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1 Introduction

The study of cartel stability is a traditional topic in oligopoly theory. In particu-
lar, collusive pricing behavior, whether it is a result of overt agreement, has been
viewed as “the only feasible means of assuring parallel actions among sellers”
(Markham (1951, p. 901)); moreover, price leadership cartels have received con-
siderable attention for decades. Although there is an extensive literature on price
leadership models with one leader and one folloWstudies on the price leader-
ship cartel with many firms are inadequate. In this paper, we study the stability of a
price leadership cartel in an oligopolistic market with many (but, finite) symmetric
firms.

One of the earliest contributions to the research on the stability of the price
leadership cartel is d’Aspremont, Jacquemin, Gabszewicz, and Weymark (1983),
which had been a starting point for subsequent studies by other authors. In their
model, it is assumed that there is only one cartel in the role of the price leader that
announces and sets the price (the size of the cartel in terms of the number of firms
in it varies endogenously through entry-exit by firms) and that, taking the price
set by the leader as given, the other fringe firms behave in a competitive fashion;
in other words, they follow the price-equal-marginal-cost principknowing the
responses of the fringe firms, the cartel can derive the residual demand function
by subtracting the total supply by the fringe firms from the total demand. Taking
account of the derived residual demand, the cartel members determine the price to
maximize the (joint) profit.

Let the profits of cartel firms and fringe firms in the price leadership cartel
model be denoted by (k) = mc(k,p*(k)) andr}(k) = 7;(p*(k)), respectively,
wherer.(k, p) andm¢(p) are the profits of cartel firms and fringe firms when size
k cartel sets the pricg, andp*(k) is the optimal price of the sizg cartel. In
d’Aspremont et al. (1983), a certain siz®f the cartel is considered to be “stable”
if (i) 72 (k) 2 7}(k—1),i.e., nofirmin the existing sizecartel finds it profitable to
exitfrom the cartel, and (i} (k) = 77 (k+1), i.e., no fringe firm can be better off
by entering the existing cartel. There exists a stable size of the cartel in the sense
of d’Aspremont et al. (1983) because if there does not existisize< k < n,
satisfying condition (i), siz® cartel (i.e., the situation where the cartel does not

1There are several studies that explore why there is a firm in the position of the price leader.
Deneckere and Kovenock (1992) and Furth and Kovenock (1993) have considered a model with the
firms’ capacity constraints. Pastine and Pastine (2004) have used the endogenous timing model of
Hamilton and Slutsky (1990) to examine endogenous role assignment of a leader and follower. van
Damme and Hurkens (2004) have also used the endogenous timing model with firms’ risk consider-
ation by Harsanyi and Selten (1988).

20no (1978) regarded such behavior of fringe firms as the optimal. He argued that because, given
the price set by the leader, a fringe firm can set a price infinitesimally lower than the one set by the
leader and self; that satisfies the price-equal-marginal-cost condition, the fringe firm can maximize
its profit. However, there is some difficulty in justifying such behavior of fringe firms in a rigorous
non-cooperative game model with finite players, because there must be an interaction among fringe
firms. Tasnadi (2000) shows that such behavior can be justified in a non-atomic model of the fringe
firms.



exist) is stable since fdr = 0, (i) automatically holds and (ii) holds by = 1 not

satisfying condition (i). If there exists siZze 0 < k < n — 1, satisfying condition
() but thisk does not satisfy condition (ii), the latter implies siz¢ 1 also satisfies
condition (i). By repeating this process, we can find sizgatisfying (i) and (ii)
because the number of the firms,is finite and forn, condition (ii) automatically
holds.

Although the model in d’Aspremont et al. (1983) is simple and their results
are clear, in their analysis, there remains an inadequacy concerning the foresight
of the firms, pointed out by Diamantoudi (2005). She argued that the analysis by
d’Aspremont et al. (1983) exhibited a certain inconsistency between an implicit
assumption of the firms’ brightness embedded in the model and the stability crite-
rion that assumes the firms’ myopic view. Consider a firm in the cartel consisting
of k firms. When the firm contemplates the deviation (exiting from the cartel), it
compares the current profif: (k) = n.(k,p*(k)) (the profit of a firm in the size
k cartel) with the profitr}(k — 1) = 7;(p*(k — 1)) under a new price*(k — 1)
set by a new cartel established after its deviation (the profit of a firm in the fringe
with sizek — 1 cartel) but not with the profit¢(p*(k)) under the price*(k) set
by the current cartel. Since the cartel’s pricing behavior is restricted to the optimal
pricing at the very outset of the model, the deviating firm should correctly expect
the response of threadjustingprice by the new cartel against its deviation. In this
sense, a firm in their model should have the ability to foresee the reaction of the
other firms (in particular, those remaining in the cartel) against its deviation. To the
contrary, the stability criterion adopted by d’Aspremont et al. (1983) implies that a
firm contemplating deviation does not take account of possible subsequent devia-
tions by other firms after its own deviation. That is, the stability criterion assumes
that a firm’s view is myopic, undermining the foresight of the firm that is assumed
by the model.

In view of such inconsistency in the analysis of d’Aspremont et al. (1983),
Diamantoudi (2005) has reconsidered the stability of the price leadership cartel by
adopting a different stability criterion that incorporates the farsighted perspective of
firms. As the stability concept, she adopts von Neumann and Morgenstern (1953)
stable set with dominance relations that capture the foresight of the firms. She
has shown that there exists a unique set of stable sizes of the cartel in the price
leadership model. However, because her existence result of the set of stable sizes of
the cartel relies on the general existence theorem of the stable set by von Neumann
and Morgenstern (1953), the properties of the stable sizes of the cartel as well as
the relation with stable sizes of d’Aspremont et al. (1983) are unclear from her
analysis. Recently, we show, in our another paper (Nakanishi and Kamijo 2008),
that the minimal stable sizes of the cartel in the sense of Diamantoudi (2005) is
also stable in the sense of d’Aspremont et al. (1983) and the maximal stable size
of the cartel is large enough to be Pareto-efficient for firms.

However, there is still an inadequacy in the analysis of Diamantoudi (2005),
concerning cartel identification; in her model, cartels are identified by their sizes
(in terms of the number of firms) and the two distinct cartels with different mem-
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bers are regarded as the same if their sizes are equal. This does not matter much
in the case of d’Aspremont et al. (1983), because of the myopia of the firm that is
embedded in their stability criterion. This, however, can become a more serious
problem when we fully take account of the farsightedness of the firms as in Dia-
mantoudi (2005). Suppose that each firm can foresee a chain reaction of further
deviations by other firms after its own deviation. Consequently, it may be the case
that one firm in the cartel finds it profitable to exit from the existing cartel and
actually do so, expecting that another fringe firm would enter the cartel after its
deviation and that the resulting cartel would be stable.

To illustrate this point, consider the following example. Suppose that some
sizek is considered to be stable from Diamantoudi’s discussion and tasisfies
ma(k) > m}(k—1). Let cartelC! be the initial cartel with sizé and take from the
members in the cartel arydfrom the fringe. Note that in generaty (k) > w7 (k)
holds because the fringe firms are able to free ride on the price-raising effort of the
cartel. Therefore, firm wants to replace its position from the cartel members to
the fringe members without changing the size of the current cartel; this can be done
as follows: first, firmi exits fromC" and changes the cartel to size- 1 cartelC?,
and then, firmj enters the cartel and chang&$to sizek cartelC3.

C'l 1 exits 02 j enters 03

In cartelC?, firm j actually has an incentive to join the cartel because its current
profit 7 (k — 1) is smaller than the profit after joining the cartef,(k), and the
resulting sizek cartelC? is “stable.” Expecting the reponse of firinfirm s actually
exits fromC" because firm belongs to the fringe af® and in the cartel af’!.
Thus, sizek cartelC'! is considered to be “unstable” if other sikecartel C? is
“stable.”

In the above example, there are two cartels of the same size involved: the initial
cartel and the resulting cartel. The formenis considered to be stable, while the
latter is. That is, when firms are farsighted, two distinct cartels of the same size
can have different stability properties; when cartels of equal size are treated the
same, this possibility is ignored. Therefore, cartels should be identified by their
members (not by the numbers of members). Kamijo and Muto (2008) have argued
the same and constructed an appropriate model in which cartels are identified by
their members. Next, they have shown that any Pareto-efficient cartel can always
be stable with respect to the stability criterion incorporating the firms’ farsighted
view. However, Kamijo and Muto (2008) allow the sumultanous (or, coalitional)
move of the firms when they consdier the stability of the cartel, in contrast to
Diamantoudi (2005) that only considers the individual move of firms. Therefore
what kinds of problem occures due to size identification of cartels is still unclear.

In this paper, we shall adopt the von Neumann and Morgenstern (1953) stable
set as the basis of our stability concept, similar to Diamantoudi (2005) and Kamijo
and Muto (2008). Stability offered by the stable set is free of contradictions inside
the set of “stable” outcomes and at the same time, accouts for every “unstable”
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outcome it excludes. Moreover, as pointed out by Harsanyi (1974), the stable set
incorporated with players’ foresight improves the inconsistency of the stable set
itself. The stable set is defined for the pair of a set of outcomes and a dominance
relation defined over the set of outcomes, which describe the current market struc-
ture. The dominance relation is extended to capture the farsighted view of the
firms. The stable set according to the set of outcomes and this extended dominance
relation (called the indirect dominance) constitutes our solution concept known as
thefarsighted stable set

First, we present a model that reveals the cartel identification problem. That is,
the price leadership cartel is identified by its members, and each firm has the ability
to foresee not only an immediate outcome, but also the ultimate outcome after its
deviation. Thus, an outcome of our first model is the set of firms that belong to the
cartel. Next, we show that there exist farsighted stable sets in the first model and
the stable sets show a complicated figure. We prove this by means of a constructive
approach wherein we actually construct a farishgted stable set by some algorism,
that is inspired by Nakanishi (2007), who analyzes.grerson prisoners’ dilemma
game. A difference beween our first result and the results of Diamantoudi is that in
our model, a unigune pattern of farisghed stable sets is not guaranteed. One critical
finding from our analysis is that even though certain sizes of cartels are judged to
be stable by both Diamantoudi’s and our first models, whether all or one of the
cartels of this size is stable depends on the profit functions of firms. This point can
not be discovered when we identify the cartel with respect to its size.

There still exist certain problems in our first model. As mentioned earlier, the
cartel’s pricing policy is restricted to theptimal pricingin the sense that the cartel
sets the price along the residual demand to maximize the joint-profit of the mem-
bers. Restricting the cartel’s pricing to the optimal pricing may seem to constitute
an innocuous assumption, but actually it is not. From several fields in economics,
we can draw several pieces of evidence that some observed outcomes that satisfy
certain criteria of rationality, efficiency and/or optimality, can often be sustained
through some irrational, inefficient and/or non-optimal beha¥ion sum, non-
optimal behavior of a player can work as “punishment” and/or “reward” to other
players and, therefore, induce other playenstimal responses. Taking account
of the possibility of non-optimal behavior has a significant influence on the final
outcomes of the model.

In our second model, the cartel is allowed to choose not only the optimal price,

3From theoretical perspective, consider the well-known folk theorem: nearly efficient and coop-
erative outcomes can be maintained through the “punishment” behavior after one player’s deviation,
which is irrational (at least, in the one shot game) even if the continuation game satisfies the subgame
perfection (see Fudenberg and Tirole (1991, Chap. 5)). From empirical standpoint, among the grow-
ing literature on experimental economics, consider Fehr and Gachter (2000); they have examined a
two-stage game composed of a voluntary contribution game in the first stage and a punishment stage
in the second, and shown that the high contributions of the subjects in the voluntary contribution
game are realized by the actual use of the punishment option wherein punishing the other subject is
irrational for the subject, because it requires a decrease of one unit of his payoff to decrease some
units of the other.



but also any positive price; such a flexible pricing policy can be interpreted as
punishment and/or reward to the fringe firms and, by this, the cartel can induce the
fringe firms to behaveptimally. While an outcome of our first model is the set

of firms that belong to the cartel, an outcome of our second model is a pair of a
cartel and a quoted price set by the cartel. The dominance relation in the second
model is extended not only to capture the farsighted view of the firms but also to
address the endogenous pricing by the cartel. In this setting, we show that the
farsighted stable sets become a simple form. Any outcome such that it is Pareto-
efficient and the cartel chooses the optimal pricing is a one-point farsighted stable
set. Thus, we obtain an efficiency result similar to that of Kamijo and Muto (2008),
because of the endogeneity of the price set by the cartel. Further, we also show that
although we do not restrict out analysis to the optimal pricing of the cartel, the
optimal pricing behavior of the stable cartel emerges as a result of the stability
consideration. Therefore, by considering flexible pricing policies, the set of stable
cartels undergoes a complete change.

There exist studies that analyze the stability of price leadership using a dif-
ferent approach from that adopted in this paper. Donsimoni, Economides, and
Polemarchakis (1986) analyze the stability of a price leadership cartel in a linear
demand and quadratic cost setting using the same stability criterion as d’Aspremont
et al. (1983). Prokop (1999) considers two non-cooperative games wherein firms
form a dominant price leadership cartel. Thoron (1998) also considers the forma-
tion of a cartel, which is sufficiently general but slightly different from the price
leadership cartel, using several equilibrium concepts, including the coalition-proof
Nash equilibrium introduced by Bernheim, Peleg, and Whiston (1987).

The rest of this paper is organized as follows. In the next section, we present a
price leadership model and summarize the basic properties of the price leadership
model. In Section 3, we present our first model of cartel stability. In Section 4,
we present our second model wherein the endogeneity of the pricing is embed-
ded in the definition of our indirect dominance relation. Section 5 constitutes the
conclusion. All the proofs of lemmas are relegated to the Appendices.

2 Model

We consider an industry composedrofn = 2) identical firms, which produce
a homogeneous good. The demand for the good is represented by a function
d: R++ — R+:4

Q = d(p),

wherep is the price and? is the total demand for the good. We assume that
d'(p) < 0forallp > 0.

Each firm has an identical cost functiofy; ), whereing; is the output level of
a firm (firm4). We assume thatis increasing, twice continuously differentiable in

Ryt = {a € Rla > 0} andRy = {a € Rla = 0}.
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¢i, and it satisfieg(0) = 0, ¢(0) = 0, /(¢;) > 0 for ¢; > 0, andc”(¢;) > 0 for
q; > 0.

Oncek firms have decided to combine and form a cartel, the cartel can exercise
its power to determine the market price of the good. The remaininrgk firms
constitute a competitive fringe, whose members behave competitively. That is,
each firm in the fringe regards the price determined by the cartel as given, and
chooses its output level to maximize its own profit. Given the ppicdne supply
function of a fringe firmg¢(p), is determined by means of the well-known price-
equal-marginal-cost condition:

p=c(q(p))

On the basis of the assumptions on the cost functjpfn) > 0 forall p € Ry
andlim, .o gf(p) = 0.

Given the responses by the fringe firms, the residual demand for thé: size
cartel can be written as follows:

R(k,p) = max {d(p) — (n — k)gs(p), 0} .

To simplify the exposition, we assume that members in the cartel divide their total
guantity of production equally. Thus, the production per firm in the cartel can be

written as follows: Rik.p)
Y
T(kﬁ,p) = T

As aresult, the profit of a firm in the cartel can be written as a function of the cartel
sizek and the price:

me(k,p) = pr(k,p) —c(r(k,p))-

On the other hand, the profit of a fringe firm can be written as a functign of

77 (p) = par(p) — c(qp(p)) -

ms(p) > 0forallp > 0.
The optimal price for the size cartel is determined by

p*(k) = arg rgggﬂc(k,p)

The profits of a cartel firm and a fringe firm evaluated at the optimal pri¢e)
can be written as functions of the cartel sizd=ork =1, ..., n,

e (k) = me(k, p*(K)),

andfork=1,...,n—1,



If £ =0, thatis, if there is no cartel, then it is assumed that the market structure
is competitive. The competitive equilibrium price, denoteghtsy?, is determined
by d(p®™F) = ngy(p*™P). Consequently, we have;(0) = 7,(p“™P). Note that
for any k, r(k, p®"?) = q¢(p°°™P). This implies that for any:, 7.(k, p®™) =
mp (pOmP) = 73(0).

The following proposition is concerned with the profits of firms in the cartel
and in the fringe.

Proposition 1. 7. and ;s satisfy the following properties:

(i) If p # p°™P andr.(k,p) > 0, thenr.(k, p) is strictly increasing irk—{[Size
monotonicity of w¢]. If m.(k,p) £ 0, m.(k+1,p) = w.(k, p) holds. Further,
if p = p®™P 7 .(k,p) is invariant against changes ikt

(i) m¢(p) is strictly increasing irp;

(i) m¢(p) 2 me(k,p) forall pand forallk = 1,...,n — 1 with strict inequality
whenp # p©mPp,

Proof. Properties (ii) and (iii) follow immediately from the definition @f. Thus,
it suffices to show property (i). Partially differentiating(k, p) with respect tok,
we obtain

e — prath,p) — (b, p)reh, p) = (ko) {p — ¢ ok )}
where
or(k,p) _dp) —ngs(p) if d(p) — (n — k)qs(p) = 0
ri(k,p) = —5 = = k2 P i) =
0 otherwise.

Note thatgs(p) > r(k,p) if and only if g¢(p) > d(p)/n. We first consider the
case wherel(p) — (n — k)qr(p) = 0. If r,(k,p) > 0 or, equivalentlyg;(p) >
d(p)/n, thengs(p) > r(k,p). Because’ is strictly increasing, this result implies
p = c(qr(p)) > ¢ (r(k,p)). Hence, we havér./0k > 0. Inturn, if r,(k,p) <0
or, equivalentlyg(p) < d(p)/n, thengs(p) < r(k,p). Sincep = (q¢(p)) <
d(r(k,p)), we havedr./0k > 0 again. Ifri(k,p) = 0, thenp satisfiesd(p) —
ng¢(p) = 0. Thus,p must bep°°™P. In this casegr./0k = 0

Next, consider the case whet@) — (n—k)q¢(p) < 0. Inthis casey(k,p) =
0 and thusiw./0k = 0. This, in conjunction with the fact tha(p) — (n — k)q¢(p)
is increasing ink anddr./0k = 0 whend(p) — (n — k)qs(p) = 0 implies that
Wc(kap) = 7Tc(k; + 17p)'

Becauser.(k,p) > 0 impliesd(p) — (n — k)qs(p) > 0, 7¢(k, p) is increasing
in k if p # p®™® andn.(k,p) > 0. O

The next proposition for optimal profits is based on d’Aspremont et al. (1983)
and Kamijo and Muto (2008).



Proposition 2. 7 andrr;t satisfy the following properties:

(i) (k) is increasing ifk—{Size monotonicity of7%];

(i) m3(k) >mi(k)forallk=1,....,n—1;
(

(i) 72(k) >73(0)forallk =1,...,n;

>
(iv) m3(k) > m;(0)forallk=1,...,n—1.

The first property says that the profit of each cartel firm increases as the cartel
size increases. The second property of this proposition says that the profit of a
cartel member is less than the profit of associated fringe members. The third and
forth properties say that both cartel and fringe firms prefer a situation involving a
dominant cartel of any size to one without it.

3 Stability of collusive cartel with optimal pricing

3.1 The model of cartel with optimal pricing

Let N = {1,2,...,n} denote the set of firms (players). Considerramector
x = (x1,x9,...,2,) Such that for eachi, z; is equal to 0 or 1. Hereg; =
1 means that firm belongs to the existing cartel, whereas = 0 means that
firm 4 does not belong to the cartel. That is, afvector x represents a cartel
structure. LetX = {0, 1}" be the set of all possible cartel structures. By definition,
z/ =(0,...,0) represents a situation without an actual cartel ahet (1,...,1)
represents a situation containing the largest cartel that consists of all the firms.
Givenz € X, C(z) denotes the set of firms belonging to the cartet,ahat is,
C(z) = {i € N| z; = 1}. We identifyC(x) with the cartel atz. Givenz,y € X,
x A y denotes a cartel structuresuch thatz; = min{xz;,y;} fori = 1,...,n.
We can easily verify tha€'(z A y) = C(z) N C(y). Forz € X, let us define
lz| = Y1, x;, which signifies the cartel size atin terms of the number of the
participating firms.

Let Z = {0,1,2,...,n} be the set of possible cartel sizes. For each Z,
V' (h) denotes the set of all cartels of size V(h) = {x € X | |z| = h}. For
non-emptyW C Z, letV (W) be defined by (W) = Upew V' (h).

The payoff to a firm depends on the current cartahd its status (i.e., whether
the firm is a member of or not). The (real-valued) payoff functiofy(x) for firm
1 € N is written as follows:

PR EACOR SR
hee) {w;qx\) it ;= 0.

Letz € X andy € X be two distinct cartels. We say that a cartdPareto-
dominatesy if f;(x) = fi(y) holds for alli € N and strict inequality holds for



somej. If x is not Pareto-dominated by any other cartel, the called aPareto-
efficientcartel. The set of all the Pareto-efficient cartels is denoted By C X.
Since the grand cartef = (1,...,1) is Pareto-efficient by the size monotonicity
of 7 and Proposition 2-(iii) X E is not empty. On the other hand, sinegn) >
77(0) by Proposition 2-(iii)/ ¢ X" The following lemma characterizes the set
of Pareto-efficient cartels.

Lemma A1 (Kamijo and Muto (2008)) XPF = {z}U{z € X|7}(|z|) > m%(n)}

By Lemma Al,z # z¢ is Pareto-efficient if and only if the fringe firm aof
enjoys a greater profit than that obtained at the grand cettel

If a firm enters a current cartel or exits from it, the current cartel changes to
another. When a cartel € X changes to another € X through the entry-exit

behavior of an individual firm, we writex — y. Formally,
Definition Al (Inducement Relation with Optimal Pricingfor x,y € X and
i € N, we haver = vy if either
(i) i € C(x)andC(y) = C(x) \ {i} or
(i) i ¢ C(x)andC(y) = C(x) U {i}.
The first line means that firrexits fromz; the second means that firnenters

x and forms a new cartel.
The farsightedness of firms is captured by the notion of indirect domination:

Definition A2 (O-Domination) For outcomes:, y € X, we say that % indirectly
dominatesr through optimal pricing,” or simply % O-dominatest,” which we
write y > x or = < y, if and only if there exists a sequence of cartels and firms

i1 i iM
g=a0 Bl B2y B M

such that for eachn = 1,2,..., M,

fim (@™ < fi (@™) = fi, ().

The pair(X, >>) of the set of all possible cartels and the O-dominance rela-
tion o> is the abstract system associated with the price-leadership cartel with opti-
mal pricing. Note that, in general, given a $etaind binary relations defined over
Y, a pair(Y,>>) is called an abstract system. A stable set for an abstract system
(Y, >) is defined as follows:

Definition 1 (Stable Set) A subsetX” of Y is said to be a stable set fgt, >) if
and only if it satisfies the following two conditions:

(i) foranya € K, there does not exist anothek K such that > a,

(i) foranya € Y\ K, there exists anothérec K such that) > a.
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These conditions are called “internal stability” and “external stability,” respec-
tively.

A stable set presumes the following stability interpretationiaf Suppose
that outcomes in sek” are commonly considered to be “stable” and outcomes
outsideK to be “unstable” by all the individuals. Then, once an outcarie X is
reached, any deviation fromnever occurs because there exists no stable outcome
that “dominates’a, and if in time an outcomé outsideK is reached, there exists
stable outcome € K that “dominates’.

The following is our stability concept.

Definition A3 (Farsighted Stable Set with Optimal Pricin@)he farsighted stable
set for the price leadership cartel with Optimal Pricing, or simply the farsighted
stable set fof X, >>), is a stable set for the abstract systém, o).

3.2 New concepts and properties

Definition A4 (Attractor) Anintegerk € Z, k = 1, is said to be an “attractor” if
ma(k) > mi(k — 1).° The set of all attractors is denoted by

7z = {k € Z| k is an attractor}.

Let a be thesmallestinteger that satisfies (i) is an attractor and (iix + 1 is
not an attractor. Becausé™is an attractor by Proposition 2-(iii), we can easily
verify that an arbitrary, with 1 < h < @ is also an attractor. Let’” be the set of
such attractors:

zt={hez41<h<a),

which we call the set of “leading attractorsZ” is always nonempty.

Remark Al. In d’Aspremont et al. (1983), a certain siz®f the cartel is consid-
ered to be stable if (ix? (k) = 73(k — 1) and (i) 7} (k) = 77 (k + 1). Itis easily
vefified thata is the minimal stable size of the cartel in the sense of d’Aspremont
et al. (1983). In factz is stable because by its definitiom;(a) > n}(a — 1)
andri(a) = n;(a + 1), and it is minimal because for anfy, 0 = k < g,

mz(k + 1) > 7}(k) and this implies that does not satisfy condition (ii).
The following lemma shows an important aspect of attractors.

Lemma A2. Take an arbitrary attracton € Z4. For any distinct cartels:, y €
V(h), we haver > y.

5The condition given in the definition of “attractor” provides a firm with a myopic incentive to
enter the sizé& — 1 cartel and form a new size cartel; in a sense, the sizecartel isattractingthe
entering firm.
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Thus, two distinct cartels it (k) O-dominate each other if is an attractor.
An immediate and important consequence of Lemma A2 is that the abstract system
(X, >) contains an infinite chain of dominance:< 2’ < 2’ < --- ad infinitum
It is a well-known theorem, due to von Neumann and Morgenstern (1953), that an
abstract system that contains infinite chain of dominance admits a stable set.
Unfortunately, because our abstract systivascontain an infinite chain of dom-
inance, we cannot resort to the von Neumann-Morgensters’ theorem to establish
the existence of farsighted stable sets for our system.

The following lemmas exhibit certain properties of attractors.

Lemma A3. Leth be an attractor and’ € Z be an integer witth < A’. Then,
z € V(h) O-dominateg € V(#') if and only if7}(h) > =7 (h').

Lemma A4. Supposer € V(h),y € V(I'),andx > y. If h = 1/, thenh is an
attractor.

Lemma A3 shows the necessity and sufficient condition for the O-domination
of one cartel whose size is an attractor to other greater cartels. An interesting
feature is that under the conditions of the lemuauay cartel of sizeh O-diminates
anycartel of sizeh/. Lemma A4 says that if one cartel O-dominates another smaller
cartel, the size of the dominating cartel must be an attractor.

The next lemma shows a certain property of the set of leading attractors:

Lemma A5. Take arbitrary cartelsr,y € X. If |z| € Z¥ and|z| = |y, then
T > y.

The following lemma shows a close relationship between the farsighted stable
sets and the set of attractors.

Lemma A6. Let K C X be an farsighted stable set foX, ). Then, we have
KNV (Z4) # (), whereZ4 is the set of all attractors.

Remark A2. SupposeX is a farsighted stable set foK, >). If KNV (a) # () for
some attractor € Z4, K N V(a) must be a singleton. In this case, every cartel in
V(a) can be a candidate for an elementiin To make the exposition simple and
to avoid some notational complexities, we specify a particular captet V(a)

for eacha € Z4. Thatis, if a cartel i/ (a) for somea € Z4 were to be included

in a farsighted stable set, we always chooge

Remark A3. LetV = {V(0),V(1),...,V(n)}. ForV(h),V (k') € V, if there ex-

ist cartelsz € V(h) andy € V(1) such that: > y, then we writeV' (k) > V (R')

for notational convenience. It should be noted that, unlike the case for individual
cartels, we can havé (h) > V(h) if his an attractor. WheW (h) > V(h'), we
simply say that i, O-dominateg:’.”

Remark A4. If V(h) > V(1) holds forh andh’ with h # h’, h O-dominates
any integer betweeh and?’. In other words, ifh > h’, V/(h) > V(k) holds
foranyk = #',0 +1,...,h — 1, and ifh < K/, V(h) > V (k) holds for any
k=h—1,h—2,... K.
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Remark A5. Diamantoudi (2005) considers the dominance relation defined over
Z. For two distinct size&, h € Z, “k D-dominatesh,” which we writek » h, if
either of the following two conditions is satisfied:

(i) if k <h,m3(k) >ni(m)forallm=k+1,k+2,... h or
(i) if &> h,7i(k)>np(m)forallm=nh,h+1,....k—1

The farsighted stable set fo#, ») is the stable set for abstract syste# »).

An interesting relation between the two dominance relations isihmt h
impliesV (k) > V(h). This is checked as follows: Assunie< h for example,
takez € V(k) andy € V(h) such thatC(z) C C(y), and putC(y) \ C(z) =
{i1,12,...,im}, WwhereM = |C(y) \ C(x)|. Then, the following sequence of
deviation

y=y" Lyt B LM g
wherey™ is a cartel such that'(y™) = {im+1,-..,im} U C(x), realizese > y.

However, in general, the converse is not true, that’ig;) > V' (h) does not imply
k» h.

Because we identify each cartel by its membgigs) > V' (h) does not imply,
in general, that for any cartel € V (k) and for anyy € V(h), x O-dominates;.
However, under certain conditions, this statement holds true. The next lemmas ex-
plores the relation between the O-dominance relation gvand the O-dominance
relation overZ.

Lemma A7. Takek,h € Z with k > h and=;(k) > 75(h). If V(k) > V(h),
then anyx € V (k) O-dominates any € V(k'), whereh < b/ < k.

3.3 Procedure (#)

In this subsecition, we construct a procedure, called procedure (#), that chooses the
subset ofZ that is a candidate of farsighted stable set(f&it ). The procedure
consists of two parts: in the first phase, subsef @6 selected by a recursive algo-
rithm, and in the second phase, superfluous elements in the subset obtained from
the first phase are deleted according to dominance relatidret k. = 0,1, ..., n,

be given.

Selection PhaseLet us define a set of integetig (k), az(k), . .. according to the
following recursive procedure:

° Oq(k) = ]C,
o aj1(k)= min{h cZ ’ wi(h) 2 (o (k) } L oi=1,2,....
Becauser is increasing and’(h) > m;(h) forallh = 1,...,n — 1, the above

procedure is defined well. We denote the number of integers determined through
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the above procedure bi/(k). Let H(k) be the set of integers determined through
the above recursive procedure:

H(k) = {a1(k), as(k),. .. o0 (k)} .

It is easy to verify that for each, «;(k) is increasing inj. For eachk, H (k) can
be partitioned into two subsets: one that contains all attractofs(#), denoted
by H,(k) = H(k) N Z4, and the other that contains all non-attractorsifk),

denoted byH, (k) = H (k) \ Hi(k).

Deletion Phase Further, based o# (k), we define another set of integers, which
is the subset off (k), as follows:

o SetHW(k) = H(k) andaM (k) = k) (k)
e Deleteallh ¢ HW (k) satisfying (i)h < oM (k) and (i) V (k) < V(oD (k)),

e Let H®) (k) be the resulting set of integers and ) (k) be thesecond
largest integer i ®) (k) (the largest isv(V) (k)),

e Delete allh ¢ H? (k) satisfying (i)h < o® (k) and (i) V (k) < V(a2 (k)),

e Let H®) (k) be the resulting set of integers anddét) (k) be thethird largest
integer inH®) (k) (the largest isv(!) (k) and the second largestd$? (k)),

e Ingeneral, giver V) (k) anda(¥) (k) (i.e., the/th largest integer iff ) (k)),
delete allh ¢ H® (k) satisfying (i) < a¥) (k) and (i) V (h) < V(a© (k)).
Let H(“+D (k) be the resulting set of integers.

Becausd (k) is finite, the above deletion phase stops in finite steps7$&y
steps. We denote the eventual set of integers generated by the deletion procedure
asH*(k). Fori = 1,...,T(k), we write each element i&/*(k) aso} (k) =
aET(k)_”l)(k). Then, (k) can be lined in an increasing orderinaj (k) <
az(k) < -+ < apg, (k). By definition, we have) # H*(k) C H(k) for any
k=0,1,...,nand, in particularH*(n) = H(n) = {n}. Similar to the partition
of H(k), H*(k) can be partitioned inté{; (k) and H; (k).

Procedure (#) can be applicable to other models, as explained in the next two
remarks.

Remark A6. If we replace V' (k) < V(a9 (k))” in the Deletion Phase of pro-
cedure (#) by h < o'9(k),” and setk = a, we have the procedure introduced

by Nakanishi and Kamijo (2008), that characterizes the farsighted stable set for
(Z,»). In Nakanishi and Kamijo (2008), it is shown that the resulting subsgt of
H*(a), is the unique farsighted stable set {af, »).
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Remark A7. Our first model can be seen as the model ohgperson prisoners’
dilemma game if we interpret; = 1 andx; = 0 as “playeri cooperates” and
“playeri defects”, respectively, and profit functions of cartel firms and fringe firms
are replaced by the payoff functions of cooperators and defectors, respettively.
Thus, procedure (#) works for anperson prisoners’ dilemma game. In fact, the
resulting set*(0) that is obtained by procedure (#) fér= 0 is the same as

the set obtained from procedure considered by Nakanishi (2007). Because there
is no attractor in the prisoners’ dilemma gani&;(0) = H(0). Nakanishi (2007)
shows that,,c )V (h) is the unique farsighted stable set feperson prisoners’
dilemma game.

3.4 Results

The next lemma shows a relationship between the set of leading attractors and
H*(k):

Lemma A8. For any leading attracton € Z*, we havel*(a) = H*(a), where
a is the largest leading attractor.

Let us define three subsetsdfrelating to the largest leading attractor

PE{a}U{hGZ

Jdxz € V(h), 3y € V(a) such that
x Pareto-dominateg ’
D={heZ|V(h)>V(a)},

F={heZ|heH"(h)}.

P is nonempty by definition. Becaugeis an attractor, we hav€(a) > V(a);
therefore,D is nonempty, too. In general, we havez H (k) by definition. How-
ever,k € H*(k) may fail to be true for some; that is, % itself may be deleted in
the procedure generatirig* (k) from H (k). The following lemma guarantees the
existence of such that: € H*(k) and, thereby, shows the nonemptines#of

Lemma A9. Let us definel* = max D. Thend* € H*(d").
Remark A8. Itis possible to havd* = a.

Remark A9. H*(k) naturally defines aorrespondencéom Z to itself (for com-
pleteness, we have to assué(0) = (). Then, Lemma A9 shows the existence
of a fixed point of the correspondengég : 7 —— Z.

All of P, D, andF' are nonempty. Further, we can show that their intersection
is also nonempty:

LemmaAl0. PN DN F # .

8In ann-person prisoners’ dilemma game considered by Okada (1993), Suzuki and Muto (2005),
and Nakanishi (2007), the payoff functions of cooperaters and defectors satisf§/(Ki)is increas-
ing in k, (i) 7% (k) is increasing ink, (iii) 73(k) > n;(k+ 1) forallk = 0,...,n — 1, and (iv)
ma(n) > 77(0).
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Now we show the existence of farsighted stable sets in our first model.

Theorem Al (Existence of farsighted stable setBpr anyh € PN DN F, the set
K*(h) represented by the following formula is a farsighted stable setXor>):

K*(h) ={za|a € Hi(h)}U ] V(k). (+)
keH;(h)

wherez, € V(a) (see Remark A2)

Proof. Take an arbitrary. € P N D N F and fix it throughout the proof. Note that
h is the smallest element i * (k) by definition and satisfies < h.

[External stability]l: Take an arbitraryr € X \ K*(h). We distinguish four
cases: case 1 whefe< |z| < a, case 2 wher@ < |z| < h, case 3 where
o (h) = |z| for someaj(h) € H*(h), and case 4 where] (h) < |z| < aj4(h)
for somea(h), aj, 1 (h) € H*(h) orai}(h)(h) < |zl.

Case 1. We hav& (|z|) < V(a) by Lemma A5 and/(a) < V' (h) by defini-
tion. Moreover, by Lemma A4 must be an attractor. Take cartgls V' (a) and
y' € V(h) such thatr < y andy < y'. y Pareto-dominates by the definition of
ZL . If h > a, theny’ Pareto-dominateg, if h = a, theny,y’ € V(a). In any case,
1y’ Pareto-dominates. Then, by simply connecting the sequence realizing v’
to the one realizing: <1 y, we can construct an appropriate sequence that realizes
x < y'. Thus, we have < x; by Lemma A7.

Case 2.h € P implies thatr}(a) < n7(h). Thus, by Lemma A7V (a) <
V(h) impliesz < zp,.

Case 3. Ifa;(h) is not an attractor, we cannot havec X \ K*(h) by the
formula (). Then,a;(h) must be an attractor. By Lemma A2,, wherea =
o (h) € Hi(h), O-dominates.

Case 4. Note that’ (h) = as(h) andaj (k) = ai(h) for someas(h), at(h) €
H(h) with s < t. We distinguish two subcases: @)(h) < |z| < as4+1(h) and
(0) as1(h) = || < ai(h) = afy,(R).

Case 4-(a). Take a cartgle V(as(h)) = V(aj(h)) such thalC(y) C C(x)
and writeC(z) \ C(y) = {i1,i2,...,ip}. Consider the followinglecreasing
sequence from to y:

i1 iz IM
z=a0% gt 2 B My

in which each firm inC(x) \ C(y) exits fromz one by one. On the basis of
the construction ofi (k) and the monotonicity ofr*, we havef; (2™ !) =
i (lzm ) < 73 (lyl) = fi.(y) forallm =1,..., M. If as(h) is not an attractor,
y € V(as(h)) = V(aj(h)) C K*(h). If as(h) is an attractor, by Lemma A3;,
O-dominateg wherea = a;(h) = aj(h).

Case 4-(b). By the definition dif*(h), we haveV (asi1(h)) < V(aj 1 (h));
this impliesV (|z|) < V(aj(h)). Similar to case 2, by Lemma A7, we can
construct an appropriate sequence that realizes x, wherea = oz;f+1(h) €
H{(h).
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[Internal stability]: ~ Take two distinct cartels,y € K*(h). If |z| = |y| = k for
somek € H*(h), k cannot be an attractor. Then, neithet- y nory > = can
hold by Lemma A4.

Inturn, letus assume| < |y|. Note thaix|, |y| € H*(h). By the definition of
H*(h), we cannot havg > x. Becausey Pareto-dominates by the construction
of H*(h), thenz > y cannot hold true, either. O

The next theorem provides the sufficient condition for the uniqueness of the
farsighted stable set f@iX, >).

Theorem A2. If ZF = Z4, then the farsighted stable set foX, >) is determined
uniquely, which is represented by the form(#a

Proof. By the definition of 2, if V(h) > V(a) andh # a for someh € Z,
thenh > a must hold. By Lemma A4h must be an attractor; this contradicts
7zl = 74, Therefore, there is nb such thatV' (k) > V(a) other thana. This
impliesD = {a}. Then, by Lemma A10, we hav@ N D N F' = {a}. Moreover,
because there is no attractor greater thaH (a) = H*(a) holds by Lemma A4.

Let K be a farsighted stable set foK, ). In order to prove the uniqueness,
it suffices to show thak’ = K*(a).

Note that, by Lemma A6 and assumption, we h&ve V(Z%) # (). Then,
there exists: € ZL such thatk NV (h) # (. We now show thak = a. Suppose,
in negation, that: # a. Note thath < a. Take cartelst € K N V(h) and
y € V(h+1). By Lemma A5,y O-dominatese. Accordingly, by the internal
stability of K, we havey ¢ K. Then, by the external stability df, there must
exists a cartel) € K that O-dominatey. Because; Pareto-dominates any’
with |y”| < |y|, by the definition of O-dominatiorjy’| = |y|. This impliesy €
7zl = 74 by Lemma A4. Thus, we must have< h + 1 < |¢/| < a. Then,
by Lemma A5 againy’ O-dominatesr; this contradicts the internal stability of
K. Hence,K NV (h) # 0 andh € Z" together implyh = a. This implies
KnV(a)={xz}andK NV (h) =0forall hwith0 < h < a.

Now, consider an integét such thata = ay(a) = oj(a) < h < aj(a) =
az(a). Sincemy(a) > 77(h), Lemma A3 implies that any € V/(h) is O-
dominated byz;. Then, for all sucth, we havel’(h) N K = ().

Next, consider a case whefie= ay(a). Note thath is not an attractor. Suppose
that there exists a cartel € V(h) not included inK. By the external stability of
K, there must exist a cartgle K that O-dominates. By constructiong; cannot
O-dominater. Then, we havéy| = |z| = h. In turn, this implieqy| is an attractor
by Lemma A4; this contradicts t8° = Z4. HenceV (h) C K.

Repeatedly applying similar arguments, we can show that ferl, ..., J(a),

() V(h) N K = 0 forany h with aj(a) = of(a) < h < of4(a) = aj11(a)
orh > ay@g(a) = a*T(a)(d)’ and (i) V(h) C K for anyh = «j(a). Hence,
K = K*(a). O
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Finally, we derive certain properties of the farsighted stable set represented by
the formula §).

Theorem A3. Foranyk € PN DN F, (i) af(k) = k is stable size of the cartel
in the sense of d’Aspremont et al. (1983), and c@)(k)(k) e XPE Therefore,

K*(k) N XPE £,

Proof. (i). By the definition of D and Lemma A4k must be an attractor. Thus,
mz(k) > m}(k—1), the condition (i) of d’Aspremont et al.'s stability. We will show
thatk + 1 is not an attractor. We assume, in negation, that1 is also attractor.
This implies thatwa(k) = k+ 1 € H(k). If k+ 1 is deleted in the process
generatingH *(k), there exists some*(t) € H*(k) such thata*(t) > k + 1
andV (a*(t)) > V(k + 1). Since anyr € V(a*(t)) Pareto-dominates any
V(k+1), thisimpliesV (a*(t)) > V (k) — a contradiction td: € F'. On the other
hand, ifk + 1 € H*(k), k ¢ H*(k) becausé’ (k + 1) > V (k) — a contradiction
to k € F. Thereforek + 1 is not an attractor, and thusy (k) = 77 (k + 1),
condition (ii) of d’Aspremont et al.’s stability, holds.

(ii). It suffices to show that € V(a}(k)(k)) is Pareto-efficient. By construction,
eithera*T(k)(k:) = a ) (k) isn, ora*T(k)(k:) = aym (k) satisfiesrr}(ai}(k)(k)) >
75(n). By Lemma Al,x is Pareto-efficient. O

[

From Theorem A3, we know that the minimal size cartels in the stable set
K*(k) is also stable in the sense of d’Aspremont et al. (1983) and the maximal
size cartels in the stable set are Pareto-efficient.

3.5 Example

Table 1 shows the relationship between the profits per firm and size of cartel for
the selection of certain parametérs.

Perfect competitiok = 0 / m3(0) =61.7
k=1 mi(1) =625 |/ m;(1) =632
k=2 i (2) = 64.9 / T3(2) = 68.3

I k=3 | m@B)=694 [ m03) =781 ]
k=4 mi(4) =769 / | w(4) =95.9
k=5 mi(5) =893 / | @j(5) =129.1
k=6 mi(6) = 111.1 /| @}(6) = 200.0
k=17 T (7) =156.3 /| 73(7) =395.5
Full cooperatiork =8 | 7}(8) =294.1 /

Table 1: The relationship between the profits and the cartel size&)

"Here, we consider a market with a linear demand funefign = 100—p and identical quadratic
cost function of the firms;(¢;) = 1q;.
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In the example depicted in Table 1, it is easily confirmed that the set of at-
tractors is{1, 2, 3}, which coincides with the set of leading attractors. The unique
stable size of the cartels in the sense of d’Aspremont et al. (1983) i8,sinel on
the basis of Lemma AL, the set of Pareto-efficient carteli§ = V(7) U V(8).

Now we explore the stable set of this example. Because there is no attractor
greater than siz8 and the size3 cartel Pareto-dominates any other cartel that is
smallerthar8, D = {h € Z|V (h) > a} is the set of one elemeat= 3. Moreover,
by Lemma A10,P N D N F = {3}. Hence, Theorem A2 implies th&f*(3) is
the unique farsighted stable set. Sirgek > 3, is not an attractor, we have
a1(3) = af(3) =3, a2(3) = a3(3) = 5, andas(3) = o5(3) = 7. Therefore,

K*(3) = {23} UV(5) U V(7).

Interestingly, in the model of Diamantoudi (2005), the set of stable sizes of
cartels is alsq(3,5,7}. Thus, both Diamantoudi’s and our first models indicate
the same set of stable size of cartels in this example. In fact, the coincidence of
stable seizes of the cartels between two models generally haltis # Z4. As
the corollary of Theorem A2, by Remark A6, we have:

Corollary Al. If Z' = Z4, the farsighted stable set foX, >) is represented by

J(a)
K*(a) = {za} U | V(w(@)).
k=2
Moreover{a, az(a), ..., o q (a)} is the farsighted stable set foZ, »-).

However, from our analysis, one stable set that represents one standards of
behavior in the society, allow only the one cartel of some &ixebe stable i is
an attractor and all the cartels of some sizéo be stable ik’ is not an attractor.
Therefore, even though a certain skzis considered to be stable from Diamantoudi
(2005), two distinct cartels of siZzecan demonstrate a different stability property.

4 Stability of collusive cartel with endogenous pricing

4.1 The model of cartel with endogenous pricing

In the second model, a pair of a cartel structure X and a quoted price € R,
describes a market structure; it specifies the current price and the firms in the cartel
(and, implicitly, the firms in the fringe). Incidentally, what will happen to the
market structure if there is no actual cartel (i.ez; i z/)? In this case, we assume
that (zf, p°°™P) will be realized. That is, if there is no actual price-leader, only the
competitive equilibrium prices®®™P will prevail in the market. In other words,

any market structure such &s’,p) with p # p®°™P is meaningless. Excluding
such meaningless market structures, we now define th& gkl possible market
structures:

A= {(a:,p) € {0,1}" xRy |z #zf or (z,p) = (mf,pcomp)}.
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We shall call an element iA as an “outcome?
Let g; be the payoff function of firm defined onA: For (z,p) € A,

e (|z], if x;, =1,
g9i(z,p) = {la}.p) :
Wf(p) if x;=0.

For a fringe firm, only the quoted prigematters; it does not matter who are the
members of the current cartel or how many firms there are in the cartel.

Let us define a set of outcomes where a cartel charges the optimal price, de-
noted byA°P = {(x,p) € A|p = p*(|z|)}. For two distinct market structures
(x,p), (y,w) € A, we say that (y,w) Pareto-dominatesz, p)” if g¢;(y,w) =
gi(x,p) for all i € N andg;(y,w) > g;(z,p) for somei € N. The set of
Pareto-efficient market structures, denoted4%, is a set of outcomes that are
not Pareto-dominated. Let us define another subsdit, afenoted by4*, which
will turn out to be a subset ofPE:

A ={(z,p"(|z])) € A| x = 2° orm}(|z]) > mi(n) } .

Because the largest-cartel optimal-pricing outcdmfep* (|z¢|)) always existsA*
is nonempty.
Lemma B1. A* coincides with the intersection af°F and APE,

Next, we define the inducement relation dnWe assume that each individual
firm can enter or exit from the existing cartel freely and, thereby, change the cur-
rent market structure to another. In the course of entry-exit, only individual moves
are allowed, while coalitional (simultaneous) moves are not. Furthermore, we as-
sume that the cartel members can change the current price to another through a
unanimous agreement. By changing the price, the cartel can induce another market

structure from the current market structure. In general, when a nonempty sub-
setS of N changes a given market structute p) to another(y, w), we write

(z,p) s, (y,w). The relation{i}ch is formally defined as follows:

Definition B1 (Inducement Relation with Endogenous Pricingpr (z,p) € A,

(y,w) € A, and nonemptyy C N, we have(zx, p) 2, (y, w) if either one of the
following conditions is satisfied:

(i) S=C(z)andz =y,
(i) S={i} #C(z),z; =y;forall j # i, andp = w,
(i) S ={i} = C(x) and(y,w) = (af, p=™).

8If the pricep is high enough, the demarlfp) becomes zero and the supply by the fringe firms
becomes strictly positive. Therefore, in an outcofmep) with a sufficiently high price, the market
clearing condition can be violated; in this sense, such an outcome is not feasible. Although we can
redefine the set of possible outcomes such that it only incléesibleoutcomes, this will render
the model unnecessarily complicated.

20



Part (i) means that cartél'(x) can change the current prigeto anotherw
through a unanimous agreement between the members. Part (i) means that a single
playeri can change the current market structure to another by means of entry-exit
from the cartel without affecting the current price. Part (iii) means that if a single
playeri is the last one member of the current cartel, it can change the current
outcome to the competitive equilibrium outcome by exiting from the cartel.

The indirect dominance relation is defined as follows.

Definition B2 (E-Domination) For (z,p) € A and (y,w) € A, we say that
“ (y, w) indirectly dominatesx, p) through endogenous pricing,” or simply(#, w)

E-dominategz, p),” which we shall write(y, w) > (z, p) or (z,p) < (y,w), if and

only if there exists a sequence of outcomes and nonempty coalitions

Sl 52 S]M
(z,p) = (2°,p°) == (2t p') = - 2= (M, pM) = (y,w)
such that for eachn =1, ..., M,
gi(z™ 1 pm ) < gi(2M, M) = gi(y, w)

forall : € S™.

A pair (A, >) is called the abstract system associated with the price leadership
model with endogenous pricing.

Definition B3 (Farsighted Stable Set with Endogenous Pricirgysubseti of A

is said to be a farsighted stable set for the price leadership cartel with endogenous
pricing, or simply the farsighted stable set fod, >), if K is a stable set for
abstract systemiA, >).

4.2 Results
We first show the following lemma.

Lemma B2. The largest-cartel optimal-pricing outconie®, p*(|z¢|)) E-dominates
any other outcome.

An immediate consequence of Lemma B2 is that®, p*(|=¢|))} is a far-
sighted stable set farA, >). Thus, the existence of the farsighted stable set in
the second model is guaranteed.

The next lemma provides the sufficient conditions for E-Domination between
the two outcomes.

Lemma B3. Take distinct outcomes:, p), (y, w) € A. Assumer.(|z|,p) > 0.
Then,(z, p) E-dominategy, w) if either one of the following conditions is satis-
fied:

(i) C(x)NC(y) =0, andrs(p) > mc(|yl, w);

(i) C(z)NC(y) # 0,75 (p) > me(lyl, w) andme(|x], p) > me(|z Ayl, w);
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(i) C(z)NCly) #0,C(z) ¢ Cly), Cz) 2 Cly), p # p®™, w # p*°™ and
7e(|z], p) Z me(lyl, w).

The following theorem shows that any market structure such that it is Pareto-
efficient and the cartel chooses the optimal pricing constitute a one-point farsighted
stable set fof A, >).

Theorem B1. For any outcoméz, p) € A*, the singleton sef(x, p)} constitutes
a farsighted stable set.

Proof. Because the internal stability is satisfied automatically, it suffices to show
the external stability. Ifz,p) = (z¢, p*(|z¢|)), then the external stability follows
from Lemma B2 immediately. Then, let us assumg z¢ andp = p*(|z|). Take
an arbitrary(y, w) € A with (z,p) # (y,w). We distinguish three cases: (i)
z =y, (i) x # y and|z| = [y[; (i) = # y and|z| < |y].

Let us consider case (i). By the definition of the inducement relation, we have

(y,w) = (z,0) 2 (2, p*(l2])) = (z,p). Further, by the definition of*, we

can show the following relation: for alle C(y),

9i(y, w) = me(|yl, w) < me(|yl, p*(ly])) = we(|z], " (|2])) = gi(2, p).

Then, we obtairfz, p) > (y,p).
Next, let us consider case (ii). By the size-monotonicitygfthe definition of
p*, and Proposition 2-(ii), we have the following relation:

Te(lyl, w) = me(|z], w) = me(l2l, p* (J2])) < 7p(p*(2])) = 75 (p)-

This relation and the faet.(|z|, p*(|«])) > 0 imply both7;(p) > 7.(|y|, w) and
7f(p) > 0. Therefore, ifC(x) N C(y) = 0, then the conditions in Lemma B3-(i)
are satisfied. On the other hand(ifz) N C(y) # 0, we haver.(|z A y|,w) <
mi(le Ayl|) < mE(|z]) = me(|z], p*(|z])) = 7(|x|,p) by the size-monotonicity
of 7. Then, the conditions in Lemma B3-(ii) are satisfied. Thus, we obtain the
desired result.

Finally, let us consider case (iii). Sin¢e, p) € B and(x, p) # (z¢, p*(|z|)),
we haved < 77(|z¢]) < mj(|lz]) = mp(p*(|z])) = m¢(p). By the definition
and the size-monotonicity af’, we haver.(|y|,w) = X (|ly|) = 7:(|z¢|) =
m;(n). Combining these inequalities, we obtaip(p) > 7.(|y|, w) andm¢(p) >
0. If C(z) nC(y) = 0, then the conditions in Lemma B3-(i) are satisfied. If
C(z)NC(y) # 0, then we haver.(|z A y|, w) < 7.(|z|,w) < m(|z|, p*(|z])) =
7.(|z|, p). Consequently, the conditions in Lemma B3-(ii) are satisfied. [

As shown in Lemma B1, any outcome it is Pareto-efficient. As a result,
Theorem B1 shows that an efficient outcome can be attained akimate out-
come in an essentiallygoncooperativeircumstance through the solution concept
of the farsighted stable set . A similar result to Theorem B1 has been attained by

22



Kamijo and Muto (2008. However, in their model, it is assumed that even firms
that are not the members of the current cartel can make joint deviations and that the
current cartel sets the price at the optimal, joint-profit-maximizing level automat-
ically. Because the cooperative actions by the firms are embedded in their model
at the very outset, it is natural to attain the efficiency result. On the other hand,
because in our model, it is assumed that joint entry or exit by a group of firms
are not allowed and only the members of the current cartel can make joint moves
(of changing price) through a unanimous agreement, it is somewhat surprising to
obtain the efficiency result.

The key in our model is the endogeneity of the price. Let us consider, for ex-
ample, the largest-cartel optimal-pricing outco(meé, p*(|=¢|)), which constitutes
a farsighted stable set, and another nonstable out¢emeg with a smaller size
cartelC'(x). Even if (z¢, p*(|x€|)) is better tharn(x, p) for the members of’(x),
the members of’(x) can do nothing except for waiting for entry by other firms
when the price inx, p) is determined automatically through the optimal pricing
rule as in Kamijo and Muto (2008). On the other hand({fz) can control the
price, it can force the remaining fringe firms to enter the cartel by decreasing the
price to zero and, thereby, form the largest caftet). Once the largest cartel
C(z°) has been formed, it can choose the optimal monopoly price and render its
members (i.e., all firms) better-off.

To compare with the results of the first model in the previous section, the far-
sighted stable set in the second model becomes a simple form. It is characterized
only by Pareto-efficiency and the optimal pricing. While one cartel in the farsighted
stable set in the first model is Pareto-efficient, all of the cartels in the farsighted sta-
ble sets are Pareto-efficient in the second model. Moreover, as the next theorem
shows, the unique pattern of the farsighted stable sets is guaranteed in the second
model without additional conditions.

We have to prepare the additional lemma to show the uniqueness of our far-
sighted stable set mentioned in Theorem B1.

Lemma B4. Let K be a farsighted stable set. Then, for gnyp) € K, we have
me(|z|,p) > 0.

The next theorem shows that there is no other type of a farsighted stable set.

Theorem B2. There is no other type of farsighted stable sets than the one de-
scribed in Theorem B1.

Proof. Let K be a farsighted stable set. Af N A* # (), then K must be a single-

ton; otherwise, it violates the internal stability. In this caBeis of the type just
described in Theorem B1. Then, we can assutme A* = (). In the following,

we prove by contradiction that this cannot be the case. Specifically, we show that,
under the conditiodk N A* = (), there is arinfinite sequencéz!, p'), (z2,p?), . ..

®Suzuki and Muto (2005) have also shown a similar result to Kamijo and Muto (2008) in an
n-person prisoners’ dilemma.
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of outcomes inK such thafz!| > |z%| > ---. This contradicts the finiteness of
the number of firms.

The fact(z¢, p*(|z¢|)) € A* implies(z¢, p*(|z¢|)) ¢ K. By the external stabil-
ity of K, there must exist an outconte!, p') € K that E-dominategz®, p*(|z¢|)).
For outcomgx!, p') € K, we show the following claim:

Claim 1. (i) |2!| # 0 andp! # pe™®, (i) |2!| < |z¢|, and (iii) p* # p*(|2)).

(). Suppose, in negation, that = z/. Because we have;(z¢,p*(|z¢|)) =
ma(|z9]) > 73(0) = gi(zf, ptmP) for all i € N by Proposition 2-(iii), then no
player wants to deviate frox°, p*(|z¢|)) toward (2!, p!) = (2f, p°®™P)—a con-
tradiction. By the same reasagl, # p™?.

(ii). If 2! = 2¢, we must have' # p*(|z¢|). Then, by the definition op*, we
have

gi(z',p') = me(|a], ') < me(|2], p* (|2°])) = gi(a®, p"(12°]))

foralli € N = C(x¢). Thisimplies thatx!, p!) cannot E-dominatér®, p*(|z¢|)).
Hencex! # 2¢ must hold and thusg!| < |2°|.

(iii). Let S be the first coalition in a sequence that realiges p*(|2¢|)) < (z!, pt)
and suppose, in negation, that = p*(|z!|). Because(z!,p') € K implies
(1, p') ¢ A*, we have

o (j2°) = wp(|2]) = mp(p*(|21)) = 7y ().
Further, for any firmi ¢ N \ C(z!) = C(z°) \ C(z'), we havé®

gi(2®,p*(|2°))) = w2 (ja]) 2 7 (p") = gi(a",p").

Then, S = C(z¢) cannot be true. Thereforeé must be a singletoqi; } for
somei; € C’(zl); otherwise, the definition of the E-domination will be vio-
lated. Foriy, we haver? (|z¢|) = g, (z¢, p*(|2¢]) < gi, (2}, p!) = 7(|2t],pt) =
m.(|7], p*(|zt])) = 7:(|z']). However, sincer® # z! implies|z!| < |2¢| = n,
the inequalityr; (|z¢|) < «*(|«!|) contradicts the size-monotonicity of. Hence,

pt # p*(lz']).

Let us consider an outconge!, p*(|z|)). Because€ (x!) caninducéx!, p*(|zt))
from (2!, p!) by changing price and, because we have

gila',p') = me(|2t],pt) < me(l2'], " (j2')) = gi(at, p* (o))

foralli € C(z!), (2%, p*(|2!])) E-dominategx!,p!). By the internal stability
of K, (z!,p*(|z'|)) cannot be inK. As a result, there must exist an outcome
(22,p?) € K that E-dominategz?!, p*(|z1)).

For this(z2, p?), we show the following claim:

Firm ¢ is a cartel member at®, but a fringe firm atc!.
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Claim 2. There is at least one firm i@(z!) that is worse-off in(z2, p?) than in
(@', p* (1))
LetS', 52, ..., SM pe the sequence of coalitions that appear in a sequence that

realizes(z!, p*(|z])) < (2%, p?):

(@, (') = (5, w?) 25wty

S]\l— 1

7 _ S]M
R (yM 17wM 1) - (yM7wM) = (I‘2,p2).
Suppose, in negation, that every firmdr{z!) is not worse-off in(x2, p?) than in

(a1, p*(|2'])). Becauséz’,p') L (a1, p*(|a?])) and(a?, pt)<(a’, p*(|a]),

every firminC(z!) is strictly better-off in(z*, p*(|=!|)) thanin(x!, p) and, there-
fore, also strictly better-off ifx2, p?) than in (2!, p*). Moreover, we have the
following inducement relation:
1 " g1 SM

(xlapl) - ('1:17p (|l’1’)) A ($2,p2)-
Thus,(z2, p?) E-dominategz!, p'); however, this contradicts the internal stability
of K. Hence, there must be at least one firnCifw!) that becomes worse-off in
(22, p?) thanin(z!, p*(|2!])). We denote the set of such firmsif{z!) by T'; note
that() # T C C(z1).

Next, we show certain properties 6f%, p?) similar to ones of(z!, p!) de-
scribed in Claim 1.

Claim 3. (i) [22| # 0 andp? # peo™, (i) |22| < |z'|, and (i) p® # p*(|z2]).

(i) Suppose, in negation, tha = 2/. Because we havg;(z', p*(|z'])) =

[m: () or wi (|2 |)] > 7}(0) = gi(af, p*°™P) for all i € N by Proposition 2-(iii)
and -(iv), then no player wants to deviate frgm', p*(|2*|)) toward (22, p?) =

(xf, p®™P)—a contradiction. By the same reasph # p°.

(ii) Again, let S*, 5% ..., S™ be the sequence of coalitions that appear in a se-
quence that realize!, p* (|zt])) < (z%,p?). We have to distinguish two cases:
case (@) wheré™ NT = (forallm =1,..., M and case (b) wher€™ NT # ()

for somem.

Let us consider case (a). In this case, no firfTiexits fromC(x!). In other
words, all firms inl” remain inside the cartel all the way along the sequence. Then,
if a certain coalitionS in the sequence were to change the price fgoifiz!|) to
another one, thef must includ€l” by the definition of the E-domination. How-
ever, this contradict$™ N'T = @ for all m = 1,..., M. Therefore, the price
remains unchanged along the sequence. Then, forieadh, we have

(|2t p*(12')) = gi(at, p* (l2']) > gi(2*,p*) = mel|2?], 9" (|21])).-

By the size-monotonicity of,, the inequalityjz!| > |22| follows.
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In turn, let us consider case (b). We first show that C(x!) N C(?) and,
then, we proceed to the proof pf!| > |22|. Let S¥*! be the first coalition in the
sequence that contains at least one firffi {that is ,S**'NT # ¢ andS™NT = ()
for allm < k) and let(y*, w*) be the outcome from which**! deviates. Further,
by the same reason just described in the above paragudph; p*(|=!|) must
hold. Take an arbitrary firm € S*+1 N T; note thati € C(z') andi € C(y*).
Then, for firmi, we have

gi(z" p*(|2'))) = we(|2' |, p*(|=])),
gi(F w*) = eyl w®) = me (¥, p* (|21))),
gi(@',p*(|2"])) > gi(2%,p%) > gi(y*, w").

Combining these [in]equalities, we obtain(|z!|, p*(|zt])) > 7c(|y*|, p*(|2])).
By the size-monotonicity of., we havelz!| > |¢*|. This implies that some firms
in C(2')\ T have to exit from the cartel befofg”, w") is reached; in other words,
we must have? (z1) \ T # 0.

Consider arbitrary firms and;j such that € C(z!) \ T andj € T. By the
definition of T, the status of firmi at (22, p?) must be different from that of firm
at(z2, p?). There are two cases: one where C(z2) andj € N \ C(2?) and the
other where € N \ C(x?) andj € C(z?). In the former, we have

(|2, p*(12')) = gi(at, p* (J2'))) < gi(2?,p?) = mel|2?], p%),
(|2, p*(12']) = g (=, p*(|2])) > g(2®, %) = 7, (p°).

Combining these inequalities and taking account of Proposition 1-(iii), we arrive
at a contradiction:

mr(p%) < me(lzt] p*(|21)) < 7mel|a?], p?) < 7mp(p%).

Thus, the former case is not possible and the latter case must hold. The latter case
produces two implications: one is thatc T impliesj € C(z?) and the other

is thati € C(2?) impliesi € T ori ¢ C(x'). From the former implication,

we obtainT c C(x') N C(z?). Similarly, from the latter implication, we obtain

T > C(zY) N C(2?). Hence.T = C(z') N C(2?).

Now, we prove|z!| > |z?| for case (b). We assume, to the contrary, that
|zl| < |22|. The factsC(z') \ T # 0, T = C(z') N C(2?), and|z!| < |2?]
imply C(z%) \ T # (. Then, we have bott’(z!) ¢ C(z?) andC(z') 5 C(z?).
Further, by Lemma B4 we have.(|z!],p') > 0 andr.(|22|,p%) > 0. Therefore,
by Lemma B3-(iii), one of(z!, p!) and(z?2, p?) E-dominates the other outcome.
This contradicts the internal stability & . Hence|z!| > |22|.

(iii) We will show thatp? # p*(|22|). The proof varies slightly from that in the
case of(xz!,p!). Assume, in negation, thaf = p*(|22|). By the very defini-

tion of (22, p?), there is a dominance sequence from, p*(|x!])) to [(2?, p?) =

(22, p*(]22]))]. Let S be the first coalition that appears in the dominance sequence.
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By the fact|z!| > |22, the size monotonicity of*, and Proposition 2-(ii), we
have
me(|2?], p* (J2?]) = w2 (Ja?]) < w2 (J2)
= me(|2'],p*(|2")))
< mp(2t]) = w2, " (|21)).
Thus, any playeiin S must be in the fringe position at the final outcomé, p*(|22|)).

When the firm belongs to the cartel(@at , p*(|z))), 7 (p*(|122])) > 7mc(|2! ], p*(J21]))
must hold by the incentive of deviation, and when the firm belongs to the fringe at

(', p* (|2 ), mp (" (J22]) > mp(p*(|2])) = 7} (') > wi(|2t]) = me(|2t ] p*(J21])).
By Proposition 2-(ii) and the definition @f, in both cases, we have

mr(p*(122)) > me(|2' |, p*(|21]) = me(|2 ], ).
In the case ot (x!) N C(x?) # 0,

me(|2?],p*(|2%])) = w2 (|2]) > mi (2t Aa?]) 2 me(lat A a?],ph),

where the second inequality is by the size monotonicity’oand the third is by
the definition ofp*. Hence, by Lemma B3-(i) and (iifx2, p*(|2?|)) E-dominates
(x!,p'). This contradicts the internal stability &f and thugp? # p*(|2?|).

Then, the outcomeér?, p*(|2?|)) E-dominategz?, p?) and itis not ink; there-
fore, there must exigtz3, p?) € K that E-dominategx?, p*(|22|)). In addition,
(x3,p®) must satisfyjz?| > |23 andz? # 2/. Generally, we have the following
two claims:

Claim 4. Assume tha{z",p*) € K, 0 < |2¥| < n, andp® # p*(|2*|). Then,
there exitgx**1, y**+1) € K such tha{z**+1, y*+1) E-dominategz*, p*(|z*|)).

Claim 5. For (¢! p**1) € K described in Claim 4, the followings hold: (i)
aF Tl 2 ol andphtt # peomp, (i) |7 < |2F|, and (i) Pt # pr (2t t)).

Repeatedly applying Claims 4 and 5 alternatively, we obtain an infinite se-

quence of outcome&!, pt), (22, p?),... such thafz!| > |2?| > ---. This con-
tradicts the finiteness of the number of firms. Hence, finally, we obtain the desired
result: K N A* # (). O

5 Conclusion

In this paper, we considered the stability of price leadership cartel when each firm
has the ability to foresee the future and only individual moves are allowed to the
firms. In such a situation, we present two different models. In the first, the price
set by the cartel is restricted to the optimal one, and in the second, the cartel can
choose any positive price.
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In Table 2, the farsighted stable sets described in this paper and the relevant one
are shown. In the first model, we present procedure (#) that constructs a farsighted
stable set for this model, and show that the minimal size of the stable cartels is also
stable in the sense of d’Aspremont et al. (1983) and the maximal stable cartels are
Pareto-efficient. Moreover, we provide a sufficient condition for the uniqueness
of the farsighted stable set and show that under this condition, both Diamantoudi
(2005) and the first model indicate the same set of stable sizes of cartels.

In the second model, we show that any market structure such that it is Pareto-
efficient and the cartel chooses the optimal pricing constitute a one-point farsighted
stable set. Moreover, this is unique pattern of the farsighted stable sets. It should
be emphasized that even if we allow the cartel to choose any positive price, the
optimal pricing is obtained on the basis of a stability consideration. The efficiency
result obtained in the second model is similar to Kamijo and Muto (2008), in which
the cartel’s pricing is restricted to optimal one and coalitional or joint move of firms
is allowed. If both coalitional moves and price endogeneity are allowed, the result
is obvious. As our Theorems B1 and B2 show, only the one-point stable sets are
admitted and, thus, the internal stability does not play a part. Because one situation
is more likely to be dominated by another if we allow coalitional deviations, the
outcomes described in Theorem B1 constitute a unique pattern of stable sets in the
coalitional move cases.

Optimal Pricing Endogenous Pricing
Individual Move First Model Second Model
K*(h)foranyh e PNDNF | {(z,p)} forany(z,p) € B
Coalitional Move Kamijo and Muto (2008) Second Model’
{x} foranyz € XFE {(z,p)} forany(z,p) € B

Table 2: Farishgted stable sets in the various models
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Appendix A

Proof of Lemma A2. Note that bothC(y) \ C(z) andC(z) \ C(y) contain the same
number of firms. Le{iy, iz, ...,in} = C(y)\C(z) and{ji, j2, ..., ju} = C(x)\C(y).
Consider the following sequence:

o first, firmi; exits fromC(y) and changeg to y* such thatC'(y') = C(y) \ {i1},

e firm j; enters the existing cartgl and forms a new cartel* such thatC'(y?) =
Cly') U {i},

e ingeneral, firm,,, exits fromy?™~2 and changes it tg>™ ! such thatC (y?™ 1) =
Cly*™ )\ {im},

o firm j,, entersy?”~! and form a new cartej>™ such thatC(y*™) = C(y*™ 1)U
{im}

By repeating this replacement of playeis, @ndj,,) M times, we obtain?” = x from

yY = y. Wheni,, € C(y) \ C(z) exits from the existing cartel, it is a member of size
cartel; in addition, it ends up with being a fringe firm at the last of the sequence. Therefore,
we havef;, (y*" %) = wi(h) < n5(h) = fi, (x). Whenj,, € C(z)\ C(y) moves,

the size of the existing cartel Is — 1; and j,,, ends up with being a member 6f(z).
Therefore, by the definition of attractof;,, (y*"~') = m5(h — 1) < i (h) = f;,,(2).
Hencex > . [

Proof of Lemma A3. [Sufficiency]: Supposery(h) > m; (k). Let M = [C(z) \ C(y)|

and writeC(z) \ C(y) = {j1,J2,.-.,7m}. Note thatM = 0 is possible. LetC(y) \

C(l’) = {il, i9,... ,Z']y[/i]\/prl, - ,i]y[+h/,h}. Becausdy| =h >h= |(L|, we can
always write in this way. Consider the following sequence:

o firm i, 1 exits fromy; then,i . o exits from the resulting cartel aftéxr; s exit;
in this way,iy, 1, exits from the resulting cartel aftef; .1’ exit;

o lety’ be the resulting cartel of siZeafteri,; . _;'s exit (note thaiz| = h);
e if y =z (i.e., if M = 0), then the sequence ends;

e if 4 # z, add a sequence from to x analogous to the one in the proof of
Lemma A2, in which firmé,’s exit from the existing cartel is followed byy's
entry ¢ =1,...,M).

In the former part of the sequence frgnto ¢/, the size of the cartel from which firin,

is just going to exitish’ — k + 1. Then, firmi,, ., 's payoff as a member of a cartel of size
W —k+1liswi(h' — k+ 1). By the assumption of the lemma and by the monotonicity
of 77, we havef;,,,, (z) = 7j(h) > m;(h') 2 mo (' —k + 1) forallk =1,...,h" — h.

In the latter part of the sequence frayhto =, similar to the proof of Lemma A2, all the
related players (i.es,, andj,, form = 1,..., M) can be made better-off eventually.
Hencex > y.

[Necessity]: Supposer > y with |z| = h < b’ = |y|. Consider a sequence of cartels
and corresponding firms that realizes> y. There must be at least one firm who exits
from a cartel of sizé/’ in the sequence; let firmbe such a firm in the sequence and let
y' be the sizeh’ cartel from which firm: is just going to exit. By the definition of the
O-domination, we must have: (k') = fi(y') < fi(z). By the size monotonicity of*,

i (h') > 7k (h) = 7}(|z|). This implies firmi belongs to the fringe of cartel, and thus,
o (W) = fily) < fi(z) = w3(h). O
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Proof of Lemma A4. Suppose, in negation, thatis not an attractor. Then, by definition,
mi(h — 1) 2 m;(h). Consider a sequence of cartels and corresponding firms realizing

c

x > y such that

y:yoilayl i.2—>...iM—71>yM*1 ﬂ1—>yM::Z:.
We distinguish two cases: case 1 where 1’ and case 2 where > ',

Case 1. Because;(h — 1) = 77 (h), the last firm in the sequence (i.&) cannot be
an entering firm when it moves. Firip; must realizer by exitingfrom some sizé, + 1
cartel. Then, in the course of the sequence, the cartel size must gxcéeatordingly,
there must exist at least one firm, say fifpy who enter a sizé cartel and form a new
sizeh + 1 cartel. Lety’ be the sizeh cartel that firmi, is just going to enter. Then,
fi) = mj(h) = [m5(h) or 7;(h)] = f;,(z). This contradicts the definition of the
O-domination.

Case 2. Ifthere exists a carig! # « in the sequence such that®| = h, then, similar
to case 1, we immediately obtain a contradiction. Then, we can assumg'tat i for
alm = 0,1,...,M — 1. The last firm in the sequence,;, must realizer = y by
enteringy™ . However, we have;, (y"~') = n5(h — 1) = 7} (h) = fi,, (x). This,
again, contradicts the definition of the O-domination. O

Proof of Lemma A5. If |y| = |z|, then Lemma A2 applies. Suppog < |z|. By the
definition of Z%, anyh with |y| < h < |z|is aleading attractofy| itself is either a leading
attractor or zero. Consider émcreasingsequence of cartels and corresponding firms
such that form = 1,..., M, (i) i, € C(x) \ C(y), (i) [y™| = [y™ | + 1, and (iii)
lyM| = |z|. Becaus&) < |z| — |y| £ |C(x) \ C(y)|, we can always choose, from
C(z) \ C(y), an appropriate set dff = || — |y| firms appeared in the sequence. Note
that|y™| is an attractor foralin = 1,..., M.

If yM = x, then, by the definition of attractor and by the monotonicityrbfwe have
fin 1) = w3y ) < iy + 1) = wi(ly™) = 7i(l2]) = fi,,(«) for all
m=1,...,M. If yM #£ z, then we only have to add an additional sequence fy8hrto
x analogous to the one in the proof of Lemma A2. Hence, y. O

Proof of Lemma A6. Suppose, in negation, that N V(Z4) = (. BecauseZ” C 74,
we haveK NV (ZL) = (). Take an arbitrary cartel with |z| € ZL. z is notin K. By the
external stability ofi(, there must exist a cartgl € K that O-dominates. If |y| < |z,
then|y| is either an attractor or zero. By assumptifyj,cannot be an attractor. However,
if |y| = 0, y cannot O-dominate. Therefore, we must havg| > |z|. By Lemma A4,|y|
must be an attractor—a contradiction.

Proof of Lemma A7. The proof of this lemma is immediate consequence of the following
three claims:

Claim (a)[Anonymity] Forz € V(k) andy € V(h), if > y, thenz > w for any
z € V(k)andw € V(h) with |C(2) N C(y)| = |C(z) N C(w)|.

)
Claim (b) Takek,h € Z with k > h andw; (k) > 7% (h). If € V(k) O-dominates some
y € V(h), then thisz O-dominates any € V(h).

32



Claim (c) Takek, h € Z with k > h andr; (k) > 7} (h). If z € V (k) O-dominates some
y € V(h), then thisz O-dominates any € V(h'), whereh < 1/ < k.

Proof of Claim (a). Before proving this claim, we prepare some notations. Given a permu-

tationd on N and cartel, letf(x) denote a permuted cartel such thgt)(z)) = 0(C(z)).
Consider a permutatiofhon N such tha#(z) = z, 0(y) = w, andf(x A z) = y A w.

Suchd does exist becase of the assumotions an z andw. Sincer O-dominateg, there

exists a sequence of cartels and firms

that realize the domination. For this sequence, let define a sequence of permuted cartels

and permuted firms fromy to z as follows:

0(7‘2) ..

w=0(y) = 0(5") = 0(y") L (™M) = O(a) = 2.

By the symmetry of the firms, the above sequence realizes the O-dominatiomftom

Proof of Claim (b). Ifh = k — 1, this is obvious from the proof of Lemma A2. Therefore,
we assume that < k£ — 1.
Lets = |C(z) N C(y)| andt = |C(x) N C(z)|. We separate three cases:s(i- t, (ii)
s > t, and (i) s < t.
(). By Claim (a),z > z.
(ii). C(x)\ C(z) = {i1,...,ik—¢} @andC(z) \ C(x) = {41, ..., jn—t}. Note thatk — ¢t >
h—t=s—t.
Consider the following sequence fronto w, where|w| = h:
o first, firmi; joins the cartek and changes to 2! such thatC(z') = C(z) U {i1 },
o firm j; exits from the existing cartel' and forms a new cartef such that”(z22) =
Cz)\ {a}
e in general, firmi,, entersz?™~2 and changes it te?”~! such thatC(z?m~!) =
CZ*=2)U {im},
o firm j,, exits fromz2"~! and form a new carte’™ such that’(z>™) = C(22™1)\
{dm}-
By repeating this replacement of playefs, @ndj,,) s — ¢ times, we obtainy = z2(s—*)
from 20 = 2.
By construction|w| = h and|C(z) N C(w)| = s. Therefore, by Claim (a)y > w.
Now we show thatr O-dominates: by connecting the sequence fromnto w described
above to the one realizing < z. To show this, it is enough to show that in each step in

the sequence fromto w, each firm prefers to the current situation. Fag, 1 < ¢ < s—t,
sincei, ¢ C(2?772) and|22772| = h,

fi,(2217%) = m3(h) < mi(k) = fi, (2).
Forj,, Forig, 1 < ¢ <s—t,sincei, € C(z??71) and|z?" 1| = h +1,
i, (227 = wli(h +1) < wi(k) < 75(k) = £, (@).

Hencex > z.
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(iii). C(x)NC(2) = {ir,...,i;} andN \ (C(2) UC(z)) = {j1,...,jr}, where

r=IN\(C(z) UC(z))| 2 [C(y) \ (C(2) UC())|
=[(CW\C@)\(CE)\C@)| 2 (h=s) = (h—1) =t —s.

Consider the following sequence fromo w, where|lw| = h

o first, firm i, exits from the cartet and changes to 2! such thatC(z!) = C(z) \
{ir}
o firm j; enters the existing cartel and forms a new cartef® such thatC'(z?) =
C(z") U {s},
e ingeneral, firm,, exits fromz2"~2 and changes it to?” ! such that’(:?m~1) =
C(*"72)\ {im },
o firm j,, entersz>"~! and form a new cartel*” such thatC(z?™) = C(z*™" 1)U
{Jm}-
By repeating this replacement of playefs, @ndj,,) t — s times, we obtainy = z2(t—%)
from 2% = 2. Note that by constructionj| = h and|C(x) N C(w)| = t. Thus, by
Claim (a),z > w. Similar to case (ii), we can show thatO-dominates: by connecting
the sequence fromto w described above to the one realizinga .
Proof of Claim (c). Sincé: is an attractor by Lemma A4, the case whafe= k holds by
Lemma A2. Wher’ = h, by Claim (b), this case holds. So we consider the case where
h<h <k.
Take anyz € V(1'). LetC(z) = {i1,...,in }. Consider the following sequence of
deviation such that firms i6'(z) exit from the cartel until the size of cartel becontes
z—zOHzl Bﬁ...ih/—fhzh/*h:w.
Becausgw| = h, by Claim (b),xz O-dominatesw. Then, we now show that > z by

the sequence connecting the one fromo w described above to the one realizimg< x.
Since for each,, 1 <r < h’ — h,

fi, (7T = ml (W —r+ 1) <mi(k) S i (2),

the incentives of deviating firms in the above sequence holds and:tiwus. O

Proof of Lemma A8. If a = a, the proof ends. Then, take an arbitraryc Z% with
a < a. Because ang with a < h < a is an attractor, we have; (a) = a, as(a) = a + 1,
ag(a) =a+2,...,ap(a) =a—1, apt1(a) = a, whereM = a —a. Therefore, we can
write H (a) as follows:

H(a) = {a1(a), ..., an(a)} U H(a).

Suppose that the largest leading attractds not deleted fromH (a) in the procedure
generatingd*(a); thatisa € H*(a). Then, by the definition of the procedurewill never
be deleted in the procedure generatifig(a) from H (a); thatis,a € H*(a). Because, by
Lemma A5, an arbitrary € V(a) O-dominates any distingt with |y| < |z|, then all of
ag(a),...,ap(a) are deleted in the procedure generatifif(a). In this caseH*(a) =
H*(a).
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On the other hand, suppogés deleted fronH (a) in the procedure generatidg* (a).
Then, there exists an integkre H*(a) and a cartek € V(h) that O-dominates a cartel
y € V(a). Take a cartel/ € V(a). Without loss of generality, we can assufiéy’) C
C(y). LetC(y)\C(y') = {i1,42,...,ir}. Further,le{ig1,ir42,...,ir+s} be the set
of firms that appear in the sequence realizing y. Consider the following sequence of
cartels and corresponding firms:

i1 1 i iR

y o= y0 oyt I R ) TR TS RS g

the sequence realizing > y

Forr = 1,..., R, we havef; (y"~!) = 7r3§(|yr_1|) and f; () = w¥(h) or f; (z) =
73(h). Note thata < |[y"'| < aforallr = 1,..., R. By the definitions offi *(a) and
Z* and the properties of* functions, we have (a) < mi(a) < mi(a+1) < mj(a+l) <
-+ < mi(a) < wj(a) andwj(a) < wi(h) < mj(h). Inany casef; (y" ') < f;, (x) for
all7 =1,..., R. By the definition of O-domination, we hawg, , (y®**71) < f;,., ()
foralls = 1,...,S. Thatis,z > ¢/. Again, all ofa;(a),...,ay(a) are deleted in the
procedure generating*(a). Hence,H*(a) = H*(a). O

Proof of Lemma A9. Suppose, in negation, thdt ¢ H*(d*). Then, there exista €
H*(d*) such thatV'(h) > V(d*) andh > d*. By constructions(h) > m}(d*). Take
cartelsz, y, andy’ such thate € V(h), y € V(d*), andy’ € V(a); we can assume > y
andy > y/'.

Becauser Pareto-dominateg by construction, we can construct an appropriate se-
guence realizing > 3’ by simply connecting the sequence realizing y to the sequence
realizingy > y'. Thatis,V (k) > V(a); this contradicts the definition af*. O

Proof of Lemma Al10. If a € F, then the proof ends. Suppoget F. Letm* be the
minimum element i *(a). (Note thatm* exists.) By the definition off*(a), V (m*) >
V(a) because if other integen’ € H*(a) O-dominatesi, it also O-dominatesn*—a
contradiction. Theny* € D. By construction and the propertiesofunctions, we have
m.(a) < mj(a) = m;(m*) < m}(m*); this impliesm* € P. Further, by construction,

m* € H*(m"). Hencen* € PN DN F. O
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Appendix B

Proof of Lemma B1. We first showA* D A" N APE, Becaused* is a subset of4°P,
it suffices to show that any outconie, p*(|z|)) € A°F with = $(z]) = 72 (n) is Pareto-
dominated by another outcome. Fortunately, it is obvious that suchan ou(a:op*ié|x| )
is Pareto-dominated byz¢, p* (n)).

Next, we showd* C A" N APE Becaused* is a subset ofA°F, we will show that
A* is a subset ofiPE. Take an arbitraryz, p) € A*. We have to show thdtr, p) cannot
be Pareto-dominated. We distinguish two cases: case 1 whese = (z¢, p*(|z°|)) and
case 2 wheréz, p) # (z¢, p*(|z°])).

Let us consider case 1. Take an arbitrayyw) € A other than(z, p). If C(y) = 0 or,
equivalently,y = =/, then we havey;(z,p) = 7*(n) > m3(0) = mp(p™™) = gi(y, w)
for all i € N by Proposition 2-(iii). On the other hand,@f(y) # 0, we havey;(z,p) =
wi(n) > w(ly) = me(lyl.p* () 2 mellylw) = gily,w) for all i € C(y) by the
size-monotonicity ofr* and the definition op*. That is,(y,w) cannot Pareto-dominate
(a°,p* (J2°]).

Next, let us consider case 2. By the inequality(|z|) > = (n), neither|z| = 0 nor
|z] = n can be true. Therefore, we have batl) # () andN \ C(z) # (). Suppose, in
negation, that there exists an outcofpew) € A that Pareto-dominates;, p).

If there is a playeg such that € N \ C(z) andi € C(y), then, by the definition of
the Pareto-domination, we have

me(lyl, w) = gi(y, w) = gi(x, p) = 7} (|z]).

On the other hand, by the definitions=f and A*, we have

me(lyl) 2 me(lyl, w) - and wi(|z]) > 72 (n).

Combining the above inequalities, we obtaif(|y|) > = (n). This contradicts the size-
monotonicity ofr*. Such playei cannot exist. Henceé,c N\ C(z) impliesi € N\C(y);
equivalently,C(y) C C(x).

In turn, if there is a playey such thatj € C(z) andj € C(y), then, similar to the
above paragraph, we obtain the following inequalities:

7 (lyl) 2 me(lyl, w) = g;(y, w) 2 g;(x,p) = 7 ().

By the size-monotonicity of ¥, the factr*(|y|) = = (|«|) implies|y| = |z|. This, together
with C(y) C C(z), |mpI|esC( ) = C(z) or, equivalentlyx = y. Then, by the definition
of p*, we obtain

9i(y, w) = gj(z,w) = m.(|z|, w) < me(|z|,p*(|2])) = 72 (|z]) = g; (=, p).

This contradicts the definition of the Pareto-domination. Such plagannot exist. Hence,
j € C(z) impliesj € N\ C(y); equivalently,C(z) Cc N\ C(y). Therefore, we have
C(y) C C(z) C N\ C(y). This can be possible only @(y) = §, but, as already shown,
C(y) = C(z) # 0—a contradiction. No outcome can Pareto-domirjate) € A*. O

Proof of Lemma B2. Take an arbitrary outcomgy, w) other than(z, p*(|z¢|)). We
distinguish three cases: case 1 whgre- z¢, case 2 whergg = 2/, and case 3 where

y # x¢ andy # 7.
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First, let us consider case ¥: = z°. Clearly, the carteC(y) = C(z°) can change

the current pricew to the optimal pricep*(|y|), that is, (y, w) cw), (y,p*(ly])) =

(¢, p*(|z°])). Further, by the definition gf*, we have

9i(y, w) = me(ly|, w) = me(|2°], w) < (|}, p(|2°])) = gi (=, p" (|2°)))

for all i € C(y). The desired result is obtained.

Next, let us consider case 2:= 2. Consider a sequence of deviations in which (a)
each player enters the cartel one by one and (b) after all the players enter the cartel, the
largest cartel changes the priceptd|2¢|):

(o) = (@0, p2m8) L2 (1 oy L),
{in} n c C(z°) c % c
= (2", pOM) = (2%, pTMP)] —— (2, p" (|2°])).

For eachiy in the above sequence, we hayg(z"~1, p®MP) = 7;(p®©MP) = m3(0) <
wi(n) = 75 (|z°]) = ¢i, (¢, p*(|°])) by Proposition 2-(iii). Further, in the last step, we
haveg; (x", p™™) = g;(a°, p™) < (|2, p*(|2°]) = 72 (|2°]) = gi(a*, p™) for al

i € C(z°). Again, the desired result is obtained.

Lastly, let us consider case 3/ # z¢ andy # zf. It immediately follows that
0 < |y] < n. Letp > 0 be a price such that,(p) < =} (n) andp # p°. Suchp exists
becauser;(p) is decreasing antim,, .o 77 (p) = 0.

Now, consider a sequence of deviations in which (a) c&rigl) decreases the price
down top, (b) each firm inV \ C(y) enters the cartel one by one until all the firms enter
the cartel, and (c) after establishing the largest cartel, the €aftel) changes the price to
p*(jae)):

v.w) < [(1.5) = @, p)] 2L @l p) P
B 1@ ) = @ )] S e (),
whereN \ C(y) = {41, j2, - - -, jr}- In the first (price-cutting) step, we have

9i(y, w) = me(lyl, w) = 7o (Jyl) < mi(n) = me(j2°]) = gi (2, p"([2°]))

for all i € C(y) by the size-monotonicity of. In each of the intermediate (entry) steps,
we have

95 ("1 ) = 7y (9) < mi (|a°]) = g (2, p* (|2°)))
for ji. (k =1,2,...,7). Inthe last (price-increasing) step, we have
9i(z%,p) = me(|x°], p) < 7p(p) < me(|z°], p™(|2°))) = gi(2°, p" (|2°))

for all i € C(x¢) by Proposition 1-(iii) and the definition gi. Hence, the desired result is
obtained. O

Proof of Lemma B3. We first prove case (ii) and, then, turn to case (i) and case (iii). Let
p € Ryy, p# p™P, be aprice level that satisfigs

75 (p) < me(|zl, p)-

Such a price levep exists sincer.(|z|,p) > 0 andlim, o 7¢(p) = 0.
Case (ii). Consider the following steps that form an appropriate sequence of deviations
from (y, w) to (z, p):
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Step 1 If C(y) \ C(x) = 0, then go to the next step. Otherwise, consider a sequence in
which each firm inC(y) \ C(z) exits from the cartel in turn. Lef'(y) \ C(z) =
{i17i2, R ,ir}. Then,

{i1} 1

(5,w) = (% w) L @ w) L2 (02, ) 21 LD

coo— (2", w),
wherez® € X is defined to satisfyC(z*) = C(y) \ {i1,...,ix} for eachk =
1,...,r. Note thatt” = x A y.

Step 2 Cartel C(z A y) changes the price fromy to p. (Note thatC(z A y) # 0 by
assumption.) Thus,

C(zN .
(2 A g w) S (@ Ay, ).

Step 3 If C(z) \ C(y) = 0, then go to the next step. Otherwise, consider a sequence
in which each firm inC'(z) \ C(y) enters the cartel in turn. Let(x) \ C(y) =
{jl?j?v e 7j’l“’}- Then,

(a7, p) L (@1 p) 22y (a2 gy Wb, 0
wherez™t* € X is defined to satisfy’ (2" %) = C(x Ay) U {j1, ..., jx} for each
k=1,...,r. Note thatz"*"" = z.

Step 4 CartelC(z) changes the price frofto p.

(2, 5) = (2, p).

Now we check firms’ incentive of deviation. For eaghin Step 1, we have

-1

9in (2" w) = e, w) < |yl w) < mp(p) = g3 (2, ),

where the second inequality follows from the size-monotonicity af(i) in Proposition 1)
and the penultimate strict inequality is due to the condition given in this lemma. Thus, all
the deviating firms in Step 1 have incentives to deviate toward the ultimate outagple

In Step 2, we have

gi(x Ny, w) = me(|lz Ayl,w) < me(|z], p) = gi(, p)

foralli € C(x Ay). (Note thatC(z A y) C C(z).) The above inequality follows from the
condition given in the lemma. Therefore, cart®|x A y) has an incentive to change the
price as in Step 2.

Moreover, for each deviating firr, in Step 3, we have

r+k—1

i (1’ ’]3) = 7Tf(ﬁ) < WC('M»I’) = Gj (x,p)

by the definition ofp. Thus,j; is better off in(z, p) than in(z" =1 5).
For p, we haver.(|z|,p) < 7¢(p) < m.(|z|,p) by the definition ofp and Proposi-
tion 1-(iii). Then, in Step 4, we have

9i(x,p) = me(|z], p) < me(|z], p) = gi(x,p)

forall i € C(x). CartelC(z) has an incentive to change their priceptoHence,(z, p) >
(y, w) holds through this sequence of deviations.
Case (i). Take an arbitrarye C(y). Consider the following finite sequence of deviations:
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Step 1 CartelC(y) changes its price fromto p.

Step 2 Firms inC(y) \ {i} exit from the cartel in turn.
Step 3 Firms inC(x) enter the cartel in turn.

Step 4 Firm ¢ exits from the cartel.

Step 5 CartelC(z) changes its price fromto p.

Applying almost the same argument as the proof of “Case (ii),” we can show the in-
centives of the deviating firms in each step.
Case (iii). Letz = zAy; thenC(z) = C(z)NC(y). By the conditions given in the lemma,
we have bothC(z) \ C(z) # 0 andC(y) \ C(z) # 0. Consider the following sequence of
deviations:

Step 1 Firms inC(y) \ C(z) exit from C(y) one by one until the cartél'(z) is realized:

(g w) = (2% w) 25 (2L w) L2502 o ) = (2w,

whereC(y) \ C(z) = {i1,...,i,} andr = |y| — |2].

Step 2 C(z) decreases the price downjip(z, w) &), (z,D).

Step 3 Firms inC(x) \ C(z) enter the cartel until’(z) is established:

(2.5) = (@1, 5) 2 (@2, p) 2 o

)

G '
L

D) = (2,D),
whereC(z) \ C(z) = {j1, ..., jr} andr’ = |z| — |z|.

Step 4 C(x) increases the price up to (z, p) L), (x,p).

In Step 1, we have

Gix (xkila w) = 7e(ly| — k + 1, w) < me(|yl, w)
< me(|], p)
< ﬂ-f(p) = Giy, (xap)
forall k = 1,...,r, where the first inequality follows from the size-monotonicitymQf

the second from the condition given in the lemma, and the third from Proposition 1-(iii).
In Step 2, we have

9i(z,w) = me(|2], w) < me(lyl, w) < 7we(|], p) = gi(=, p)

forall i € C(z). Thus, in each caseg;(z,p) > ¢;(z,w) forall i € C(z). In Step 3, we
have

9. (@, p) = w5 (9) < me(|z], p) = g5, (x,p)
forallk =1,...,7. And, in Step 4, we have

gi(z,p) = me(|z|,p) < 7y (p) < me(|z],p) = gi(=, p)

forall i € C(x). Hence(z,p) E-dominategy, w). O
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Proof of Lemma B4. We distinguish two cases: case 1 whéré, p®™) ¢ K and case 2
where(z/, p®®™P) ¢ K. Note thaty; (x/, p*°™P) = 7 (p*°™P) = m3(0) > 0foralli € N.

First we consider case 1 whefe/, p®™) ¢ K. Take any(y,w) € K such that
7(Jy|,w) < 0. Consider the following finite sequence of deviations frémw) to
(zf, p*°™P): Firms inC(y) exit from the cartel in turn. Thus,

{ix} {iz} (2 )... {ir}

(ya'UJ) = (yo,u)) —_ (y17w) — (y*,w s comp)

—><y D

= (!, p*m)
whereC(y) = {i1,...,i,}, 7 = |y|, andy” is such tha(y*) = {ixs1,...,i,}

For each deviant firm,,, 7. (|y™ |, w) < 7.(|y|,w) < m;(0). Therefore(xz/, pcomP)
E-dominategy, w) through the above sequence of deviations and this contradicts the in-
ternal stability ofK'.

Next we consider case 2 whee’, p®™) ¢ K. In this case, there must exist, p) €
K such that(z, p) > (zf,p*°™P) to assure the external stability &. Then,» # »/ and
p # p°™P. We show that in the outcome, p), the firms in the cartel obtain a positive
profit. In a dominance sequence that realigeg) > (x/, p®™P), there must be at least
one firm, say firmi, who joins the cartel at some stépof the sequence and remains in
the cartel at the final outcome because the initial outcome has no actual cartel. By the
definition of the E-dominance, we have

0 < mp(p¥) = gi(a®, p*) < gi(z,p) = 7e(|z],p).

The first strict inequality follows from the definition af;. Thus, we obtai) < 7 (p*) <
ez, p).

Recall thatr¢(p) > 0. Thus, we havey;(z,p) > 0 for all i € N. Finally, we show
that for any(y,w) € K such thatr.(|y|,w) < 0, (z,p) E-dominates(y, w). This is
done by Lemma B3-(i) and (ii) becausg(|z|,p) > 0 = 7 (Jy|, w) = 7.(|x A y|,w) and
7¢(p) > m(|y|, w). This contradicts the internal stability &. So we have the desired
result. O
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