of a firm in the fringe
with sizek − 1 cartel) but not with the profitπf (p∗(k)) under the pricep∗(k) set
by the current cartel. Since the cartel’s pricing behavior is restricted to the optimal
pricing at the very outset of the model, the deviating firm should correctly expect
the response of thereadjustingprice by the new cartel against its deviation. In this
sense, a firm in their model should have the ability to foresee the reaction of the
other firms (in particular, those remaining in the cartel) against its deviation. To the
contrary, the stability criterion adopted by d’Aspremont et al. (1983) implies that a
firm contemplating deviation does not take account of possible subsequent devia-
tions by other firms after its own deviation. That is, the stability criterion assumes
that a firm’s view is myopic, undermining the foresight of the firm that is assumed
by the model.

In view of such inconsistency in the analysis of d’Aspremont et al. (1983),
Diamantoudi (2005) has reconsidered the stability of the price leadership cartel by
adopting a different stability criterion that incorporates the farsighted perspective of
firms. As the stability concept, she adopts von Neumann and Morgenstern (1953)
stable set with dominance relations that capture the foresight of the firms. She
has shown that there exists a unique set of stable sizes of the cartel in the price
leadership model. However, because her existence result of the set of stable sizes of
the cartel relies on the general existence theorem of the stable set by von Neumann
and Morgenstern (1953), the properties of the stable sizes of the cartel as well as
the relation with stable sizes of d’Aspremont et al. (1983) are unclear from her
analysis. Recently, we show, in our another paper (Nakanishi and Kamijo 2008),
that the minimal stable sizes of the cartel in the sense of Diamantoudi (2005) is
also stable in the sense of d’Aspremont et al. (1983) and the maximal stable size
of the cartel is large enough to be Pareto-efficient for firms.

However, there is still an inadequacy in the analysis of Diamantoudi (2005),
concerning cartel identification; in her model, cartels are identified by their sizes
(in terms of the number of firms) and the two distinct cartels with different mem-
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bers are regarded as the same if their sizes are equal. This does not matter much
in the case of d’Aspremont et al. (1983), because of the myopia of the firm that is
embedded in their stability criterion. This, however, can become a more serious
problem when we fully take account of the farsightedness of the firms as in Dia-
mantoudi (2005). Suppose that each firm can foresee a chain reaction of further
deviations by other firms after its own deviation. Consequently, it may be the case
that one firm in the cartel finds it profitable to exit from the existing cartel and
actually do so, expecting that another fringe firm would enter the cartel after its
deviation and that the resulting cartel would be stable.

To illustrate this point, consider the following example. Suppose that some
sizek is considered to be stable from Diamantoudi’s discussion and thisk satisfies
π∗c (k) > π∗f (k−1). Let cartelC1 be the initial cartel with sizek and takei from the
members in the cartel andj from the fringe. Note that in general,π∗f (k) > π∗c (k)
holds because the fringe firms are able to free ride on the price-raising effort of the
cartel. Therefore, firmi wants to replace its position from the cartel members to
the fringe members without changing the size of the current cartel; this can be done
as follows: first, firmi exits fromC1 and changes the cartel to sizek−1 cartelC2,
and then, firmj enters the cartel and changesC2 to sizek cartelC3.

C1 i exits−−−→ C2 j enters−−−−→ C3

In cartelC2, firm j actually has an incentive to join the cartel because its current
profit π∗f (k − 1) is smaller than the profit after joining the cartel,π∗c (k), and the
resulting sizek cartelC3 is “stable.” Expecting the reponse of firmj, firm i actually
exits fromC1 because firmi belongs to the fringe atC3 and in the cartel atC1.
Thus, sizek cartelC1 is considered to be “unstable” if other sizek cartelC3 is
“stable.”

In the above example, there are two cartels of the same size involved: the initial
cartel and the resulting cartel. The former isnot considered to be stable, while the
latter is. That is, when firms are farsighted, two distinct cartels of the same size
can have different stability properties; when cartels of equal size are treated the
same, this possibility is ignored. Therefore, cartels should be identified by their
members (not by the numbers of members). Kamijo and Muto (2008) have argued
the same and constructed an appropriate model in which cartels are identified by
their members. Next, they have shown that any Pareto-efficient cartel can always
be stable with respect to the stability criterion incorporating the firms’ farsighted
view. However, Kamijo and Muto (2008) allow the sumultanous (or, coalitional)
move of the firms when they consdier the stability of the cartel, in contrast to
Diamantoudi (2005) that only considers the individual move of firms. Therefore
what kinds of problem occures due to size identification of cartels is still unclear.

In this paper, we shall adopt the von Neumann and Morgenstern (1953) stable
set as the basis of our stability concept, similar to Diamantoudi (2005) and Kamijo
and Muto (2008). Stability offered by the stable set is free of contradictions inside
the set of “stable” outcomes and at the same time, accouts for every “unstable”
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outcome it excludes. Moreover, as pointed out by Harsanyi (1974), the stable set
incorporated with players’ foresight improves the inconsistency of the stable set
itself. The stable set is defined for the pair of a set of outcomes and a dominance
relation defined over the set of outcomes, which describe the current market struc-
ture. The dominance relation is extended to capture the farsighted view of the
firms. The stable set according to the set of outcomes and this extended dominance
relation (called the indirect dominance) constitutes our solution concept known as
thefarsighted stable set.

First, we present a model that reveals the cartel identification problem. That is,
the price leadership cartel is identified by its members, and each firm has the ability
to foresee not only an immediate outcome, but also the ultimate outcome after its
deviation. Thus, an outcome of our first model is the set of firms that belong to the
cartel. Next, we show that there exist farsighted stable sets in the first model and
the stable sets show a complicated figure. We prove this by means of a constructive
approach wherein we actually construct a farishgted stable set by some algorism,
that is inspired by Nakanishi (2007), who analyzes ann-person prisoners’ dilemma
game. A difference beween our first result and the results of Diamantoudi is that in
our model, a uniqune pattern of farisghed stable sets is not guaranteed. One critical
finding from our analysis is that even though certain sizes of cartels are judged to
be stable by both Diamantoudi’s and our first models, whether all or one of the
cartels of this size is stable depends on the profit functions of firms. This point can
not be discovered when we identify the cartel with respect to its size.

There still exist certain problems in our first model. As mentioned earlier, the
cartel’s pricing policy is restricted to theoptimal pricingin the sense that the cartel
sets the price along the residual demand to maximize the joint-profit of the mem-
bers. Restricting the cartel’s pricing to the optimal pricing may seem to constitute
an innocuous assumption, but actually it is not. From several fields in economics,
we can draw several pieces of evidence that some observed outcomes that satisfy
certain criteria of rationality, efficiency and/or optimality, can often be sustained
through some irrational, inefficient and/or non-optimal behavior.3 In sum, non-
optimal behavior of a player can work as “punishment” and/or “reward” to other
players and, therefore, induce other players’optimal responses. Taking account
of the possibility of non-optimal behavior has a significant influence on the final
outcomes of the model.

In our second model, the cartel is allowed to choose not only the optimal price,

3From theoretical perspective, consider the well-known folk theorem: nearly efficient and coop-
erative outcomes can be maintained through the “punishment” behavior after one player’s deviation,
which is irrational (at least, in the one shot game) even if the continuation game satisfies the subgame
perfection (see Fudenberg and Tirole (1991, Chap. 5)). From empirical standpoint, among the grow-
ing literature on experimental economics, consider Fehr and Gachter (2000); they have examined a
two-stage game composed of a voluntary contribution game in the first stage and a punishment stage
in the second, and shown that the high contributions of the subjects in the voluntary contribution
game are realized by the actual use of the punishment option wherein punishing the other subject is
irrational for the subject, because it requires a decrease of one unit of his payoff to decrease some
units of the other.
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but also any positive price; such a flexible pricing policy can be interpreted as
punishment and/or reward to the fringe firms and, by this, the cartel can induce the
fringe firms to behaveoptimally. While an outcome of our first model is the set
of firms that belong to the cartel, an outcome of our second model is a pair of a
cartel and a quoted price set by the cartel. The dominance relation in the second
model is extended not only to capture the farsighted view of the firms but also to
address the endogenous pricing by the cartel. In this setting, we show that the
farsighted stable sets become a simple form. Any outcome such that it is Pareto-
efficient and the cartel chooses the optimal pricing is a one-point farsighted stable
set. Thus, we obtain an efficiency result similar to that of Kamijo and Muto (2008),
because of the endogeneity of the price set by the cartel. Further, we also show that
although we do not restrict out analysis to the optimal pricing of the cartel, the
optimal pricing behavior of the stable cartel emerges as a result of the stability
consideration. Therefore, by considering flexible pricing policies, the set of stable
cartels undergoes a complete change.

There exist studies that analyze the stability of price leadership using a dif-
ferent approach from that adopted in this paper. Donsimoni, Economides, and
Polemarchakis (1986) analyze the stability of a price leadership cartel in a linear
demand and quadratic cost setting using the same stability criterion as d’Aspremont
et al. (1983). Prokop (1999) considers two non-cooperative games wherein firms
form a dominant price leadership cartel. Thoron (1998) also considers the forma-
tion of a cartel, which is sufficiently general but slightly different from the price
leadership cartel, using several equilibrium concepts, including the coalition-proof
Nash equilibrium introduced by Bernheim, Peleg, and Whiston (1987).

The rest of this paper is organized as follows. In the next section, we present a
price leadership model and summarize the basic properties of the price leadership
model. In Section 3, we present our first model of cartel stability. In Section 4,
we present our second model wherein the endogeneity of the pricing is embed-
ded in the definition of our indirect dominance relation. Section 5 constitutes the
conclusion. All the proofs of lemmas are relegated to the Appendices.

2 Model

We consider an industry composed ofn (n = 2) identical firms, which produce
a homogeneous good. The demand for the good is represented by a function
d : R++ → R+:4

Q = d(p),

wherep is the price andQ is the total demand for the good. We assume that
d′(p) < 0 for all p > 0.

Each firm has an identical cost functionc(qi), whereinqi is the output level of
a firm (firm i). We assume thatc is increasing, twice continuously differentiable in

4R++ = {a ∈ R|a > 0} andR+ = {a ∈ R|a = 0}.
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qi, and it satisfiesc(0) = 0, c′(0) = 0, c′(qi) > 0 for qi > 0, andc′′(qi) > 0 for
qi > 0.

Oncek firms have decided to combine and form a cartel, the cartel can exercise
its power to determine the market price of the good. The remainingn − k firms
constitute a competitive fringe, whose members behave competitively. That is,
each firm in the fringe regards the price determined by the cartel as given, and
chooses its output level to maximize its own profit. Given the pricep, the supply
function of a fringe firm,qf (p), is determined by means of the well-known price-
equal-marginal-cost condition:

p ≡ c′(qf (p)).

On the basis of the assumptions on the cost function,qf (p) > 0 for all p ∈ R++

andlimp→0 qf (p) = 0.
Given the responses by the fringe firms, the residual demand for the sizek

cartel can be written as follows:

R(k, p) ≡ max {d(p)− (n− k)qf (p), 0} .

To simplify the exposition, we assume that members in the cartel divide their total
quantity of production equally. Thus, the production per firm in the cartel can be
written as follows:

r(k, p) ≡ R(k, p)
k

.

As a result, the profit of a firm in the cartel can be written as a function of the cartel
sizek and the pricep:

πc(k, p) ≡ pr(k, p)− c (r(k, p)) .

On the other hand, the profit of a fringe firm can be written as a function ofp:

πf (p) ≡ pqf (p)− c (qf (p)) .

πf (p) > 0 for all p > 0.
The optimal price for the sizek cartel is determined by

p∗(k) = arg max
p>0

πc(k, p).

The profits of a cartel firm and a fringe firm evaluated at the optimal pricep∗(k)
can be written as functions of the cartel sizek: Fork = 1, . . . , n,

π∗c (k) ≡ πc(k, p∗(k)),

and fork = 1, . . . , n− 1,

π∗f (k) ≡ πf (p∗(k)).
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If k = 0, that is, if there is no cartel, then it is assumed that the market structure
is competitive. The competitive equilibrium price, denoted bypcomp, is determined
by d(pcomp) = nqf (pcomp). Consequently, we haveπ∗f (0) = πf (pcomp). Note that
for anyk, r(k, pcomp) = qf (pcomp). This implies that for anyk, πc(k, pcomp) =
πf (pcomp) = π∗f (0).

The following proposition is concerned with the profits of firms in the cartel
and in the fringe.

Proposition 1. πc andπf satisfy the following properties:

(i) If p 6= pcomp andπc(k, p) > 0, thenπc(k, p) is strictly increasing ink—[Size
monotonicity of πc]. If πc(k, p) 5 0, πc(k+1, p) = πc(k, p) holds. Further,
if p = pcomp, πc(k, p) is invariant against changes ink;

(ii) πf (p) is strictly increasing inp;

(iii) πf (p) = πc(k, p) for all p and for allk = 1, . . . , n− 1 with strict inequality
whenp 6= pcomp.

Proof. Properties (ii) and (iii) follow immediately from the definition ofqf . Thus,
it suffices to show property (i). Partially differentiatingπc(k, p) with respect tok,
we obtain

∂πc

∂k
= prk(k, p)− c′(r(k, p))rk(k, p) = rk(k, p)

{
p− c′(r(k, p))

}
,

where

rk(k, p) ≡ ∂r(k, p)
∂k

=




−d(p)− nqf (p)

k2
if d(p)− (n− k)qf (p) = 0

0 otherwise.

Note thatqf (p) > r(k, p) if and only if qf (p) > d(p)/n. We first consider the
case whered(p) − (n − k)qf (p) = 0. If rk(k, p) > 0 or, equivalently,qf (p) >
d(p)/n, thenqf (p) > r(k, p). Becausec′ is strictly increasing, this result implies
p = c′(qf (p)) > c′(r(k, p)). Hence, we have∂πc/∂k > 0. In turn, if rk(k, p) < 0
or, equivalently,qf (p) < d(p)/n, thenqf (p) < r(k, p). Sincep = c′(qf (p)) <
c′(r(k, p)), we have∂πc/∂k > 0 again. Ifrk(k, p) = 0, thenp satisfiesd(p) −
nqf (p) = 0. Thus,p must bepcomp. In this case,∂πc/∂k = 0

Next, consider the case whered(p)−(n−k)qf (p) < 0. In this case,rk(k, p) =
0 and thus∂πc/∂k = 0. This, in conjunction with the fact thatd(p)−(n−k)qf (p)
is increasing ink and∂πc/∂k = 0 whend(p) − (n − k)qf (p) = 0 implies that
πc(k, p) 5 πc(k + 1, p).

Becauseπc(k, p) > 0 impliesd(p)− (n− k)qf (p) > 0, πc(k, p) is increasing
in k if p 6= pcomp andπc(k, p) > 0.

The next proposition for optimal profits is based on d’Aspremont et al. (1983)
and Kamijo and Muto (2008).
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Proposition 2. π∗c andπ∗f satisfy the following properties:

(i) π∗c (k) is increasing ink—[Size monotonicity ofπ˜c ];

(ii) π∗f (k) > π∗c (k) for all k = 1, . . . , n− 1;

(iii) π∗c (k) > π∗f (0) for all k = 1, . . . , n;

(iv) π∗f (k) > π∗c (0) for all k = 1, . . . , n− 1.

The first property says that the profit of each cartel firm increases as the cartel
size increases. The second property of this proposition says that the profit of a
cartel member is less than the profit of associated fringe members. The third and
forth properties say that both cartel and fringe firms prefer a situation involving a
dominant cartel of any size to one without it.

3 Stability of collusive cartel with optimal pricing

3.1 The model of cartel with optimal pricing

Let N = {1, 2, . . . , n} denote the set of firms (players). Consider ann-vector
x = (x1, x2, . . . , xn) such that for eachi, xi is equal to 0 or 1. Here,xi =
1 means that firmi belongs to the existing cartel, whereasxi = 0 means that
firm i does not belong to the cartel. That is, ann-vector x represents a cartel
structure. LetX ≡ {0, 1}n be the set of all possible cartel structures. By definition,
xf ≡ (0, . . . , 0) represents a situation without an actual cartel andxc ≡ (1, . . . , 1)
represents a situation containing the largest cartel that consists of all the firms.
Givenx ∈ X, C(x) denotes the set of firms belonging to the cartel atx, that is,
C(x) ≡ {i ∈ N | xi = 1}. We identifyC(x) with the cartel atx. Givenx, y ∈ X,
x ∧ y denotes a cartel structurez such thatzi = min{xi, yi} for i = 1, . . . , n.
We can easily verify thatC(x ∧ y) = C(x) ∩ C(y). For x ∈ X, let us define
|x| ≡ ∑n

i=1 xi, which signifies the cartel size atx in terms of the number of the
participating firms.

Let Z ≡ {0, 1, 2, . . . , n} be the set of possible cartel sizes. For eachh ∈ Z,
V (h) denotes the set of all cartels of sizeh: V (h) ≡ {x ∈ X | |x| = h}. For
non-emptyW ⊆ Z, let V (W ) be defined byV (W ) = ∪h∈W V (h).

The payoff to a firm depends on the current cartelx and its status (i.e., whether
the firm is a member ofx or not). The (real-valued) payoff functionfi(x) for firm
i ∈ N is written as follows:

fi(x) =

{
π∗c (|x|) if xi = 1,

π∗f (|x|) if xi = 0.

Let x ∈ X andy ∈ X be two distinct cartels. We say that a cartelx Pareto-
dominatesy if fi(x) = fi(y) holds for alli ∈ N and strict inequality holds for
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somej. If x is not Pareto-dominated by any other cartel, thex is called aPareto-
efficientcartel. The set of all the Pareto-efficient cartels is denoted byXPE ⊆ X.
Since the grand cartelxc = (1, . . . , 1) is Pareto-efficient by the size monotonicity
of π∗c and Proposition 2-(iii),XPE is not empty. On the other hand, sinceπ∗c (n) >
π∗f (0) by Proposition 2-(iii),xf /∈ XPE. The following lemma characterizes the set
of Pareto-efficient cartels.

Lemma A1 (Kamijo and Muto (2008)). XPE = {xc}∪{x ∈ X| π∗f (|x|) > π∗c (n)}

By Lemma A1,x 6= xc is Pareto-efficient if and only if the fringe firm ofx
enjoys a greater profit than that obtained at the grand cartelxc.

If a firm enters a current cartel or exits from it, the current cartel changes to
another. When a cartelx ∈ X changes to anothery ∈ X through the entry-exit

behavior of an individual firmi, we writex
i−→ y. Formally,

Definition A1 (Inducement Relation with Optimal Pricing). For x, y ∈ X and

i ∈ N , we havex
i−→ y if either

(i) i ∈ C(x) andC(y) = C(x) \ {i} or

(ii) i /∈ C(x) andC(y) = C(x) ∪ {i}.
The first line means that firmi exits fromx; the second means that firmi enters

x and forms a new cartely.
The farsightedness of firms is captured by the notion of indirect domination:

Definition A2 (O-Domination). For outcomesx, y ∈ X, we say that “y indirectly
dominatesx through optimal pricing,” or simply “y O-dominatesx,” which we
write y B x or x C y, if and only if there exists a sequence of cartels and firms

x = x0 i1−→ x1 i2−→ · · · iM−−→ xM = y

such that for eachm = 1, 2, . . . , M ,

fim(xm−1) < fim(xM ) = fim(y).

The pair(X, B) of the set of all possible cartelsX and the O-dominance rela-
tion B is the abstract system associated with the price-leadership cartel with opti-
mal pricing. Note that, in general, given a setY and binary relationÀ defined over
Y , a pair(Y,À) is called an abstract system. A stable set for an abstract system
(Y,À) is defined as follows:

Definition 1 (Stable Set). A subsetK of Y is said to be a stable set for(Y,À) if
and only if it satisfies the following two conditions:

(i) for anya ∈ K, there does not exist anotherb ∈ K such thatb À a,

(ii) for anya ∈ Y \K, there exists anotherb ∈ K such thatb À a.
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These conditions are called “internal stability” and “external stability,” respec-
tively.

A stable set presumes the following stability interpretation ofK. Suppose
that outcomes in setK are commonly considered to be “stable” and outcomes
outsideK to be “unstable” by all the individuals. Then, once an outcomea in K is
reached, any deviation froma never occurs because there exists no stable outcome
that “dominates”a, and if in time an outcomeb outsideK is reached, there exists
stable outcomea ∈ K that “dominates”y.

The following is our stability concept.

Definition A3 (Farsighted Stable Set with Optimal Pricing). The farsighted stable
set for the price leadership cartel with Optimal Pricing, or simply the farsighted
stable set for(X, B), is a stable set for the abstract system(X, B).

3.2 New concepts and properties

Definition A4 (Attractor). An integerk ∈ Z, k = 1, is said to be an “attractor” if
π∗c (k) > π∗f (k − 1).5 The set of all attractors is denoted by

ZA ≡ {k ∈ Z| k is an attractor}.

Let ā be thesmallestinteger that satisfies (i)̄a is an attractor and (ii)̄a + 1 is
not an attractor. Because “1” is an attractor by Proposition 2-(iii), we can easily
verify that an arbitraryh with 1 5 h 5 ā is also an attractor. LetZL be the set of
such attractors:

ZL ≡ {h ∈ ZA| 1 5 h 5 ā},
which we call the set of “leading attractors.”ZL is always nonempty.

Remark A1. In d’Aspremont et al. (1983), a certain sizek of the cartel is consid-
ered to be stable if (i)π∗c (k) = π∗f (k − 1) and (ii)π∗f (k) = π∗c (k + 1). It is easily
vefified that̄a is the minimal stable size of the cartel in the sense of d’Aspremont
et al. (1983). In fact,̄a is stable because by its definition,π∗c (ā) > π∗f (ā − 1)
and π∗f (ā) = π∗c (ā + 1), and it is minimal because for anyk, 0 5 k < ā,
π∗c (k + 1) > π∗f (k) and this implies thatk does not satisfy condition (ii).

The following lemma shows an important aspect of attractors.

Lemma A2. Take an arbitrary attractorh ∈ ZA. For any distinct cartelsx, y ∈
V (h), we havex B y.

5The condition given in the definition of “attractor” provides a firm with a myopic incentive to
enter the sizek − 1 cartel and form a new sizek cartel; in a sense, the sizek cartel isattracting the
entering firm.
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Thus, two distinct cartels inV (h) O-dominate each other ifh is an attractor.
An immediate and important consequence of Lemma A2 is that the abstract system
(X, B) contains an infinite chain of dominance:x C x′ C x′′ C · · · ad infinitum.
It is a well-known theorem, due to von Neumann and Morgenstern (1953), that an
abstract system that containsno infinite chain of dominance admits a stable set.
Unfortunately, because our abstract systemdoescontain an infinite chain of dom-
inance, we cannot resort to the von Neumann-Morgensters’ theorem to establish
the existence of farsighted stable sets for our system.

The following lemmas exhibit certain properties of attractors.

Lemma A3. Let h be an attractor andh′ ∈ Z be an integer withh < h′. Then,
x ∈ V (h) O-dominatesy ∈ V (h′) if and only ifπ∗f (h) > π∗c (h′).

Lemma A4. Supposex ∈ V (h), y ∈ V (h′), andx B y. If h = h′, thenh is an
attractor.

Lemma A3 shows the necessity and sufficient condition for the O-domination
of one cartel whose size is an attractor to other greater cartels. An interesting
feature is that under the conditions of the lemma,anycartel of sizeh O-diminates
anycartel of sizeh′. Lemma A4 says that if one cartel O-dominates another smaller
cartel, the size of the dominating cartel must be an attractor.

The next lemma shows a certain property of the set of leading attractors:

Lemma A5. Take arbitrary cartelsx, y ∈ X. If |x| ∈ ZL and |x| = |y|, then
x B y.

The following lemma shows a close relationship between the farsighted stable
sets and the set of attractors.

Lemma A6. Let K ⊂ X be an farsighted stable set for(X, B). Then, we have
K ∩ V (ZA) 6= ∅, whereZA is the set of all attractors.

Remark A2. SupposeK is a farsighted stable set for(X, B). If K∩V (a) 6= ∅ for
some attractora ∈ ZA, K ∩ V (a) must be a singleton. In this case, every cartel in
V (a) can be a candidate for an element inK. To make the exposition simple and
to avoid some notational complexities, we specify a particular cartelxa ∈ V (a)
for eacha ∈ ZA. That is, if a cartel inV (a) for somea ∈ ZA were to be included
in a farsighted stable set, we always choosexa.

Remark A3. LetV ≡ {V (0), V (1), . . . , V (n)}. ForV (h), V (h′) ∈ V, if there ex-
ist cartelsx ∈ V (h) andy ∈ V (h′) such thatx B y, then we writeV (h) B V (h′)
for notational convenience. It should be noted that, unlike the case for individual
cartels, we can haveV (h) B V (h) if h is an attractor. WhenV (h) B V (h′), we
simply say that “h O-dominatesh′.”

Remark A4. If V (h) B V (h′) holds forh andh′ with h 6= h′, h O-dominates
any integer betweenh andh′. In other words, ifh > h′, V (h) B V (k) holds
for any k = h′, h′ + 1, . . . , h − 1, and if h < h′, V (h) B V (k) holds for any
k = h− 1, h− 2, . . . , h′.
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Remark A5. Diamantoudi (2005) considers the dominance relation defined over
Z. For two distinct sizesk, h ∈ Z, “k D-dominatesh,” which we writek I h, if
either of the following two conditions is satisfied:

(i) if k < h, π∗f (k) > π∗c (m) for all m = k + 1, k + 2, . . . , h, or

(ii) if k > h, π∗c (k) > π∗f (m) for all m = h, h + 1, . . . , k − 1.

The farsighted stable set for(Z, I) is the stable set for abstract system(Z, I).
An interesting relation between the two dominance relations is thatk I h

impliesV (k) B V (h). This is checked as follows: Assumek < h for example,
takex ∈ V (k) andy ∈ V (h) such thatC(x) ⊂ C(y), and putC(y) \ C(x) =
{i1, i2, . . . , iM}, whereM = |C(y) \ C(x)|. Then, the following sequence of
deviation

y = y0 i1−→ y1 i2−→ . . .
iM−−→ yM = x,

whereym is a cartel such thatC(ym) = {im+1, . . . , iM} ∪ C(x), realizesx B y.
However, in general, the converse is not true, that is,V (k) B V (h) does not imply
k I h.

Because we identify each cartel by its members,V (k) B V (h) does not imply,
in general, that for any cartelx ∈ V (k) and for anyy ∈ V (h), x O-dominatesy.
However, under certain conditions, this statement holds true. The next lemmas ex-
plores the relation between the O-dominance relation overX and the O-dominance
relation overZ.

Lemma A7. Takek, h ∈ Z with k > h andπ∗c (k) > π∗f (h). If V (k) B V (h),
then anyx ∈ V (k) O-dominates anyz ∈ V (h′), whereh 5 h′ 5 k.

3.3 Procedure (#)

In this subsecition, we construct a procedure, called procedure (#), that chooses the
subset ofZ that is a candidate of farsighted stable set for(X, B). The procedure
consists of two parts: in the first phase, subset ofZ is selected by a recursive algo-
rithm, and in the second phase, superfluous elements in the subset obtained from
the first phase are deleted according to dominance relationB. Let k = 0, 1, . . . , n,
be given.

Selection Phase.Let us define a set of integersα1(k), α2(k), . . . according to the
following recursive procedure:

• α1(k) ≡ k,

• αj+1(k) ≡ min
{

h ∈ Z
∣∣∣ π∗c (h) = π∗f (αj(k))

}
, j = 1, 2, . . . .

Becauseπ∗c is increasing andπ∗f (h) > π∗c (h) for all h = 1, . . . , n − 1, the above
procedure is defined well. We denote the number of integers determined through
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the above procedure byJ(k). Let H(k) be the set of integers determined through
the above recursive procedure:

H(k) ≡ {
α1(k), α2(k), . . . , αJ(k)(k)

}
.

It is easy to verify that for eachk, αj(k) is increasing inj. For eachk, H(k) can
be partitioned into two subsets: one that contains all attractors inH(k), denoted
by H1(k) ≡ H(k) ∩ ZA, and the other that contains all non-attractors inH(k),
denoted byH2(k) ≡ H(k) \H1(k).

Deletion Phase.Further, based onH(k), we define another set of integers, which
is the subset ofH(k), as follows:

• SetH(1)(k) ≡ H(k) andα(1)(k) ≡ αJ(k)(k)

• Delete allh ∈ H(1)(k) satisfying (i)h < α(1)(k) and (ii)V (h) C V (α(1)(k)),

• Let H(2)(k) be the resulting set of integers and letα(2)(k) be thesecond
largest integer inH(2)(k) (the largest isα(1)(k)),

• Delete allh ∈ H(2)(k) satisfying (i)h < α(2)(k) and (ii)V (h) C V (α(2)(k)),

• LetH(3)(k) be the resulting set of integers and letα(3)(k) be thethird largest
integer inH(3)(k) (the largest isα(1)(k) and the second largest isα(2)(k)),

• In general, givenH(`)(k) andα(`)(k) (i.e., thè th largest integer inH(`)(k)),
delete allh ∈ H(`)(k) satisfying (i)h < α(`)(k) and (ii)V (h) C V (α(`)(k)).
Let H(`+1)(k) be the resulting set of integers.

BecauseH(k) is finite, the above deletion phase stops in finite steps, sayT (k)
steps. We denote the eventual set of integers generated by the deletion procedure
asH∗(k). For i = 1, . . . , T (k), we write each element inH∗(k) asα∗i (k) ≡
α

(T (k)−i+1)
i (k). Then,α∗i (k) can be lined in an increasing order ini: α∗1(k) <

α∗2(k) < · · · < α∗T (k)(k). By definition, we have∅ 6= H∗(k) ⊆ H(k) for any
k = 0, 1, . . . , n and, in particular,H∗(n) = H(n) = {n}. Similar to the partition
of H(k), H∗(k) can be partitioned intoH∗

1 (k) andH∗
2 (k).

Procedure (#) can be applicable to other models, as explained in the next two
remarks.

Remark A6. If we replace “V (h) C V (α(`)(k))” in the Deletion Phase of pro-
cedure (#) by “h J α(`)(k),” and setk = ā, we have the procedure introduced
by Nakanishi and Kamijo (2008), that characterizes the farsighted stable set for
(Z, I). In Nakanishi and Kamijo (2008), it is shown that the resulting subset ofZ,
H∗(ā), is the unique farsighted stable set for(Z, I).
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Remark A7. Our first model can be seen as the model of ann-person prisoners’
dilemma game if we interpretxi = 1 andxi = 0 as “playeri cooperates” and
“player i defects”, respectively, and profit functions of cartel firms and fringe firms
are replaced by the payoff functions of cooperators and defectors, respectively.6

Thus, procedure (#) works for ann-person prisoners’ dilemma game. In fact, the
resulting setH∗(0) that is obtained by procedure (#) fork = 0 is the same as
the set obtained from procedure considered by Nakanishi (2007). Because there
is no attractor in the prisoners’ dilemma game,H∗(0) = H(0). Nakanishi (2007)
shows that∪h∈H(0)V (h) is the unique farsighted stable set forn-person prisoners’
dilemma game.

3.4 Results

The next lemma shows a relationship between the set of leading attractors and
H∗(k):

Lemma A8. For any leading attractora ∈ ZL, we haveH∗(a) = H∗(ā), where
ā is the largest leading attractor.

Let us define three subsets ofZ relating to the largest leading attractorā:

P ≡ {ā } ∪
{

h ∈ Z

∣∣∣∣
∃x ∈ V (h), ∃y ∈ V (ā) such that
x Pareto-dominatesy

}
,

D ≡ {h ∈ Z | V (h) B V (ā)} ,

F ≡ {h ∈ Z | h ∈ H∗(h)} .

P is nonempty by definition. Becausēa is an attractor, we haveV (ā) À V (ā);
therefore,D is nonempty, too. In general, we havek ∈ H(k) by definition. How-
ever,k ∈ H∗(k) may fail to be true for somek; that is,k itself may be deleted in
the procedure generatingH∗(k) from H(k). The following lemma guarantees the
existence ofk such thatk ∈ H∗(k) and, thereby, shows the nonemptiness ofF :

Lemma A9. Let us defined∗ ≡ maxD. Then,d∗ ∈ H∗(d∗).

Remark A8. It is possible to haved∗ = ā.

Remark A9. H∗(k) naturally defines acorrespondencefrom Z to itself (for com-
pleteness, we have to assumeH∗(0) = ∅). Then, Lemma A9 shows the existence
of a fixed point of the correspondenceH∗ : Z →→ Z.

All of P , D, andF are nonempty. Further, we can show that their intersection
is also nonempty:

Lemma A10. P ∩D ∩ F 6= ∅.
6In ann-person prisoners’ dilemma game considered by Okada (1993), Suzuki and Muto (2005),

and Nakanishi (2007), the payoff functions of cooperaters and defectors satisfy: (i)π∗c (k) is increas-
ing in k, (ii) π∗f (k) is increasing ink, (iii) π∗f (k) > π∗c (k + 1) for all k = 0, . . . , n − 1, and (iv)
π∗c (n) > π∗f (0).
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Now we show the existence of farsighted stable sets in our first model.

Theorem A1 (Existence of farsighted stable sets). For anyh ∈ P ∩D∩F , the set
K∗(h) represented by the following formula is a farsighted stable set for(X, B):

K∗(h) = {xa | a ∈ H∗
1 (h)} ∪

⋃

k∈H∗
2 (h)

V (k). (∗)

wherexa ∈ V (a) (see Remark A2)

Proof. Take an arbitraryh ∈ P ∩D ∩ F and fix it throughout the proof. Note that
h is the smallest element inH∗(h) by definition and satisfies̄a 5 h.

[External stability]: Take an arbitraryx ∈ X \ K∗(h). We distinguish four
cases: case 1 where0 5 |x| 5 ā, case 2 wherēa < |x| < h, case 3 where
α∗j (h) = |x| for someα∗j (h) ∈ H∗(h), and case 4 whereα∗j (h) < |x| < α∗j+1(h)
for someα∗j (h), α∗j+1(h) ∈ H∗(h) or α∗T (h)(h) < |x|.

Case 1. We haveV (|x|) C V (ā) by Lemma A5 andV (ā) C V (h) by defini-
tion. Moreover, by Lemma A4,h must be an attractor. Take cartelsy ∈ V (ā) and
y′ ∈ V (h) such thatx C y andy C y′. y Pareto-dominatesx by the definition of
ZL. If h > ā, theny′ Pareto-dominatesy; if h = ā, theny, y′ ∈ V (ā). In any case,
y′ Pareto-dominatesx. Then, by simply connecting the sequence realizingy C y′

to the one realizingx C y, we can construct an appropriate sequence that realizes
x C y′. Thus, we havex C xh by Lemma A7.

Case 2.h ∈ P implies thatπ∗f (ā) < π∗c (h). Thus, by Lemma A7,V (ā) C
V (h) impliesx C xh.

Case 3. Ifα∗j (h) is not an attractor, we cannot havex ∈ X \ K∗(h) by the
formula (∗). Then,α∗j (h) must be an attractor. By Lemma A2,xa, wherea =
α∗j (h) ∈ H∗

1 (h), O-dominatesx.
Case 4. Note thatα∗j (h) = αs(h) andα∗j+1(h) = αt(h) for someαs(h), αt(h) ∈

H(h) with s < t. We distinguish two subcases: (a)αs(h) < |x| < αs+1(h) and
(b) αs+1(h) 5 |x| < αt(h) = α∗j+1(h).

Case 4-(a). Take a cartely ∈ V (αs(h)) = V (α∗j (h)) such thatC(y) ⊂ C(x)
and writeC(x) \ C(y) = {i1, i2, . . . , iM}. Consider the followingdecreasing
sequence fromx to y:

x = x0 i1−→ x1 i2−→ . . .
iM−−→ xM = y,

in which each firm inC(x) \ C(y) exits from x one by one. On the basis of
the construction ofH(h) and the monotonicity ofπ∗c , we havefim(xm−1) =
π∗c (|xm−1|) < π∗f (|y|) = fim(y) for all m = 1, . . . , M . If αs(h) is not an attractor,
y ∈ V (αs(h)) = V (α∗j (h)) ⊂ K∗(h). If αs(h) is an attractor, by Lemma A3,xa

O-dominatesy wherea = αs(h) = α∗j (h).
Case 4-(b). By the definition ofH∗(h), we haveV (αs+1(h)) C V (α∗j+1(h));

this impliesV (|x|) C V (α∗j+1(h)). Similar to case 2, by Lemma A7, we can
construct an appropriate sequence that realizesx C xa wherea = α∗j+1(h) ∈
H∗

1 (h).
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[Internal stability]: Take two distinct cartelsx, y ∈ K∗(h). If |x| = |y| = k for
somek ∈ H∗(h), k cannot be an attractor. Then, neitherx B y nor y B x can
hold by Lemma A4.

In turn, let us assume|x| < |y|. Note that|x|, |y| ∈ H∗(h). By the definition of
H∗(h), we cannot havey B x. Becausey Pareto-dominatesx by the construction
of H∗(h), thenx B y cannot hold true, either.

The next theorem provides the sufficient condition for the uniqueness of the
farsighted stable set for(X, B).

Theorem A2. If ZL = ZA, then the farsighted stable set for(X, B) is determined
uniquely, which is represented by the formula(∗).
Proof. By the definition ofZL, if V (h) B V (ā) andh 6= ā for someh ∈ Z,
thenh > ā must hold. By Lemma A4,h must be an attractor; this contradicts
ZL = ZA. Therefore, there is noh such thatV (h) B V (ā) other than̄a. This
impliesD = {ā}. Then, by Lemma A10, we haveP ∩D ∩ F = {ā}. Moreover,
because there is no attractor greater thanā, H(ā) = H∗(ā) holds by Lemma A4.

Let K be a farsighted stable set for(X, B). In order to prove the uniqueness,
it suffices to show thatK = K∗(ā).

Note that, by Lemma A6 and assumption, we haveK ∩ V (ZL) 6= ∅. Then,
there existsh ∈ ZL such thatK ∩ V (h) 6= ∅. We now show thath = ā. Suppose,
in negation, thath 6= ā. Note thath < ā. Take cartelsx ∈ K ∩ V (h) and
y ∈ V (h + 1). By Lemma A5,y O-dominatesx. Accordingly, by the internal
stability of K, we havey /∈ K. Then, by the external stability ofK, there must
exists a cartely′ ∈ K that O-dominatesy. Becausey Pareto-dominates anyy′′

with |y′′| < |y|, by the definition of O-domination,|y′| = |y|. This impliesy ∈
ZL = ZA by Lemma A4. Thus, we must haveh < h + 1 5 |y′| 5 ā. Then,
by Lemma A5 again,y′ O-dominatesx; this contradicts the internal stability of
K. Hence,K ∩ V (h) 6= ∅ andh ∈ ZL together implyh = ā. This implies
K ∩ V (ā) = {xā} andK ∩ V (h) = ∅ for all h with 0 5 h < ā.

Now, consider an integerh such that̄a = α1(ā) = α∗1(ā) < h < α∗2(ā) =
α2(ā). Sinceπ∗f (ā) > π∗c (h), Lemma A3 implies that anyx ∈ V (h) is O-
dominated byxā. Then, for all suchh, we haveV (h) ∩K = ∅.

Next, consider a case whereh = α2(ā). Note thath is not an attractor. Suppose
that there exists a cartelx ∈ V (h) not included inK. By the external stability of
K, there must exist a cartely ∈ K that O-dominatesx. By construction,xā cannot
O-dominatex. Then, we have|y| = |x| = h. In turn, this implies|y| is an attractor
by Lemma A4; this contradicts toZL = ZA. Hence,V (h) ⊆ K.

Repeatedly applying similar arguments, we can show that forj = 1, . . . , J(ā),
(i) V (h) ∩ K = ∅ for any h with αj(ā) = α∗j (ā) < h < α∗j+1(ā) = αj+1(ā)
or h > αJ(ā)(ā) = α∗T (ā)(ā), and (ii) V (h) ⊆ K for any h = αj(ā). Hence,
K = K∗(ā).
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Finally, we derive certain properties of the farsighted stable set represented by
the formula (∗).
Theorem A3. For anyk ∈ P ∩D ∩ F , (i) α∗1(k) = k is stable size of the cartel
in the sense of d’Aspremont et al. (1983), and (ii)α∗T (k)(k) ∈ XPE. Therefore,

K∗(k) ∩XPE 6= ∅.
Proof. (i). By the definition ofD and Lemma A4,k must be an attractor. Thus,
π∗c (k) > π∗f (k−1), the condition (i) of d’Aspremont et al.’s stability. We will show
thatk + 1 is not an attractor. We assume, in negation, thatk + 1 is also attractor.
This implies thatα2(k) = k + 1 ∈ H(k). If k + 1 is deleted in the process
generatingH∗(k), there exists someα∗(t) ∈ H∗(k) such thatα∗(t) > k + 1
andV (α∗(t)) B V (k + 1). Since anyx ∈ V (α∗(t)) Pareto-dominates anyy ∈
V (k+1), this impliesV (α∗(t)) B V (k) — a contradiction tok ∈ F . On the other
hand, ifk + 1 ∈ H∗(k), k /∈ H∗(k) becauseV (k + 1) B V (k) — a contradiction
to k ∈ F . Therefore,k + 1 is not an attractor, and thus,π∗f (k) = π∗c (k + 1),
condition (ii) of d’Aspremont et al.’s stability, holds.
(ii). It suffices to show thatx ∈ V (α∗T (k)(k)) is Pareto-efficient. By construction,
eitherα∗T (k)(k) = αJ(k)(k) is n, orα∗T (k)(k) = αJ(k)(k) satisfiesπ∗f (α∗T (k)(k)) >

π∗c (n). By Lemma A1,x is Pareto-efficient.

From Theorem A3, we know that the minimal size cartels in the stable set
K∗(k) is also stable in the sense of d’Aspremont et al. (1983) and the maximal
size cartels in the stable set are Pareto-efficient.

3.5 Example

Table 1 shows the relationship between the profits per firm and size of cartel for
the selection of certain parameters.7

Perfect competitionk = 0 ↙ π∗f (0) = 61.7
k = 1 π∗c (1) = 62.5 ↙ π∗f (1) = 63.2
k = 2 π∗c (2) = 64.9 ↙ π∗f (2) = 68.3

k = 3 π∗c (3) = 69.4 π∗f (3) = 78.1

k = 4 π∗c (4) = 76.9 ↗ π∗f (4) = 95.9
k = 5 π∗c (5) = 89.3 ↗ π∗f (5) = 129.1
k = 6 π∗c (6) = 111.1 ↗ π∗f (6) = 200.0
k = 7 π∗c (7) = 156.3 ↗ π∗f (7) = 395.5

Full cooperationk = 8 π∗c (8) = 294.1 ↗
Table 1: The relationship between the profits and the cartel size (n = 8)

7Here, we consider a market with a linear demand functiond(p) = 100−p and identical quadratic
cost function of the firmsci(qi) = 1

2
q2

i .
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In the example depicted in Table 1, it is easily confirmed that the set of at-
tractors is{1, 2, 3}, which coincides with the set of leading attractors. The unique
stable size of the cartels in the sense of d’Aspremont et al. (1983) is size3, and on
the basis of Lemma A1, the set of Pareto-efficient cartels isXPE = V (7) ∪ V (8).

Now we explore the stable set of this example. Because there is no attractor
greater than size3 and the size3 cartel Pareto-dominates any other cartel that is
smaller than3, D = {h ∈ Z|V (h) B ā} is the set of one elementā = 3. Moreover,
by Lemma A10,P ∩ D ∩ F = {3}. Hence, Theorem A2 implies thatK∗(3) is
the unique farsighted stable set. Sincek, k > 3, is not an attractor, we have
α1(3) = α∗1(3) = 3, α2(3) = α∗2(3) = 5, andα3(3) = α∗3(3) = 7. Therefore,

K∗(3) = {x3} ∪ V (5) ∪ V (7).

Interestingly, in the model of Diamantoudi (2005), the set of stable sizes of
cartels is also{3, 5, 7}. Thus, both Diamantoudi’s and our first models indicate
the same set of stable size of cartels in this example. In fact, the coincidence of
stable seizes of the cartels between two models generally holds ifZL = ZA. As
the corollary of Theorem A2, by Remark A6, we have:

Corollary A1. If ZL = ZA, the farsighted stable set for(X, B) is represented by

K∗(ā) = {xā} ∪
J(ā)⋃

k=2

V (αk(ā)).

Moreover,{ā, α2(ā), . . . , αJ(ā)(ā)} is the farsighted stable set for(Z, I).

However, from our analysis, one stable set that represents one standards of
behavior in the society, allow only the one cartel of some sizek to be stable ifk is
an attractor and all the cartels of some sizek′ to be stable ifk′ is not an attractor.
Therefore, even though a certain sizek is considered to be stable from Diamantoudi
(2005), two distinct cartels of sizek can demonstrate a different stability property.

4 Stability of collusive cartel with endogenous pricing

4.1 The model of cartel with endogenous pricing

In the second model, a pair of a cartel structurex ∈ X and a quoted pricep ∈ R++

describes a market structure; it specifies the current price and the firms in the cartel
(and, implicitly, the firms in the fringe). Incidentally, what will happen to the
market structure if there is no actual cartel (i.e., ifx = xf )? In this case, we assume
that(xf , pcomp) will be realized. That is, if there is no actual price-leader, only the
competitive equilibrium pricepcomp will prevail in the market. In other words,
any market structure such as(xf , p) with p 6= pcomp is meaningless. Excluding
such meaningless market structures, we now define the setA of all possible market
structures:

A ≡
{

(x, p) ∈ {0, 1}n × R++

∣∣∣ x 6= xf or (x, p) = (xf , pcomp)
}

.
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We shall call an element inA as an “outcome.”8

Let gi be the payoff function of firmi defined onA: For (x, p) ∈ A,

gi(x, p) =

{
πc(|x|, p) if xi = 1,

πf (p) if xi = 0.

For a fringe firm, only the quoted pricep matters; it does not matter who are the
members of the current cartel or how many firms there are in the cartel.

Let us define a set of outcomes where a cartel charges the optimal price, de-
noted byAOP = {(x, p) ∈ A | p = p∗(|x|)}. For two distinct market structures
(x, p), (y, w) ∈ A, we say that “(y, w) Pareto-dominates(x, p)” if gi(y, w) =
gi(x, p) for all i ∈ N and gi(y, w) > gi(x, p) for somei ∈ N . The set of
Pareto-efficient market structures, denoted byAPE, is a set of outcomes that are
not Pareto-dominated. Let us define another subset ofA, denoted byA∗, which
will turn out to be a subset ofAPE:

A∗ ≡ {
(x, p∗(|x|)) ∈ A

∣∣ x = xc or π∗f (|x|) > π∗c (n)
}

.

Because the largest-cartel optimal-pricing outcome(xc, p∗(|xc|)) always exists,A∗

is nonempty.

Lemma B1. A∗ coincides with the intersection ofAOP andAPE.

Next, we define the inducement relation onA. We assume that each individual
firm can enter or exit from the existing cartel freely and, thereby, change the cur-
rent market structure to another. In the course of entry-exit, only individual moves
are allowed, while coalitional (simultaneous) moves are not. Furthermore, we as-
sume that the cartel members can change the current price to another through a
unanimous agreement. By changing the price, the cartel can induce another market
structure from the current market structure. In general, when a nonempty sub-
setS of N changes a given market structure(x, p) to another(y, w), we write

(x, p) S−→ (y, w). The relation{ S−→}S⊂N is formally defined as follows:

Definition B1 (Inducement Relation with Endogenous Pricing). For (x, p) ∈ A,

(y, w) ∈ A, and nonemptyS ⊂ N , we have(x, p) S−→ (y, w) if either one of the
following conditions is satisfied:

(i) S = C(x) andx = y,

(ii) S = {i} 6= C(x), xj = yj for all j 6= i, andp = w,

(iii) S = {i} = C(x) and(y, w) = (xf , pcomp).

8If the pricep is high enough, the demandd(p) becomes zero and the supply by the fringe firms
becomes strictly positive. Therefore, in an outcome(x, p) with a sufficiently high price, the market
clearing condition can be violated; in this sense, such an outcome is not feasible. Although we can
redefine the set of possible outcomes such that it only includesfeasibleoutcomes, this will render
the model unnecessarily complicated.
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Part (i) means that cartelC(x) can change the current pricep to anotherw
through a unanimous agreement between the members. Part (ii) means that a single
playeri can change the current market structure to another by means of entry-exit
from the cartel without affecting the current price. Part (iii) means that if a single
player i is the last one member of the current cartel, it can change the current
outcome to the competitive equilibrium outcome by exiting from the cartel.

The indirect dominance relation is defined as follows.

Definition B2 (E-Domination). For (x, p) ∈ A and (y, w) ∈ A, we say that
“ (y, w) indirectly dominates(x, p) through endogenous pricing,” or simply, “(y, w)
E-dominates(x, p),” which we shall write(y, w)m (x, p) or (x, p)l (y, w), if and
only if there exists a sequence of outcomes and nonempty coalitions

(x, p) = (x0, p0) S1−→ (x1, p1) S2−→ · · · SM−−→ (xM , pM ) = (y, w)

such that for eachm = 1, . . . , M ,

gi(xm−1, pm−1) < gi(xM , pM ) = gi(y, w)

for all i ∈ Sm.

A pair (A,m) is called the abstract system associated with the price leadership
model with endogenous pricing.

Definition B3 (Farsighted Stable Set with Endogenous Pricing). A subsetK of A
is said to be a farsighted stable set for the price leadership cartel with endogenous
pricing, or simply the farsighted stable set for(A,m), if K is a stable set for
abstract system(A,m).

4.2 Results

We first show the following lemma.

Lemma B2. The largest-cartel optimal-pricing outcome(xc, p∗(|xc|)) E-dominates
any other outcome.

An immediate consequence of Lemma B2 is that{(xc, p∗(|xc|))} is a far-
sighted stable set for(A,m). Thus, the existence of the farsighted stable set in
the second model is guaranteed.

The next lemma provides the sufficient conditions for E-Domination between
the two outcomes.

Lemma B3. Take distinct outcomes(x, p), (y, w) ∈ A. Assumeπc(|x|, p) > 0.
Then,(x, p) E-dominates(y, w) if either one of the following conditions is satis-
fied:

(i) C(x) ∩ C(y) = ∅, andπf (p) > πc(|y|, w);

(ii) C(x) ∩ C(y) 6= ∅, πf (p) > πc(|y|, w) andπc(|x|, p) > πc(|x ∧ y|, w);

21



(iii) C(x) ∩ C(y) 6= ∅, C(x) 6⊂ C(y), C(x) 6⊃ C(y), p 6= pcomp, w 6= pcomp, and
πc(|x|, p) = πc(|y|, w).

The following theorem shows that any market structure such that it is Pareto-
efficient and the cartel chooses the optimal pricing constitute a one-point farsighted
stable set for(A,m).

Theorem B1. For any outcome(x, p) ∈ A∗, the singleton set{(x, p)} constitutes
a farsighted stable set.

Proof. Because the internal stability is satisfied automatically, it suffices to show
the external stability. If(x, p) = (xc, p∗(|xc|)), then the external stability follows
from Lemma B2 immediately. Then, let us assumex 6= xc andp = p∗(|x|). Take
an arbitrary(y, w) ∈ A with (x, p) 6= (y, w). We distinguish three cases: (i)
x = y; (ii) x 6= y and|x| = |y|; (iii) x 6= y and|x| < |y|.

Let us consider case (i). By the definition of the inducement relation, we have

(y, w) = (x,w)
C(y)−−−→ (x, p∗(|x|)) = (x, p). Further, by the definition ofp∗, we

can show the following relation: for alli ∈ C(y),

gi(y, w) = πc(|y|, w) < πc(|y|, p∗(|y|)) = πc(|x|, p∗(|x|)) = gi(x, p).

Then, we obtain(x, p)m (y, p).
Next, let us consider case (ii). By the size-monotonicity ofπc, the definition of

p∗, and Proposition 2-(ii), we have the following relation:

πc(|y|, w) 5 πc(|x|, w) 5 πc(|x|, p∗(|x|)) < πf (p∗(|x|)) = πf (p).

This relation and the factπc(|x|, p∗(|x|)) > 0 imply bothπf (p) > πc(|y|, w) and
πf (p) > 0. Therefore, ifC(x) ∩ C(y) = ∅, then the conditions in Lemma B3-(i)
are satisfied. On the other hand, ifC(x) ∩ C(y) 6= ∅, we haveπc(|x ∧ y|, w) 5
π∗c (|x ∧ y|) < π∗c (|x|) = πc(|x|, p∗(|x|)) = πc(|x|, p) by the size-monotonicity
of π∗c . Then, the conditions in Lemma B3-(ii) are satisfied. Thus, we obtain the
desired result.

Finally, let us consider case (iii). Since(x, p) ∈ B and(x, p) 6= (xc, p∗(|xc|)),
we have0 < π∗c (|xc|) < π∗f (|x|) = πf (p∗(|x|)) = πf (p). By the definition
and the size-monotonicity ofπ∗c , we haveπc(|y|, w) 5 π∗c (|y|) 5 π∗c (|xc|) =
π∗c (n). Combining these inequalities, we obtainπf (p) > πc(|y|, w) andπf (p) >
0. If C(x) ∩ C(y) = ∅, then the conditions in Lemma B3-(i) are satisfied. If
C(x) ∩ C(y) 6= ∅, then we haveπc(|x ∧ y|, w) 5 πc(|x|, w) < πc(|x|, p∗(|x|)) =
πc(|x|, p). Consequently, the conditions in Lemma B3-(ii) are satisfied.

As shown in Lemma B1, any outcome inA∗ is Pareto-efficient. As a result,
Theorem B1 shows that an efficient outcome can be attained as anultimateout-
come in an essentiallynoncooperativecircumstance through the solution concept
of the farsighted stable set . A similar result to Theorem B1 has been attained by

22



Kamijo and Muto (2008).9 However, in their model, it is assumed that even firms
that are not the members of the current cartel can make joint deviations and that the
current cartel sets the price at the optimal, joint-profit-maximizing level automat-
ically. Because the cooperative actions by the firms are embedded in their model
at the very outset, it is natural to attain the efficiency result. On the other hand,
because in our model, it is assumed that joint entry or exit by a group of firms
are not allowed and only the members of the current cartel can make joint moves
(of changing price) through a unanimous agreement, it is somewhat surprising to
obtain the efficiency result.

The key in our model is the endogeneity of the price. Let us consider, for ex-
ample, the largest-cartel optimal-pricing outcome(xc, p∗(|xc|)), which constitutes
a farsighted stable set, and another nonstable outcome(x, p) with a smaller size
cartelC(x). Even if (xc, p∗(|xc|)) is better than(x, p) for the members ofC(x),
the members ofC(x) can do nothing except for waiting for entry by other firms
when the price in(x, p) is determined automatically through the optimal pricing
rule as in Kamijo and Muto (2008). On the other hand, ifC(x) can control the
price, it can force the remaining fringe firms to enter the cartel by decreasing the
price to zero and, thereby, form the largest cartelC(xc). Once the largest cartel
C(xc) has been formed, it can choose the optimal monopoly price and render its
members (i.e., all firms) better-off.

To compare with the results of the first model in the previous section, the far-
sighted stable set in the second model becomes a simple form. It is characterized
only by Pareto-efficiency and the optimal pricing. While one cartel in the farsighted
stable set in the first model is Pareto-efficient, all of the cartels in the farsighted sta-
ble sets are Pareto-efficient in the second model. Moreover, as the next theorem
shows, the unique pattern of the farsighted stable sets is guaranteed in the second
model without additional conditions.

We have to prepare the additional lemma to show the uniqueness of our far-
sighted stable set mentioned in Theorem B1.

Lemma B4. Let K be a farsighted stable set. Then, for any(x, p) ∈ K, we have
πc(|x|, p) > 0.

The next theorem shows that there is no other type of a farsighted stable set.

Theorem B2. There is no other type of farsighted stable sets than the one de-
scribed in Theorem B1.

Proof. Let K be a farsighted stable set. IfK ∩ A∗ 6= ∅, thenK must be a single-
ton; otherwise, it violates the internal stability. In this case,K is of the type just
described in Theorem B1. Then, we can assumeK ∩ A∗ = ∅. In the following,
we prove by contradiction that this cannot be the case. Specifically, we show that,
under the conditionK∩A∗ = ∅, there is aninfinitesequence(x1, p1), (x2, p2), . . .

9Suzuki and Muto (2005) have also shown a similar result to Kamijo and Muto (2008) in an
n-person prisoners’ dilemma.

23



of outcomes inK such that|x1| > |x2| > · · · . This contradicts the finiteness of
the number of firms.

The fact(xc, p∗(|xc|)) ∈ A∗ implies(xc, p∗(|xc|)) /∈ K. By the external stabil-
ity of K, there must exist an outcome(x1, p1) ∈ K that E-dominates(xc, p∗(|xc|)).
For outcome(x1, p1) ∈ K, we show the following claim:

Claim 1. (i) |x1| 6= 0 andp1 6= pcomp, (ii) |x1| < |xc|, and (iii) p1 6= p∗(|x1|).
(i). Suppose, in negation, thatx1 = xf . Because we havegi(xc, p∗(|xc|)) =
π∗c (|xc|) > π∗f (0) = gi(xf , pcomp) for all i ∈ N by Proposition 2-(iii), then no

player wants to deviate from(xc, p∗(|xc|)) toward(x1, p1) = (xf , pcomp)—a con-
tradiction. By the same reason,p1 6= pcomp.
(ii). If x1 = xc, we must havep1 6= p∗(|xc|). Then, by the definition ofp∗, we
have

gi(x1, p1) = πc(|xc|, p1) < πc(|xc|, p∗(|xc|)) = gi(xc, p∗(|xc|))

for all i ∈ N = C(xc). This implies that(x1, p1) cannot E-dominate(xc, p∗(|xc|)).
Hence,x1 6= xc must hold and thus,|x1| < |xc|.
(iii). Let S be the first coalition in a sequence that realizes(xc, p∗(|xc|))l (x1, p1)
and suppose, in negation, thatp1 = p∗(|x1|). Because(x1, p1) ∈ K implies
(x1, p1) /∈ A∗, we have

π∗c (|xc|) = π∗f (|x1|) = πf (p∗(|x1|)) = πf (p1).

Further, for any firmi ∈ N \ C(x1) = C(xc) \ C(x1), we have10

gi(xc, p∗(|xc|)) = π∗c (|xc|) = πf (p1) = gi(x1, p1).

Then, S = C(xc) cannot be true. Therefore,S must be a singleton{i1} for
somei1 ∈ C(x1); otherwise, the definition of the E-domination will be vio-
lated. Fori1, we haveπ∗c (|xc|) = gi1(x

c, p∗(|xc|) < gi1(x
1, p1) = πc(|x1|, p1) =

πc(|x1|, p∗(|x1|)) = π∗c (|x1|). However, sincexc 6= x1 implies |x1| < |xc| = n,
the inequalityπ∗c (|xc|) < π∗c (|x1|) contradicts the size-monotonicity ofπ∗c . Hence,
p1 6= p∗(|x1|).

Let us consider an outcome(x1, p∗(|x1|)). BecauseC(x1) can induce(x1, p∗(|x1|))
from (x1, p1) by changing price and, because we have

gi(x1, p1) = πc(|x1|, p1) < πc(|x1|, p∗(|x1|)) = gi(x1, p∗(|x1|))

for all i ∈ C(x1), (x1, p∗(|x1|)) E-dominates(x1, p1). By the internal stability
of K, (x1, p∗(|x1|)) cannot be inK. As a result, there must exist an outcome
(x2, p2) ∈ K that E-dominates(x1, p∗(|x1|)).

For this(x2, p2), we show the following claim:

10Firm i is a cartel member atxc, but a fringe firm atx1.
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Claim 2. There is at least one firm inC(x1) that is worse-off in(x2, p2) than in
(x1, p∗(|x1|)).

LetS1, S2, . . . , SM be the sequence of coalitions that appear in a sequence that
realizes(x1, p∗(|x1|))l (x2, p2):

(x1, p∗(|x1|)) = (y0, w0) S1−→ (y1, w1) S2−→ · · ·
· · · SM−1−−−−→ (yM−1, wM−1) SM−−→ (yM , wM ) = (x2, p2).

Suppose, in negation, that every firm inC(x1) is not worse-off in(x2, p2) than in

(x1, p∗(|x1|)). Because(x1, p1)
C(x1)−−−→ (x1, p∗(|x1|)) and(x1, p1)l(x1, p∗(|x1|)),

every firm inC(x1) is strictly better-off in(x1, p∗(|x1|)) than in(x1, p1) and, there-
fore, also strictly better-off in(x2, p2) than in (x1, p1). Moreover, we have the
following inducement relation:

(x1, p1)
C(x1)−−−→ (x1, p∗(|x1|)) S1−→ · · · SM−−→ (x2, p2).

Thus,(x2, p2) E-dominates(x1, p1); however, this contradicts the internal stability
of K. Hence, there must be at least one firm inC(x1) that becomes worse-off in
(x2, p2) than in(x1, p∗(|x1|)). We denote the set of such firms inC(x1) by T ; note
that∅ 6= T ⊂ C(x1).

Next, we show certain properties of(x2, p2) similar to ones of(x1, p1) de-
scribed in Claim 1.

Claim 3. (i) |x2| 6= 0 andp2 6= pcomp, (ii) |x2| < |x1|, and (iii) p2 6= p∗(|x2|).
(i) Suppose, in negation, thatx2 = xf . Because we havegi(x1, p∗(|x1|)) =
[π∗c (|x1|) or π∗f (|x1|)] > π∗f (0) = gi(xf , pcomp) for all i ∈ N by Proposition 2-(iii)
and -(iv), then no player wants to deviate from(x1, p∗(|x1|)) toward(x2, p2) =
(xf , pcomp)—a contradiction. By the same reason,p2 6= pcomp.
(ii) Again, let S1, S2, . . . , SM be the sequence of coalitions that appear in a se-
quence that realizes(x1, p∗(|x1|)) l (x2, p2). We have to distinguish two cases:
case (a) whereSm ∩ T = ∅ for all m = 1, . . . , M and case (b) whereSm ∩ T 6= ∅
for somem.

Let us consider case (a). In this case, no firm inT exits fromC(x1). In other
words, all firms inT remain inside the cartel all the way along the sequence. Then,
if a certain coalitionS in the sequence were to change the price fromp∗(|x1|) to
another one, thenS must includeT by the definition of the E-domination. How-
ever, this contradictsSm ∩ T = ∅ for all m = 1, . . . , M . Therefore, the price
remains unchanged along the sequence. Then, for eachi ∈ T , we have

πc(|x1|, p∗(|x1|)) = gi(x1, p∗(|x1|)) > gi(x2, p2) = πc(|x2|, p∗(|x1|)).

By the size-monotonicity ofπc, the inequality|x1| > |x2| follows.
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In turn, let us consider case (b). We first show thatT = C(x1) ∩ C(x2) and,
then, we proceed to the proof of|x1| > |x2|. Let Sk+1 be the first coalition in the
sequence that contains at least one firm inT (that is ,Sk+1∩T 6= ∅ andSm∩T = ∅
for all m 5 k) and let(yk, wk) be the outcome from whichSk+1 deviates. Further,
by the same reason just described in the above paragraph,wk = p∗(|x1|) must
hold. Take an arbitrary firmi ∈ Sk+1 ∩ T ; note thati ∈ C(x1) andi ∈ C(yk).
Then, for firmi, we have

gi(x1, p∗(|x1|)) = πc(|x1|, p∗(|x1|)),
gi(yk, wk) = πc(|yk|, wk) = πc(|yk|, p∗(|x1|)),
gi(x1, p∗(|x1|)) > gi(x2, p2) > gi(yk, wk).

Combining these [in]equalities, we obtainπc(|x1|, p∗(|x1|)) > πc(|yk|, p∗(|x1|)).
By the size-monotonicity ofπc, we have|x1| > |yk|. This implies that some firms
in C(x1)\T have to exit from the cartel before(yk, wk) is reached; in other words,
we must haveC(x1) \ T 6= ∅.

Consider arbitrary firmsi andj such thati ∈ C(x1) \ T andj ∈ T . By the
definition ofT , the status of firmi at (x2, p2) must be different from that of firmj
at (x2, p2). There are two cases: one wherei ∈ C(x2) andj ∈ N \C(x2) and the
other wherei ∈ N \ C(x2) andj ∈ C(x2). In the former, we have

πc(|x1|, p∗(|x1|)) = gi(x1, p∗(|x1|)) 5 gi(x2, p2) = πc(|x2|, p2),

πc(|x1|, p∗(|x1|)) = gj(x1, p∗(|x1|)) > gj(x2, p2) = πf (p2).

Combining these inequalities and taking account of Proposition 1-(iii), we arrive
at a contradiction:

πf (p2) < πc(|x1|, p∗(|x1|)) 5 πc(|x2|, p2) < πf (p2).

Thus, the former case is not possible and the latter case must hold. The latter case
produces two implications: one is thatj ∈ T implies j ∈ C(x2) and the other
is that i ∈ C(x2) implies i ∈ T or i /∈ C(x1). From the former implication,
we obtainT ⊂ C(x1) ∩ C(x2). Similarly, from the latter implication, we obtain
T ⊃ C(x1) ∩ C(x2). Hence,T = C(x1) ∩ C(x2).

Now, we prove|x1| > |x2| for case (b). We assume, to the contrary, that
|x1| 5 |x2|. The factsC(x1) \ T 6= ∅, T = C(x1) ∩ C(x2), and |x1| 5 |x2|
imply C(x2) \ T 6= ∅. Then, we have bothC(x1) 6⊂ C(x2) andC(x1) 6⊃ C(x2).
Further, by Lemma B4 we haveπc(|x1|, p1) > 0 andπc(|x2|, p2) > 0. Therefore,
by Lemma B3-(iii), one of(x1, p1) and(x2, p2) E-dominates the other outcome.
This contradicts the internal stability ofK. Hence,|x1| > |x2|.
(iii) We will show thatp2 6= p∗(|x2|). The proof varies slightly from that in the
case of(x1, p1). Assume, in negation, thatp2 = p∗(|x2|). By the very defini-
tion of (x2, p2), there is a dominance sequence from(x1, p∗(|x1|)) to [(x2, p2) =
(x2, p∗(|x2|))]. LetS be the first coalition that appears in the dominance sequence.
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By the fact|x1| > |x2|, the size monotonicity ofπ∗c , and Proposition 2-(ii), we
have

πc(|x2|, p∗(|x2|) = π∗c (|x2|) < π∗c (|x1|)
= πc(|x1|, p∗(|x1|))
< π∗f (|x1|) = πf (|x1|, p∗(|x1|)).

Thus, any playeri in S must be in the fringe position at the final outcome(x2, p∗(|x2|)).
When the firm belongs to the cartel at(x1, p∗(|x1|)), πf (p∗(|x2|)) > πc(|x1|, p∗(|x1|))
must hold by the incentive of deviation, and when the firm belongs to the fringe at
(|x1|, p∗(|x1|)), πf (p∗(|x2|)) > πf (p∗(|x1|)) = π∗f (|x1|) > π∗c (|x1|) = πc(|x1|, p∗(|x1|)).
By Proposition 2-(ii) and the definition ofp∗, in both cases, we have

πf (p∗(|x2|)) > πc(|x1|, p∗(|x1|)) = πc(|x1|, p1)).

In the case ofC(x1) ∩ C(x2) 6= ∅,

πc(|x2|, p∗(|x2|)) = π∗c (|x2|) > π∗c (|x1 ∧ x2|) = πc(|x1 ∧ x2|, p1),

where the second inequality is by the size monotonicity ofπ∗c and the third is by
the definition ofp∗. Hence, by Lemma B3-(i) and (ii),(x2, p∗(|x2|)) E-dominates
(x1, p1). This contradicts the internal stability ofK and thusp2 6= p∗(|x2|).

Then, the outcome(x2, p∗(|x2|)) E-dominates(x2, p2) and it is not inK; there-
fore, there must exist(x3, p3) ∈ K that E-dominates(x2, p∗(|x2|)). In addition,
(x3, p3) must satisfy|x2| > |x3| andx3 6= xf . Generally, we have the following
two claims:

Claim 4. Assume that(xk, pk) ∈ K, 0 < |xk| < n, andpk 6= p∗(|xk|). Then,
there exits(xk+1, yk+1) ∈ K such that(xk+1, yk+1) E-dominates(xk, p∗(|xk|)).
Claim 5. For (xk+1, pk+1) ∈ K described in Claim 4, the followings hold: (i)
xk+1 6= xf andpk+1 6= pcomp, (ii) |xk+1| < |xk|, and (iii) pk+1 6= p∗(|xk+1|).

Repeatedly applying Claims 4 and 5 alternatively, we obtain an infinite se-
quence of outcomes(x1, p1), (x2, p2), . . . such that|x1| > |x2| > · · · . This con-
tradicts the finiteness of the number of firms. Hence, finally, we obtain the desired
result:K ∩A∗ 6= ∅.

5 Conclusion

In this paper, we considered the stability of price leadership cartel when each firm
has the ability to foresee the future and only individual moves are allowed to the
firms. In such a situation, we present two different models. In the first, the price
set by the cartel is restricted to the optimal one, and in the second, the cartel can
choose any positive price.
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In Table 2, the farsighted stable sets described in this paper and the relevant one
are shown. In the first model, we present procedure (#) that constructs a farsighted
stable set for this model, and show that the minimal size of the stable cartels is also
stable in the sense of d’Aspremont et al. (1983) and the maximal stable cartels are
Pareto-efficient. Moreover, we provide a sufficient condition for the uniqueness
of the farsighted stable set and show that under this condition, both Diamantoudi
(2005) and the first model indicate the same set of stable sizes of cartels.

In the second model, we show that any market structure such that it is Pareto-
efficient and the cartel chooses the optimal pricing constitute a one-point farsighted
stable set. Moreover, this is unique pattern of the farsighted stable sets. It should
be emphasized that even if we allow the cartel to choose any positive price, the
optimal pricing is obtained on the basis of a stability consideration. The efficiency
result obtained in the second model is similar to Kamijo and Muto (2008), in which
the cartel’s pricing is restricted to optimal one and coalitional or joint move of firms
is allowed. If both coalitional moves and price endogeneity are allowed, the result
is obvious. As our Theorems B1 and B2 show, only the one-point stable sets are
admitted and, thus, the internal stability does not play a part. Because one situation
is more likely to be dominated by another if we allow coalitional deviations, the
outcomes described in Theorem B1 constitute a unique pattern of stable sets in the
coalitional move cases.

Optimal Pricing Endogenous Pricing
Individual Move First Model Second Model

K∗(h) for anyh ∈ P ∩D ∩ F {(x, p)} for any(x, p) ∈ B
Coalitional Move Kamijo and Muto (2008) Second Model’

{x} for anyx ∈ XPE {(x, p)} for any(x, p) ∈ B

Table 2: Farishgted stable sets in the various models
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Appendix A
Proof of Lemma A2. Note that bothC(y) \ C(x) andC(x) \ C(y) contain the same
number of firms. Let{i1, i2, . . . , iM} = C(y)\C(x) and{j1, j2, . . . , jM} = C(x)\C(y).
Consider the following sequence:

• first, firm i1 exits fromC(y) and changesy to y1 such thatC(y1) = C(y) \ {i1},
• firm j1 enters the existing cartely1 and forms a new cartely2 such thatC(y2) =

C(y1) ∪ {j1},
• in general, firmim exits fromy2m−2 and changes it toy2m−1 such thatC(y2m−1) =

C(y2m−2) \ {im},
• firm jm entersy2m−1 and form a new cartely2m such thatC(y2m) = C(y2m−1)∪
{jm}.

By repeating this replacement of players (im andjm) M times, we obtainy2M = x from
y0 = y. Whenim ∈ C(y) \ C(x) exits from the existing cartel, it is a member of sizeh
cartel; in addition, it ends up with being a fringe firm at the last of the sequence. Therefore,
we havefim(y2m−2) = π∗c (h) < π∗f (h) = fim(x). Whenjm ∈ C(x) \ C(y) moves,
the size of the existing cartel ish − 1; and jm ends up with being a member ofC(x).
Therefore, by the definition of attractor,fjm(y2m−1) = π∗f (h − 1) < π∗c (h) = fjm(x).
Hence,x B y.

Proof of Lemma A3. [Sufficiency]: Supposeπ∗f (h) > π∗c (h′). Let M = |C(x) \ C(y)|
and writeC(x) \ C(y) ≡ {j1, j2, . . . , jM}. Note thatM = 0 is possible. LetC(y) \
C(x) = {i1, i2, . . . , iM , iM+1, . . . , iM+h′−h}. Because|y| = h′ > h = |x|, we can
always write in this way. Consider the following sequence:

• firm iM+1 exits fromy; then,iM+2 exits from the resulting cartel afteriM+1’s exit;
in this way,iM+k exits from the resulting cartel afteriM+k−1’s exit;

• let y′ be the resulting cartel of sizeh afteriM+h′−h’s exit (note that|x| = h);

• if y′ = x (i.e., if M = 0), then the sequence ends;

• if y′ 6= x, add a sequence fromy′ to x analogous to the one in the proof of
Lemma A2, in which firmik ’s exit from the existing cartel is followed byjk ’s
entry (k = 1, . . . , M ).

In the former part of the sequence fromy to y′, the size of the cartel from which firmiM+k

is just going to exit ish′− k + 1. Then, firmiM+k ’s payoff as a member of a cartel of size
h′ − k + 1 is π∗c (h′ − k + 1). By the assumption of the lemma and by the monotonicity
of π∗c , we havefiM+k

(x) = π∗f (h) > π∗c (h′) = π∗c (h′ − k + 1) for all k = 1, . . . , h′ − h.
In the latter part of the sequence fromy′ to x, similar to the proof of Lemma A2, all the
related players (i.e.,im and jm for m = 1, . . . , M ) can be made better-off eventually.
Hence,x B y.
[Necessity]: Supposex B y with |x| = h < h′ = |y|. Consider a sequence of cartels
and corresponding firms that realizesx B y. There must be at least one firm who exits
from a cartel of sizeh′ in the sequence; let firmi be such a firm in the sequence and let
y′ be the sizeh′ cartel from which firmi is just going to exit. By the definition of the
O-domination, we must haveπ∗c (h′) = fi(y′) < fi(x). By the size monotonicity ofπ∗,
π∗c (h′) > π∗c (h) = π∗c (|x|). This implies firmi belongs to the fringe of cartelx, and thus,
π∗c (h′) = fi(y) < fi(x) = π∗f (h).
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Proof of Lemma A4. Suppose, in negation, thath is not an attractor. Then, by definition,
π∗f (h − 1) = π∗c (h). Consider a sequence of cartels and corresponding firms realizing
x B y such that

y = y0 i1−→ y1 i2−→ . . .
iM−1−−−→ yM−1 iM−−→ yM = x.

We distinguish two cases: case 1 whereh = h′ and case 2 whereh > h′.
Case 1. Becauseπ∗f (h− 1) = π∗c (h), the last firm in the sequence (i.e.,iM ) cannot be

an entering firm when it moves. FirmiM must realizex by exitingfrom some sizeh + 1
cartel. Then, in the course of the sequence, the cartel size must exceedh. Accordingly,
there must exist at least one firm, say firmik, who enter a sizeh cartel and form a new
sizeh + 1 cartel. Lety′ be the sizeh cartel that firmik is just going to enter. Then,
fik

(y′) = π∗f (h) = [π∗f (h) or π∗c (h)] = fik
(x). This contradicts the definition of the

O-domination.
Case 2. If there exists a cartelym 6= x in the sequence such that|ym| = h, then, similar

to case 1, we immediately obtain a contradiction. Then, we can assume that|ym| < h for
all m = 0, 1, . . . , M − 1. The last firm in the sequence,iM , must realizex = yM by
enteringyM−1. However, we havefiM (yM−1) = π∗f (h − 1) = π∗c (h) = fiM (x). This,
again, contradicts the definition of the O-domination.

Proof of Lemma A5. If |y| = |x|, then Lemma A2 applies. Suppose|y| < |x|. By the
definition ofZL, anyh with |y| < h 5 |x| is a leading attractor;|y| itself is either a leading
attractor or zero. Consider anincreasingsequence of cartels and corresponding firms

y = y0 i1−→ y1 i2−→ . . .
iM−−→ yM

such that form = 1, . . . , M , (i) im ∈ C(x) \ C(y), (ii) |ym| = |ym−1| + 1, and (iii)
|yM | = |x|. Because0 < |x| − |y| 5 |C(x) \ C(y)|, we can always choose, from
C(x) \ C(y), an appropriate set ofM ≡ |x| − |y| firms appeared in the sequence. Note
that|ym| is an attractor for allm = 1, . . . , M .

If yM = x, then, by the definition of attractor and by the monotonicity ofπ∗c , we have
fim(ym−1) = π∗f (|ym−1|) < π∗c (|ym−1| + 1) = π∗c (|ym|) 5 π∗c (|x|) = fim(x) for all
m = 1, . . . , M . If yM 6= x, then we only have to add an additional sequence fromyM to
x analogous to the one in the proof of Lemma A2. Hence,x B y.

Proof of Lemma A6. Suppose, in negation, thatK ∩ V (ZA) = ∅. BecauseZL ⊆ ZA,
we haveK ∩ V (ZL) = ∅. Take an arbitrary cartelx with |x| ∈ ZL. x is not inK. By the
external stability ofK, there must exist a cartely ∈ K that O-dominatesx. If |y| 5 |x|,
then|y| is either an attractor or zero. By assumption,|y| cannot be an attractor. However,
if |y| = 0, y cannot O-dominatex. Therefore, we must have|y| > |x|. By Lemma A4,|y|
must be an attractor—a contradiction.

Proof of Lemma A7. The proof of this lemma is immediate consequence of the following
three claims:

Claim (a)[Anonymity] For x ∈ V (k) andy ∈ V (h), if x B y, thenz B w for any
z ∈ V (k) andw ∈ V (h) with |C(x) ∩ C(y)| = |C(z) ∩ C(w)|.
Claim (b) Takek, h ∈ Z with k > h andπ∗c (k) > π∗f (h). If x ∈ V (k) O-dominates some
y ∈ V (h), then thisx O-dominates anyz ∈ V (h).
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Claim (c) Takek, h ∈ Z with k > h andπ∗c (k) > π∗f (h). If x ∈ V (k) O-dominates some
y ∈ V (h), then thisx O-dominates anyz ∈ V (h′), whereh 5 h′ 5 k.

Proof of Claim (a). Before proving this claim, we prepare some notations. Given a permu-
tationθ onN and cartelx, letθ(x) denote a permuted cartel such thatC(θ(x)) = θ(C(x)).

Consider a permutationθ onN such thatθ(x) = z, θ(y) = w, andθ(x ∧ z) = y ∧ w.
Suchθ does exist becase of the assumotions onx, y, z andw. Sincex O-dominatesz, there
exists a sequence of cartels and firms

y = y0 i1−→ y1 i2−→ · · · iM−−→ yM = x

that realize the domination. For this sequence, let define a sequence of permuted cartels
and permuted firms fromw to z as follows:

w = θ(y) = θ(y0)
θ(i1)−−−→ θ(y1)

θ(i2)−−−→ · · · θ(iM )−−−−→ θ(yM ) = θ(x) = z.

By the symmetry of the firms, the above sequence realizes the O-domination fromw to z.

Proof of Claim (b). Ifh = k − 1, this is obvious from the proof of Lemma A2. Therefore,
we assume thath < k − 1.

Let s = |C(x)∩C(y)| andt = |C(x)∩C(z)|. We separate three cases: (i)s = t, (ii)
s > t, and (iii) s < t.
(i). By Claim (a),x B z.
(ii). C(x) \C(z) = {i1, . . . , ik−t} andC(z) \C(x) = {j1, . . . , jh−t}. Note thatk − t >
h− t = s− t.

Consider the following sequence fromz to w, where|w| = h:

• first, firm i1 joins the cartelz and changesz to z1 such thatC(z1) = C(z) ∪ {i1},
• firm j1 exits from the existing cartelz1 and forms a new cartelz2 such thatC(z2) =

C(z1) \ {j1},
• in general, firmim entersz2m−2 and changes it toz2m−1 such thatC(z2m−1) =

C(z2m−2) ∪ {im},
• firm jm exits fromz2m−1 and form a new cartelz2m such thatC(z2m) = C(z2m−1)\
{jm}.

By repeating this replacement of players (im andjm) s − t times, we obtainw ≡ z2(s−t)

from z0 = z.
By construction,|w| = h and|C(x) ∩ C(w)| = s. Therefore, by Claim (a),x B w.

Now we show thatx O-dominatesz by connecting the sequence fromz to w described
above to the one realizingw C x. To show this, it is enough to show that in each step in
the sequence fromz to w, each firm prefersx to the current situation. Foriq, 1 ≤ q ≤ s−t,
sinceiq /∈ C(z2q−2) and|z2q−2| = h,

fiq (z
2q−2) = π∗f (h) < π∗c (k) = fiq (x).

For jq, For iq, 1 ≤ q ≤ s− t, sinceiq ∈ C(z2q−1) and|z2q−1| = h + 1,

fjq (z
2q−1) = π∗c (h + 1) < π∗c (k) < π∗f (k) = fjq (x).

Hence,x B z.
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(iii). C(x) ∩ C(z) = {i1, . . . , it} andN \ (C(z) ∪ C(x)) = {j1, . . . , jr}, where

r = |N \ (C(z) ∪ C(x))| = |C(y) \ (C(z) ∪ C(x))|
= |(C(y) \ C(x)) \ (C(z) \ C(x))| = (h− s)− (h− t) = t− s.

Consider the following sequence fromz to w, where|w| = h:

• first, firm i1 exits from the cartelz and changesz to z1 such thatC(z1) = C(z) \
{i1},

• firm j1 enters the existing cartelz1 and forms a new cartelz2 such thatC(z2) =
C(z1) ∪ {j1},

• in general, firmim exits fromz2m−2 and changes it toz2m−1 such thatC(z2m−1) =
C(z2m−2) \ {im},

• firm jm entersz2m−1 and form a new cartelz2m such thatC(z2m) = C(z2m−1) ∪
{jm}.

By repeating this replacement of players (im andjm) t − s times, we obtainw ≡ z2(t−s)

from z0 = z. Note that by construction,|w| = h and |C(x) ∩ C(w)| = t. Thus, by
Claim (a),x B w. Similar to case (ii), we can show thatx O-dominatesz by connecting
the sequence fromz to w described above to the one realizingw C x.
Proof of Claim (c). Sincek is an attractor by Lemma A4, the case whereh′ = k holds by
Lemma A2. Whenh′ = h, by Claim (b), this case holds. So we consider the case where
h < h′ < k.

Take anyz ∈ V (h′). Let C(z) = {i1, . . . , ih′}. Consider the following sequence of
deviation such that firms inC(z) exit from the cartel until the size of cartel becomesh:

z = z0 i1−→ z1 i2−→ . . .
ih′−h−−−→ zh′−h = w.

Because|w| = h, by Claim (b),x O-dominatesw. Then, we now show thatx B z by
the sequence connecting the one fromz to w described above to the one realizingw C x.
Since for eachir, 1 ≤ r ≤ h′ − h,

fir (z
r−1) = π∗c (h′ − r + 1) < π∗c (k) 5 fir (x),

the incentives of deviating firms in the above sequence holds and thusx B z.

Proof of Lemma A8. If a = ā, the proof ends. Then, take an arbitrarya ∈ ZL with
a < ā. Because anyh with a 5 h 5 ā is an attractor, we haveα1(a) = a, α2(a) = a + 1,
α3(a) = a+2, . . . ,αM (a) = ā− 1, αM+1(a) = ā, whereM = ā−a. Therefore, we can
write H(a) as follows:

H(a) ≡ {α1(a), . . . , αM (a)} ∪H(ā).

Suppose that the largest leading attractorā is not deleted fromH(ā) in the procedure
generatingH∗(ā); that isā ∈ H∗(ā). Then, by the definition of the procedure,ā will never
be deleted in the procedure generatingH∗(a) from H(a); that is,ā ∈ H∗(a). Because, by
Lemma A5, an arbitraryx ∈ V (ā) O-dominates any distincty with |y| 5 |x|, then all of
α1(a), . . . , αM (a) are deleted in the procedure generatingH∗(a). In this case,H∗(a) =
H∗(ā).
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On the other hand, supposeā is deleted fromH(ā) in the procedure generatingH∗(ā).
Then, there exists an integerh ∈ H∗(ā) and a cartelx ∈ V (h) that O-dominates a cartel
y ∈ V (ā). Take a cartely′ ∈ V (a). Without loss of generality, we can assumeC(y′) ⊂
C(y). LetC(y)\C(y′) = {i1, i2, . . . , iR}. Further, let{iR+1, iR+2, . . . , iR+S} be the set
of firms that appear in the sequence realizingx B y. Consider the following sequence of
cartels and corresponding firms:

y′ = y0 i1−→ y1 i2−→ . . .
iR−→ [yR = y]

iR+1−−−→ . . .
iR+S−−−→ [yR+S = x]︸ ︷︷ ︸

the sequence realizingx B y

.

For r = 1, . . . , R, we havefir
(yr−1) = π∗f (|yr−1|) andfir

(x) = π∗c (h) or fir
(x) =

π∗f (h). Note thata 5 |yr−1| < ā for all r = 1, . . . , R. By the definitions ofH∗(ā) and
ZL and the properties ofπ∗ functions, we haveπ∗c (a) < π∗f (a) < π∗c (a+1) < π∗f (a+1) <

· · · < π∗c (ā) < π∗f (ā) andπ∗f (ā) 5 π∗c (h) < π∗f (h). In any case,fir (y
r−1) < fir (x) for

all r = 1, . . . , R. By the definition of O-domination, we havefiR+s
(yR+s−1) < fiR+s

(x)
for all s = 1, . . . , S. That is,x B y′. Again, all ofα1(a), . . . , αM (a) are deleted in the
procedure generatingH∗(a). Hence,H∗(a) = H∗(ā).

Proof of Lemma A9. Suppose, in negation, thatd∗ /∈ H∗(d∗). Then, there existsh ∈
H∗(d∗) such thatV (h) B V (d∗) andh > d∗. By construction,π∗c (h) > π∗f (d∗). Take
cartelsx, y, andy′ such thatx ∈ V (h), y ∈ V (d∗), andy′ ∈ V (ā); we can assumex B y
andy B y′.

Becausex Pareto-dominatesy by construction, we can construct an appropriate se-
quence realizingx B y′ by simply connecting the sequence realizingx B y to the sequence
realizingy B y′. That is,V (h) B V (ā); this contradicts the definition ofd∗.

Proof of Lemma A10. If ā ∈ F , then the proof ends. Supposeā /∈ F . Let m∗ be the
minimum element inH∗(ā). (Note thatm∗ exists.) By the definition ofH∗(ā), V (m∗) B
V (ā) because if other integerm′ ∈ H∗(ā) O-dominates̄a, it also O-dominatesm∗—a
contradiction. Then,m∗ ∈ D. By construction and the properties ofπ functions, we have
π∗c (ā) < π∗f (ā) 5 π∗c (m∗) < π∗f (m∗); this impliesm∗ ∈ P . Further, by construction,
m∗ ∈ H∗(m∗). Hence,m∗ ∈ P ∩D ∩ F .
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Appendix B
Proof of Lemma B1. We first showA∗ ⊇ AOP∩ APE. BecauseA∗ is a subset ofAOP,
it suffices to show that any outcome(x, p∗(|x|)) ∈ AOP with π∗f (|x|) 5 π∗c (n) is Pareto-
dominated by another outcome. Fortunately, it is obvious that such an outcome(x, p∗(|x|))
is Pareto-dominated by(xc, p∗(n)).

Next, we showA∗ ⊆ AOP∩ APE. BecauseA∗ is a subset ofAOP, we will show that
A∗ is a subset ofAPE. Take an arbitrary(x, p) ∈ A∗. We have to show that(x, p) cannot
be Pareto-dominated. We distinguish two cases: case 1 where(x, p) = (xc, p∗(|xc|)) and
case 2 where(x, p) 6= (xc, p∗(|xc|)).

Let us consider case 1. Take an arbitrary(y, w) ∈ A other than(x, p). If C(y) = ∅ or,
equivalently,y = xf , then we havegi(x, p) = π∗c (n) > π∗f (0) = πf (pcomp) = gi(y, w)
for all i ∈ N by Proposition 2-(iii). On the other hand, ifC(y) 6= ∅, we havegi(x, p) =
π∗c (n) > π∗c (|y|) = πc(|y|, p∗(|y|)) = πc(|y|, w) = gi(y, w) for all i ∈ C(y) by the
size-monotonicity ofπ∗c and the definition ofp∗. That is,(y, w) cannot Pareto-dominate
(xc, p∗(|xc|)).

Next, let us consider case 2. By the inequalityπ∗f (|x|) > π∗c (n), neither|x| = 0 nor
|x| = n can be true. Therefore, we have bothC(x) 6= ∅ andN \ C(x) 6= ∅. Suppose, in
negation, that there exists an outcome(y, w) ∈ A that Pareto-dominates(x, p).

If there is a playeri such thati ∈ N \ C(x) andi ∈ C(y), then, by the definition of
the Pareto-domination, we have

πc(|y|, w) = gi(y, w) = gi(x, p) = π∗f (|x|).

On the other hand, by the definitions ofπ∗c andA∗, we have

π∗c (|y|) = πc(|y|, w) and π∗f (|x|) > π∗c (n).

Combining the above inequalities, we obtainπ∗c (|y|) > π∗c (n). This contradicts the size-
monotonicity ofπ∗c . Such playeri cannot exist. Hence,i ∈ N \C(x) impliesi ∈ N \C(y);
equivalently,C(y) ⊂ C(x).

In turn, if there is a playerj such thatj ∈ C(x) andj ∈ C(y), then, similar to the
above paragraph, we obtain the following inequalities:

π∗c (|y|) = πc(|y|, w) = gj(y, w) = gj(x, p) = π∗c (|x|).

By the size-monotonicity ofπ∗c , the factπ∗c (|y|) = π∗c (|x|) implies|y| = |x|. This, together
with C(y) ⊂ C(x), impliesC(y) = C(x) or, equivalently,x = y. Then, by the definition
of p∗, we obtain

gj(y, w) = gj(x,w) = πc(|x|, w) < πc(|x|, p∗(|x|)) = π∗c (|x|) = gj(x, p).

This contradicts the definition of the Pareto-domination. Such playerj cannot exist. Hence,
j ∈ C(x) implies j ∈ N \ C(y); equivalently,C(x) ⊂ N \ C(y). Therefore, we have
C(y) ⊂ C(x) ⊂ N \ C(y). This can be possible only ifC(y) = ∅, but, as already shown,
C(y) = C(x) 6= ∅—a contradiction. No outcome can Pareto-dominate(x, p) ∈ A∗.

Proof of Lemma B2. Take an arbitrary outcome(y, w) other than(xc, p∗(|xc|)). We
distinguish three cases: case 1 wherey = xc, case 2 wherey = xf , and case 3 where
y 6= xc andy 6= xf .
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First, let us consider case 1:y = xc. Clearly, the cartelC(y) = C(xc) can change

the current pricew to the optimal pricep∗(|y|), that is, (y, w)
C(y)−−−→ (y, p∗(|y|)) =

(xc, p∗(|xc|)). Further, by the definition ofp∗, we have

gi(y, w) = πc(|y|, w) = πc(|xc|, w) < πc(|xc|, p∗(|xc|)) = gi(xc, p∗(|xc|))
for all i ∈ C(y). The desired result is obtained.

Next, let us consider case 2:y = xf . Consider a sequence of deviations in which (a)
each player enters the cartel one by one and (b) after all the players enter the cartel, the
largest cartel changes the price top∗(|xc|):

(y, w) = (x0, pcomp)
{i1}−−−→ (x1, pcomp)

{i2}−−−→ · · ·
· · · {in}−−−→ [(xn, pcomp) = (xc, pcomp)]

C(xc)−−−−→ (xc, p∗(|xc|)).
For eachik in the above sequence, we havegik

(xk−1, pcomp) = πf (pcomp) = π∗f (0) <
π∗c (n) = π∗c (|xc|) = gik

(xc, p∗(|xc|)) by Proposition 2-(iii). Further, in the last step, we
havegi(xn, pcomp) = gi(xc, pcomp) < πc(|xc|, p∗(|xc|)) = π∗c (|xc|) = gi(xc, pcomp) for all
i ∈ C(xc). Again, the desired result is obtained.

Lastly, let us consider case 3:y 6= xc and y 6= xf . It immediately follows that
0 < |y| < n. Let p̂ > 0 be a price such thatπf (p̂) < π∗c (n) andp̂ 6= pcomp. Suchp̂ exists
becauseπf (p) is decreasing andlimp→0 πf (p) = 0.

Now, consider a sequence of deviations in which (a) cartelC(y) decreases the price
down top̂, (b) each firm inN \ C(y) enters the cartel one by one until all the firms enter
the cartel, and (c) after establishing the largest cartel, the cartelC(xc) changes the price to
p∗(|xc|):

(y, w)
C(y)−−−→ [

(y, p̂) = (x0, p̂)
] {j1}−−−→ (x1, p̂)

{j2}−−−→ · · ·
· · · {jr}−−−→ [(xr, p̂) = (xc, p̂)]

C(xc)−−−−→ (xc, p∗(|xc|)),
whereN \ C(y) ≡ {j1, j2, . . . , jr}. In the first (price-cutting) step, we have

gi(y, w) = πc(|y|, w) 5 π∗c (|y|) < π∗c (n) = π∗c (|xc|) = gi(xc, p∗(|xc|))
for all i ∈ C(y) by the size-monotonicity ofπ∗c . In each of the intermediate (entry) steps,
we have

gjk
(xk−1, p̂) = πf (p̂) < π∗c (|xc|) = gjk

(xc, p∗(|xc|))
for jk (k = 1, 2, . . . , r). In the last (price-increasing) step, we have

gi(xc, p̂) = πc(|xc|, p̂) < πf (p̂) < πc(|xc|, p∗(|xc|)) = gi(xc, p∗(|xc|))
for all i ∈ C(xc) by Proposition 1-(iii) and the definition of̂p. Hence, the desired result is
obtained.

Proof of Lemma B3. We first prove case (ii) and, then, turn to case (i) and case (iii). Let
p̂ ∈ R++, p̂ 6= pcomp, be a price level that satisfieŝp

πf (p̂) < πc(|x|, p).

Such a price level̂p exists sinceπc(|x|, p) > 0 andlimp→0 πf (p) = 0.
Case (ii). Consider the following steps that form an appropriate sequence of deviations
from (y, w) to (x, p):
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Step 1 If C(y) \ C(x) = ∅, then go to the next step. Otherwise, consider a sequence in
which each firm inC(y) \ C(x) exits from the cartel in turn. LetC(y) \ C(x) =
{i1, i2, . . . , ir}. Then,

(y, w) = (x0, w)
{i1}−−−→ (x1, w)

{i2}−−−→ (x2, w)
{i3}−−−→ . . .

{ir}−−−→ (xr, w),

wherexk ∈ X is defined to satisfyC(xk) = C(y) \ {i1, . . . , ik} for eachk =
1, . . . , r. Note thatxr = x ∧ y.

Step 2 CartelC(x ∧ y) changes the price fromw to p̂. (Note thatC(x ∧ y) 6= ∅ by
assumption.) Thus,

(x ∧ y, w)
C(x∧y)−−−−−→ (x ∧ y, p̂).

Step 3 If C(x) \ C(y) = ∅, then go to the next step. Otherwise, consider a sequence
in which each firm inC(x) \ C(y) enters the cartel in turn. LetC(x) \ C(y) =
{j1, j2, . . . , jr′}. Then,

(xr, p̂)
{j1}−−−→ (xr+1, p̂)

{j2}−−−→ (xr+2, p̂)
{j3}−−−→ . . .

{jr′}−−−→ (xr+r′ , p̂),

wherexr+k ∈ X is defined to satisfyC(xr+k) = C(x∧ y)∪ {j1, . . . , jk} for each
k = 1, . . . , r′. Note thatxr+r′ = x.

Step 4 CartelC(x) changes the price from̂p to p.

(x, p̂)
C(x)−−−→ (x, p).

Now we check firms’ incentive of deviation. For eachik in Step 1, we have

gik
(xk−1, w) = πc(|xk−1|, w) 5 πc(|y|, w) < πf (p) = gik

(x, p),

where the second inequality follows from the size-monotonicity ofπc ((i) in Proposition 1)
and the penultimate strict inequality is due to the condition given in this lemma. Thus, all
the deviating firms in Step 1 have incentives to deviate toward the ultimate outcome(x, p).

In Step 2, we have

gi(x ∧ y, w) = πc(|x ∧ y|, w) < πc(|x|, p) = gi(x, p)

for all i ∈ C(x∧ y). (Note thatC(x∧ y) ⊂ C(x).) The above inequality follows from the
condition given in the lemma. Therefore, cartelC(x ∧ y) has an incentive to change the
price as in Step 2.

Moreover, for each deviating firmjk in Step 3, we have

gjk
(xr+k−1, p̂) = πf (p̂) < πc(|x|, p) = gjk

(x, p)

by the definition of̂p. Thus,jk is better off in(x, p) than in(xr+k−1, p̂).
For p̂, we haveπc(|x|, p̂) < πf (p̂) < πc(|x|, p) by the definition ofp̂ and Proposi-

tion 1-(iii). Then, in Step 4, we have

gi(x, p̂) = πc(|x|, p̂) < πc(|x|, p) = gi(x, p)

for all i ∈ C(x). CartelC(x) has an incentive to change their price top. Hence,(x, p) m
(y, w) holds through this sequence of deviations.
Case (i). Take an arbitraryi ∈ C(y). Consider the following finite sequence of deviations:
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Step 1 CartelC(y) changes its price fromp to p̂.

Step 2 Firms inC(y) \ {i} exit from the cartel in turn.

Step 3 Firms inC(x) enter the cartel in turn.

Step 4 Firm i exits from the cartel.

Step 5 CartelC(x) changes its price from̂p to p.

Applying almost the same argument as the proof of “Case (ii),” we can show the in-
centives of the deviating firms in each step.
Case (iii). Letz = x∧y; thenC(z) = C(x)∩C(y). By the conditions given in the lemma,
we have bothC(x) \C(z) 6= ∅ andC(y) \C(z) 6= ∅. Consider the following sequence of
deviations:

Step 1 Firms inC(y) \ C(z) exit fromC(y) one by one until the cartelC(z) is realized:

(y, w) = (x0, w)
{i1}−−−→ (x1, w)

{i2}−−−→ · · · {ir}−−−→ (xr, w) = (z, w),

whereC(y) \ C(z) = {i1, . . . , ir} andr ≡ |y| − |z|.

Step 2 C(z) decreases the price down top̂: (z, w)
C(z)−−−→ (z, p̂).

Step 3 Firms inC(x) \ C(z) enter the cartel untilC(x) is established:

(z, p̂) = (xr+1, p̂)
{j1}−−−→ (xr+2, p̂)

{j2}−−−→ · · ·
· · · {jr′}−−−→ (xr+1+r′ , p̂) = (x, p̂),

whereC(x) \ C(z) = {j1, . . . , jr′} andr′ = |x| − |z|.

Step 4 C(x) increases the price up top: (x, p̂)
C(x)−−−→ (x, p).

In Step 1, we have

gik
(xk−1, w) = πc(|y| − k + 1, w) < πc(|y|, w)

5 πc(|x|, p)
< πf (p) = gik

(x, p)

for all k = 1, . . . , r, where the first inequality follows from the size-monotonicity ofπc,
the second from the condition given in the lemma, and the third from Proposition 1-(iii).
In Step 2, we have

gi(z, w) = πc(|z|, w) < πc(|y|, w) 5 πc(|x|, p) = gi(x, p)

for all i ∈ C(z). Thus, in each case,gi(x, p) > gi(z, w) for all i ∈ C(z). In Step 3, we
have

gjk
(xr+k, p̂) = πf (p̂) < πc(|x|, p) = gjk

(x, p)

for all k = 1, . . . , r′. And, in Step 4, we have

gi(x, p̂) = πc(|x|, p̂) < πf (p̂) < πc(|x|, p) = gi(x, p)

for all i ∈ C(x). Hence,(x, p) E-dominates(y, w).
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Proof of Lemma B4. We distinguish two cases: case 1 where(xf , pcomp) ∈ K and case 2
where(xf , pcomp) /∈ K. Note thatgi(xf , pcomp) = πf (pcomp) = π∗f (0) > 0 for all i ∈ N .

First we consider case 1 where(xf , pcomp) ∈ K. Take any(y, w) ∈ K such that
πc(|y|, w) 5 0. Consider the following finite sequence of deviations from(y, w) to
(xf , pcomp): Firms inC(y) exit from the cartel in turn. Thus,

(y, w) = (y0, w)
{i1}−−−→ (y1, w)

{i2}−−−→ (y2, w) . . .
{ir}−−−→ (yr, pcomp) = (xf , pcomp)

whereC(y) = {i1, . . . , ir}, r = |y|, andyk is such thatC(yk) = {ik+1, . . . , ir}.
For each deviant firmim, πc(|ym−1|, w) 5 πc(|y|, w) < πf (0). Therefore,(xf , pcomp)

E-dominates(y, w) through the above sequence of deviations and this contradicts the in-
ternal stability ofK.

Next we consider case 2 where(xf , pcomp) /∈ K. In this case, there must exist(x, p) ∈
K such that(x, p) m (xf , pcomp) to assure the external stability ofK. Then,x 6= xf and
p 6= pcomp. We show that in the outcome(x, p), the firms in the cartel obtain a positive
profit. In a dominance sequence that realizes(x, p) m (xf , pcomp), there must be at least
one firm, say firmi, who joins the cartel at some stepk of the sequence and remains in
the cartel at the final outcome because the initial outcome has no actual cartel. By the
definition of the E-dominance, we have

0 < πf (pk) = gi(xk, pk) < gi(x, p) = πc(|x|, p).

The first strict inequality follows from the definition ofπf . Thus, we obtain0 < πf (pk) <
πc(|x|, p).

Recall thatπf (p) > 0. Thus, we havegi(x, p) > 0 for all i ∈ N . Finally, we show
that for any(y, w) ∈ K such thatπc(|y|, w) 5 0, (x, p) E-dominates(y, w). This is
done by Lemma B3-(i) and (ii) becauseπc(|x|, p) > 0 = πc(|y|, w) = πc(|x ∧ y|, w) and
πf (p) > πc(|y|, w). This contradicts the internal stability ofK. So we have the desired
result.

40


