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Abstract

This paper investigates the bidding strategy in a package auction under
incomplete information. I consider a simplified and limited case, where each
bidder wants a unique bundle of the goods and evaluates them as perfect com-
plements. The rule of the auction is a standard ascending auction with package
bidding but I adopt the “proxy bidding rule.” The auction is interpretted as
a limited version of Ausubel and Milgrom (2002)’s ascending proxy auction.
Moreover, in some cases the rule of the auction also covers the combinatorial
clock auction by Porter et al (2003). I derive the condition under which bidders
report their values truthfully in a Bayesian Nash equilibrium even when there’re
complementarities. Truthful reporting is optimal when bidders’ geographic re-
lationships about thier wants are transitive. This result implies that package
auctions cannot implement efficient outcome in almost every case of package
auction problems.

JEL classification: D44, D82
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1 Introduction

Since the design of the auction of spectrum licenses by Federal Communication Com-
mission, it is an important problem how to sell the multiple items those values are

interrelated. Some auction designs allow bidders to submit bids for packages of
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goods.! Particularly, when there may be high complementarities among the goods,
it is said that auctions with package bidding will improve the efficiency.

Recent studies show that goods complementarities causes difficulty in both theory
and applications.? From theoretical point of view, when goods may be complements,
often there is no mechanism that satisfies desired properties. Many familiar package
auctions are known not to satisfy incentive compatibility. However, because of its
complexity of rules and the vast strategy space, few studies have so far been made
at incentive structure of package auctions.

This paper formulates a model of a package auction, which is very simplified
and limited but incomplete information model with complementarities. And I limit
bidders’ strategy space by adopting a “proxy auction” rule and investigate bidders’
incentive properties in an ascending auction with package bidding.

I consider the case where each bidder evaluates goods as perfect complements.
That is, each bidder is interested in a unique bundle of goods and makes profits only
when he obtains all of the goods in that bundle. For example, in a spectrum auction,
each mobile phone company has his business areas, and wants all of licenses covering
those areas. There will be no use for licenses out of his areas and for only a part of
licenses in the area.

The allocation of the goods is determined by an ascending package auction. And
I adopt the “proxy bidding rule.” In a proxy auction, bidders report their valuations
on goods to their agents. Agents participate in an ascending auction and raise bids
automatically up to maximum bids reported by bidders.? Proxy auctions are said
to be more effective against dishonest behavior such as collusions and shill biddings
than non-proxy auctions.* Moreover, the proxy rule accelerates the implementation
of the auction (Parkes (2006)). Proxy rule restricts strategy space and makes it easy

to analyze strategic behavior.

'Milgrom (2004) explains the FCC auctions and the basic theory of single- and multi-object
auctions in detail. Parkes (2006) surveys theoretical and computational problems of iterative com-
binatorial auctions.

2In real world problems, goods complementarities matter well. See Milgrom (2007) for the
difficulties in designing package auctions. Ausubel et al (1997) show the evidence of synergies in a
FCC spectrum auction.

3 A general model of a proxy auction with package bidding is introduced by Ausubel and Milgrom
(2002). The model of this paper is a special case of their “ascending proxy auction.” See Ausubel
and Milgrom (2002, 2006).

4The rich information structure and the vast strategy space of dynamic (ascending) auction can
make it possible for bidders to collude with each other and to lower prices. Brusco and Lopomo
(2002) show there’s a collusive Bayesian Nash equilibrium in an ascending multi-object auction
without package bidding.



I show that bidders’ relationships about their wants, in other words, bidders’
geographical relationships, take an important role in bidding strategy in an equilib-
rium. When some two bidders are interested in a same good, then they are rivals
of each other. The necessary and sufficient condition for each bidder reporting his
willingness to pay truthfully is the transitivity about these rival relations, i.e. any
rival of rival must be a rival. When this is not satisfied, a bidder has a friend who
competes against a common rival. In package auctions, friends should cooperate in
order to outbid the common rival in general. However, a kind of a freerider problem
about their shares of payment arises in such a case. Bidders will underbid their
values to avoid large shares of the payment.

This freerider problem has been pointed as the “threshold problem” in the liter-
ature of package auction theory.® The threshold problem is a coordination problem
between local bidders (friends). Local bidders can outbid global bidders (common
rivals) by coordinating their bids, but incentive to avoid large payment results in
a coordination failure and they may not win the auction. This paper analyzes this
problem under incomplete information and show that it’s a main problem of package
auctions.

One of the main contributions is that I formulate a limited model of package
auctions and analyze bidders’ incentive properties. In addition, I clarify the main
weak point of package auctions partially by the simplified model. I show that the
freerider problem in package auctions arises almost necessarily.

I start with viewing the limited model and the procedure of the auction using
an example in section 2. Section 3 provides the model and introduces the protocol
formally. Section 4 analyzes incentive structure in the simplest case described in
section 2. In section 5 I formally define the “transitivity condition” and provide

main results.

2 The Procedure of the Auction

I start by viewing how the ascending auction procedes before defining the model
formally. Consider that there’re two objects, {A, B}, and three bidders, {1,2,3}.
Bidder 1 wants only good A, while bidder 2 wants only good B. Bidder 3, on the
other hand, wants both A and B and values zero for either of them alone. These

circumstances are illustrated in figure 1.

®See Ledyard et al (1997) and Milgrom (2000) for example.



In the auction, firstly bidders report their maximal bids to their agents, or “prox-
ies.” Then the proxies participate in an ascending auction submit bids up to the
reported maximum values.

Suppose that bidder 1 and 2 report values of 4 and 2, respectively, to their proxies.
And suppose that bidder 3 reports 4 for the package of the goods, {A, B}.

Figure 2 illustrates the process of the ascending auction. In period 1, each (prox-
ied) bidder submit 1 for the (set of) items. In each period, the auctioneer selects a
feasible revenue-maximizing bids and chooses provisional winners. In period 1, when
the seller allocates the goods for bidder 1 and 2, its revenue is 2. On the other hand,
if she allocates them to bidder 3, the revenue is only 1. So the auctioneer chooses
the allocation ({A},{B},0) and bidder 1 and 2 are provisional winners.

In period 2, only bidder 3 raises the bid to 2. Then (0,0, {4, B}) is also a revenue-
maximizing allocation, whose revenue is 2. Suppose the seller chooses the allocation
in which bidder 3 wins.

In period 3, bidder 1 and 2 raise their bids and submit 2. The auctioneer allocates
the goods to bidder 1 and 2. Now the revenue is 4. In period 4 and 5, bidder 3 raise
the bid up to 4. Suppose that the auctioneer selects the bid of bidder 3 in period 5.

In period 6, bidder 1 and 2 are going to raise bids. However, bidder 2’s bid has
already reached to 2, the maximal bid. So bidder 2 cannot raise his bids any more
and only bidder 1 raises the bid to 3. Then, bidder 3’s bid is already binding at the
maximal bid, 4, so the auction stops. In the final allcation, bidder 1 gets A at 3,
bidder 2 gets B at 2, and bidder 3 gets nothing.

3 The Model and the Auction

A seller wants to allocate some heterogeneous and indivisible commodities among
a set of bidders. Let K = {1,...,k} be the finite set of goods for sale, which are
different from each other. Let I = {1,...,n} be the set of all bidders. The seller, or
the auctioneer, is denoted by 0. All bidders and the seller are risk-neutral and have
quasi-linear utilities. let K be the power set of K and let X; be the set of bidder
i’s possible packages, i.e. X; C K. We assume ) € X; for all i € I. v; : X; — Ry
denotes bidder 7’s value function. We normalize v;(()) = 0 for all 7 € I. Bidder i gets
his payoff of v;(x;) — pi (z; € X;,) where p; is the monetary transfer to the seller.
z = (z1,...,2,) denotes an allocation, and x is feasible if for Vi, j € I, z; Nx; =0
and (J;c; i € K. Let X be the set of feasible allocations. Seller’s utility is the



revenue from the trades, ) p;.

3.1 Bidders’ Valuations

I impose some assumptions on bidders’ value functions. This paper assumes that
every bidder values the items as perfect complements. And I consider the case where
each buyer’s private information is described as one-dimensional value. Following

assumptions can simplify the situation of complicated package auctions.

A1 (Perfect Complements) There exists a nonempty bundle of the goods K; € X;
for each i € I, which is the bidder i’s region. And

v; if K; C x;
vi(xg) =4 " " =" where v; > 0.
0 otherwise

A2 (Known Regions) Each bidder’s region, K; is publicly known to each other and

the seller, while v; is private information for bidder i.

A3 (Independent Values) Each bidder’s value, v; is drawn from some continuous

distribution on the interval [0,v;] = V; independently.

The key assumption is Perfect Complements. It means that each bidder is inter-
ested in a unique package of the goods. When K; contains more than one item, it
indicates that there’re perfect complementarities across these goods. Given Perfect
Complements, Known Regions is not too restrictive. Even if each K; is also private
information, if Perfect Complements is common knowledge and if the seller requests
potential bidders to report their regions before the auction, bidders will report their
regions truthfully. Given Perfect Complements and Known Regions, Independent

Values is standard in the literature of the auction theory.

3.2 The Auction, Strategy, and the Equilibrium Concept

Next I introduce the rule of the package auction. In the auction, each bidder instructs
a “proxy agent” that participates in a simultaneous ascending auction with package
bidding on his behalf. Firstly each bidder inputs a value function. Then the agent for
bidder i bids straightforwardly according to the reported valuation. In other words,
proxy bidders behave as price-taker.

The proxy rule is adopted in many internet auctions, in which potential partici-

pants aren’t always involved. A package auction with proxy bidding is introduced by



Ausubel and Milgrom (2002). The auction noted here is a simplified and limited ver-
sion of the ascending proxy auction by Ausubel and Milgrom.® Ausubel-Milgrom’s
proxy auction is defined to have a discrete price increase rule and authers consider
the case where the price increment is negligibly small. I also define the auction with
discrete price increases first and then consider the case where the price increment
converges to zero.

I impose another assumption on bidders’ behavior in the auction in order to
simplify the analysis. I consider the case where bidders report not their value function
(vi(+)) but only their values for their regions, v;. It forbid bidders to bid for any
packages that they don’t want.

A4 (No Cross-Bids) X; = {0, K;} for alli € I.7
Given these assumptions, the package auction is defined as follows.
1. Each bidder inputs the valuation for his region, b; € V;.
2. At period 0, initialize 29 = () and pY = 0 for all i € I.

3. At period ¢ (> 1), the agent for bidder 7 bids p} on the package K; and

Pi =19 -1

: pitde ifalt =0andplt+e<b;
D; otherwise

where € > 0 is an exogenous bid increment.

t ¢ X that maximizes her revenue

4. The seller chooses a feasible allocation x
under the price vector p' = (p!);es. If there’re more than one allocation that

maximize the revenue, she selects one of them randomly.

5. Repeat 3-4, and if p? = p?’~!, then the auction ends and z” is the final
allocation. Bidders such that xlT = K, win the package K; with the price piT.

I limit attention to the case in which the bid increment e is negligibly small,
and I consider the case of ¢ — 0 (and ¢ increases continuously). In the appendix I

provide a class of ascending auctions with continuous price increase, which includes

5The protocol of the ascending auction in the Ausubel-Milgorm auction is identical to iBundle
by Parkes and Ungar (2000). So our rule of the ascending auction is also same as iBundle.

"It may veil some important part of strategic behavior in the package auction with high comple-
mentarities, cross-bidding. For example, when there’re complementarities, increasing the price for
the good B can reduce the demand for the good A. So the bidder who wants only the good A might
be able to kick out the global bidders earlier by bidding for the good B.



the auction here. I describe the mechanism of the auction as (g, p). When the profile
of bidders’ reports is b = (b1,...,by,), the outcome is represented by (g(b),p(b)) €
(X, R™), which specifies the choice of the allocation x = ¢g(b) € X and the payment
p; = pi(b) € R. The associated payoffs are given by u;(b;v;) = v;(g;(b)) — pi(b) for
i € I and up(b) = > p;i(b) for the seller.

Bidder i’s strategy is a mapping from bidder’s value to his bid: G; : V; — V;. 1
call 3; bidding function.®

I use the Bayesian Nash equilibrium as the equilibrium concept. It is conve-

nient to define bidder’s interim expected payoff given some other bidders’ strategies:

7i(bi, vi) = Evi(gi(bs, B-3)) — pi(bsi, B-i)|B—i].

Definition. A profile of bidding functions {;};cs is a Bayesian Nash equilibrium if
Vi € I,V’Ui c Vi,Vbi S V%, m(ﬁi(vi),vi) > m(bi,vi).

To rule out some unreasonable equilibria that consist of (weakly) dominated

strategies, I only consider the equilibrium in which no strategy is dominated.

Definition. A strategy [3; is (weakly) dominated if 33 : Vi — Vi, Yo, € V;,Yo_; € V_;

)

u((Bi(vi), v—i); vi) < u((Bivi),v-i); vi),

and for some (v, v_;) strict inequality holds.

3.2.1 Basic Properties of the Auction

The model and the rule of the auction is a simplified version of Ausubel and Milgrom
(2002)’s “ascending proxy auction.” Ausubel and Milgrom (2002, 2006) formulate
a general model of the package auction problem and investigate incentive under
complete information and derive Nash equilibrium.” Their results holds for the
package auction here too.

The crucial fact used here is that the auction computes an efficient allocation with
respect to the reported preferences. When I consider the efficiency of the auction, it
is convenient to define the total value of the auction. Ausubel and Milgrom define

and use coalitional value function for treating the auction as a cooperative game. In

81 consider only pure strategies and don’t think of mixed strategies.
9 Ausubel and Milgrom show that if goods are substitutes for all bidders, truthful reporting,
Bi(vi) = v, is a weakly dominant strategy of the ascending proxy auction.



my setting of incomplete information the total value depends on private information

explicitly.

Definition. Coalitional value function w : 2/ x [[V; — Ry,

w(J,v) = I;le%}((jze;]vjl{zjy(j}.

w(J,v) denotes the total value which every subset of bidders J C I can achieve by
allocating goods efficiently among them. Let w(),v) = 0. By definition, w(.J, v) does
not depend on (v;);¢7, so that I often use the same notation w(J, v) as w(J, ((v;)je, (¥i)igs))
for arbitrary (9;)igs, or sometimes I drop some of (7;);¢s for simple description.

Let v = (v1,...,v,) be a profile of bidders’ values. And let w;(v;v;) be bidder
1’s payoff when bidder i’s bid is equal to his valuation for his region. Ausubel and
Milgrom show that the payoff profile u(v) = (up(v), u1(v;v1),...,un(v;vy)) is in the

core of the economy.

Theorem. (Ausubel and Milgrom (2002, 2006)) The payoff profile determined by

the auction is a core with respect to the reported preferences:
u(v) € Core(I U{0},v)

= {u € R ‘ w(l,v) :uo—i—Zui, w(J,v) < uo—l—Zuj for VJ C I}.
icl jeJ

4 An Illustration

In this section I consider the 2-good and 3-bidder case again. Let K = {A4, B},
I ={1,2,3}, K1 = {A}, Ky = {B}, and K3 = {A, B}. This simple model gives
intuition of main theorems in the next section.

In this case, we can specify the auction mechanism and describe the auction as
a normal form game. Let b; be the bidder i’s reported value. Then the mechanism

of the auction is specified as

o(b) = {({A},{B},m bty 2 b
(0,0,{A,B}) otherwise

WPprecisely if by + by = bz, winner(s) are determined randomly from {1,2} and {3}. Winners will
have to pay p; = b;. It isn’t important how to deal with the tie-breaking here.



and

(3b3,3b3,0)  if min{by,bo} > 3bs
(bl,bg—bl,O) if 261 < by < by + by
(b — by, b2,0) if 2by < b3 < by + by
(0,0,b1 +b2)  otherwise

p(b) =

First I note that bidder 3 has a dominant strategy of truthtelling. We can check
this easily by following argument. Bidder 3 wins if and only if his report is bigger
than b; + b2 and the amount of payment is determined by the highest rejected bid,
b1 + bo. This rule is the same as the second-price auction. Hence truthful reporting
is a weakly dominant strategy for bidder 3.

Next consider the strategy of bidder 1. Fix the (equilibrium) strategies of bidder
2 and 3; B2 and (3. Bidder 1’s interim expected payoff given his true value v; and

the reported value by is
w1 (b1, v1) = v1 Pr{b1 > B3(v3) — B2(v2)} — b1 Pr{2b1 < 3 < by + (B2}
1
= B[S0 (20125, 28,2p5)] = El(F3 = 02) 1128, <ps<br+82)]-

By differentiating by b1 and using (33(v3) = v3, we have the first-order condition for

maximization,

(Ul — bl)gf)(bl) — Pr{2b1 <wg < b+ 52(1)2)} <0, (1)

where equality holds when b; > 0. And

o(b1) :/ J2(v) f3(b1 + B2(v))dv

and
b1+062

Pr{2hy < vs < by + fa(n)} = /b ) /2 fo(0) fo(u)dudv,
1<p2

b1
where f; is the density function of v;. We summerize and have the following propo-

sition.

Proposition 1. Bidder i(= 1, 2) submits the value under his true value, i.e. §;(v;) <
v; if bidder j = 3 — i submits non-zero bid with positive probability and if Pr{2v; <
v < v; + f(vj)} > 0. On the other hand, Bidder 3 has a weakly dominant strategy
of truth telling.

Now I assume that bidder 1 and 2 are symmetric and that all values are drawn
from uniform distributions. Let V; = Vo = [0, 1], and V3 = [0, a] where a > 2. And
Fi(v) = Fy(v) = v and F3(v) = v/a.



Then FOC of bidder 1’s maximization problem is

1 bi+B2 1
(v1 — bl)/ —dv — / / —dudv <0,
Vo a Ba>br J2b1 a

(1)1 - bl) - / (0)>b {,82(1)) - bl}dv § 0. (2)

Consider the equilibrium such that 81(-) = 82(-) = B(:) and 8 is continuous. The
equation (2) yields

o1 — Blor) < / (Bv) - Blor) v, 3)

v>v1
where equality holds if f(v1) > 0. Evaluating (3) at v; = 1 yields (1) = 1. And

after some calculations, we have

ifv<el
ﬂ(v)Z{O fvse (4)

1+logv ifv>e!

We can check 3(v) < v when v € (0,1).

4.1 The Threshold Problem

This 2-good and 3-bidder model is a basic example when we explain the threshold
problem in package auctions. Table 1 explains the threshold problem in this case.
Local bidder 1 and 2 can outbid global bidders and obtain goods if at least one
of them bid actively (“bid more”) in the auction. On the other hand, when both
abstain active bidding and stop raising bids, goods are sold to a global bidder. When
both 1 and 2 bid actively, both bidders pay a moderate price and will get the (net)
payoffs of 2. When only either of them, say bidder 1, bids actively, he must pay a
higher price, and then his payoff is 1. Bidder 2, on the other hand, will get goods at
a lower price, so that his payoff is large.

There are multiple Nash equilibria in which either of local bidders bids actively
and the other stops bidding (and a mixed strategy equilibrium). Hence local bidders
may not win the goods unless they successfully coordinate their bids to outbid global
bidders. This is known as the threshold problem.

Under incomplete information, this multiple equilibria of the coordination prob-
lem is solved by bidders’ private information. Figure 3 illustrates the equilibrium
bidding function. If a bidder is weak, or a low type, he doesn’t submit bids actively
and drops out early. On the other hand, a strong, high type bidder bids actively and

submits almost true valuation.

10



In this numerical example, incentive of lower types to freeride is quite strong.
Bidding up to the willingness to pay raises the probability of win and never generates
negative profits unless bids exceed the true valuation. However, for a low type, the
profit in cases where he wins by “working hard” is actually very small because he
really has to work hard (pay the maximum bid he set.) Rather, raising the limit of
the bid increases the payment in cases where he wins even if he doesn’t work hard,
and this cost is relatively high.

On the other hand, a high type bidder expects that the opposing friend is rel-
atively weak. Then the friend’s bid is lower than mine whenever he bids actively
or not. In addition, the cost of losing by shading bids is higher for the higher tpye
bidder. So the high type bidder has no incentive to rely on the friend’s contribution.

The equilibrium strategy also generates a serious low revenue problem. The
numerical example implies that there may be cases where package auctions fail.
Particularly, local bidders bid zero if their values are less than 1/e = 0.37. The seller
gets zero revenue at the probability of (1/e)? = 0.14.1!

5 Main Results

This section provides main results. Results in the previous section imply that bid-
ders’ relationships about their targets strongly affect their bidding strategies. 1
clarify that the key concept is the transitivity condition about bidders’ geographi-
cal relationships. Bidders must satisfy the transitivity condition in order to have a

dominant strategy of truthful reporting.

5.1 The Transitivity Condition

First I introduce the transitivity condition. It is defined on each bidder. Considering
bidders’ strategic biddings, one important point is bidders’ geographical location, or
what each bidder wants. The transitivity condition requires that any rival of the

bidder’s rival should also be a rival.

Definition. Bidder i satisfies the transitivity condition if the following condition

11 Ausubel and Milgrom (2002) argue that one of disadvantages of the Vickrey auction is its non-
monotonic revenue and that the Vickrey auction sometimes generates low revenue. The example
in this section implies that the package auction may also result in low revenue because of strategic
underbidding.

11



holds:
Vj,j,EI(j#j/) KiﬁKj#(Z)andKjﬂKj/#@iKiﬂKj/;é(b.

To describe bidders’ geographical relation, we define the concepts of rivals and

friends.

Definition. Bidder j is a rival of bidder i if K; N K; # (). R; denotes the set of rivals
of i. Bidder j is a friend of bidder ¢ if K; N K; = 0. C; = I_; \ R; denotes the set of
friends of 7.

By using the notation of R; and C;, we can restate the transitivity condition as

the following form.

Lemma 1. Bidder ¢ satisfies the transitivity condition if and only if for Vj € R; and
vy e C;, K;NKj = 0.
Proof. All proofs appear in Appendix.

Figure 4 illustrates the transitivity condition. In top three cases, bidder ¢ satisfies
the transitivity condition, and in the bottom case not. The top right case shows that
bidder i satisfies the transitivity condition, while bidder j and 5’ don’t. The top left
case is the fundamental case where the transitivity condition holds.

The transitivity is almost necessary and sufficient condition for truthful reporting.
The top left case of figure 4 implies that bidder i (and also j and j’) should outbid
others by himself. This is the source of truthful reporting.

The transitivity condition is rarely satisfied in the real auctions. We’ll check
this by considering simple spectrum license auctions. Consider the situation where
a government plans to allocate licenses of radio spectrum of a single band to mobile
phone companies. The license is divided in two by regions, west and east. Some
firms (local firms) want a part of the licenses, while others (global firms) need both
of them. This is described by figure 5(i). In this case, global firm ¢ satisfes the
transitivity, but local firms, {1 and [o don’t.

Figure 5(ii) illustrates another case. Now the government sells two bands and
each of them separated with east and west. Four licenses are to be sold. Global firms
need the licenses of both regions, while local firms will want both bands of a single
region in order to operate rich variety of services. In such a case no one satisfies the

transitivity condition, so that everyone will have incentive to underbid.

12



5.2 The Dominant Strategy

First I consider the dominant strategy. The transitivity condition is the very condi-
tion for the existence of a dominant strategy. The key observations are that when
bidder 7 wins, all rivals of ¢, R;, lose the auction, and that all other winners are
in C;. In addition, the auction leads to an efficient allocation. These imply that
bidder i wins the auction if and only if w(I,b) = b; + w(C;, b) > w(I_;,b).'> When
the transitivity condition is satisfied, friends of bidder ¢ are also friends of i’s rivals.
This means that friends of bidder ¢ have no influence in determination of allocation
of bidder 7. Then bidder i must outbid his rivals by his bid only. Furthermore,
when bidder ¢ wins, his payment is determined by the highest value of his rivals, by
the ascending auction algorithm. That is, nothing differs from a simple single-unit

ascending auction.

Theorem 1. Suppose Al-A4. The truthfully reporting strategy, G3;(v;) = v;, is a
weakly dominant strategy for bidder ¢ if and only if bidder ¢ satisfies the transitivity

condition.

5.3 The Bayesian Nash Equilibrium Strategy

When bidders have no dominant strategy, how about the optimal strategy in the
Bayesian Nash equilbrium? Roughly speaking, when a bidder has no dominant
strategy, a kind of freerider problem necessarily arises and there exists incentive to
underbid.

Unfortunately, it is hard to specify a closed form of (g,p) in general. However,
we can obtain some properties which are necessary for specifying bidders’ decision
problems. So first I provide some observations about the auction mechanism.

Fix others’ bid. If a bidder wins the goods with the price of p; < b;, bidder ¢’s
payment must never increase by increasing his bid. As long as he submits the value
over p;, he wins the goods with p; because the algorithm always stops at p;. Hence

we have following observation.

Observation 1. For each b € V, if g;(b) = K; and p;(b) = p; < b;, then gi(gi, b_i) =
K, and pi(l;i, b_i) = p; for all ?)Z > p;.

12Precisely, we should consider the case of tie. Particularly, under the equilibrium strategies
which we consider in this section, tie-breaking rule does affect the result when winning bids are
zero. However, tie-breaking rule doesn’t affect our main theorems.

13



Next I define the minimal required bid. Let 3 be a profile of bidding functions
and let W = w(I_;, B—i(v_;)) —w(Ci, B—i(v_;)).13 W is a random variable generated
from v_;. Remenber bidder ¢ wins the auction if and only if b; +w(C;, b) > w(I_;,b).
Hence when other bidders’ strategies are 3, W represents the minimal bid for bidder
i to win the auction. Moreover, if bidder ¢ wins, his payment p; must be above W.
This fact is obtained from Ausubel and Milgrom (2002).'* These observations play
important roles to derive bidder’s first order condition of the payoff maximization

problem.

Observation 2. ¢;(b) = K; ifb; > W. And b; > W if g;(b) = K;. Further p;(b) > W

One problem is whether the distribution of W has a density function. Following
lemma assures that the distribution of W has no atom except the corner when I limit

the class of strategies.

Lemma 2. The distribution of W has no atom except W = 0 if for each j € I_;, 3;

is continuous and strictly increasing as long as (3;(v;) > 0.

Suppose that each (3; is a candidate of the equilibrium bidding strategy that
satisfies the conditions of lemma 2. ® denotes the distribution function of W and
let ¢ be the density function of W such that ¢(0) = lims_, ¢ w.

Now we have the interim expected payoff of bidder ¢ given his private informaiton

v; and the report b;:
7i(bi, vi) = vi®(bi) — Elpi(bi, B-:)]- (5)

Following lemmas help to investigate how the Bayesian Nash equilibrium strategy
is. The equilibrium strategy must be nondecreasing and bidders never make any

choice of overvidding.

Lemma 3. Bidder i’s equilibrium strategy (; is weakly increasing.
Lemma 4. For every bidder 4, any bidding strategy 3; such that for Ju;, Bz(vl) > v
is weakly dominated by the following strategy 3;, where 3;(v) = min{3i(v), v}.

13For precise notation, w(I—;,3-;) should be described as w(I_;, (b;,3—;)). We use simply
w(I-;,B-;) and w(C;, B—;) as long as no confusion rises.

M Actually, w(I—;,b) — w(C;,b) is equal to the payment of the Vickrey auction (Vickrey-Clarke-
Groves mechanism; Vickrey (1961), Clarke (1971), Groves (1973)). The Vickrey payoff is known as
the maximum possible payoff in the core of the economy. Our auction also leads to a core payoff,
so that the price should be over the Vickrey price.
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Combining these lemmas and observations about the mechanism of the auction,

I have the first-order condition for bidder’s maximization problem.

Lemma 5. Suppose A1-A4. And suppose that for each j € I_;, 3; is continuous and
strictly increasing as long as (3;(vj) > 0. Then the first-order condition for bidder

1’s maximization is given by
(vi — bi)p(bi) — Pr{gi(b;) = K; Api(bi) = bi} < 0,1 (6)
where equality holds when b; > 0.

Lemma 5 is explained intuitively as follows. When bidder ¢ raises the bid by one
unit marginally, then the probability of winning rises marginally by ¢(b;). In the
case of such a new winning he will get the payoff of (v; — b;) because the minimal
required bid is exactly b;. On the other hand, raising the bid increases the amount
of the payment by one unit in the cases in which he wins the package K; and the
payment is binding at b;. So the marginal payoff of bidder i is represented as the
left hand side of (6).

Truthful reporting, b; = v; is never optimal when
Pr{g;(vi) = K; A pi(vi) = vi} > 0.

And generally this is satisfied when the transitivity condition is not satisfied and
when v; is sufficiently low. Lemma 6 shows that if bidder ¢ doesn’t satisfy the tran-
sitivity and if all other bidders behave “actively” to some extent, truthful strategy

is suboptimal for some types.

Lemma 6. Suppose Al-A4. And suppose that bidder i does not satisfy the transi-
tivity condition. If § is a Bayesian Nash equilibrium strategy profile, each of which
is continuous and (3;(9;) > 0 for Vj € I, then f3; is not truthful strategy and there

exists some o > 0 and f;(v;) < v; for all v; € (0, ).

Lemma 6 claims that the transitivity condition is almost necessary condition for
truthtelling in the Bayesian Nash equilibrium. However, it is not exactly necessary
condition and a slight difference arises because of the following consideration. There
may be an equilibrium in which some bidders always submit zero, because there’re
the cases in which even if some bidders submit zero, they can win the goods by

grace of others’ high contribution. Therefore even if the transitivity condition is not

15Pr{A A B} denotes the probability of the events in which both A and B occur.
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satisfied, there’re the case in which truthful reporting is still optimal. Considering
the possibility of such a “zero-bidder,” we imagine that zero-bidders are replaced
from the market. The following theorem is second main theorem. Proof is given as

a corrollary of theorem 1 and lemma 6.

Theorem 2. Suppose A1-A4. Let [ be a strategy profile, each of which is contin-
uous. And let [ = {j € I18;(v;) > 0}. If 3 is a Bayesian Nash equilibrium and if 4
satisfies the transitivity on I, then Bi(v;) = v; for all v; € V;. On the other hand, if
( is an equilibrium and if i does not satisfy the transitivity on I, then there exists

some « > 0 and §;(v;) < v; for all v; € (0, ).

As we’ve already seen, the transitivity condition is restrictive in practical appli-
cations. Theorem 2 implies that if the auction is ex ante efficient all bidders must
satisfy the transitivity condition.'® However, this will not be the case in practice
generally. If there are some local buyers in the market, they will frequently violate
the transitivity condition. In addition, theorem 2 shows a negative result in another
meaning. One of the aims of package auction is to find an optimal bundle of the
goods. When all bidders satisfy the transitivity condition, the market is separated
and closed with rivals. This means that what the optimal packaging is obvious and
that there’s no need to determine the bundling during the process of the auction.
In other words, our package auction is ex ante efficient only when we don’t have to

design a package auction.

6 Concluding Remarks

I have analyzed the bidders’ strategy in a package auction. One of the contributions
of this paper is that we formulate a Bayesian model of a package auction with comple-
mentarities. Preceding studies construct models of complete information and derive
some Nash equilibria of package auctions (Ausubel and Milgrom (2002), Milgrom
(2007)). I derived a necessary and sufficient condition for the truthful dominant
strategy property. Moreover, it is also almost necessary and sufficient condition for
the incentive compatibility in the Bayesian Nash equilibrium.

I showed that almost all local bidders have incentive of underbidding when

there’re high complementarities. This finding corresponds to the “threshold prob-

Even in the cases where all bidders underbid in the equilibrium, the degree of underbidding
differs among bidders and private information. So ex ante efficiency will not be achieved when some
bidders underbid in equilibrium.
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lem” in package auctions, a coordination problem among local bidders. I adopted
an incomplete information model and partially clarified the environment where the
threshold problem, which is rather a freerider problem under incomplete information,
takes place in package auctions.

A simplified and limited case gives us bidders’ incentive properties in package
auctions more. However, our results will be adaptable even when more general
values are permitted. In the general values case, bidders will underbid more for small
packages of the goods, while they will bid more sincerely on the larger packages. This
bidding strategy, truthtelling on the large packages and underbidding on the small
packages, is not a complex, rather simple strategy. The results are also testable in
laboratory experiments.

Some combinatorial auctions achieve high efficiency in experimental studies.'”
However, little attention has been given to the point why high efficiency is achieved
in experiments, for there’re few studies on theoretical and experimental analysis
about bidders’ bidding strategies in combinatorial auctions. Many experimental
studies have paid attention only to the efficiency and seller’s revenue of auctions
with and without package bidding. The results will be useful for analyzing and
understanding strategic bidding behavior in experiments and real auction data. The
theoretical analysis on bidders’ behaviors in combinatorial auctions accompanied

with experimentation will be in need much more.!®

A Appendix

In the appendix, first I note the rule of ascending auction with continuous price
increase. Then I provide proofs of lemmas and theorems.

A.1 A Continuous Price Package Auction

In the rule of the ascending auction described in section 3 the price increment is
€ > 0. We considered the case where the increment is negligibly small. As I've
already noted, we cannot specify the monetary transter function of the package

Y There’re few experimental studies on proxied package auctions such as the ascending proxy
auction. Kazumori (2006) test the “Clock-Proxy Auction” by Ausubel, Cramton, and Milgrom
(2006). See Porter et al (2003) and Cybernomics (2000) for the experimental studies on several
other multi-object auctions.

180f course experimental economics take very important roles in design of auctions or markets.
I’'m also going to carry out the experiments in order to examine the bidders’ bidding strategies in
combinatorial auctions. Roth (2002) notes the importance of each of theory, experimentation, and
computation.
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auction, p. So I define the auction with continuous prices by imposing some axioms
that it should satisfies.

First I define the provisionally winning coalitions. A subset of bidders J C I
is a provisionally winning coalition at t if ((Kj)jes,(0);¢s) € X and > jesbi(t) =
w(l,p(t)). PW(t) denotes the set of provisionally winning coalitions at t.

Auctions which satisfy following properties include the one we consider in this
paper. An package auction determines a price path p(t) = (p;(t))ier as follows.

1. Each bidder inputs the valuation for his region, b; € V;.
2. At time ¢t = 0, initialize p;(0) =0 for all i € I.

3. A price path p(t) (t > 0) is determined as follows. If p(7') = 0 at T, go to the
next step.

(a) For all j € (,epwy I, pi(t) = 0.

(b) For all j & Nyepw /> Pj(t) = ¢; > 0if p;(t) < bj. And p;(t) = 0 if
pj(t) = bj.

(c) For all J,J' € PW(t), 3, 35() = X2y (1)

(d) (Competitiveness) Suppose for J € PW (t), 1,5 € J, pi(t) < b; and p;(t) <
bj. WJ' e PW(t),[j € J =ielJ] = pi(t) <p;(t).

4.t =T. If for some .J,.J' € PW(T), J C .J', then PW(T) = PW(T)\ {J} and
replace PW(T') = PW(T).

5. The seller choose randomly J € PW(T) and they are winners. Each winner
pays p;(T).

One of important characteristics is that we don’t completely specify the speed
of each bidders’ price increase (step 3(b)). But the speeds is restricted by step 3(c)
and (d). Step 3(c) requires that any candidate of winning allocation should offer the
maximum revenue at any time. Step 3(d) requires that when a bidder competes with
more people, then the price increases fast. Step 3(d) also implies following symmetry
property.
symmetry: Suppose for J € PW(t), i,j € J, pi(t) < b; and p;(t) < b;. If for
vJ' e PW(t), [i,j € J'] or [i,j & J'], then p;(t) = p;(¢t).

A.2 Proofs

Proof of Lemma 1. Suppose that for 3j € R; and 35" € C;, K;NK;» # (). However,
the transitivity for bidder i requires j' € R;, which is contradiction. Conversely, the
violation of the transitivity implies for 3j € R; and 35’ € R;, 7' € C;. W

Proof of Theorem 1. (Sufficiency.) Suppose that bidder 7 satisfies the transitivity
condition. Then for each j € R; and each j' € C;, K; N Ky = (). So by construction
of coalitional value function, we have

w(l_;,b) = w(R;,b) + w(Cy, b).
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Note that if bidder ¢ wins the items, w(l,b) = b; + w(C}, b). So bidder i wins if and
only if
bi + w(Cs,b) > w(R;,b) + w(Cy, b).

Hence bidder i wins if and only if b; > w(R;,b). (If b; = w(R;,b), winners are
determined randomly.)

All bidders in R; lose the auction when bidder ¢ wins, so that at final period
T in the ascending auciton they bid their reported values: p]T = b; for all j € R;.
Whenever pt < w(R;,b), there necessarily exists some blocking allocation against
one which bidder ¢ wins, and then the auction never stops. Once bidder i bids
pf = w(R;,b), then no allocation can block bidder i after that period. Therefore
bidder 4’s winning bid is p! = w(R;,b).

So bidder #’s payoff is

{vi —w(Ri,b) if b; > w(Ri, b)
(bs i) = . :
otherwise
It is easy to check that b; = v; is a weakly dominant strategy.

(Necessity.) Suppose that for j € R; and j' € C;, K;N K # (). Bidder ¢ wins the
goods if and only if b; + w(C;,b) > w(I_;,b). Let b_; be such that by > b; > 0 and
b = 0 for allm € I\{i, j, j'}. Then w(Cj,b) = w(I_;,b) = by and w(R;,b) = b; > 0.
Then even if bidder ¢ bids zero, i wins and its price is zero. On the other hand, if ¢
bids any b; > 0, then he must win with price of p; > 0 because w(R;,b) >0. N

Proof of Lemma 2. Suppose that each (3; is continuous and strictly increasing as
long as #; > 0. And suppose that w(l_;, f—;) — w(C;, f—;) = w > 0.

Let I*, and C} be sets of bidders, who win the goods when goods are allocated
efficiently among I_; and C;, respectively. That is,

w(li, B-) =w(l*;, B-) = > B

JeIr,
and
w(Ci, B-i) = w(C},B4) = > _ B;.
jecy
Then
Y Bi-> Bi=w (7)

jeI, jecs

¥, and j ¢ C7. Hence equation
(7) always binds as a linear equality constraint of (;);er_,. The continuity and the
strict monotonicity of 5 assure that the set of v_; which satisfies (7) must have zero
measure. Further the way of selection of (I*;,C) is finite, so ®(w) has no atom
when w > 0. W

Because w > 0, there exists some j such that j € I*,

—3
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Proof of Lemma 3. Let II;(v;) = m(8i(vi), v;). Then

L (v;) > mi(Bi(0;), vi) = H;(05) + v;@(B;(0;)) — 0:;2(Bi(05)),

hence

IL; (v;) — ILi(0;) > (vi — 0)(B5(0:))-
Similarly

i (vi) — TL(0:) < (vi — 0:)@(Bi(vi))-
Therefore

(vi = 03)@(Bi(vi)) = (vi — 0;)P(Bi(03)).
If Vi > 171', then
(Bi(vi)) = ®(Bi(vs)).
Therefore §;(v;) > Gi(v;). M
Proof of Lemma 4. Consider any v; such that Bz(vz) > v;. If bidder ¢ wins with
the price p; < v;, he would also win the goods by submitting v; with the same
price (observation 1). When we fix the other bidders’ bids, the auction stops at p;

whenever bidder ¢ submits any b; > p;. If bidder 7 wins with the price over v;, then
he gets negative payoff. If he reports v;, he will get zero payoff in that case. W

Proof of Lemma 5. First we rewrite the interim expected payment E[p;(b;, 5—;)]
as follows,

Elpi(bi, B-:)] = Epi(bi, B-i) - Lip, 6, 5_0)<bi}) + 0i Pr{gi(bi) = Ki A pi(bi, i) = b;}.
(8)
Expectations and probabilities are taken conditionally on bidder ¢’s some report b;
and others’ strategies 3_;.
Now we consider the marginal expected payment when bidder ¢ increases the
value by & > 0. We describe p;(b;, ;) simply as p;(b;).

Elp;i(bi +0)] — E[pi(bi)]
= [Elpi(bi +6) - 1, b +8)<ti+53] — Elpi(bi) - Lip,v)<bi}]]
+ b [Pr{gi(b; + ) = K; Ap;i(b; + 6) = b; + 6} — Pr{gi(b;) = Ki Ap;i(b;) = b;}]
+ 6 Pr{gi(bi + 0) = K; Api(b; +6) = bi + 6}.
(9)
By observation 1, if g;(b; + d,b_;) = K; and p;(b; + 0,b_;) < b;, then ¢;(b) = K;
and p;(b; + 6,b_;) = pi(bi,b—;). So

Elpi(bi+0) - 1p, b, +6)<bitst] — EPi(0i) - Lip, 60 <t:t] = E0i(bi+8) - Lip, <pi(bs+8)<bi+o})-
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And
Elbi - Lip,<p,(bi+5)<ti+0}) < Epi(bi +8) - Ly, <pi(v;+6)<bi+5}]
< E[(bi 4 6) - 1, <pi(b+6)<bi+5})s
hence
bi Pr{b; < pi(bi +0) < bi + 0} < Elpi(bi +0) - 1(p,<p, (b;+6)<bs+5}]
< (bj +9) Pr{b; < pi(b; +0) < b; + d}.
Next, observation 1 also implies
Pr{gi(bi) = Ki A pi(bi) < b;} = Pr{gi(bi) = Ki A pi(bi +0) < b;}.
In addition, observation 2 implies
Pr{gi(bi) = K; /\pi(bi + 5) < bl} = Pr{gi(bi + 5) =K; /\pi(bi + 5) < bz}
Therefore
Pr{gi(bi) =K; /\pi(bi) < bz} = Pr{gi(bi + 5) =K; /\pi(bi + 5) < bz} (11)
Then, we have
Pr{gi(bi + 5) =K; /\pi(bi + (5) =b; + (5} — Pr{gi(bi) = K; /\pi(bi) = bi}
= Pr{gi(bi + (5) = K; /\pi(bi + (5) <b;+ 5} - Pr{gi(bi + 5) = K; /\pi(bi + (5) < b; + (5}
—Pr{gi(b;) = Ki Api(bi) < bi} + Pr{gi(bi) = Ki Api(bi) < bi}
= q)(bi + 5) — (I)(bz) — Pr{bi < pi(bi + 5) < bi + (5}
—Pr{gi(bi +0) = K; A pi(bi + ) < bi} +Pr{gi(b;) = K; A pi(bi) < bi}

= ®(b; +0) — ©(b;) — Pr{b; < p;i(b; + ) < b; + 6}
(12)

Using these equations (9), (10) and (12), we have following inequality after some
calculation,

bl(q)(bl + (5) — @(bz)) + (5Pr{gi(bi + (5) = K; /\pi(bi + (5) =b; + 5}
< Elpi(b; + 6, 8-:)] — Elpi(bi, 8-i)] (13)
< bl((I)(bZ + 5) — (I)(bz)) + (SPr{gZ‘(bi + (5) =K, Nb < pz‘(bi + (5) <b;+ (5}

Therefore we have

O(bi +8) — (b,
(v; — b;) b +6()5 (b) _ Pr{b; < pi(bj +6) < b+ 4}
< i (bs +5avi§_ﬂ'i(biavi) (14)

(2(bi +6) — (i)

— Pr{pi(bi + (5) =b;, + (5}
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Similarly we have

(b +6) — P(bi)

(Ui —b; + (5) — Pl‘{bl‘ —6< pz(bl) < bz}

o
< i (biy vi) — ;ri(bi —0,v;) (15)
< (vi—bi + 5)(1)(1% i 52 — 2 _ Pr{p;(b;) = bi}.
By taking limit 6 — 0, we have
aabim(bi, v;) = (v; — b)) ®(b;) — Pr{gi(b;) = K; A pi(b;) = b;}. (16)
So the FOC for maximization is represented as
(vi = b3)®@(bi) — Pr{gi(bi) = Ki A pi(bi) = bi} <0, (17)

where equality holds if b; > 0. H

Proof of Lemma 6. Suppose that § is an equilibrium strategy profile, each of
which is continuous and f;(7;) > 0. By lemma 3, each 3; is weakly increasing.

Further suppose that each §; is strictly increasing as long as 3; > 0. Then by
lemma 5, if §; > 0, the FOC of maximization problem is satisfied by equality. The
left hand side of the FOC is linear in v;, so that if v; > v;, 5;(v;) > Bi(v;). Therefore
if all other bidders satisfy the partial strict monotonicity property in the equilibrium,
then the optimal reaction also satisfies the partial strict monotonicity property. So we
apply lemma 5 and what to show is for some a > 0, Pr{g;(v;) = K; Ap;(v;) = v;} >0
for v; € (0, ).

Now suppose that for j € R; and j' € C;, K; N K # (.

Suppose that all bidders except bidder ¢ play equilibrium strategies, which are
continuous and strictly increasing when 8 > 0. We exhibit an measurable space of
message profiles except bidder i, B_;(v;) C V_; = Hme I V,, such that bidder ¢ wins
with value binding. Each bidder’s strategy is non-decreasing and no one overbids
in the equilibrium by lemma 3 and 4. Therefore for any by > 0, the probability of
the event that bidder m’s equilibrium bid f,, is in the interval [0,b,,) is positive.
Therefore if we propose a message profile space of positive measure, then the area
of true value profile, which maps into that message profile space, is also positive
measure.

Let By = Bm(tm) for m € I, and let o be some positive value and 0 < o <
min{f,, 15},

Let B_;(v;) be the set of profile of bids, b_;, which satisfies following conditions
C1-C5:

C1 bj/ > a,

C2 by < iy for all m € R\ {j} (if R \ {j} #0.)
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C3 by, <|R \{}l for all m e Ry \ {j} (if Ry \ {j} #90,)

C4 b, < forallme C;NCy (if C;NCy #0,)

|COC |

Let v; < . C2, C3, and C4 imply w(R; \ {j},b) < vi, w(Rj \ {j},b) + v < o, and
vi +a+w(C;NCj,b) < 2a+w(C;NCjr,b) < B, respectively. C4 guarantees that b;
which satisfies C5 exists and that Pr{v_;|6_;(v_;) € B_i(v;)} > 0. C5 implies that
bidder 7 loses, and that bidder ¢ and ;' win the auction.

Now let b; = v; and let period t in the ascending auction be the very period at
which all bidders in Rj \ {j} drop out and lose the auction, i.e.

t=min s [pj > w(I\{j’,j} b) — w(Cj, p°)].

If Rj»\ {j} =0, let t = 0. This means that bidder j is the only rival of bidder j’
after period t.

At period t, bidder j is still standing. Bidder j’ '? outbids the rivals except
bidder j by bidding at most w(Rj \ {j},b). At that period, on the other hand,
other winning bidders {i} U (C; N Cj) bid at most v; + w(C; N Cjr,b). Because
vi +w(C;NCjr,b) +w(R; \ {j},b) < b; by C5, bidder j never drops out before ¢ and
still stands.

Let b,, = by, — pt, for each m € I_;, ¥; = v; — p}, and W(C; N Cjr) = w(C; N
Cj/, b) —w(C; N le,pt). Then

bj = bj — p > 2v; + w(Ry \ {j},b) + w(Ci N Cjr, b)
—pi = pjy —w(Cin Cyr,pt)

> 0+ v +w(C; N Cyr)

> 25; + B(C; N Cyr).

(18)

The first inequality in the equation (18) follows from C5 and the fact p} < pl+
pz, + w(C; N Cjr,p') when € — 0. This inequality is obtained from the rule of the
auction (step 3(c) of the auction with continuous price increases.) When the price
increments are negligible, any candidate of final allocation must always offer the
revenue maximizing prices. So at period ¢, bidder i, j', and j stand, so the allocation
in which 4 and j’ obtain the goods and one in which j obtains the items offer the
same price: pj- +w(Cj,p') = pt+ pél + w(C; N Cjr, p'). The second inequality follows
from the definition of ; and @w(C; N Cj), and from pz, <w(Ry \{j},b).

Consider the auction after period ¢ as a new auction with reported profile (7;, 5_1)
Bidder j is the only rival of bidder 5, so bidder j’ raises the bid if and only if bidder
j is the provisional winner. And at those periods bidder ¢ is not a provisional winner
too, so that bidder ¢ also raises the bid as long as bidder ¢’s bid does not bind. Hence

!9Hereafter we don’t distinguish players in the game “bidders” from “agents” for bidders. We call
both bidder.
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pi > py if p; > 0 (step 3(d) of the auction with continuous price increases.) So if
bidder i wins with the price of ©; + p! < ©; + pt = v;, then bidder j’ should win at
bjr+ph < 0;+pl,. However, this means 0;+bj +w(C;NCyr) > bj > 20; +w(C;NCyr),
which is contradiction. Therefore bidder i wins with the price of ¥; 4+ p} = v;.

We have Pr{g;(v;) = K; A pi(v;) = v;} > Pr{v;|f_i(v—;) € B_;(v;)} >0. N
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Table 1: Threshold problem.

1\2 bid more  stop

bid more (2, 2) (1, 3)
stop (3, 1) (0, 0)

1 2

Figure 1: The 2-good and 3-bidder case.
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Figure 2: An example of the procedure of the auction.
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Figure 3: The equilibrium bidding function of bidder 1 and 2 in the 2-good and
3-bidder case.
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Figure 4: Bidder ¢ satisfies the transitivity in top three cases, while not in the bottom
case.
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Figure 5: Two examples of spectrum auction.
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