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1. Introduction

If there are no frictions in the asset market, investors can trade immediately. In reality, however,

it is almost impossible for investors to locate trading partners immediately. Therefore, financial

institutions intermediate and conduct transactions for investors in return for payment of inter-

mediation fees. In other words, intermediaries exist to reduce transaction difficulty.1 Of course,

intermediaries cannot be perfect and it takes time to find trading partners. Suppose an investor

wants to buy an asset, such as a government bond issued by a developing country whose liquid-

ity is extremely low, and sends an order to an intermediary. If the intermediary happens to have

this asset, the investor will obtain it immediately. Otherwise, it may take several hours or days

to complete the transaction because of the low liquidity of the asset. Therefore, it is interesting

to examine how the ability of the intermediary affects the efficiency of asset markets. That is

the aim of this paper.

Researchers have explored how trading delays affect market efficiency using the search the-

oretic approach. The search theory assumes that: (a) market participants cannot make transac-

tions without ”searching” for trading partners and (b) they find trading partners stochastically.

The search theory has been applied mainly to explain unemployment and why money is used as

a medium of exchange.

Only recently, the search theory was applied to asset markets. Some studies have shown that

search friction affects asset prices, market efficiency, risk premiums, etc. Lagos (2006) explains

the equity premium puzzle by analyzing the search premium for risky assets. He assumes that

search costs are necessary to trade risky assets, while such costs are not necessary to trade

riskfree assets. Since risky assets are subject to a search premium, the premium for risky assets

becomes larger. Voyanos and Wang (2007), Voyanos and Weill (2008), and Weill (2008) built

models in which two assets with identical cash flows were traded at different prices because of

different search frictions. Duffie et al. (2007) investigated the impact of search-and-bargaining

friction on asset prices in over-the-counter markets.2 They found that, under certain conditions,

1Another reason for the existence of intermediaries is to save monitoring costs. See Diamond (1984).
2Over-the-counter (OTC) markets provide the opportunity to trade financial instruments such as stocks, bonds,

commodities, and derivatives directly between two parties. This differs from exchange trading, which occurs in
facilities such as futures exchanges or stock exchanges which were created especially for the purpose of trading.
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asset prices are highly discounted because of search friction.

Lagos and Rocheteau (2007) is especially important to this paper as it inclusively investi-

gates the effects of trade delays on asset markets in a random matching model framework. The

random matching model assumes two points: (a) that market participants do not have advance

information about their trading partners and (b) they randomly meet their trading partners only

after a search. If the partner is not suitable, market participants cease contact and begin a new

search. Lagos and Rocheteau (2007) found a condition relating to preferences regarding market

participants, i.e., a reduction in trading frictions raises the asset price. They found that, unless

investors have all the bargaining power in bilateral negotiations with brokers, asset allocation is

inefficient even if the Hosios condition is satisfied.3

Lagos and Rocheteau (2007) show that efficient portfolio allocation is not achieved in the

random matching framework without particular conditions. This raises the question, ”Are there

any market mechanisms that realize more efficient allocations than random matching?” In some

labor market studies, more efficient outcomes were achieved via the directed search framework

than random matching.4 The directed search model differs from the random matching model in

the following: market participants have information about potential trading partners in advance

and choose their partners before they search. However, because of search frictions, they may

not find the chosen partners. Market participants never meet partners who were not chosen.

They meet the chosen partner with some probability, otherwise fail to find any partner. Once

they meet their partners, transactions are made immediately. In this paper, I follow Lagos and

Rocheteau (2007)’s framework, but modify it from random matching to a directed search model

to compare the efficiency of asset markets in these two frameworks.

The modification is not merely an intellectual exercise. I believe the directed search model

better describes asset transactions in the real world than the random matching model. First, in

contrast to the assumption of the random matching model, investors can actually choose their

broker. Second, contrary to the assumption of the random matching model that intermediation

3The Hosios condition indicates that the value of a broker’s bargaining power is equal to the elasticity of the
matching function. See Hosios (1990).

4Moen (1997) used a directed search framework to analyze labor markets. He assumed that firms first determine
their wage rates and then announce them. Workers apply to firms knowing the wage rates and there is no bargaining.
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fees are determined through bilateral negotiations between investors and brokers, in practice

brokers announce their fees and there are no negotiations. Thus, the directed search model

assumes that investors choose their dealers, and that dealers announce their intermediation fees

in advance.

I show that the asset allocation is efficient in the directed search framework. Moreover,

by solving the model numerically, I show that the asset price increases (decreases) with the

matching efficiency, if the relative risk aversion is smaller (larger) than unity.

The rest of this paper is organized as follows. In section 2, I lay out the model settings.

In section 3, I define the competitive equilibrium of this economy and examine how trading

frictions affect asset price and portfolio choices numerically. In section 4, I show the relation-

ship between trading frictions and social welfare and discuss the efficiency of asset allocation.

Section 5 is the conclusion.

2. Environment

The environment of the model basically follows Lagos and Rocheteau (2007). Time is con-

tinuous and infinite. Infinite investors, scaled up to unity, maximize the present value of their

lifetime utility. Homogeneous brokers, indexed byn = 1,2, ..., maximize their instantaneous

profit. The number of brokers is determined by a free entry condition. There is one durable and

perfectly divisible asset. There is one perishable good which we use as the numeraire. Total

supply of the asset is fixed toA. The numeraire goods are produced and consumed by all agents,

who produce in units of numeraire goods per working hour. Each investor’s instantaneous util-

ity function depends on his assets, consumption, and working hours, described asui(a) + c−w,

wherea is the quantity of assets that typei investor holds;i specifies the investor’s preference,

which can be eitherh(high) or l(low). I assume thatu′h(a) > u′l (a) for all a. The utility func-

tion is bounded, continuously differentiable, strictly increasing, and strictly concave.c is the

investor’s consumption of numeraire goods,w is his working hours. Each investor’s preference

type randomly changes from low and high subject to a Poisson process with an arrival rate of

λh (λl). Each investor’s time preference rate is alwaysρ.
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There is a competitive asset market that investors cannot access directly but brokers can

access at any time. Therefore, investors must use brokers when they want to trade in that asset

market. However, they may not be able to meet their broker because of matching frictions

between investors and brokers, as discussed below.

Brokers cannot own assets, so they do not engage in dealing. The only source of revenue for

brokers is the intermediation fee paid by investors. Brokers have an identical operating func-

tion, c(q), which is continuously differentiable and nondecreasing in the transaction volume

they intermediateq. Each broker announces the intermediation fee functionφn(q) in advance

and commits to it, where indexn represents then-th broker. The function is assumed to be

continuously differentiable and nondecreasing inq. Investors choose brokers based on informa-

tion about intermediation fees. After deciding to partner with, say, then-th broker, the investor

must wait to meet the broker. How long the investor waits is determined by a matching function

M(ηn), whereηn is the measure of investors who choose then-th broker.The investor meets the

n-th broker according to a Poisson process with an arrival rate ofM(ηn)
ηn

. M(ηn)
ηn

represents the

frequency of successful meetings, so that a largerM(ηn)
ηn

implies a shorter waiting time. I assume

the matching function,M(ηn), is continuously differentiable, strictly increasing, and strictly

concave. In addition,M(ηn) = 0 if and only ifηn = 0.

3. Competitive equilibrium

In this section, I characterize the steady-state equilibrium of the model defined in the previous

section. I focus on the steady-state where the problem is solved recursively. Thus, I omit the

time subscriptt in this section.

3.1. Broker

I define then-th broker’s instantaneous profit functionπn such that

πn = M(ηn)
[
φn(qn) − c(qn)

]
, n = 1,2, · · · ,

whereM(ηn) is the intermediation frequency,φ(qn) is the intermediation fee, andc(qn) is the

operating cost.
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Brokers earn no profits, i.e.,πn = 0, because of the free entry condition, implying that

M(ηn) = 0 ⇔ ηn = 0,

or

φ(qn) − c(qn) = 0 ⇔ φ(qn) = c(qn).

ηn = 0 implies that then-th broker no longer operates in the market, so this case is excluded

from the following analysis and I obtainφ(qn) = c(qn). In steady-state equilibrium, the broker’s

fee function is identically characterized as

φn(·) = c(·), n = 1,2, · · · , (1)

so that

φ′n(·) = c′(·), n = 1,2, · · · . (2)

Eq. (1) indicates that every dealer charges the same intermediate fee schedule. All brokers look

the same, resulting in a situation in which investors are uniformly distributed among brokers,

that is

η1 = η2 = · · · . (3)

The number of successful matches for all brokers also becomes equal,

M(η1) = M(η2) = · · · .

3.2. Investor

Denoting typei investor’s value function asVi(·), the Bellman equation of a high-type investor’s

problem is described as

ρVh(a) = uh(a) + λl
[
Vl(a) − Vh(a)

]

+ max
{

max
a′∈R,n∈{1,2,··· }

{
mn

[
Vh(a

′) − Vh(a) − p(a′ − a) − φn(|a′ − a|)]
}
, 0

}
,
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wherep is the asset price. The first term,uh(a), represents the instantaneous utility of a high-

type investor who ownsa units of assets. The second term arises from the possibility that the

investor will change to a low preference type at the next moment. The third term reflects the

change in asset value stemming from the transaction. Investors must decide in advance whether

or not to trade. If they decide not to trade, the value will not change. If they decide to trade,

then they need to choose a broker and wait to meet at a Poisson arrival rate ofmn ≡ M(ηn)
ηn

. The

investor decides the amount of assets they will own in the next period,a′ ∈ R, and pay the

intermediation fee,φn(|a′ − a|), to then-th broker.

Similarly, the Bellman equation of a low-type investor’s problem is written as

ρVl(a) = ul(a) + λh
[
Vh(a) − Vl(a)

]

+ max
{

max
a′∈R,n∈{1,2,··· }

{
mn

[
Vl(a

′) − Vl(a) − p(a′ − a) − φn(|a′ − a|)]
}
, 0

}
.

The following lemma is necessary for subsequent arguments. All proofs are given in the

Appendix.

Lemma 1. Vi(·) is strictly increasing, strictly concave, and continuously differentiable fori =

h, l.

Once investori decides to trade, his maximization problem is reduced to

max
a′∈R,n∈{1,2,··· }

mn
[
Vi(a

′) − Vi(a) − p(a′ − a) − φn(|a′ − a|)].

The first order condition (henceforth FOC) with respect toa′ is

V′i (a
′) − p− I(a,a′)φ

′
n(|a′ − a|) = 0, I(a,a′) =


1 a′ > a,

−1 a′ < a,
i = h, l, (4)

whereV′i (·) is the first differential of the value function. The existence ofV′i (·) is warranted by

Lemma 1;φ′n(|a′ −a|) exists by assumption. Eq. (4) indicates that the optimal portfolio depends

on the investor’s type (i) and the portfolio held by the investor before trading (a). Although

Eq. (4) also depends onn, the optimal portfolio does not depend on the broker, because every

broker charges the same fee.
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Thus, denoting the optimal portfolio for the high-type investor asah and for the low-type as

al, the Bellman equations are rewritten as:

ρVh(ah) =uh(ah) + λl
[
Vl(ah) − Vh(ah)

]
, (5)

ρVh(al) =uh(al) + λl
[
Vl(al) − Vh(al)

]
(6)

+ mn
[
Vh(ah) − Vh(al) − p(ah − al) − φn(|ah − al |)],

ρVl(ah) =ul(ah) + λh
[
Vh(ah) − Vl(ah)

]
(7)

+ mn
[
Vl(al) − Vl(ah) − p(al − ah) − φn(|al − ah|)],

ρVl(al) =ul(al) + λh
[
Vh(al) − Vl(al)

]
. (8)

I exclude the case of an investor who does not want to trade because that investor’s portfolio

will not change from the beginning, i.e., the steady-state of the economy coincides with the

initial state. In other words, I assume that the intermediation fees are not so large that such a

case exists.

Now, I demonstrate the following lemma.

Lemma 2. The optimal portfolio of the high type investor is greater than that of the low type

investor, i.e.,ah ≥ al.

Using lemma 2, the following proposition can be proved.

Proposition 1. The demand function for the assets of the high-type investor is

p =
(ρ + λh + mn)u′h(ah) + λlu′l (ah)

ρ(ρ + λh + λl + mn)
(9)

−
[
1 +

2mnλl

ρ(ρ + λh + λl + mn)

]
φ′n(ah − al),

and for that of the low-type investor is

p =
(ρ + λl + mn)u′l (al) + λhu′h(al)

ρ(ρ + λh + λl + mn)
(10)

+
[
1 +

2mnλh

ρ(ρ + λh + λl + mn)

]
φ′n(ah − al),
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These demand functions warrant that when trading frictions do not exist and no intermediation

fees are levied, the asset price of this model decays into the Walrasian equilibrium price. To

confirm this, I substituteλh = λl = 0 andφn(ah−al) = 0 in Eqs. (9) and (10) to getpW ≡ u′h(ah)

ρ
=

u′l (al )

ρ

3.3. Law of transition

I classify investors’ states into four classes,
{
hh,hl, lh, ll

}
, whose definitions are given in Table

1.

Using these variables, I can describe the laws of transition among the states of investors,

which should be followed by steady states as follows.

mnξhl + λhξlh − λlξhh = 0, (11)

λhξll −mnξhl − λlξhl = 0, (12)

λlξhh−mnξlh − λhξlh = 0, (13)

mnξlh + λlξhl − λhξll = 0, (14)

ξhl + ξlh =
∑

n

ηn, (15)

ξhh + ξhl + ξlh + ξll = 1. (16)

Eq. (11) means that inflow and outflow ofhhare equal in the steady-state. The first term,mnξhl,

represents the movement of investors fromhl to hh during one period because of transactions.

The second term,λhξlh, indicates movement of investors fromlh to hh because of a change

in type. The third term,λlξhh, are investors who move fromhh to lh because of a change in

type. Eqs. (12), (13), and (14), describe the conditions associated with stateshl, lh, and ll ,

respectively. Eq. (15) shows that investors who tend to trade are identical to investors whose

types and portfolios are not coincidental. Eq. (16) assumes that investors are scaled up to unity.

3.4. Asset market

The market clearing condition is:

(ξhh + ξlh)ah + (ξhl + ξll )al = A. (17)
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The left side is demand for the asset.ξhh + ξlh (ξhl + ξll ) is the sum of investors who haveah (al).

The total supply of the asset is fixed toA by assumption.

3.5. Equilibrium

I define the competitive equilibrium of this economy as follows.

Definition 1. The steady-state competitive equilibrium is characterized by
{
p,ah,al , φ1(·),

φ2(·), · · · , η1, η2, · · · , ξhh, ξhl, ξlh, ξll
}

that satisfies Eqs. (1), (3), and (9)-(17).

3.6. Numerical Example

3.6.1 Specifications

The equilibrium system defined above is too complicated to solve analytically. Therefore, let

me demonstrate a numerical solution instead. To calibrate the system, I specified the matching,

utility, and cost functions, and the value of parameters in the functions, as shown in Table 2.

The matching function is specified as continuous, strictly increasing, and strictly convex. A

constant relative risk aversion (CRRA) type of utility function and a linear cost function are

assumed. I determined parameters that are appropriate for fitting quarterly data. The value

adopted for the time preference rate,ρ, is frequently used in macroeconomics studies such as

the real business cycle theory. I set the Poisson arrival rate for the transition of investor type,

λh andλl, at approximately every week and parameters of the utility functions,εh and εl, to

make the marginal utility of low-type investors be half that of high-type. The cost function

parameters,c1 andc2, were set to be small enough to induce the incentive to trade. With these

specifications, a largerM implies more opportunity for transactions. Thus, we can regard the

parameterM as the matching efficiency.

3.6.2. Results

Figure 1 shows how the matching efficiency (M) affects price (p), the high-type investor’s op-

timal portfolio (ah), and the low-type investor’s optimal portfolio (al) when the relative risk

aversion is less than unity. WhenM equals 10 (20), the investor meets the broker every few

days (several hours). In this case, the asset price increases with the matching efficiency. In
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the reverse case, when relative risk aversion is larger than unity, the opposite result is obtained

(Figure 2). In both cases, the optimal portfolio of the high-type investor increases and of the

low-type investor decreases with the matching efficiency. In other words,ah − al increases with

the matching efficiency.

3.6.3. Intuition

Let me explain why the above results were obtained. First, suppose that if the matching ef-

ficiency (M) is extremely low, investors know that transactions are hardly possible; they will

have to keep their portfolios as they are even though their portfolios are not optimal. The larger

the gap betweenah andal, the more opportunity costs. Thus, whenM is low, ah − al has a

low value. Second, when the relative risk aversion is smaller than unity, investors are close to

neutral risk and their elasticity of intertemporal substitution is larger than unity. In this case,

the substitution effect exceeds the income effect, so that the price elasticity of an asset is larger

than unity. The demand functions corresponding to this case are described in Figure 3. Eqs.

(9) and (10) indicate that an improvement of matching efficiency shifts the high-type investor’s

demand function upward and the low-type investor’s downward. If the asset price remains atp∗,

expansion of the high-type investor’s demanda′h − ah dominates the reduction of the low-type

investors’al −a′l , resulting in expansion of the aggregate demand. Since the total asset supply is

fixed atA, expansion of the aggregate demand causes excess demand for the asset. As a result,

the asset price rises to clear the market. When the relative risk aversion coefficient is larger than

unity, the argument is opposite. These effects of matching efficiency on asset price and optimal

portfolios are consistent with Lagos and Rocheteau (2007).

4. Efficiency

4.1. Efficient allocation

In this section, I analyze a social planner’s problem. I assume that the social planner manipulates

investors’ portfolios. The free entry condition is assumed in this section to compare the social

optimum with the market equilibrium under the same exogenous condition.

For analytical tractability, I consider the case where the time preference rate is close to 0.
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Under this assumption, the social planner’s problem decays to the maximization of the steady-

state instantaneous welfare. The planner solves

max
as

h,a
s
l

W =ξs
hhuh(a

s
h) + ξs

hluh(a
s
l ), (18)

+ ξs
lhul(a

s
h) + ξs

ll ul(a
s
l ) −

∑

n

M(ηs
n)c(as

h − as
l ),

subject to

(ξs
hh + ξs

lh)as
h + (ξs

hl + ξs
ll )a

s
l = A, (19)

ms
nξ

s
hl + λhξ

s
lh − λlξ

s
hh = 0, (20)

λhξ
s
ll −ms

nξ
s
hl − λlξ

s
hl = 0, (21)

λlξ
s
hh−ms

nξ
s
lh − λhξ

s
lh = 0, (22)

ms
nξ

s
lh + λlξ

s
hl − λhξ

s
ll = 0, (23)

ξs
hh + ξs

hl + ξs
lh + ξs

ll = 1, (24)
∑

n

ηs
n = ξs

hl + ξs
lh, (25)

ηs
1 = ηs

2 = · · · . (26)

wheresdenotes the social planner’s problem andms
n ≡ M(ηs

n)
ηs

n
is common for all brokers because

of Eq. (26). The social planner’s objective function appeared in Eq. (18). It is composed of

the weighted sum of the investors’ utility and the brokers’ operating costs. It does not include

intermediation fees, because the social planner is not interested in these fees that are merely

transferred from investors to brokers.

FOCs with respect toas
h andas

l are

ξs
hhu
′
h(a

s
h) + ξs

lhu′l (a
s
h) −

∑

n

M(ηs
n)c
′(as

h − as
l ) − µ(ξs

hh + ξs
lh) = 0, (27)

ξs
hlu
′
h(a

s
l ) + ξs

ll u
′
l (a

s
l ) +

∑

n

M(ηs
n)c
′(as

h − as
l ) − µ(ξs

hl + ξs
ll ) = 0, (28)

whereµ is a Lagrange multiplier for the constraint (19). Eliminating the Lagrange multiplier in

Eqs. (27) and (28), I obtain

ξs
hhu
′
h(a

s
h) + ξs

lhu′l (a
s
h) −

∑
n M(ηs

n)c
′(as

h − as
l )

ξs
hh + ξs

lh

=
ξs

hlu
′
h(a

s
l ) + ξs

ll u
′
l (a

s
l ) +

∑
n M(ηs

n)c
′(as

h − as
l )

ξs
hl + ξs

ll

.

(29)
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From Eqs. (20)-(24), I obtain

ξs
hh =

λh(ms
n + λh)

(λh + λl)(ms
n + λh + λl)

, (30)

ξs
hl = ξs

lh =
λhλl

(λh + λl)(ms
n + λh + λl)

, (31)

ξs
ll =

λl(ms
n + λl)

(λh + λl)(ms
n + λh + λl)

. (32)

Substituting Eqs. (25), (26), and (30)-(32) into Eq. (29), I obtain

(ms
n + λh)u′h(a

s
h) + λlu′l (a

s
h) − 2ms

nλlc′(as
h − as

l )

(ms
n + λl)u′l (a

s
l ) + λhu′h(a

s
l ) + 2ms

nλhc′(as
h − as

l )
= 1. (33)

Eq. (33) is interpreted as follows. If the social planner decreasesas
h, the instantaneous utility of

hhandlh investors decreases andas
l increases to satisfy market clearing conditions. In response,

ll andhl investors’ utility increases. The changes inas
h andas

l also alter the broker’s operating

costs. At the optimum, the weighted sum of these effects is canceled out.

I now define the efficient allocation of this economy.

Definition 2. The steady-state efficient allocation is characterized by
{
as

h,a
s
l , η

s
1, η

s
2, · · · ,

ξs
hh, ξ

s
hl, ξ

s
lh, ξ

s
ll

}
that satisfies Eqs. (19)-(26) and (33).

Figure 4 is a numerical example of the relationship between the matching efficiency and

social welfare in efficient allocations. The vertical axisW is social welfare, defined in Eq. (18).

The horizontal axis represents matching efficiency, parameters of which are shown in Table 2.

Social welfare monotonically increases with matching efficiency, implying that smaller trading

frictions results in higher social welfare, consistent with our intuition.

4.2. Efficiency of competitive equilibrium

In this subsection, I discuss the efficiency of competitive equilibrium. Specifically, I examine

whether competitive equilibrium achieves the social optimum.

It is obvious that Eqs. (19)-(26) of the social optimum are parallel to Eqs. (3) and (11)-(17)

in the competitive equilibrium. Thus, what is necessary to show is that Eq. (33) is fulfilled in
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the competitive equilibrium. To confirm this, I incorporate Eqs. (9) and (10) to obtain:

(ρ + λh + mn)u′h(ah) + λlu′l (ah)

ρ(ρ + λh + λl + mn)
−

[
1 +

2mnλl

ρ(ρ + λh + λl + mn)

]
φ′n(ah − al)

=
(ρ + λl + mn)u′l (al) + λhu′h(al)

ρ(ρ + λh + λl + mn)
+

[
1 +

2mnλh

ρ(ρ + λh + λl + mn)

]
φ′n(ah − al). (34)

To derive Eq. (33), I substitute Eq. (2) into Eq. (34), multiply both sides of Eq. (34) by

ρ(ρ + λh + λl + mn), and takeρ→ 0. Thus, the following proposition is established.

Proposition 2. The steady-state competitive equilibrium coincides with the efficient allocation

when each investor’s time preference rate is close to 0.

This proposition ascertains that trading frictions do not distort efficient allocation when

modeled in a directed search framework. Why is this efficient proposition derived? Close

inspection of the above proof reveals that Eq. (2), which forces marginal intermediation fees

to be equal to the broker’s marginal costs, is the key for the competitive equilibrium to be

socially optimal. The social planner is concerned not with intermediation fees but with brokers’

operating costs, while investors are concerned with the contrary. Eq. (2) makes these two costs

coincide, so that both the social planner and the investors make the same decision. Since Eq.

(2) comes from competition among brokers, the free entry condition, as well as the obligation

to announce intermediation fees in advance, is inevitable for the intermediaries to be socially

optimal.

5. Conclusion

In this paper, I investigated how trading frictions of asset markets affect portfolio choices, asset

prices, and welfare, essentially following Lagos and Rocheteau (2007)’s framework, but mod-

ifying it from random matching to a directed search model. Solving the model numerically, I

show that the asset price increases (decreases) with matching efficiency if the relative risk aver-

sion is smaller (larger) than unity. Lagos and Rocheteau (2007), using the random matching

framework, found that asset allocation in the competitive equilibrium is not efficient. Contrary

to their results and using the directed search framework, I show that asset allocation in the com-

petitive equilibrium is efficient. The key condition for the optimum is that intermediation fees

13



be equal to brokers’ operating costs. If the intermediation fees are larger than the brokers’ op-

erating costs, the transaction volume of the asset is smaller than optimal. On the other hand, if

the intermediation fees are smaller than the brokers’ operating costs, the transaction volume is

larger than optimal. Note, this condition is not achieved only by Hosios condition but also be-

cause the brokers’ bargaining power takes a zero value in the random matching and bargaining

framework.

In this paper, I assumed that investors’ preference type changes according to an identical

Poisson process, and that all brokers have a homogeneous cost function. Thus, a possible

extension of this paper would be introduction of heterogeneity to reflect the real world, where

several types of investors and brokers exist, at least ex-ante.
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Appendix

Proof of Lemma 1.

I prove Lemma 1 using theorems 4.7 and 4.8 from Stokey and Lucas (1989). It is sufficient to

check the following three items, which are clearly satisfied in this economy.

1. R is nonempty, compact-valued, continuous, monotone, and convex.

2. u(·) is bounded, continuous, strictly increasing, and strictly concave.

3. ρ > 0.

�

Proof of Lemma 2.

Supposeah < al, then

I(al ,ah) = −1,

I(ah,al ) = 1,

and

V′h(ah) = p− φ′n(al − ah) ≤ p + φ′n(al − ah) = V′l (al),

becauseφ′(·) is nonnegative by assumption. The strict concavity of value functions indicates

that

V′l (ah) > V′l (al) ≥ V′h(ah) > V′h(al).

Then note

ρV′h(ah) = u′h(ah) + λl
[
V′l (ah) − V′h(ah)

]
,

= u′h(ah) + λl[sign+], (35)

ρV′l (ah) = u′l (ah) + λh
[
V′h(ah) − V′l (ah)

]
+ mn

[ − V′l (ah) + p + φ′k(al − ah)
]
,

= u′l (ah) + λh
[
V′h(ah) − V′l (ah)

]
+ mn

[ − V′l (ah) + V′l (al)
]
,

= u′l (ah) + λh[sign−] + mn[sign−], (36)
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where [sign+] and [sign−] mean a positive term and a negative term, respectively. Subtract Eq.

(36) from Eq. (35), then

ρ
[
V′h(ah) − V′l (ah)

]
=

[
u′h(ah) − u′l (ah)

]
+ [sign+],

⇒ ρ[sign−] = [sign+],

where I assume thatu′h(a) ≥ u′l (a) for all a. This is a contradiction becauseρ > 0.

�

Proof of Proposition 1.

Lemma 2 indicates that

I(al ,ah) = 1, (37)

I(ah,al ) = −1. (38)

Eqs. (37) and (38) indicate that the investors’ FOCs are

V′h(ah) = p + I(al ,ah)φ
′
n(ah − al) = p + φ′n(ah − al), (39)

V′l (al) = p + I(ah,al )φ
′
n(ah − al) = p− φ′n(ah − al). (40)

First, transforming Eqs. (5) and (8), then

Vh(ah) =
uh(ah) + λlVl(ah)

ρ + λl
, (41)

Vl(al) =
ul(al) + λhVh(al)

ρ + λh
. (42)

Next, differentiating both sides of Eq. (41) with respect toah and Eq. (42) with respect toal,

then

V′h(ah) =
u′h(ah) + λlV′l (ah)

ρ + λl
, (43)

V′l (al) =
u′l (al) + λhV′h(al)

ρ + λh
(44)

Substituting Eqs. (43) and (44) into Eqs. (39) and (40),

p =
u′h(ah) + λlV′l (ah)

ρ + λl
− φ′n(ah − al), (45)

p =
u′l (al) + λhV′h(al)

ρ + λh
+ φ′n(ah − al). (46)
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Transforming Eqs. (6) and (7),

Vh(al) =
uh(al) + λlVl(al) + αn

[
Vh(ah) − p(ah − al) − φn(ah − al)

]
ρ + λl + αn

, (47)

Vl(ah) =
ul(ah) + λhVh(ah) + αn

[
Vl(al) − p(al − ah) − φn(ah − al)

]
ρ + λh + αn

. (48)

Differentiating Eqs. (47) and (48) with respect toal andah, respectively, and substituting Eqs.

(41) and (42) into them, I obtain

V′h(al) =
u′h(al) + (λl + αn)p− (λl − αn)φ′n(ah − al)

ρ + λl + αn
, (49)

V′l (ah) =
u′l (ah) + (λh + αn)p + (λh − αn)φ′n(ah − al)

ρ + λh + αn
. (50)

Substituting Eqs. (49) and (50) for Eqs. (47) and (48), I can derive proposition 1.

�

Proof of Proposition 2.

See text.

�
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Duffie, D., Ĝarleanu, N., Pedersen, L.H., 2007. Valuation in over-the-counter markets. Rev.

Finan. Stud. 20, 1865-1900.

Hosios, A.J., 1990. On the efficiency of matching and related models of search and unemploy-

ment. Rev. Econ. Stud. 57, 279-298.

Lagos, R., 2006. Asset Prices and Liquidity in an Exchange Economy. Research Department

Staff Report 373, Federal Reserve Bank of Minneapolis.

Lagos, R., Rocheteau, G., 2007. Search in asset markets: Market structure, liquidity, welfare.

Amer. Econ. Rev. 97, 198-202.

Moen, E.R., 1997. Competitive search equilibrium. J. Polit. Econ. 105, 385-411.

Stokey, N.L., Lucas, R.E., 1989. Recursive Methods in Economic Dynamics. Harvard.

Voyanos, D., Wang, T., 2007. Search and endogenous concentration of liquidity in asset mar-

kets. J. Econ. Theory 136, 66-104.

Voyanos, D., Weill, P.O., 2008. A search-based theory of the on-the-run phenomenon. J. Finan.

113, 1361-1398.

Weill, P.O., 2008. Liquidity premia in dynamic bargaining markets. J. Econ. Theory 140,

66-96.

18



Table 1: Four classes of investors

state type portfolio measure
hh high ah ξhh

hl high al ξhl

lh low ah ξlh

ll low al ξll

Table 2: Values of parameters used in functions

M(ηn) ui(a) c(q) β ρ λh λl εh εl A c1 c2

Mη
β
n εi

a1−γ
1−γ c1 + c2q 0.5 0.01 12 12 20 10 10 0.01 0.001

10 11 12 13 14 15 16 17 18 19 20
315

315.5

316

316.5

10 11 12 13 14 15 16 17 18 19 20
11.5

12

12.5

10 11 12 13 14 15 16 17 18 19 20
7.5

8

8.5

p 

a
h
 

a
l

M 

Figure 1:Asset price and portfolio choices when the relative risk aversion is less than unity (γ = 0.6). This

figure shows how matching efficiency (M) relates to asset price (p), the high-type investor’s optimal portfolio (ah),

and the low-type investor’s optimal portfolio,al.
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Figure 2: Asset price and portfolio choices when the relative risk aversion is larger than unity (γ = 1.5).

This figure shows how matching efficiency (M) relates to asset price (p), the high-type investor’s optimal portfolio

(ah), and the low-type investor’s optimal portfolio,al.
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Figure 3:Demand functions (γ = 0.6). ph (pl) is the demand function of the high-type (low-type) investor. As

the matching efficiency improves, demand functions shift from solid lines (ph, pl) to dotted lines (p+
h , p

+
l ). If the

price remains atp∗, the high-type (low-type) investor’s optimal portfolio shifts fromah (al) to a′h (a′l ).
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Figure 4:Welfare. The relationship between matching efficiency (M) as defined in Table 2 and social welfare

(W) as defined in Eq. (18).
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