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Abstract

We consider the problem of choosing a policy from a one-dimensional policy set

in which voters have single-peaked preferences. The purpose of this paper is to ana-

lyze the consequences of strategic votes under any given voting rule satisfying some

natural conditions; peak-only, unrestricted range, anonymity, continuity and weak

(or strict) monotonicity. We show that, under any such rule, strategic votes must

result in an outcome recommended by a generalized median voter rule. Our results

suggest the existence of an �invisible hand� in votes through which strategic votes

lead to a �reasonable�outcome.

JEL Classi�cation: D78, D72, C70.

Key words: Generalized median voter rule, Average voting rule, Strategic manip-

ulation, Existence of a strong Nash equilibrium, Coalition-proof Nash equilibrium,

Uniqueness of a Nash equilibrium, Implementation.

1 Introcuction

We consider the problem of choosing a policy from a one-dimensional policy set in which

voters have single-peaked preferences (Black [8]). In this environment, it is well known

that there exist strategy-proof, e¢ cient and anonymous voting rules, contrary to the

Gibbard-Satterthwaite theorem (Gibbard [16]; Satterthwaite [34]). A typical example of

such a rule is the median voter rule, which chooses the median of voters�peaks. Moreover,

Moulin [28] provided a characterization of strategy-proof voting rules. He showed that a

voting rule is strategy-proof, e¢ cient, and anonymous if and only if it is a �generalized
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median voter rule,�which chooses the median of n voters�peaks and n � 1 exogenous
parameters. Because of the existence of �reasonable� and strategy-proof voting rules,

many studies on this environment have focused on strategy-proof voting rules1.

On the other hand, we have not paid much attention to what happens when a strate-

gically manipulable voting rule is given. The purpose of this paper is to analyze the

consequence of strategic votes under any given voting rule that satis�es some natural

requirements2. The requirements we imposed on voting rules are peak-only, unrestricted

range, anonymity, continuity and weak (or strict) monotonicity. Through the analysis of

strategic votes under a given voting rule, we obtain the two results described below.

First, we show that under any voting rule that satis�es all of these properties, contain-

ing a strict monotonicity condition, the set of Nash, coalition-proof Nash and strong-Nash

equilibrium outcomes must be equivalent to an outcome recommended by a particular

generalized median voter rule (Theorem 1, (1).) Furthermore, we �nd that the set of

Nash equilibria is �almost always�a singleton (Theorem 1, (3).) Second, we show that

when a strict monotonicity condition is weakened to a weak monotonicity condition, the

set of coalition-proof Nash and strong-Nash equilibrium outcomes will still be equivalent

to a generalized median voter rule, while the set of Nash equilibrium outcomes no longer

coincides with a generalized median voter rule (Theorem 2, (1).)

Renault and Trannoy [30] [31] analyzed the properties of the average voting rule and

showed that the set of Nash and strong-Nash equilibrium outcomes under the average

voting rule must be equivalent to a generalized median voter rule. This result can be

obtained as a corollary of our Theorem 1, because the average voting rule satis�es the

conditions on rules including strict monotonicity. Moreover, by applying our Theorem 2,

we can still expect the consequence of strategic votes under a voting rule that satis�es

weak monotonicity, but not strict monotonicity, for example, any generalized median

voter rule.

Our two theorems reveal a strong position that generalized median voter rules possess.

Even if we do not use a generalized median voter rule, voters�strategic votes result in

a median voter rule, as if led by an �invisible hand (Smith [35]).� Since a generalized

median voter rule satis�es some desirable properties, such as e¢ ciency and anonymity,

this �invisible hand�has a role in ensuring a reasonable outcome. At the same time, our

1See for example, Barbera, Gul, and Stachetti [6], Ching [13], and so on. Sprumont [37], Barbera [5]
and Jackson [19] o¤er surveys in this literature.

2There have been some studies that analyzes the consequence of strategic manipulations in several
economic models. See, for example, Hurwicz [17] and Otani and Sicilian [29] in divisible goods economies,
Tadenuma and Thomson [38] and Fujinaka and Sakai [15] in indivisible goods economies, Bochet and
Sakai [9] in the division problem with single-peaked preferences.
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theorems also have a negative aspect. They reveal that we cannot achieve any outcome,

such as the average of voters�peaks, other than what a generalized median voter rule

chooses. Whatever rule we use, we cannot escape from generalized median voter rules.

In the context of implementation theory, Theorem 1 shows that a strictly monotone

voting rule can be regarded as a mechanism that implements a generalized median voter

rule in Nash equilibria with two good properties; uniqueness of Nash equilibrium and

robustness to coalitional deviations3. In particular, uniqueness of Nash equilibrium is

an attractive property for Nash implementation. When there are multiple Nash equi-

libria as in many other Nash type mechanisms, it is di¢ cult for voters to play a Nash

equilibrium without communication even if voters expect the consequence of votes based

on Nash equilibria, because voters cannot determine which Nash equilibrium is played

without communication. In order to resolve such a problem, one solution is to construct

a mechanism in which uniqueness of Nash equilibrium is assured. In a mechanism with

a unique Nash equilibrium, Nash equilibrium can have a role to be a focal point among

voters.

One might say we do not need to consider Nash implementation of a generalized

median voter rule, because a strategy-proof rule, such as a generalized median voter

rule, must induce sincere voting. However, experimental studies, such as Kawagoe and

Mori [21], Attiyeh, Franciosi and Isaac [3], and Cason, Saijo, Sjostrom and Yamato [11]

observe that strategy-proof mechanisms do not always work well because many subjects

actually do not reveal true information. Saijo, Sjostrom and Yamato [32] point out that

strategy-proof mechanisms sometimes fail to induce truth-telling because many of them

have Nash equilibria that produce undesireble outcomes. To cope with such a fault of a

strategy-proof mechanisms, they require double implementation in Nash and dominant

strategy equilibrium called secure implementation. However, they also �nd that in the

one-dimensional voting plobrem with single-peaked preferences, any generalized voter

rule has Nash equilibria that cause ine¢ cient outcomes. That is, there exists no e¢ cient,

anonymous and secure voting rule.

Thus, we have two ways to implement a generalized median voter rule. One way is

to use a strategy-proof rule that has bad Nash equilibria. The other way is to use a rule

that is not strategy-proof but can Nash implement the former. Our results imply that

strictly monotone voting rules correspond to latter. If the problem of bad Nash equilibria

of a generalized median voter rule is serious, a strictly monotone voting rules can be a

3There are some studies considering unique Nash implementation, such as Abreu and Sen [2], Abreu
and Matsushima [1], Sjostrom [33], and Trockel [39]. However, the necessary and su¢ cient condition for
unique Nash implementation has not been speci�ed. This paper investigates a new environment in which
a social choice rule can be implemented in a unique Nash equilibrium.
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good alternative.

The rest of this paper is organized as follows: in section 2, we introduce the model

and de�nitions; in section 3, we indicate our main result; in section 4, we interpret our

results; and in section 5, we state our conclusions.

2 Notation

2.1 Basic De�nitions

Let N � f1; 2; � � � ; ng be the set of voters. A � [a; b] denotes the policy set. We assume
that this policy set A is a closed interval. For each voter i2N , i has a complete, transitive,
and single-peaked preference Ri over A. The symmetric and asymmetric parts of Ri are

denoted by Ii and Pi respectively. A preference relation Ri over A is said to be single-

peaked if there exists a peak p(Ri) 2 [a; b] such that for each c; d 2 [a; b] c < d � p(Ri)
implies dPic and p(Ri) � c < d implies cPid. Let Ri be the set of i�s single-peaked
preferences4.

A voting rule, denoted by f , is a function f :
Q
i2N Ri ! A which associates with

each preference pro�le R � fRigi2N a policy f(R) 2 A.

2.2 �Peak-Only�Voting Rules and their Properties

Throughout this paper, we pay attention to peak-only voting rules. A voting rule f is said

to be peak-only if for any R;R0, f(R) = f(R0) whenever p(Ri) = p(R0i), for any i 2 N .
If a voting rule is peak-only, we can regard a voting rule f :

Q
i2N Ri ! A as a function

f : [a:b]N ! A, that associates with each peak pro�le p 2 [a:b]N a policy f(p) 2 A.
In this paper, we additionally impose several natural conditions on peak only voting

rules. They are listed as follows.

Unrestricted Range5: For any c 2 A, there exists p 2 [a; b]N such that f(p) = c.

Anonymity: For any p; p0 2 [a; b]N , such that 9i; j 2 N such that pi = p0j, pj = p
0
i and

pk = p
0
k, 8k 2 Nn fi; jg, f(p) = f(p0):

Own-Peak Continuity: For any i 2 N , any p�i 2 [a; b]N=fig, and any fpmi g
1
m=1 � [a; b]

such that lim
m!1

pmi = pi, limm!1
f(pmi ; p�i) = f(pi; p�i).

4Note that we do not assume continuity of Ri.
5Ching [13] calls this condition �voter sovereignty.�
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Own-Peak Weak Monotonicity: For any p 2 [a; b]N , any i 2 N , and any p0i � pi,

f(p0i; p�i) � f(p).

Own-Peak Strict Monotonicity: For any p 2 [a; b]N , any i 2 N , and any p0i > pi,

f(p0i; p�i) > f(p).

We illustrate some peak only voting rules that satisfy the conditions above.

The median voter rule: Suppose that the number of voters is odd. For each R 2Q
i2N Ri, f(R) = m(p(R1); � � � ; p(Rn)); where m(x1; � � � ; xn) denotes the median of

x1; � � � ; xn.

Generalized Median Voter Rule: There exist a1; � � � ; an�1 2 [a:b] ; such that for each
R 2

Q
i2N Ri, f(R) = m(p(R1); � � � ; p(Rn); a1; � � � ; an�1), where m(x1; � � � ; xn; xn+1; � � � ;

x2n�1) denotes the median of x1, � � � , xn, xn+1, � � � , x2n�1.

The average voting rule: For each R 2
Q
i2N Ri, f(R) =

P
i2N p(Ri)
n :

Generalized average voting rule: There exists a continuous and strictly increasing
function g : [na:nb]! [a; b] such that g(na) = a; g(nb) = b, and for each R 2

Q
i2N Ri,

f(R) = g(
P
i2N p(Ri)):

It can be easily checked that both generalized median voter rules and generalized

average voting rules satisfy unrestricted range, anonymity, own-peak continuity, and own-

peak weak monotonicity. On the other hand, generalized median voter rules do not satisfy

own-peak strict monotonicity, while generalized average voting rules satisfy it.

These properties are similar to those Bochet and Sakai [9] imposed on division rules

in the context of the division problem with single-peaked preferences. However, our

properties are slightly di¤erent from them, because we replace e¢ ciency6, which Bochet

and Sakai [9] imposed on division rules, with unrestricted range. It is clear that e¢ ciency

implies unrestricted range. We can obtain the same results even if e¢ ciency is weakened

to unrestricted range.

6 In the problem of one-dimensional voting, we can easily be checked that a rule f satis�es e¢ ciency
if and only if for any p 2 [a; b]N , there exists i; j 2 N , such that p(Ri) � f(p) � p(Rj).
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2.3 Equilibrium Concepts

Under a voting rule f , each voter reports his own preference (or peak) and a policy is

decided according to the reported preference (or peak) pro�le. Then, each voter will

vote strategically so as to satisfy his own preference as much as possible. We expect the

consequences of strategic votes based on Nash equilibrium or its re�nements: coalition-

proof Nash equilibrium and strong Nash equilibrium.

Given a peak-only rule f : [a; b]N ! A and a �true�preference pro�le R � fRigi2I , let

Nv(f;R) �
n
x 2 [a; b]N j :

�
9i 2 N such that9x0i 2 [a; b] ; f(x0i; x�i)Pif(x)

�o
be the set of Nash equilibrium voting pro�les and

N(f;R) � f(Nv(f;N))

be the set of Nash outcomes of a voting rule f under a preference pro�le R.

We moreover introduce the concepts of coalition-proof Nash equilibrium (Bernheim,

Peleg andWhinston [7]) and strong Nash equilibrium (Aumann [4]), which take coalitional

deviations into consideration. When all voters can communicate with one another and

deviate coalitionally, it may be more natural to expect the consequences based on strong

or coalitional-proof Nash equilibria than based on Nash equilibria.

First, let us de�ne a coalitional-proof Nash equilibrium. We say a coalition S � N

has a credible deviation x0S 2 [a; b]
S at a voting pro�le x, if f (x0S ; x�S)Pif(x), 8i 2 S

and there is no T � S, T 6= S such that T has a credible deviation at (x0S ; x�S). A voting
pro�le x is a coalition-proof Nash equilibrium if there is no coalition that has a credible

deviation at x. The set of coalitional-proof Nash voting pro�les CNv(f;R) is de�ned as

follows.

CNv(f;R) �
n
x 2 [a; b]N j : (9S � N such that S has a credible deviation at x)

o
:

Let

CN(f;R) � f(CNv(f;N))

be the set of coalitional-proof Nash outcomes.

Next, let us de�ne a strong Nash equilibrium. We say a coalition S � N has a

deviation x0S 2 [a; b]
Sat a voting pro�le x, if f (x0S ; x�S)Pif(x), 8i 2 S. A voting pro�le

x is a strong Nash equilibrium if there is no coalition that has a deviation at x. Then,
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the set of strong Nash voting pro�les SNv(f;R) is de�ned as

SNv(f;R) �
n
x 2 [a; b]N j : (9S � N such that S has a deviation at x:)

o
;

and

SN(f;R) � f(SNv(f;R))

denotes the set of strong Nash outcomes.

By the de�nitions of these three equilibrium concepts, we can easily check that

SN(f;R) � CN(f;R) � N(f;R); for any f and any R:

3 Results

The purpose of this paper is to analyze the consequence of strategic votes under any

given voting rule satisfying the properties introduced above. Before we proceed to our

discussion, we introduce n � 1 numbers that are useful for our analysis. Given a rule
f : [a; b]N ! A, for each k 2 f1; 2; � � � ; n� 1g, de�ne fk 2 [a; b] as

fk � f(b; � � � ; b| {z }
k

; a; � � � ; a| {z }
n�k

):

This fk indicates an outcome when k voters vote for the upper bound of the policy set

and the rest of voters vote for the lower bound. These n�1 numbers f1, � � � ,fn�1 help us
analyze the consequence of strategic votes, because they actually play the roles of n� 1
exogenous parameters of a generalized median voter rule.

Now, we provide our results of the analysis of strategic votes. Throughout this section,

we assume without a loss of generality that p(R1) � � � � � p(Rn).

Proposition 1. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted range,

anonymity, own-peak continuity, and own-peak weak monotonicity. Then, for any R 2 R,
there exists a voting pro�le x 2 SNv(f;R) such that

f (x ) = m(p(R1); � � � ; p(Rn); f 1; � � � ; f n�1):

Proof of Proposition 1.
Case 1. fi 2 N j p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g = �.
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Since fj j fj = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g 6= � by the assumption and f1 �
� � � � fj � � � � � fn�1 by own-peak weak monotonicity of f , there exists j 2 f1; � � � ; n� 1g
such that

jfi 2 N j p(Ri) < fjgj+ (j � 1) = jfi 2 N j p(Ri) > fjgj+ (n� 1� j)7:

Then, since fj = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1),we obtain

jfi 2 N j p(Ri) < fjgj = n� j and jfi 2 N j p(Ri) > fjgj = j:

Let us consider the following voting pro�le x 2 [a; b]N such that

xi = a;8i 2 f1; � � � ; n� jg and xi = b;8i 2 fn� j + 1; � � � ; ng :

By de�nition of fj ,

f(x) = fj = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1):

We shall show that this voting pro�le x 2 [a; b]N is a strong Nash equilibrium. Suppose
there exist S � N and yS 2 [a; b]Ssuch that f(yS ; x�S)Pif(x), 8i 2 S. We moreover
assume without a loss of generality that f(yS ; x�S) < f(x). Then,

S � f1; � � � ; n� jg ;

because f(x)Pif(yS ; x�S), 8i 2 fn� j + 1; � � � ; ng : However, since xi = 0; 8i 2 S,

f(yS ; x�S) � f(x), 8yS 2 [a; b]S ;

by own-peak weak monotonicity, which contradicts f(yS ; x�S) < f(x). Hence, x 2 [a; b]N

must be a strong Nash equilibrium.�

Case 2. fi 2 N j p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g 6= �.
By assumption, there exists i 2 N such that

jfj 2 f1; � � � ; n� 1g j fj � p(Ri)gj+(i�1) = jfj 2 f1; � � � ; n� 1g j fj � p(Ri)gj+(n�i):
7Given a �nete set X, jXj denotes the cardinality of X:
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Then, since p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1), we have

fn�i � p(Ri) � fn�i+1:

Let us consider the following voting pro�le x�i 2 [a; b]N=fig such that

xk = a;8k 2 f1; � � � ; i� 1g , and xk = b;8k 2 fi+ 1; � � � ; ng .

Then, by own peak monotonicity, for any x0i 2 [a; b]

f(a; x�i) = fn�i � f(x0i; x�i) � fn�i+1 = f(b; x�i);

so there exists xi 2 [a; b] such that f(xi; x�i) = p(Ri) by own peak continuity. We shall
show that this voting pro�le x = (xi; x�i) is a strong Nash equilibrium.

Suppose there exist S�N and yS 2 [a; b]Ssuch that f(yS ; x�S)Pif(x), 8i 2 S. We
moreover suppose without loss of generality f(yS ; x�S) < f(x). Then,

S � f1; ; � � � i� 1g ;

because f(x)Rkf(yS ; x�S), 8k 2 fi; � � � ; ng. On the other hand, since xi = 0;8i 2 S,

f(yS ; x�S) � f(x), 8yS 2 [a; b]S

by own-peak weak monotonicity, which contradicts f(yS ; x�S) < f(x). Hence, x 2 [a; b]N

must be a strong Nash equilibrium.�

Proposition 1 establishes the existence of a strong Nash equilibrium whose outcome

corresponds to the median of n voters�peaks and n�1 parameters de�ned as f1, � � � ; and
fn�1. The proof of Proposistion 1 is constructive. First, focus on the outcome m� 2 [a; b]
which is the median of p(R1) ,� � � ,p(Rn), f1, � � � , fn�1. Next, construct a voting pro�le
x 2 [a; b]N such that

xi =

8>>><>>>:
a if p(Ri) < m�

x�i such that f(x) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1) if p(Ri) = m�

b if p(Ri) > m�

and show that this voting pro�le x is a Nash equilibrium

Note that in the literature of non-cooperative game theory considering coalitional
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deviations, Proposition 1 reveals a new su¢ cient condition for the existence of a strong

Nash equilibrim. Su¢ cient conditions for the existence of a strong Nash equilibrium are

provided by several studies, such as Ichiishi [18] and Konishi, Breton, and Weber [23];

however, we can apply none of them because our case does not satisfy any of them.

Proposition 2. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted range,

anonymity, own-peak continuity, and own-peak weak monotonicity. Then, for any R 2 R,
and any x 2 CNv(f;R),

f (x ) = m(p(R1); � � � ; p(Rn); f 1; � � � ; f n�1):

Proof of Proposition 2. Suppose there exists x 2 CNv(f;R) such that f(x) >

m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1). Let

S � fi 2 N j pi � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g = f1; � � � ; ig and

T � fj 2 f1; � � � ; n� 1g j fj � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g = f1; � � � ; jg :

Consider x0S 2 [a; b]
S such that x0i = a;8i 2 S. Then, we have

f(x0S ; x�S) � fn�i � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1) < f(x);

because jSj+jT j = i+j � n, by the de�nition ofm. Hence, there must exist k 2 f1; � � � ; ig
such that

f(a; � � � ; a; xk; � � � ; xn) = f(x), and f(a; � � � ; a; xk+1; � � � ; xn) < f(x):

Take x00k 2 [a; b] such that

x00k=

8<:a if f(a; � � � ; a; a; xk+1; � � � ; xn) > p(Rk)

c; such that f(a; � � � ; a; c; xk+1; � � � ; xn) = p(Rk) if f(a; � � � ; a; a; xk+1; � � � ; xn) � p(Rk)

Then, since p(P1) � � � � � p(Rk) � f(a; � � � ; a; x00k; xk+1; � � � ; xn) < f(x),

f(a; � � � ; a; x00k; xk+1; � � � ; xn)Pif(x), 8i 2 f1; � � � ; kg .

Next, we show that (a; � � � ; a; x00k) is a credible deviation of S0 � f1; � � � ; k0g at x. Let
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y � (a; � � � ; a; x00k:x�S0).
If f(a; � � � ; a; xk+1; � � � ; xn) > p(Rk), then

f(y) � f(zS0 ; y�S0), 8zS0 2 [a; b]S
0

by own-peak weak monotonicity, so

f(y)Rif(zS0 ; y�S0), 8S0 � S, 8yS0 2 [a; b]S
0
, 8i 2 S0

Hence, there exists no S00 � S0 that has a credible deviation at y. Thus, (a; � � � ; a; x00k)
must be a credible deviation of S0 � f1; � � � ; kgat x which contradicts x 2 CNv(f;R).

If f(a; � � � ; a; xk+1; � � � ; xn) � p(Rk), then

f(y)Rkf(zS0 ; xS), 8zS0 2 [a; b]S
0
,

because f(y) = p(Rk). Hence, if there exists S00 � S0 that has a credible deviation at y,
then k =2 S00. However, by own-peak weak monotonicity,

f(zf1;��� ;k�1g; yfk;��� ;ng) � f(y); 8zf1;��� ;k�1g 2 [a; b]f1;��� ;k�1g ;

which implies

f(y)Rif(zf1;��� ;k�1g; yfk;��� ;ng), 8zf1;��� ;k�1g 2 [a; b]f1;��� ;k�1g

Hence, there exists no S00 � S0that has a credible deviation at y. Thus, (a; � � � ; a; x00k)
must be a credible deviation of S0 � f1; � � � ; kg at x, which contradicts x 2 CNv(f;R).
Therefore, if x 2 CNv(f;R), then f(x) � m(p1; � � � ; pn; f1; � � � ; fn�1).

We can similarly show that if x 2 CNv(f;R), then f(x) � m(p1; � � � ; pn; f1; � � � ; fn�1):�

Proposition 1 and Proposition 2 together chatacterize coalitional proof Nash and

strong Nash outcomes. As a direct consequence of Proposition 1 and Proposition 2, we

can state that if a voting rule satis�es unrestricted range, anonymity, own-peak continuity,

and own-peak weak monotonicity, then

SN(f;R) = CN(f;R) = fm(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g ;

which implies that strategic votes must result in m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1) when
communication among voters are allowed.

As a next step, we check whether any Nash outcome is equivalent tom(p(R1); � � � ; p(Rn);
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f1; � � � ; fn�1) or not. Generally speaking, this equivalence does not hold. The following
Example 1 establises the di¤erence between Nash outcomes andm(p(R1); � � � ; p(Rn); f1; � � � ;
fn�1).

Example 1. Let N � f1; 2; 3g and f(x) = m(x1; x2; x3). Then, for any x 2 A,

x � (x; x; x) is always a Nash equiribrium, because for any i 2 f1; 2; 3g and any x0i 2 A,
m(x0i; x�i) = x. Therefore, for any R 2 R, N(f;R) = A.�

In order to establish the equivalence between Nash outcomes andm(p(R1); � � � ; p(Rn);
f1; � � � ; fn�1), we have to impose own-peak strict monotonicity on voting rules addition-
ally.

Proposition 3. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted

range, anonymity, own-peak continuity, and own-peak strict monotonicity. Then, for

any R 2 R, any x 2 N(f;R)

f(x) = m(p(R1); � � � ; p(Rn); f 1; � � � ; f n�1):

Proof of Proposition 3. Suppose there exists x 2 Nv(f;R) such that f(x) > m(p1; � � � ; pn;
f1; � � � ; fn�1). Let

S � fi 2 N j p(Ri) � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g = f1; � � � ; ig , and

T � fj 2 f1; � � � ; n� 1g j fj � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g = f1; � � � ; jg :

First, let us show that xi = a, 8i 2 S if f(x) > m(p1; � � � ; pn; f1; � � � ; fn�1) and
x 2 Nv(f;R). Suppose xi > a 9i 2 S. Then, there exists x0i 2 (a; xi) such that

p(Ri) < f(x
0
i; x�i) < f(x);

by own-peak strict monotonicity and own-peak continuity. Hence,

f(x0i; x�i)Pif(x);

which contradicts x 2 Nv(f;R).
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However, if xi = a 8i 2 S,

f(x) � fn�i � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1), 8xNnS 2 [a; b]NnS

because jSj+jT j = i+j � n, which contradicts f(x) > m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1).
Hence, we obtain for any x 2 Nv(f;R),

f(x) � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1);

We can similarly show that for any x 2 Nv(f;R);

f(x) � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1):�

Combining Proposition 3 with Proposition 1, we establish the equivalence among

Nash outcomes, coalition-proof Nash outcomes and the strong Nash outcomes if a voting

rule additionally satis�es own-peak strict monotonicity. They together imply that if a

voting rule satis�es unrestricted range, anonymity, own-peak continuity, and own-peak

strict monotonicity, then

SN(f;R) = CN(f;R) = N(f;R) = fm(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g :

Hence, under a strictly monotone voting rule, strategic votes must result in m(p(R1); � � � ;
p(Rn); f1; � � � ; fn�1), whether voters is allowed to communicate with one another or not.

Proposition 4. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted range,

anonymity, own-peak continuity, and own-peak weak monotonicity. Then, for any R 2 R,

SNv(f;R) = CNv(f;R):

Proof of Proposition 4. It is su¢ cient to show that there must exist S0 � N which has

a credible deviation at x 2 [a; b]N , whenever there exists S � N which has a deviation at

x 2 [a; b]N . Suppose that S � N has a deviation y 2 [a; b]Sat x 2 [a; b]N . We moreover
assume without a loss of generality f(yS ; x�S) < f(x). Then, for any i 2 S, p(Ri) < f(x).
Let S � fi1; � � � ; ikg such that pi1 � � � � � pik : Consider yS 2 [a; b]

S , such that yi = a,
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8i 2 S. Then, there must exist h 2 f1; � � � ; kgsuch that

f
�
(yi)i2fi1;��� ;ih�1g; (xi)i2N=fi1;��� ;ih�1g

�
= f(x), and

f
�
(yi)i2fi1;��� ;ihg; (xi)i2N=fi1;��� ;ihg

�
< f(x)

Let S0 � fi1; � � � ; ihg and take (zi)i2S0 such that zi = a, 8i 2 fi1; � � � ; ih�1g, and

zih=

8<:a if f
�
fzigi2S0=fihg ; a; fxigi2N=S0

�
> p(Rih)

c; such that f
�
fzigi2S0=fihg ; c; fxigi2N=S0

�
= p(Rih) if f

�
fzigi2S0=fihg ; a; fxigi2N=S0

�
� p(Rih)

We can show that fzigi2S0 is a credible deviation of S0 at x in a similar way with the proof
of Proposition 2.�

Proposition 4 states a voting pro�le x is a strong Nash equilibrium whenever x is a

coalition-proof Nash equilibrium. Note that by Proposition 1 and Proposition 4 we �nd

a new su¢ cient condition for the equivalence between strong Nash and coalition-proof

Nash equilibria. Konishi, Breton, and Weber [24] showed su¢ cient conditions for the

equivalence between these two solutions, but we cannot apply them to our case.

Proposition 5. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted range,

anonymity, own-peak continuity, and own-peak strict monotonicity. Then, for any R 2
R, any x 2 N(f;R)

SNv(f;R) = CNv(f;R) = Nv(f;R):

Proof of Proposition 5. It su¢ ces to show that x =2 Nv(f;R) whenever x =2 SNv(f;R).
Suppose that S � N has a deviation y 2 [a; b]Sat x 2 [a; b]N . We moreover assume
without a loss of generality f(yS ; x�S) < f(x). Then, by own-peak strict monotonicity,

there exists i 2 S such that yi < xi and P (Ri) < f(x). By own-peak strict monotonicity
and own-peak continuity, there exists zi 2 (yi; xi) such that f(zi; x�i) 2 (P (Ri); f(x)).
Hence, f(zi; x�i)Pif(x), that implies x =2 Nv(f;R).�

Proposition 5 states that the set of Nash equilibria is also equivalent to that of strong

Nash and coalition-proof Nash equilibria if a voting rule additionally satis�es own-peak

strict monotonicity.
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Proposition 6. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted

range, anonymity, own-peak continuity, and own-peak strict monotonicity. Then, for any

R 2 R, such that jfi 2 N j p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)gj � 1; Nv(f;R) is
a singleton.

Proof of Proposition 6. Since non-emptiness of Nv(f;R) has been proved in Proposi-
tion 1, it su¢ ces to show that Nv(f;R) is a singleton.

Case 1. fi 2 N j p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g = �.
Let S � fi 2 N j p(Ri) < m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g = f1; � � � ; ig. If x 2 Nv(f;R),
then by Proposition 4,

f(x) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1):

If x 2 Nv(f;R), then we must have xi = a, 8i 2 S, because for any x0i 6= a;

p(Ri) < f(x) < f(x
0
i; x�i);

which implies that f(x)Pif(x0i; x�i).

Similarly, we have xi = b, 8i 2 N=S. Thus, if x 2 Nv(f;R), then xi = a, 8i 2 S and
xi = b, 8i 2 N=S.�.

Case 2. jfi 2 N j pi = m(p1; � � � ; pn; f1; � � � ; fn�1)gj = 1
Take i 2 N such that p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1). Then, if x 2 Nv(f;R),
we must have

xi = a;8k 2 f1; � � � ; i� 1g ;

because p(Rk) < f(x) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1), 8k 2 f1; � � � ; i� 1g. Simi-
larly, if x 2 Nv(f;R),

xk = b;8k 2 fi+ 1; � � � ; ng :

Thus, we obtain that if x 2 Nv(f;R), then

f(x�i; a) = fn�i � f(x) � fn�i+1 = f(x�i; b):

By own-peak strict monotonicity and own-peak continuity, there exists a unique �xi 2 [a; b]
such that

f(�xi; x�i) = pi 2 [fn�i; fn�i+1] :
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Since f(x0i; x�i) 6= pi, for any x0i 6= �xi, f(�xi; x�i)Pif(x0i; x�i), which indicates that xi = �xi,
if x 2 Nv(f;R). Therefore, if x 2 Nv(f;R), then

x = (a; � � � ; a; �xi; b; � � � ; b):�

Proposition 6 ensures uniqueness of Nash equilibrium under a strictly monotone vot-

ing rule. Since the case jfi 2 N j p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)gj � 2 holds
are non-generic, the set of Nash equilibrium voting pro�les is �almost always�a singleton.

However, there may be multiple Nash equilibria if there are not less than 2 persons whose

peaks agree with the median of p(R1); � � � ; p(Rn); f1; � � � ; fn�1. The following Example
2 illustrates the case in which there are multiple Nash equilibria.

Example 2. Let N � f1; 2; 3g, p(R1) = p(R2) = p(R3) =
a+b
2 and f(x) = x1+x2+x3

3 .

Then, we can easily check that for any x such that x1+x2+x3
3 = a+b

2 , x is a Nash

equilibrium.�

Now, we summarize our analysis on the consequence of strategic votes as the following

Therem 1 and Theorem 2.

Theorem 1. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted range,

anonymity, own-peak continuity, and own-peak strict monotonicity. Then, for any R 2
R, the following (1), (2), and (3) hold.
(1) SN(f;R) = CN(f;R) = N(f;R) = fm(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g.
(2) SNv(f;R) = CNv(f;R) = Nv(f;R) 6= �:
(3) Nv(f;R) is a singleton if jfi 2 N j p(Ri) = m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)gj � 1.

Proof of Theorem 1. (1) is implied by Proposition 1 and Proposition 3. (2) is implied
by Proposition 1 and Proposition 5. Proposition 6 directly implies (3).�

Theorem 2. Let f : [a; b]N ! A be any voting rule that satis�es unrestricted range,

anonymity, own-peak continuity, and own-peak weak monotonicity. Then, for any R 2 R,
the following (1) and (2) hold.

(1) SN(f;R) = CN(f;R) = fm(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)g :
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(2) SNv(f;R) = CNv(f;R) 6= �:

Proof of Theorem 2. (1) is implied by Proposition 1 and Proposition 2. (2) is implied
by Proposition 1 and Proposition 4.�

4 Discussions

4.1 Implementation of Generalized Median Voter Rules

Theorem 1 reveals that any genaralized median voter rulem(p(R1; � � � ; p(Rn); a1; � � � ; an�1);
such that a < a1 < � � � < an�1 < b can be triply implemented in strong Nash, coalition-
proof Nash, and Nash equilibria by a strictly monotone voting rule. For example, let us

use a generalized average voting rule f(x) = g(
P
i2N xi) such that g((n�k)a+kb) = ak,

for each k 2 f1; � � � ; n� 1g. Then, by Theorem 1, any Nash, coalition-proof Nash, and

strong Nash equilibrium of this generalized median rule must result in the median of

p(R1), � � � ; p(Rn); a1; � � � ; an�1. Moreover, a strictly monotone rule has attractive prop-
erties as a Nash mechanism: uniqueness of Nash equilibrium and robustness to coalitional

deviations. When uniqueness of Nash equilibrium is assured, the unique equilibrium can

have a role of a focal point among voters. When a mechanism can triply implementa-

tion a social choice rule in strong Nash, coalition-proof Nash, and Nash equilibria, social

planners need not be worried about coalitional deviations, as well as individual deviations.

In addition, Kawasaki and Yamamura [22] �nd out that the uniquie Nash equilib-

rium under a generalized average voting rule is dynamically stable in the sense similar to

Cournot stability, by using the theory of potential games8. It is known that under a po-

tential game, any best response path converges to Nash equilibria (Monderer and Shapley

[27]; Jensen [20]). They show that a voting situation under a generalized average voting

rule is a kind of a potential game and so that stability of Nash equilibrium is assured.

They also point out that generalized median voter rules do not have this property.

One might think that we do not have to study Nash implementation of generalized

median voter rules because they must induce truth-telling. However, this expectation is

denied by experimental studies, such as Kawagoe and Mori [21], Attiyeh, Franciosi and

8Note that the class of generalized average voting rules is a subclass of strictly monotone voting rules.
Kawasaki and Yamamura [22] showed only stability of generalized average voting rules. However, it can
be easily checked that the class of rules that can be Nash implemented by a generalized average voting
rule is equivalent to the class of rules that can be Nash implemented by a strictly monotone voting rule.
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Isaac [3], and Cason, Saijo, Sjostrom and Yamato [11]. They observe that few subjects

reveal true information under some strategy-proof mechanisms.

Saijo, Sjostrom and Yamato [32] point out that this is because many strategy-proof

mechanisms has a drawback of having Nash equilibria that cause undesireble outcomes.

They also show that any generalized median voter rule has this drawback. For example,

as seen in Example 1, the set of Nash outcomes under the median voter rule covers the

entire policy set. This means that a direct revelation mechanism of the median voter rule

fails to implement itself in Nash equilibria.

Confronting such a fault of a direct revelation mechanism of a generalized median voter

rule, we have two ways to implement it. One way is to keep using a direct revelation

mechanism. Though it has bad Nash equilibria that cause undesirable outcomes, it

implements itself in that dominant strategy equilibria. The other way is to use a strictly

monotone voting rule. Though it is not strategy-proof, it can exclude bad Nash equilibria.

Especially, a generalized average voting rule ensures that voters learn to play a Nash

equilibrium. We need to explore laboratory experiments to observe how serious the

problem of bad Nash equibibria of a generalized median voter is and which works better9.

The comparison among rules mentioned here is summarized by the following table 1.

Table 1: Comparison of Voting Rules

Generalized Generalized Strictly

Median Rules Average Rules Monotone Rules

Strategy-proofness yes no no

Nash Implemantation no yes yes

Uniqueness of NE no yes yes

Dynamic Stability of NE no yes

Robustness to Coalitional Deviations yes yes yes

4.2 Relation to Dasgupta-Hammond-Maskin Theorem

Dasguputa, Hammond, and Maskin [14] proved that a single-valued social choice rule

must be strategy-proof if and only if it satis�es Maskin monotonicity, a necessary condi-
9Bochet, Saijo, Sakai, Yamamura and Yamato [10] conduct an experiment for the division problem with

single-peaked preferences to compare the performance of the uniform rule with that of the proportional
rule that Nash implements the uniform rule. They observe that the proportional rule sometimes yields
the outcomes closer to the uniform allocation than the uniform rule. They report this �nding in an
incomplete information setting in which each subject is imformed of only his own payo¤ function.

18



tion for Nash implementation (Maskin [25] [26].) Hence, it is not unnatural to regard our

results as a corollary of Dasgupta, Hammond, and Maskin [14] and Moulin [28], because

any Nash implementable and single-valued social choice rule must be strategy-proof.

However, this intuition is not correct for the reasons given below.

First, the unique existence of Nash equilibrium outcomes in a strict monotone rule is

not derived from Dasgupta, Hammond and Maskin [14]. Second, even if there exists a

unique Nash equilibrium outcome, Dasgupta-Hammond-Maskin theorem cannot conclude

that this unique outcome is e¢ cient or anonymous, because there are some strategy-proof

rules that are not e¢ cient and anonymous10.

4.3 Comparison with Bochet and Sakai [9]

Bochet and Sakai [9] analyzed the consequence of strategic manipulations in the division

problem with single-peaked preferences under a given division rule and obtained the

following two results.

(1) Under any division rule satisfying own-peak strict monotonicity, e¢ ciency, and some

supplementary conditions, the set of strong Nash, e¢ cient Nash, and Nash equilibrium

outcomes coincides with the uniform rule, which is the unique division rule satisfying

strategy-proofness, e¢ ciency, and anonymity (Sprumont [36]; Ching [12].)

(2) When own-peak strict monotonicity is weakened to own-peak weak monotonicity,

the set of strong Nash and e¢ cient Nash equilibrium outcomes still coincides with the

uniform rule.

Our results are similar to those of Bochet and Sakai [9], because both their paper and

this paper show the equivalence between the consequence of strategic manipulations and

e¢ cient, anonymous, and strategy-proof rules. However, our results are slightly di¤erent

from theirs. The di¤erences are summarized as follows:

First, we have provided a su¢ cient condition for uniqueness of Nash equilibria, while

they did not. Finding mechanisms that �almost always�has a unique Nash equilibrium

is potentially one of our main �ndings. Second, we prove the general equivalence between

the set of coalition-proof Nash equilibrium outcomes and a generalized median voter rule.

Though they also suggest this equivalence, they leave this question open. Third, as stated

in section 2.2, they impose e¢ ciency on division rules, while we impose only unrestricted

range instead of e¢ ciency on voting rules.

On the other hand, we cannot show the equivalence between the set of e¢ cient Nash

equilibrium outcomes and a generalized median voter rule. As seen in example introduced

10For example, consider voting rules f and g such that f(x) = xi, g(x) = c, for each x 2 [a; b]N : Clearly
both f and g are strategy-proof, but f fails anonymity and g fails e¢ ciency.
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in Section 4.1, a weakly monotone voting rule can have e¢ cient Nash equilibria what

causes outcomes other than what a generalized median voter rule chooses.

5 Concluding Remarks

Through the analysis of strategic votes, we reveal the strong position that generalized

median voter rules possess. They are not only strategy-proof but also always expected

as an outcome of strategic manipulation under any given voting rule satisfying mild

conditions. Since generalized median voter rules are e¢ cient and anonymous, if only

e¢ ciency and anonymity matter, we can conclude that individual voting activities lead

to an ethically desirable outcome through an �invisible hand.�However, this result also

has a negative aspect. This "invisible hand" makes us unable to escape from a generalized

median voter rule, whatever rule we use.

In the context of implementation theory, we �nd out that any generalized median voter

rule m(p(R1); � � � ; p(Rn); a1; � � � ; an�1);such that a < a1 < � � � < an�1 < b, can be Nash
implemented by a strictly monotone voting rule that has good properties: uniqueness

of Nash equilibrium and robustness to coalitional deviations. However, this mechanism

does not have a dominant strategy as in the direct revelation mechanism of a generalized

median voter rule. On the other hand, as pointed by Saijo, Sjostrom and Yamato [32],

since a direct revelation mechanism of a generalized median voter rule has �bad�Nash

equilibria that cause undesirable outcomes, it does not implement itself in Nash equilibria.

As shown by Saijo, Sjostrom and Yamato [32], any generalized median voter rule

cannot be doubly implemented in both Nash and dominant strategy equilibria. Then, in

order to implement it, we should use either a Nash mechanism or a strategy-proof mech-

anism as a second best way. It is theoretically and empirically unclear which mechanism

works better to implement a generalized median voter rule. To study this issue, we need

to explore laboratory experiments as done by Cason, Saijo, Sjostrom and Yamato [11]

and Bochet, Saijo, Sakai, Yamamura and Yamato [10].
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