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Abstract

This paper studies efficient partnership dissolution with ex post
participation constraints in a setting with interdependent valuations.
We derive a sufficient condition that ensures the existence of an efficient
dissolution mechanism that satisfies Bayesian incentive compatibility,
ex post budget balancedness, and ex post individual rationality. For
equal-share partnerships, we show that our sufficient condition is satis-
fied for any symmetric type distribution whenever the interdependence
in valuations is non-positive. This result improves former existence re-
sults demonstrating that the stronger requirement of ex post individual
rationality does not always rule out efficiency. We also discuss a sit-
uation with ex post quitting rights. Journal of Economic Literature
Classification Numbers: D02, D40, D44, D82, C72.

KEYWORDS: mechanism design; efficient trade; ex post individual
rationality; Groves mechanism; quitting right; interdependent valua-
tion.



1 Introduction

Many business projects involve partnerships such as joint ventures and
strategic alliances. A partnership comes to an end, for example when the
project (e.g., development of a new product or technology) has been com-
pleted, or simply when the partners have conflicting opinions about future
management of their business. Efficient dissolution of a partnership consists
in allocating the partnership’s asset (e.g., the developed product/technology
or the company itself) to the partner with the highest valuation, in ex-
change for monetary compensations. Cramton et al. (1987, CGK henceforth)
first consider the problem of efficient partnership dissolution in a symmet-
ric model with independent private values. CGK show that while efficient
dissolution is impossible when the initial ownership of the partnership is ex-
treme as in the buyer-seller situation (Myerson and Satterthwaite (1983)),
it is always (i.e., for all type distributions) possible when the partnership is
equally shared among the agents. In the present paper, focusing on equal-
share partnerships, we study the possibility of efficient dissolution in a sym-
metric interdependent valuation setting as in the subsequent contribution by
Fieseler et al. (2003, FKM henceforth). The distinguishing feature of this
paper is that, in contrast to CGK and FKM where individual rationality (or
participation) constraints are required to be fulfilled at the interim stage,
we impose the stronger requirement of ez post individual rationality.

Interdependence in valuations naturally arises in many situations, e.g.,
where each agent is responsible for a different part of the project and thus
receives a different piece of private information which also affects the oth-
ers’ valuations of the entire project. In an environment where the private
and common value components are additively separable, FKM show that
when the interdependence is positive (i.e., valuations are increasing in the
other agents’ signals), efficient dissolution is not always possible even for
the equal-share case, while it becomes easier when the interdependence is
negative (i.e., valuations are decreasing in the other agents’ signals). In the
case of negative interdependence, efficiency is easier to achieve as winning
and losing are each a blessing: winning reveals that the other agents’ signals
are lower than one’s own which contributes to raising the winner’s valua-
tion, and a symmetric argument applies to losing. In the case of positive
interdependence, conversely, winning and losing are bad news, and winner’s
and loser’s curses make efficiency more difficult to achieve.

Both CGK and FKM consider efficient mechanisms that satisfy interim
individual rationality (IIR) as well as Bayesian (i.e., interim) incentive com-
patibility (IC) and (ex post) budget balancedness (BB). Our point of depar-
ture in the present paper is that it is desirable to have a mechanism such
that no agent regrets his participation ex post, and thus we look for efficient
mechanisms that satisfy ez post individual rationality (EPIR) along with IC
and BB. Given the result of FKM, we mainly restrict our attention to the



case where interdependence in valuations is non-positive (i.e., valuations are
private or negatively interdependent).! For this case, we show that efficient
dissolution of an equal-share partnership is always possible even with EPIR.
This demonstrates, for the case of equal-share partnerships, that whenever
efficient dissolution is always possible with IIR, one can safely replace IIR
with EPIR incurring no loss in efficiency as well as IC and BB. The proof is
done by construction of a mechanism that satisfies the desired properties.

EPIR mechanisms are also considered by Gresik (1991a, 1991b), Makowski
and Mezzetti (1994), and Kosmopoulou (1999). Gresik (1991a, 1991b) con-
siders EPIR and Bayesian 1C bilateral trading mechanisms that maximize
er ante expected gains from trade. In a general setting with independent
private valuations, Makowski and Mezzetti (1994) provide characterizations
of ex post efficient, IIR, ex post BB, Bayesian IC mechanisms and ex post
efficient, EPIR, ex ante BB, dominant strategy IC mechanisms, while Kos-
mopoulou (1999) shows a payoff equivalence result between these two classes
of mechanisms in a restricted environment. Different from these papers, our
approach concerns Bayesian IC mechanisms that satisfy ex post efficiency,
EPIR, and ex post BB.

While we motivate our study of EPIR mechanisms by requirement that
a desirable mechanism should be ex post regret-free in participation, one
may consider a situation in which agents are allowed to quit or veto the
mechanism ex post in any event. Compte and Jehiel (2006, 2007) study
mechanism design with ex post quitting/veto rights in a bargaining prob-
lem. Noting that with quitting rights off as well as on equilibrium, the IC
constraints are also modified,? they show that inefficiencies are inevitable in
their bargaining model (even with correlations in types). We examine the
modified IC constraints in our environment, and show that our mechanism
always dissolves the partnership efficiently even with quitting rights when
the degree of negative interdependence is large.

Related papers, other than FKM, that consider partnership dissolution
with interdependent valuations include Kittsteiner (2003), Morgan (2004),
Jehiel and Pauzner (2006), and Chien (2007) among others. Kittsteiner
(2003) studies the k-double auction (and that with interim veto) in the
case of positively interdependent valuations and derives equilibrium bidding
strategies. He demonstrates that when allowing for interim veto, inefficien-
cies may occur, and the k-double auction may not maximize ex ante expected

"While valuations may be assumed to be positively interdependent in standard cases,
e.g., when the information is about quality (anyone prefers high quality), they may well
be negatively interdependent in other cases, e.g., when the agents have opposite charac-
teristics in that they derive utility from mutually exclusive properties of the asset, i.e., “if
information about the increased likelihood of property A (which yields relatively more util-
ity for partner 7) means that property B (which yields relatively more utility for partner j)
becomes less likely” (FKM, Footnote 6).

2See also Matthews and Postlewaite (1989) and Forges (1999) for similar considerations.



gains from trade. In a pure common value setting, Morgan (2004) is con-
cerned with dissolution mechanisms that lead to fair outcomes in which the
agents obtain equal ex post payoffs. He examines the fairness properties of
several simple mechanisms. Jehiel and Pauzner (2006) consider a one-sided
incomplete information setting, where only one agent has private informa-
tion, with interdependent valuations. They show that in some cases there
is no mechanism that efficiently dissolves the partnership, and the second-
best outcome can be achieved when one agent has the full ownership, as
opposed to the symmetric settings of CGK and FKM. Chien (2007) stud-
ies second-best dissolution mechanisms and provides a characterization of
incentive efficiency.

The paper is organized as follows. Section 2 describes our partnership
dissolution problem. Section 3 derives our main sufficient condition for exis-
tence. Positive results are provided for two-agent partnerships in Section 4
and for n-agent partnerships in Section 5. Section 6.3 considers quitting
rights.

2 Setup

In this section, we describe our problem of partnership dissolution, where
we mostly follow the setup of FKM. There are one asset, and n risk-neutral
agents indexed by i € N = {1,...,n}, where n > 2. Each agent 4 initially
owns a share o; of the asset (0 < oy < 1land ) .y o; = 1). Each agent i has
private information represented by type 6;. We will denote 6 = (61,...,0,)
and 0_; = (61,...,0;—1,0;41,...,0,). Agents’ types are statistically inde-
pendent. The type 6; is distributed according to a commonly known distri-
bution F; with support ©; = [6;, ;] and positive continuous density f;. We
denote © = [[;c ©s.

Agent i’s valuation for the entire asset is given by a function v;(6;,0_;),
where the arguments are always ordered by the agents’ indices: v;(6;,0—;) =
vi(01,...,6,). The function v;(6;,0_;) is assumed to be strictly increasing
in 6;, and continuously differentiable. We further assume the single crossing
property:

vii(0) > vi;(6)

for all ¢, j # ¢ and 6 € ©, where v; j, = Ov;/06,. The ex post utility of agent
1 with valuation v;, share s;, and money m; is given by v;s; + m;.

In a direct revelation mechanism, or simply mechanism, each agent ¢
simultaneously reports his own type 6;, and then receives a share s;(0) of
the asset and a monetary transfer ¢;(6). More precisely, a mechanism is a
pair (s,t) of (measurable) functions s: © — [0, 1] such that } . 5:(6) = 1
(an assignment rule) and t: © — R™ (a transfer rule). Given a mechanism
(s,t), the interim utility of agent ¢ with type 6;, when he reports 0; while



the other agents report their types 6_; truthfully, is given by
Ui(0:,0:) = Eo_,[vi(0:,0—:)si(0;,0-:)] + Eg_,[t:(0;,0-,)),

where Ey_,[-] is the expectation operator with respect to #_;. We denote
Ui(0;) = U;(0;,6;).

A mechanism (s,t) is interim incentive compatible (IC) if truth-telling
constitutes a Bayesian Nash equilibrium in the incomplete information game
induced by (s,t), i.e., for all i € N,

Ui(0;) > Ui(0:,0;) (IC)

for all 6;,0; € ©;,. It is ex post budget balanced (BB) if the monetary transfers
sum to zero for each realization of the types, ie., > ..y ti(f) = 0 for all
0 € ©. It is ex post efficient (EF) if it allocates the asset to an agent with
the highest valuation for each realization, i.e., for all ¢ € N and all § € O,
5i(f) > 0 = i € argmax,v;(#). It is sufficient to consider the efficient

J
assignment rule s* defined by

oo 1 ifi=m(8),
Si(e)_{o if i % m(6), 21)

where m(f) = max(arg max; v;(6)).?

In the present study, we are interested in mechanisms that satisfy no ex
post regret of participation, or ex post individual rationality, as a desideratum
additional to the above three, while much work in the literature, including
that of CGK and FKM, is concerned with interim individual rationality.

Let u;(6) be agent i’s ex post utility under truth-telling:

and uY(0) the outside option to agent i: uY(f) = a;v;(f). The mechanism
(s,t) is ex post individually rational (EPIR) if for any realization of types,
no agent regrets his participating in the mechanism even after observing the

realized value of his initial share, i.e., for all i € N,
ui (0) > ul(6) (EPIR)

for all 6 € ©; (s,t) is interim individually rational (IIR) if given his type,
but before he learns the other agent’s type, each agent prefers to participate
in the mechanism, i.e., for all i € N,

Ui(6;) > Eg_, [uf(6;,0-;)] (IIR)

for all 8; € ©;. Clearly, EPIR implies IIR, but not vice versa.
We say that the partnership is EPIR-dissolvable (IIR-dissolvable, resp.)
if there exists an IC, EF, and BB mechanism that is also EPIR (IIR, resp.).

30ur analysis is not affected by this particular choice of a tie-breaking rule.




3 A Sufficient Condition for Existence

Let us recall the revenue equivalence result of FKM.

Revenue Equivalence (FKM). Let s* be the EF assignment rule. Then,
(s*,t) is IC if and only if for alli € N,

0;
UZ(QZ) = UZ(Q,L) + /0 Egii[vm(l‘, H_i)sf(x, (9_1)] dl‘ (3.1)

for all 0; € ©;.
Following FKM, for each i let 67 (6_;) € ©; be defined by

vi(07(0—3), 0-:) = maxv; (67(0-i), 0-i)
j#i

if the equation has a solution, and arbitrarily if not. Let t© denote the
generalized Groves mechanism defined by

A [0 it = m(0),
t (0)‘{%(9:(9»,9» it i # m(0). (32

Observe that (s*,t%) is IC, and in fact, ex post IC (truth-telling is an ex
post equilibrium). Due to the Revenue Equivalence, (s*,t) is IC if and
only if ¢ yields, up to constant, the same interim expected transfer as the
generalized Groves mechanism t©. Therefore, (s*,t) is IC if and only if there
exist functions k;, i € N, such that

and
Ep_,[ki(0:,0-:)] = Eq_,[ki(6;,0-)] (3.3)

for all 0;,0. € ©;.

The other properties, BB and EPIR, are also rewritten in terms of the
k; functions as above. Denote by b%(0) the budget deficit generated by the
generalized Groves mechanism tC:

b9 (0) =) t(0).
iEN

Then, t satisfies BB if and only if

> ki) =1v5(9) (3.4)

iEN
for all € ©. Let u* () denote the ex post utility of agent i under (s*,¢):

uf’ (6) = vi(6)s} (8) + £ (6).



Then, ¢ satisfies EPIR if and only if for all i € N, u$(0) — k;(0) > ud(6) for
all § € O, or equivalently,

inf {u$ (0) — uf(#) — ki(6)} > 0. (3.5)
In summary, the partnership is EPIR-dissolvable if and only if there exist
functions ki, ..., k, that satisfy the conditions (3.3), (3.4), and (3.5).

We focus on a specific form of k; functions. Specifically, our approach is

to set
1

n—1

ki(0) = bi(6) — Ep_,[b:(0)] + > Eo_,1b;(0)] +Ci
i

for some functions b; that satisfy

> bi(9) =v5(6)

iEN

and constants C; with ) ;. C; = 0. It is immediate to verify that these
k; functions satisfy the IC condition (3.3) and the BB condition (3.4). The
resulting transfer rule t = t& — k is then written as

1

6i(0) = £7(0) = bi(0) + Ep_, [bi(0)] — —

N B [b(0)] ~Ci. (3.6
J#i

This can be given the following interpretation. The starting point is the
Groves transfer rule t?, which generates a budget deficit b4. Functions b;
are considered as defining a burden sharing rule of the budget deficit b©,
where b;(#) is the burden borne by agent i. The term Ey_,[b;(0)] is added
to give the agent the right incentives to report the truth, while the other
two terms, which are independent of 60;, are to keep the budget balance
unaffected.

It remains to determine a condition under which the EPIR condition
(3.5) is satisfied. The following result offers a sufficient condition for EPIR-

dissolution in terms of burden sharing functions b;.

Theorem 1. If there exist functions by,..., b, such that ) .. bi(0) =
Y ien 0 (0) for all 6 and

> int S u0) = ul(0) = bi0) + By 0) ~ ooy S Fo (0] >0
ieN G

(3.7)
then the partnership is EPIR-dissolvable.

Proof. Suppose that the condition (3.7) is satisfied with functions b; where
Sien bi(0) = Yicn t9(0), and let the transfer rule ¢ be as in (3.6). By



construction, (s*,t) satisfies EF and IC. It satisfies BB if and only if

Now, for each i € N, define

1
* = inf { uS(0) — u2(0) — b; Ey_[b;(0)] — Ey . [b;
Cz 9129 U; (0) Uy (9) b (9) + 971[1) (9)] (n — 1) ; 0_; [bJ (0)]
EPIR is thus satisfied if and only if C; < ;. Therefore, BB and EPIR are
simultaneously satisfied if and only if ), Cf > 0, which completes the
proof. |

Remark 3.1. Under our assumption that the types are independently dis-
tributed, the sufficiency result remains valid for general quasi-linear utilities
(with certain regularity conditions). The revenue equivalence result holds in
such an environment and a generalized Groves mechanism is available (see
Bergemann and Véliméki (2002)).

Remark 3.2. This class of transfer rules defined by (3.6) contains the expected

externality (or AGV) mechanism t¥ as a special case. To see this, set b;(6) =
t8(0) (and C; = 0), and then we have

() = By 190~ — > £ 50 (33)

Another natural transfer rule is induced by the equal burden sharing:

bi(0) = %bG(G). (3.9)

This rule will be employed in the analysis in Section 4.

From now on, we restrict our attention to the symmetric and separable
environment as in FKM: we assume that for all i € N, [0,,0;] = [0,0],
F,=F, and

vi(0) = g(6:) + > _ h(6;),
J#i
where g and h are continuously differentiable and satisfy ¢’ > 0 and ¢’ >
B'. Under this assumption, v;(6) > v;(6) if and only if 6; > 6;, so that
m(0) = max(argmax;vj(#)) = max(argmax; ;). Then, the generalized
Groves mechanism becomes

Gigy )0 if i = m(6), .
o {g(em(e)) FS ) ititme), O
and thus its budget deficit is
b°(0) = (n — 1)g(O,me)) + Z Zh(eg‘)
i#m(0) j#i
= (n = 1)g(0me)) + h(Omee)) + (n—2) Y _ h(6)). (3.11)

JEN



In this environment, FKM obtain the following results for partnership
dissolution with IIR.

Fact 0 (FKM). (1) If K’ > 0, then the equal-share partnership is not IIR-
dissolvable for some distribution function F.

(2) If b’ <0, then the equal-share partnership is IIR-dissolvable for any
distribution function F.

A trivial corollary to Fact 0 is that if »’ > 0, then the equal-share
partnership is not EPIR-dissolvable for some distribution function F. In
the following sections, we consider whether the equal-share partnership is
always (i.e., for all distribution functions) EPIR-dissolvable when h’ < 0.

4 Symmetric Two-Agent Partnerships

In this section, we consider EPIR-dissolution of two-agent equal-share part-
nerships: n =2 and ay = ay = 1/2 so that

W0 (0) = éui(e).

7

For i = 1,2 we write —i for the agent j # 4, and denote §! = Om(o) and
6% = 0_m(0)- In this case, the generalized Groves mechanism and its budget
deficit are given by

G O if i = m(6),
tr(0) = {v(Gl) if i £ m(0) (4.1)

and b%(0) = v(#'), respectively, where we denote

v(z) = g(z) + h(z).

Our main question here is whether the two-agent equal-share partnership
is EPIR-dissolvable for any type distribution F. Given Fact 0, we restrict
our attention to the case of non-positive interdependence, i.e., i’ < 0. For
this case, we show that the answer to our question is the affirmative.

Theorem 2 (Two-Agent Case). Assume h' < 0. Then, the equal-share
partnership is EPIR-dissolvable for any distribution function F'.

Proof. See Appendix A.1. |

The proof consists in finding burden sharing functions b; as in Theorem 1.
We show in Appendix A.1 that the equal burden sharing



Figure 1: Pricing rule p*(6', 6?)

indeed satisfies the condition (3.7) with equality. The implementing mech-
anism (obtained by (3.6)) is then given by

91
_;[(91)_/9 F(x)dv(x)] if i = m(0),

2

N (4.2)

5 [ @) - | F(z) dv(a:)] if 7 # m(6).
02

(Recall that it satisfies IC as well as BB by construction.)

Figure 1 illustrates the EPIR graphically (assuming v > 0 and v" > 0).
The shaded area in the figure depicts the bracketed term in (4.2), which may
be interpreted as the price of the asset (per unit) which we denote p*(6!, 6?)
as a function of 8! and 6?:

91
p*(0*,6%) = v(0') — /2 F(x)dv(z), (4.3)
0
where the winner pays (1/2)p*(0',0?) to the loser for the 1/2 units of the
asset the loser owns. The figure immediately shows that v(6?) < p*(0',6?) <
v(01). Since if b’ < 0, then

h(0') = v_pm(o)(0),
h(0%) = V() (0),

it follows that v_,,(g)(0) < p*(6*,0%) < v(9)(0), which implies EPIR.

To explore its properties, let us compare our transfer rule t* with the
expected externality mechanism ¢ defined by (3.8), which is written in the
present environment as

v(6%) = g(6%) + h(6%) > g(6°) +
=g D+

v(®') = g(0") + h(0") < g(6")

0_;
() = /6 o(z) dF (). (4.4)

i

9



Figure 2: Mechanism (s*, ")

- ui(0:,0-)

Figure 3: Mechanism (s*,t*)

By construction, (s*,t") is IC and BB, and FKM show that, for equal-share
partnerships, it satisfies IIR for any F whenever i/ < 0. Observe that
the function t? is continuous in 6 and assigns zero transfer when 6; = 6-.
Figures 2 depicts, for a fixed value of 6_;, typical behavior of the transfer
t? that agent ¢ receives as well as his ex post payoff u; and outside option
(1/2)v; (under truth-telling) for the FKM mechanism (s*, ") as functions
of 6;. When 6; is smaller than but very close to 6_;, agent i loses his share
in receipt of a transfer almost equal to zero, and thus ends up regretting
his participation in the mechanism. Therefore, the expected externality
mechanism t* does not satisfy EPIR in general. In contrast, our mechanism
(s*,t*) is constructed so that EPIR is satisfied also for such €’s, as shown
in Figure 3, where the transfer function ¢; exhibits discontinuity around
0;, =0_;.

Remark 4.1. A recent paper by Athanassoglou et al. (2008) also studies
EPIR in two-agent partnership dissolution with private valuations. While
in the main part of the paper they consider agents whose objective is to
minimize maximum regret, they also provide some results in the standard
Bayesian framework. First, they show that the “binary search mechanism”

10



EPIR-dissolves the partnership if the ownership shares are equal and the
type distribution is uniform, but may not otherwise. (The binary search
mechanism proceeds as follows: Suppose [0, 0] = [0, 1], and let the agents’
bids be 6; = 0.9%0?0:13 .- and 69 = 0.9%«9%9% .-+ in binary notation, where
9;‘3 = 0,1. Then, the agent with the higher bid receives the asset, and if
0t = 0% = 0 for all £ < k and 6% # 05, then the price p(61,62) of the asset
is set 25;11 2¢ +1/2F.) Second, they show that if the shares are unequal,
then in any efficient, IC, and BB mechanism such that the pricing rule p(#)
(= —tm(0)/T—m(s), Where 7; is agent 7’s initial share and m(f) = arg max; ¢;)
satisfies the anonymity condition (i.e., p(f) does not depend on the identity
of the agents), p(f) must be a step function (such as the binary search
mechanism).

5 Symmetric n-Agent Partnerships

In this section, we show that our positive result in the previous section on
the two-agent equal-share partnership extends to the n-agent equal-share

case, where

W(6) = ~uil6).

(2

We note that this extension is nontrivial, since for n > 3, the equal
burden sharing b;(0) = (1/1)b%(6) no longer satisfies our sufficient condition
(3.7) in Theorem 1. (Recall that the Groves budget deficit b% is now given
by (3.11).) Nevertheless, we can show the following positive result.

Theorem 3 (n-Agent Case). Assume h' < 0. Then, the equal-share part-
nership is EPIR-dissolvable for any distribution function F'.

Proof. See Appendix. |

To prove this result, we set the functions b; in Theorem 1 to be

n—1 % e s
_ /0 F(x)dg(x) ifi=m(0),

()= @)+ CBY
- / F(z) dg(x) if i # m(0),
62

where 6 = Om (o) and 62 = max;sm(g) 0. We verify that the sufficient condi-
tion in Theorem 1 is satisfied with this choice of b; for any type distribution
F, provided that A’ < 0. The implementing mechanism obtained by (3.6) is

11



then written as

n—1 o1

n 02

[g(ﬁl) - | F(z) dg(:v)]
£(0) =

n[gw) |, P@dsta)

_ l 1 1 . 71 " =1y T
nh(@)+n_1;h(9])+n(n_1);/9j F=1(z) dh(z)
> h(8;) if i =m(6)
N (5.2)
0 if ¢ £ m(0).

When n = 2, the equal burden sharing and the one defined by (5.1) lead to
the very same transfer rule; i.e., the transfer rule (5.2) reduces to (4.2).

When n > 3, the mechanism that the equal burden sharing induces
through (3.6) differs from (5.2), and the former does not satisfy EPIR: it is
satisfied for the winner (the type-6' agent) and the loser with the highest
bid (the type-6? agent), but not for the other losers with lower bids. To
see this, let us consider for simplicity the case of h = 0, in which case
b9(0) = (n — 1)g(8'). If we set b;j(8) = (1/n)b%(0), each expectation term
Eg_,[bj(0)] in (3.6) is increasing in 6, since

0; 0
Eq_, [9(91)] :/0 F”fl(x) dg(a:)—i—/e g(z) dF"il(x).

Thus, the term {1/(n—1)}>_,; Eg_;[b;(0)] in (3.6), subtracted to conform
to BB, is larger for an agent with a lower type 6;, and can in fact become so
large that EPIR is violated when 6; is close to the lowest bid but F"~1(6;)
is close to one. The adjusting term in (5.1) is added to (1/n)b%(6) to rule
out this possibility, thereby making the resulting mechanism fulfill EPIR.

Remark 5.1. In the private valuation case where g(6;) = 6; and h = 0,
our mechanism coincides with the mechanism proposed by Fujinaka (2006),
who considers Bayesian implementation of envy-free allocation of a single
indivisible goods with private values. An allocation rule in that context is
a mechanism (as described in Section 2) that is deterministic (i.e., for all
0 € O, s;(0) =1 for some ¢ € N). IC, EF, and BB are defined as previously.
An allocation rule (s,t) is envy-free if every agent prefers his own allocation
to that of any other agent for any realization of types, i.e., for all i, j € N,

ui(0) > s(0)vi(0) +t;(0) (5.3)

for all § € [0,0]". Notice that, for deterministic mechanisms, envy-freeness
implies EF. Fujinaka (2006) shows that his proposed mechanism satisfies

12



envy-freeness (a fortiori EF), IC, and BB. We note that envy-freeness, to-
gether with BB, implies EPIR for the equal-share partnership. To see this,
take the summation of (5.3) with respect to j. Since 3", s;(¢) = 1 and
> j=1t;(0) = 0, we have nu;(0) > v;(0), or u;(0) > (1/n)v;(0).

6 Discussion

6.1 Asymmetric Distributions and Ownership Shares

In this subsection, we allow for asymmetries in type distributions and own-
ership shares; for simplicity we focus on the two-agent case. Agent i’s type
distribution is now denoted by F; with support [0;,0;], and i’s ownership
share by «; > 0, where a1 + as = 1. Assume that the interval

I = [ngl] N [Q27§2]

has a nonempty interior, or otherwise ex post implementation is obviously
possible. We keep the valuation function symmetric so that v;(6;,60_;) =
g(0;) + h(0_;), and assume that i’ <0 and o' =g + 1’ > 0.

We apply our Theorem 1 by setting

bi(0) = Xib©(0) (= Aw(0Y)), (6.1)
where \; > 0 (A1 + A2 = 1) is a constant which does not depend on 6. Let

Ci(0:,0-3) = u (0) — uf(0) — Aib{*(0) + )\'B-G(@') — AiBE(6-)
= (9(6") + h(0-4)) — ci(9(6:) 1)) = Xi(9(0") + n(6"))
(AiBE*wz-) A-iBE(6- >)
= {(1—X)g(6") - azg(ﬁl)} +{=Ah(0") + (1 —ai)n(6-3)}
+ (NiBF (0:) — A BE(0-1)), (6.2)

1

where

B (z) = By_ 0% (0)l0; = a]

:/: F_i(z)dv(z)-l-/:iv(z) dF_i(z)

v_; v_;

defined for all z € R.
We would like to find a condition under which mingeg C1(0)+ming g Co(6") >
0 holds.* A necessary condition for this is

Ci(z,x) + Ca(y,y) = 0 (6.3)

4In fact, C; is a continuous function and thus attains its minimum on the compact
domain © = [0,,01] x [0, 02].
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for all x,y € I, where

Ci(z,z) + Ca(y, y)
=(1—=X\ —a1)(g(x) + h(x)) + (MBf (x) — MBS (62))
+(1—Xg — az)(g(y) + h(y)) + ()\QBQC;(02> — )\139(91))

=(1-XA—ai)(v(x) = V(z)) + N\ /y Fi(2) dv(z) — \a /y Fy(2) dv(z)
= /y [(AlFl(Z) - )\ZFQ(Z)) —(1=X = al)} dv(z).

If inequality (6.3) holds for all z,y € I, then the integrand in the last line
above must be identically zero on I. Thus, for infgcg C1(6)+infgce Co(8') >
0, it is necessary that A1 F1 — A2 F> be constant on I and equal to 1 — A1 —ag.
In this case, we have C(x,z) + Ca(y,y) =0 for all z,y € I.

We can show that this is indeed sufficient as well.

Proposition 4. Suppose h' < 0 and ¢’ + h' > 0. Then, mingeg C1(0) +
ming eg C2(0') > 0 if and only if \y F1 — A2 F» is identically equal to 1— 1 —a
on I.

Proof. 1t suffices to show the “if” part. For this, it is sufficient to show
that C; attains its minimum on the set {(01,02) | 61 = 02 € I}. Then, as
already observed, if \{F} — Ao F5 is identically equal to 1 — A\ — 1 on 1,
then Cy(z,x) + Ca(y,y) = 0 for all z,y € I, implying that mingeg C1(0) +
ming.cg C2(0') = 0.

The partial derivatives of C; are computed as follows:

%(91, 0_;) = {(1 —a;)g (0;) — Xi(1— F_;(6;))v'(6;) if 6; > 6_;,

00; —ozig’(gi) + )\zF_Z(Qz)’Ul(Hz) if 0; < 0_;,
o0C; (9 9 ) . (1 — ai)h’(e_i) — A_iFZ'(G_i)’U/(H_i) if 6; > 0_,-,
00_; vem —aih’(e,i) + (1 — X — AfiFi(in))U’(Q,i) if 6, < 6_;.

By the assumption that 4’ <0 and v' = ¢’ + 1/ > 0, we have 9C;/00_; <0
when 60; > 0_;, and 9C;/90_; > 0 when 6; < 6_;. Moreover, if 0; > 0_;,

then
oC;

0. >
80Z (9176 Z) - 07

while if §; < 0_, then

) ac,

00;

These inequalities show that the minimum of C; is attained on {(61,62) |
91 = (92 el } |

Note that the condition in the above result is satisfied only in very re-
strictive cases. To illustrate this, let us consider the following example.
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Example 6.1. Let [0;,01] = [0,1] and [0y, 02] = [a,1+a], where 0 < a < 1.
Consider the uniform distributions Fj(z) = = on [0,1] and Fy(z) = 2 —a
on [a,1 + a]. Then, the condition in Proposition 4 holds for some Aj, Ay
if and only if the ownership shares (a1, az) satisfy a3 = (1 — a)/2, where
A= Ao = 1/2.

Recall, however, that the condition mingeg C1(6) 4+ mingc@ C2(6') > 0
for the functions C; defined by (6.2) is only a sufficient condition for EPIR-
dissolution of the partnership. What Proposition 4 shows is that the mech-
anism that assigns the Groves budget deficit to each agent with a constant
weight independent of 6 as in (6.1) achieves EPIR-dissolution only in re-
strictive cases, and hence, in order to accommodate asymmetries one has
to assign weights that vary depending on 6, possibly through the distribu-
tion functions F;. Resulting mechanisms will necessarily be complicated,
and exploring more general conditions for EPIR-dissolution of asymmetric
partnerships is left for future research.

6.2 Positive Interdependence

In this subsection, we consider the possibility of EPIR-dissolution when the
interdependence is positive, i.e., A’ > 0. With positive interdependence,
we know from FKM that even for the equal-share, EPIR-dissolution for all
type distributions is not possible. We here address the question whether it
is possible for some distributions. We show for n = 2 that the answer is
positive under an additional assumption, that A’ vanishes for the lowest and
the highest type.

Assumption 6.1. h'() = h/(0) = 0 and |h"(9)], |h" ()| < oo.

Proposition 5. Under Assumption 6.1, the equal-share partnership is EPIR-
dissolvable for some distribution function F'.

The proof proceeds as follows. Consider again the equal burden sharing
bi(0) = (1/2)bG(6), and examine the condition (3.7) in Theorem 1. Then
as in the proof of Theorem 2 (see (A.1) and (A.2) in Appendix A.1), the
condition (3.7) holds if and only if for all x € [0, 0],

F(z)g'(z) = (1 = F(x))l (z) = 0,

(1 - F(x))g'(x) — F(z)h'(x) > 0,
" h'(z) /()
g (z) + 1 (x) < F(z) < 7 (@) + (@) (6.4)
Since



by the assumption that ' < ¢/, one can show that if Assumption 6.1 holds,
then there exists a distribution function F', which must be increasing satis-
fying F(8) = 0 and F(0) = 1, such that (6.4) holds true.

Note that in order for EF to hold, it is necessary that the asset should
(not, resp.) be given to the agent with the highest type  (the lowest type

0. The assumption h'() = h'(0) = 0 in effect prevents the highest and the
lowest types from suffering the winner’s and the loser’s curses.

Example 6.2. Let [0,0] = [0,1], g(z) = z, and h(z) = 2%/2 — 23/3. If
F(z) = z, then (6.4) holds, so that the equal-share partnership is EPIR-
dissolvable.

It has be noted that Assumption 6.1 is only a sufficient condition for
EPIR-dissolution for some F. For a function h that does not satisfy As-
sumption 6.1, there exists no distribution function F' that satisfies the in-
equality (6.4), but it does not mean that EPIR-dissolution is impossible: it
only says that the equal burden sharing does not lead to EPIR-dissolution
in that case. Here again, in order to allow for the general case, one has to
consider non-constant burden weights that vary according to 6.

6.3 Ex Post Quitting Right

While we motivated our study of EPIR mechanisms by our desire that a
mechanism be free from ex post regret of participation, one may imagine a
situation in which agents actually reserve the right to quit the mechanism
after observing the outcome. Compte and Jehiel (2006, 2007) consider a
bargaining model with (ex post) quitting rights or veto, in which agents
may enjoy their outside option on and off the equilibrium paths. Note,
in contrast, that EPIR is imposed only on the equilibrium path (i.e., at
the truth-telling outcome). See also Matthews and Postlewaite (1989) and
Forges (1999) for similar considerations. In this section, we examine the
performance of the mechanism (s*,¢*) when we allow for quitting rights.

Introducing ex post quitting rights implies requiring EPIR. It also mod-
ifies the IC constraints, as each agent may assert the quitting right after he
makes a false report, thus affecting the incentives to deviate. To formulate
the modified IC constraints, let

wi(03,0i,0-3) = vi(0:,0-3)s:(0:,0—;) + t:(0;,0;)
and .
U7 (0:,0;) = Eq_, [max {ui(e',ém@—i), 2”1’(91',9—1')}] ;
and denote U/ (0;) = U/ (6;, 0;). The max operator in U/ (6;, 0;), the expected

utility of agent ¢ with type #; when he reports 6;, represents the assumption
that the agent can take the outside option (1/2)v;(6;,60_;) whenever it is
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larger than his ex post utility w;(6;, 0;, 0_;). A mechanism (s,t) satisfies in-
terim incentive compatibility with ex post quitting rights, or interim incentive
compatibility starred (IC*), if for all i € N,

U7 (6:) > U; (63, 6;) (IC*)

for all éz € [0,6]. We say that the partnership is dissolvable with quitting
rights if there exists a mechanism that satisfies EF, BB, IC*, and EPIR.

Clearly, IC* is a stronger condition than IC. We demonstrate that effi-
cient dissolution is always possible even with IC* when the degree of negative
dependence is large enough that ¢’ + h' < 0.

Theorem 6. The equal-share partnership is dissolvable with quitting rights
for any distribution function F if ¢+ h' < 0.

For this result, it is sufficient to show the following. The proof is given
in Appendix A.2.

Proposition 7. The mechanism (s*,t*) defined by (2.1) and (4.2) satisfies
IC* for any distribution F if and only if ¢ +h < 0.

To gain the intuition behind the result, consider the borderline case
where ¢’+h’' = 0. In this case, we may assume without loss of generality that
g(x)+h(x) =0 for all z € [0, 0], so that t}(0;,0_;) = 0 for all 6;,0_; € [0, 0],
i.e., the mechanism is such that the agent with a higher report receives the
entire asset with no monetary transfer. Now consider agent ¢ with type 6;,
and suppose that his report 0; overstates his type 0; (i.e., 0; > 0;). Define

1 .
A(0-;) = 50(9179—1) — u;(6;,0;,0—),

which is the “ex post regret” of agent ¢ when agent —i truthfully reports 6_;
(here we assume 0_; # 0;,0;). Agent i has a (strict) incentive to exercise the
quitting right ex post if and only if A(6_;) > 0. In the current case, A(0_;) >
0 if and only if _; € (6;,6;) as in Figure 4, which depicts the graphs of the ex
post utility u;(6;, 6;, 0—;) and the outside option (1/2)v;(6;,0_;) as functions
of _;. If HZ-A< 0_; < 91, agent i receives the asset and obtains ex post
utility u,(@z, 0;, 9_1) = vi(ei, 9_1) = g(@z) + h(G_,) < 9(91) + h(@z) = 0, which
is smaller than his outside option (1/2)v;(6;,0—;). But the outside option
(1/2)v;(0;,0—;) (< 0) that agent ¢ will take when 6_; € (6;,6;) is smaller
than the ex post utility u;(6;,60;,0_;) (= 0) that he would have obtained
if he reported his type truthfully. If 6_; < 6; or 0_; > éi, the outcome is
no different from the one under truth telling. After all, the agent has no
incentive to overstate his type even with ex post quitting rights (a symmetric
argument applies to understatements). In fact, we have

U7 (0:,0;) — UF(6;) = %(Ui(@,éi) —U;(6;)),
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Figure 4: Case of ¢’ +h' =0

which is negative by IC. When ¢'+h’ < 0, the set of §_;’s such that A(6_;) >
0 becomes smaller, which in effect makes false reports less preferable than
in the case of g’ + h' = 0. In this case, it holds that U;(6;, 0;) — U*(6;) <
(1/2)(Ui(0:,0;) — Ui(6;))-

When ¢'+h' > 0, on the other hand, the set of #_;’s such that A(6_;) > 0
exceeds the interval (Ql,é,) Indeed, consider 6_; slightly smaller than 6.
Then, agent ¢ has to make a considerable amount of monetary transfer,
according to ¢} (é,, 0;), compared to his valuation v;(6;,6_;), in which case
he exercises the quitting right, thereby enjoying a discrete marginal gain. If
such 0_;’s are assigned sufficiently larger probability densities than those in
(0;, éz), the marginal gain that results from quitting can give a significant
impact on U*(6;,6;), violating IC*.

Example 6.3. Suppose that g(z) = x and h(xz) = —vz, so that the valua-
tion function v; is given by

v;i () = 6; —v0_;,

where v > 0, and thus v(z) = v;(z,2) = (1 — v)x. By Proposition 7 in
Appendix A.2, the necessary and sufficient condition for our mechanism
(s*,t*) satisfies IC* for any type distribution is that 1 —~ <0, or v > 1.

Now, we fix a type distribution F', and examine the condition for -
under which IC* is satisfied for this given distribution F. Specifically, let
[0,0] = [0,1], and F be the uniform distribution on [0,1]: F(x) = . Then
the transfer function ¢* is written as

~5 0= 0= 5 {02 - 007 it > 6
no=1 1 (6.5)
5(1 — ’y) |:9_z — 5 {(9_1)2 — (91)2}] if 91 < 9_2'.

In this case, we can show that the mechanism (s*,t*) satisfies IC* if and
only if 1 — 2y <0, or v > 1/2. The proof is given in Appendix A.3.
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Appendix
A.1 Proof of Theorem 2
Recall that in the symmetric two-agent environment in consideration,

UZ(Q) = g(@l) + h(H_,) if 0; > 0_,,

G(p) — . Glg) =
u;(0) = vi(0) + t;7(0) {U(el) =g(6_;)) +h(0_;) if6; <6_;,
where v(z) = g(x) + h(z).

Proof of Theorem 2. We show that b;(6) = (1/2)b%(0) = (1/2)v(0') satisfies
the condition (3.7) in Theorem 1. For each i € N, let

C1(8) = u$(0) ~uf(0) — 50(6") + Ep [;vwl)] _ B, [;wwl)] .

It suffices to show that C;(6) > 0 for all # € ©. Verify that

(h(6-i) — h(6;)) if 6; >0,

I
[®)
—~
>
N—
|
<
=]
—
>
S—
|
|
]
—
>
—
S~—
Il
N~ N =

(9(0-i) —g(6:)) if 0; <0,

and

|

_ /6 " Pl do(a) + /9 v(z) dF (z).

When 6, = 6y, it is clear that C;(0) = 0.
If 6; > 6_;, then

1 1 [
Ci(0) = i(h(e—i) — h(0:)) + ) F(z)dv(z)
0; 0;
_ ;/9 F(x) dg(x) + 5 /1(1 ~F@)d(-h)(z) >0, (A1)
while if 6; < 6_;, then
0;
Ci(6) = 5 (9(60-) ~ 9(6)) + 5 [ Pla)dv(o)
0_; 0_;
_ ;/g (1- F(x)) dg(z) +% [ r@aenE 20 ()

as the integral terms are all non-negative by the assumption that A" <0. |

19



A.2 Proof of Proposition 7

It suffices to show that the mechanism (s*,t*) defined by (2.1) and (4.2)
satisfies IC* if and only if ¢’ + b/ < 0.

Fix any agent i € N and his type 6; € [0, 0], and suppose that agent i
reports éi, while agent —i truthfully reports his type 6_;. Define the “ex
post regret” under (s*,t*),

~

A(0—;) = %vi(@',@—i) — u;(05,0;,0_), (A.3)

as a function of agent —i’s type 6_;. Then, we have

U7 (0:,0;) = Ui (0:,0;) + Ep_, [A(O-i)1ia0_,)>0}] -
Notice that

1 R -
—5’01'(91', G,z) — t:(@i, 072) if 9@ > 971‘,
A(f—;) = (A.4)

1 A .
Qvi(Gi, (9,1) — t;‘(@i, 971) if 8; < 6_;.

Lemma A.1. If 0; > 0;, then A(6_;) <0 for all 6_; > 0;, while if 6; < 0;,
then A(0_;) < 0 for all _; < 6;.

Proof. Consider the former case where éz > ;. Suppose that 0_; > éi, SO
that player —i obtains the entire asset. Then, we have

wi(0:,0;,0-;) = t7(0:,0-;)

—_

> ivi(éiaa—i)
2Uz iyV—i),

where the first inequality follows from the fact that (s*,t*) satisfies EPIR,
while the second inequality follows from the assumption that v;(6;,0_;) is
strictly increasing in 6;.

Consider then the latter case where él < 0;. Suppose that 6_; < éi, SO
that player ¢ obtains the asset. Then we have

u; (0, éi, 0_;) = vi(0;,0_;) + t;‘k(éiv 0-)
> 0i(05,0-0) — i(0i,0-)

> %%‘(92‘,9—1)7

where the first inequality follows from EPIR, vi(éi,e_i) + tf(éi,e_i) >
(1/2)v;(0;,0—;), while the second from the assumption that v;(6;,6_;) is

strictly increasing in 6;. |
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Lemma A.2.A For each =+ 0;, there exists ﬁ(éz) € [0, 0] such that zfél > 0;,
then (3(0;) < 0; and

Figure 5: Ex post regret A(6_;)

Proof. ConsidAer first the case where 6; > 0;. By Lemma A1, A(0-;) <0
for all 6_; > 6;, and thus we consider #_; < 6;, where player i obtains ‘Ehe
entire asset. Since A(f_;) is continuous (in fact differentiable) on [0, 0;),

it is sufficient to show that A(f_;) is strictly increasing on [0, 6;) and that
lim, ., A(f—;) > 0. Indeed, recalling that

A0) = —%vi(@-,@_i) e (05,0.0)

1 1
= —5uil:,0-i) + 5

65
o) - / F) dv<x>] ,

—1

we have

N(O0-) = —H(0-1) + 5F(6-0)(d/(0-) + H(0-)
1

= SF(O-)g(0-) — 5 (1~ FO-)W(6-) >0 (A5)

for all _; € (6, él), where the inequaility follows from thf: assumption that
g > 0and b/ <0. Since limy t5(05,0-;) = —(1/2)v;(0;,0;), we also have
) 1 A 1 -~
lim A(G,Z) = —*’UZ'(QZ', (91) + *Ui(ei, 01) > 0,
0_i /6; 2 2
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where the inequality follows from the assumption that v;(6;,0—;) is strictly
increasing in ;. Thus, defining 3(6;) as follows gives the first expression in
the lemma:

86 = 0 if A(6_;) > 0 for all 0_; € [0,0),
1 6_; satisfying A(A_;) =0 otherwise.

For the other the case where 9At< 0;, the similar argument shows that
A(6—;) is strictly decreasing on (6;,0] and that lim, . ;5 A(6—;) > 0. Thus,

define B(6;) as follows:

8(6,) = [ if A(6_;) >0 for all 6_; € (6;,6),
1 6_; satisfying A(f_;) =0 otherwise.

This completes the proof. |

Lemma A.3. Let B(6;) be as in Lemma A.2. Then, for alli € N and all
0i7(9i € [Q;g]:

if and only if ¢ +h' <O0.
Proof. 1t suffices to examine the sign of A(6_;) at 0_; = 0;. If 6; < éi, then

A(Hz) = —%U,(Qz,gz) — t;k(éz,gz)

1 1
= —50i(0;,0;) + 5

b;
v(6;) — /0 F(x) dv(m)]

b,
_ ;/@ (1 - F(z)) do(x), (A.6)

while if §; < 6;, then

A(GZ) = 101(61,01) — t:‘(é,,ez)

>
_ %vi(ﬁiﬁi) B % |:U(9i) _ /Z F(x) dv(x)]
- /: Fa) do().

It follows that A(6;) < 0 for all 0; # 0; in both cases if and only if v =
g’ +h <0 (since 0 < F(x) <1 forall z € (¢,0)). But, by Lemma A.2, for
all Qz < 91 (Qz > 97;, resp.), A(Qz) < 0 if and only if ﬁ(@l) > 91 (ﬁ(@z) < 91,
resp.). |
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Proof of Proposition 7. “If” part: Suppose that g’ +h' < 0. We want to
show that for each i € N, Uj(6;) > U/ (0;,0;) for all 0;,0; € [Q,ﬁ]. We show
this only for the case where 0; < 6;. In this case, we have §(6;) < 6; as in
Lemma A.2, and
. . 0;
U;(0;) — U7 (0;,0:) = (Us(6;) — U(0;,65)) — 500 Aly)dF(y). (A7)
Recalling (A.4), we have

and therefore,

0;
/ - Aly)dF(y)
B(0:)
0; 0;
=3 ), (60 =9000) )~ [ (o)~ g(00) aF (v
0; 0;
+ % /g(é,) ’ (1— F(x)) dv(z)dF(y)
1 e
= (000 ~0i0:00) ~5 [ (o)~ 00) 4w

which follows from the Revenue Equivalence. Hence,

1 A 1 B0
(A7) = (U0 = Uill 60) + 5 /9 (9(y) — g(6:)) dF (v)
1 0; 0;
+3 [igy ), (17 F@)d@ar ) (A8)

Here, the first term is non-negative by IC, and so are the other two since g
is increasing and v = ¢’ + b’ < 0 by assumption. Thus, we have U/ (6;) —
U7 (0,6;) > 0 as desired.
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“Only if” part: Suppose that ¢’ + A’ > 0. We want to find a type
distribution and types 6;,6; € [0, 0] for which U(6;) < U3 (6;,6;). For ease
of notation, we let [0, ] = [0, 1].

We first give a heuristic argument to outline the formal proof that follows.
Let the type distribution F' be given by

1
0 ifo<e< =
if0<z <,
1 1 3
F(z)= 3 ifZ§x<Z’
1 'f3< <1
if - <uw
4— — )

which violates the full-support assumption, and set 6; = 1/4 and 0, =1 /2.
Then we have

~ 01
Ui(0;) — Ui(0;,0;) = /9 (9(y) — g(6:)) dF (y) = 0,
while, since 8(0;) < 0; (< 0;) by Lemma A.3,
6,
| AW = a6)FE) >0
B(6;)

Thus, from (A.7) we have U (6;) — U;(6;,6;) < 0.
Now let us consider the following sequence of distribution functions
(Fn)n=1,2,.. with full support on [0, 1]:

4n + 3 1
if 0 < z
2n—|—3x 10—$<4’
g4n+1 1\ 2n+1 1 1 1 1 3
(@) =3 337 3 tonrs\ o) Ty HgsTs
4dn + 3 3
—1)+1 if S <<,
2n—|—3(x )+ 337>

The function F), is continuously differentiable on [0, 1], and satisfies F},(0) =
0, F,,(1/2) =1/2, and F,(1) = 1. Note that for « € [1/4,3/4], F,(x) — 1/2
as n — oo. For each F,, let A, and 3, be as in (A.3) and Lemma A.2,
respectively. Set 6; = 1/4 and 0; = 1/2, where ﬁn(éz) < #; by Lemma A.3.
We first have

0;
U0) = U016 = [ (alo) = 9(6)) dF )

< (g(él) —g(6y)) (Fn(él) — Fo(6;)) — 0 as n — oo.
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On the other hand, by (A.5), Al (z) is bounded from above uniformly for n
and z € [0,6;], and by (A.6), A,(6;) is bounded from zero uniformly for n,
as

b,
AMM_;A (1- Fo(z)) do(z)

1

(v(0:) — v(0:)) (1 — Fi(6:)) = ~ (v(8;) — v(6;)) > 0.

>
- 4

N | —

It follows that we can take a 6 > 0 with §; —d > 6 and a D > 0 such that
for all n, A, (x) > D for all x € [#; — 0, 0;]. Hence, we have

éi Gi
/ AW dFay) > [ Auly) dFa(y)
Bn(6;) 0;,—8

dn+ 3

> D6
2n+3

>Dd >0

for all n. Thus, from (A.7) we have U} (6;) — U} (0;, HAZ) < 0 for sufficiently
large n. |

A.3 Proof for Example 6.3
We show the following.

Proposition A.4. Let [0,0] = [0,1], and F be the uniform distribution on
[0,1]. Assume that g(xz) = x and h(x) = —yx, where v > 0. Then, (s*,t%)
satisfies IC* if and only if v > 1/2.

Proof. We have already shown in Proposition 7 that (s*,t*) satisfies IC* if
g +Nh =1—~<0. It is therefore sufficient to consider only the case where
1 —+ > 0. In this case, by Lemma A.3, 6; falls between B(él) and 6.

“If” part: Assume that 1/2 <~ (< 1),0r (0 <) 1—~ <1/2. We want
to show that U (6;) > U (6;,6;) for all 6;, 0; € [0,0]. We show this only for
the case where 6; < ;. In this case, we have 4(6;) < 6; as in Lemma A.2.
By (A.8),
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1. w1 1.
:1(91'—91) +Z(0i_5(9i)) — —(0; — B(6y))

= é(ez + B(6;) — 291)2

as desired.

“Only if” part: Assume that v < 1/2. We want to find 6;,0; € [0,1] for
which U} (0;) < U} (0;, 0;). Take a small number § > 0 such that § < 1 — 2.
Note that (1 +60)/2 < 1 — . Then take a large number A > 1 so that
1/(24 —2)? < 6, and let B = 2A — 1 (and hence 1/(B — 1)? < §). Finally
let € > 0 be a positive number, which will be taken to be sufficiently small.
Set 0; = Ac and 0; = Bs. When 0_; = ¢ (< é,),

1 A
A(E) = —57)1'(91', (9_1) - tf(&l, 9_1)

—%(Ae o)+ %(1 — ) [Be - % {(Be)’ - 52}]

3

=5 —(A—7)+(1—7){B—;(32—1)5}]-

We claim that for sufficiently small €, A(e) > 0. Indeed, as ¢ — 0, the
bracketed term in the last line goes to —(A — ) + (1 —v)B = —(B —
Dy—(A—~)>—-(B-1)(1/2) — (A—1/2) = 0. It therefore follows from
Lemma A.2 that §(Be) < ¢ for sufficiently small ¢.

By (A.8),
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where the second inequality follows from 0 < 5(Be) < . We claim that for
sufficiently small e, U;(6;) — U;(6;,6;) < 0. Indeed, as ¢ — 0, the bracketed
term in the last line goes to 1 — §(B — 1)2, which is negative by the choice
of ) and B. |
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