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Abstract

Using a simple product differentiation model with elastic demands, we investigate the

relationship between differentiation strategies and vertical relations. Depending on the

competitive structure in the upstream market, three differentiation patterns (maximum,

minimum and partial differentiation) can appear in equilibrium even though each down-

stream firm freely determines the degree of product differentiation. When downstream

firms must incur positive investment costs to differentiate their products, they tend to do

so if the upstream market is competitive.
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1 Introduction

Manufacturers often have relationships with many input suppliers. For instance, in the aircraft

industry, the jet (turboprop) engine and aircraft industries are vertically related. To produce

a differentiated product, aircraft firms must procure suitable but costly equipment. Engine

companies also have relations with many buyers, and potentially with all of them (Bonaccorsi

and Giuri (2001)). In the automobile industry, Toyota procures electric parts from many

input suppliers, including Denso, which is one of the largest auto part manufacturers.1 Denso

sometimes supplies other automobile manufacturers, for instance Daimler Chrysler. Thus, its

electrical parts may be used in automobiles from different manufacturers.

When manufacturers produce (horizontally) differentiated products, they sometimes face

constraints that stem from the technological capacities of suppliers. When those manufactur-

ers are able to negotiate with many suppliers of suitable inputs, they can procure those inputs

at reasonable prices. In contrast, when there are only a few suppliers of suitable inputs, the

manufacturers must pay higher prices. That is, competitiveness in input markets affects the

procurement conditions of manufacturers.

Because decisions on product positioning (differentiation), which is an important strategic

tool of firms, are influenced by such buyer–supplier relationships,2 some researchers investi-

gate the relationship between differentiation strategies and vertical relations. Using Hotelling

location models, Brekke and Straume (2004) and Matsushima (2004, 2008) discuss how up-

stream units affect the differentiation strategies of downstream firms.3 In Brekke and Straume

(2004), firms acquire inputs through bilateral monopoly relations with suppliers. They show

1 Ahmadjian and Lincoln (2001) research the vertical relationship between Toyota and Denso.

2 There are many studies on product positioning decisions. See, for instance, Hotelling (1929), d’Aspremont

et al. (1979), Hauser and Shugan (1983), Vandenbosch and Weinberg (1995), and Sayman, Hoch, and Raju

(2002).

3 Bárcena-Ruiz and Casado-Izaga (2008) incorporate the sequential move of upstream prices (wages) into

the model of Brekke and Straume (2004). Using a Hotelling location model, Erkal (2007) also investigates how

the buyer–supplier relationship affects differentiation strategies.
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that the existence of upstream suppliers enhances the degree of product differentiation. In

Matsushima (2004, 2008), each upstream firm that locates in a linear city engages in price

competition for the business of downstream firms. To supply one unit of input to a down-

stream firm, each upstream firm incurs a transport cost quadratic in distance. These papers

show that the degree of product differentiation decreases as the coefficient of the quadratic

transport cost incurred by each upstream firm increases. Although the settings of Brekke and

Straume (2004) and Matsushima (2004, 2008) are only slightly different, those papers provide

quite different results.

Although those researchers provide interesting insights into the relationship between dif-

ferentiation strategies and vertical relations, they only consider markets in which downstream

firms compete in price (strategic complement). Moreover, consumer demand is inelastic in

their models because they use Hotelling models. It is not obvious how vertical relations af-

fect the differentiation strategies of downstream firms when such firms compete in quantity

(strategic substitute). The aim of this paper is to investigate this problem. Moreover, a

further contribution of this paper is that our model succeeds in merging the previous three

papers into a simple duopoly model with elastic demand functions.

The model setting of the paper is as follows. There are two upstream and two down-

stream firms. Each downstream firm produces a differentiated final product, and must buy

an input from the upstream firms. Each downstream firm determines the degree of prod-

uct differentiation (denoted by γ). Each firm must incur investment costs to differentiate its

product (product R&D). We consider two cases concerning the competitive environment of

upstream firms. First, each upstream firm has a bilateral monopoly relation with its buyer (a

downstream firm). Second, each upstream firm faces competitive forces that can potentially

deprive it of its trade with its downstream partner. To supply one unit of input to a down-

stream firm, the potential suppliers must incur two additional marginal costs (k + τdi) that

depend on the degree of product R&D that the downstream firm undertakes (di ∈ [0, 1/2],
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1− d1 − d2 = γ), where k and τ are positive constants. We can interpret the additional costs

of potential suppliers as being the conversion cost from the product of the upstream firm into

an input suitable for the downstream firm. After purchasing its input from an upstream firm,

each downstream firm sets the quantity to be supplied.

We show that when the investment cost for product R&D is zero, maximum differentiation

appears in equilibrium if k is large or τ is small. If k is small and τ is large, minimum

differentiation appears. If k has an intermediate value and τ is large, only one downstream

firm engages in product R&D. We also show that both minimum and maximum differentiation

appear in equilibrium if k is small and τ has an intermediate value. Moreover, we show that

when the investment cost for product R&D is positive, minimum differentiation tends to

appear in equilibrium if each upstream firm has a bilateral monopoly relation with its buyer

(a downstream firm). A slight difference in product R&D technologies leads to quite different

equilibrium outcomes in product differentiation. Those results are somewhat different from

Brekke and Straume (2004) and Matsushima (2004, 2008), and provide additional insights

into the discussion of the relationship between product differentiation and vertical relations.

The setting and the results of this paper are related to the case of the aircraft industry.4

There are two major firms in this industry, Airbus and Boeing. Those firms rely heavily on

firm-specific inputs (engines, wings, horizontal stabilizers) produced by independent manu-

facturers. For instance, Rolls Royce and CFM International (a joint venture between GE

and the French company Snecma) make highly specific turbofan engines for airplanes. Rolls

Royce made the Trent XWB turbofan engine to meet the specific requirements of the Airbus

A350 XWB family, and developed the Trent 900 series exclusively to power the new Airbus

A380. Furthermore, CFM International designed the CFM56-3 turbofan engine exclusively

for Boeing aircraft.5 Under the procurement condition, Airbus and Boeing have considered

4 This paragraph is based on the discussions in Beelaerts van Blokland et al. (2008), Nalebuff (2002), Esty

and Ghemawat (2002), and Tombak (2006).

5 In reality, these engine manufacturers sometimes supply both Airbus and Boeing if possible.

3



whether their products should be differentiated. At one time, Airbus and Boeing produced

highly differentiated aircraft (A380 and Boeing 787), however at other times, they produced

less-differentiated aircraft (the A340 and Boeing 747(777)) and competed directly.6 From this

real world example, we can say that the technological constraints of input suppliers crucially

affect the differentiation strategies of the two aircraft firms.

This paper is closely related to that of Lin and Saggi (2002). Using linear demand functions

with product differentiation, they discuss the relationship between process and product R&D.7

We add vertical relations to their model, and our motivation is quite different from theirs. Our

main concern is how the existence of upstream firms and competition between them affects

the differentiation strategies of downstream firms.8

The paper proceeds as follows. The next section outlines the basic environment. Section

3 provides an analysis of the model. Section 4 discusses the relationship between vertical

relations and differentiation strategies. Finally, Section 5 offers some concluding remarks.

6 The A3XX (which was rechristened the A380) program was formally launched in December 2000. After

that event, Boeing abandoned the Sonic Cruise development program and launched the 787 program because

of concerns about fuel efficiency in the ailing airline industry in 2002. Therefore, the A380 and Boeing 787

are highly differentiated. In 1987, Airbus launched the A330 and A340 airframes, which were designed to

compete with the Boeing 747 on medium- to long-distance routes. Boeing then postponed the 7J7 project to

develop a short-range 150-seat aircraft (which has the potential to differentiate its product line from that of

the large-scale intercontinental commercial jet market) and then developed the 777 airframe with technological

features, seating capacity and range similar to those of the A340.

7 Most subsequent studies of Lin and Saggi (2002) also focus on the complementarity of process and product

R&D, which is not the focus of this paper. See, for instance, Mantovani (2006) and Braun (2008).

8 There are discussions on how vertical structure affects incentives of upstream and/or downstream firms for

innovative activities. Given vertical market structures and competition environments, Ishii (2004) and Milliou

(2004) discuss spillover effects of R&D investments. Banerjee and Lin (2003), Brocas (2003), and Buehler

and Schmutzler (2008) focus on the relation of vertical market structure and cost-reducing investment in

oligopoly. These papers do not discuss how the existence of upstream firms affects the differentiation strategies

of downstream firms. Pepall and Norman (2001) also consider vertical relationships and product differentiation.

They consider vertical mergers and vertical foreclosure, but not endogenous product differentiation. In their

model, the degree of product differentiation of the downstream firms is exogenous.
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2 The model

We consider a market with two downstream and two upstream firms. There is only one factor

of production, which we refer to as the input. Each firm produces a differentiated final good

in a constant-returns-to-scale process where one unit of the input becomes one unit of the

final good. Each downstream firm can perform this conversion at no cost.

We assume that the two downstream firms compete in quantity. Now let xi denote i’s

sales. The inverse demand function of firm i is given by

pi = 1 − xi − γxj , i = 1, 2, i �= j. (1)

where pi is the price of the final good produced by i, and γ(∈ [0, 1]) indicates the degree of

product differentiation between the products. The lower the value of γ, the higher the degree

of product differentiation. The value of γ is determined by each firm’s investment in product

R&D, denoted by di (i = 1, 2).

We consider the downstream firm’s investments in product R&D. Following the setting in

Lin and Saggi (2002),9 we assume that the value of γ is determined by each downstream firm’s

investment in product R&D, denoted by di (i = 1, 2). The extent of product differentiation

is γ = 1 − (d1 + d2), and 0 ≤ di ≤ 1/2. The cost of product R&D is given by F (di), F ′ ≥ 0,

F ′′ ≥ 0.

Let zi denote the amount of input supplied by the supplier of firm i. Each input supplier

sets a wholesale price wi to maximize its profit function (without loss of generality, we assume

that the marginal cost is normalized to zero):

πUi = wizi, i = 1, 2. (2)

The fact that the input suppliers unilaterally set the wholesale prices implies that they possess

full bargaining power.
9 See also Braun (2008), Cellini and Lambertini (2002), Lambertini et al. (1998), Rosenkranz (2003), and

Weiss (2003).
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In this paper, we consider two cases concerning the technologies of upstream firms:

1. Neither upstream firm faces a competitor.

2. Each upstream firm faces competitors that are potentially able to supply the downstream

firms. If a competitor incurs a marginal cost, fi = τdi + k, it is able to supply input to

downstream firm i, where τ and k are positive constants, and di is the level of product

R&D engaged in by downstream firm i (i = 1, 2).

In the first case, each upstream firm is in a monopoly position with respect to its trading

partner, similar to the setting in Brekke and Straume (2004). In the second case, upstream

firms face potentially harmful competitive forces, which include rival upstream firms supplying

the downstream firm (that is, upstream firms i and j are potential competitors (i = 1, 2, i �=
j)). For instance, as mentioned in the introduction, while Rolls Royce and CFM International

supply highly specific turbofan engines exclusively to Airbus and Boeing, respectively, these

engine suppliers are both potential suppliers of either Airbus or Boeing (in reality, these

engine manufacturers sometimes supply both Airbus and Boeing). Following the setting in

Matsushima (2004, 2008), we assume that the marginal cost fi is increasing in the degree of

product R&D, which is related to the degree of product differentiation. This case is a slightly

modified version of Matsushima (2004, 2008).10

We can interpret the first case as a special case of the second one. When k is sufficiently

high, potential competitors do not dare to supply inputs to a downstream firm because the

marginal cost is prohibitively high. Because the first case is technically simpler than the

second, we show both cases separately.

To summarize, we model the game structure as follows.

1. Each downstream firm engages in product R&D.

10 This setting is somewhat similar to that of Aiura and Sato (2008), who discuss the differentiation strategies

of firms in a Hotelling model.
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2. Each upstream input supplier sets its wholesale price.

3. Given these prices, each firm simultaneously decides on a quantity to supply.

3 Analysis

3.1 No potential supplier

In this case, there is no potential competitor to the upstream firms. Upstream firm i unilat-

erally offers its wholesale price wi (i = 1, 2) to downstream firm i.

The profits of downstream firms 1 and 2 are:

πD1 ≡ (1 − x1 − γx2 − w1)x1 − F (d1), πD2 ≡ (1 − x2 − γx1 − w2)x2 − F (d2). (3)

The first-order conditions lead to:

x1 =
2 − γ − 2w1 + γw2

4 − γ2
, x2 =

2 − γ − 2w2 + γw1

4 − γ2
. (4)

The profits of the input suppliers are:

πU1 =
w1(2 − γ − 2w1 + γw2)

4 − γ2
, πU2 =

w2(2 − γ − 2w2 + γw1)
4 − γ2

. (5)

The first-order conditions lead to:

w1 = w2 =
2 − γ

4 − γ
. (6)

The equilibrium profits of the downstream and the upstream firms are:

πDi =
4

(4 − γ)2(2 + γ)2
− F (di) (i = 1, 2), πU1 = πU2 =

2(2 − γ)
(4 − γ)2(2 + γ)

. (7)

3.2 Potential suppliers

In this case, potential suppliers can supply inputs to both downstream firms. If fi = τdi +k is

insufficiently large, upstream firm i faces the constraint that its wholesale price for downstream

firm i cannot exceed fi because other potential suppliers can undercut its wholesale price to
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downstream firm i. Therefore, when we consider the determination of wholesale prices, we

must take into account the constraints.

The profits of downstream firms 1 and 2 are:

πD1 = (1 − x1 − γx2 − w1)x1 − F (d1), πD2 = (1 − x2 − γx1 − w2)x2 − F (d2). (8)

The first-order conditions lead to:

x1 =
2 − γ − 2w1 + γw2

4 − γ2
, x2 =

2 − γ − 2w2 + γw1

4 − γ2
. (9)

The profits of the input suppliers are:

πU1 =
w1(2 − γ − 2w1 + γw2)

4 − γ2
, s.t. w1 ≤ f1, (10)

πU2 =
w2(2 − γ − 2w2 + γw2)

4 − γ2
, s.t. w2 ≤ f2. (11)

Without loss of generality, we assume that f1 ≥ f2, that is, d1 ≥ d2. In other words, the effort

of firm 1 in product R&D is more significant than that of firm 2. The first-order conditions

lead to: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w1 = k + τd1, w2 = k + τd2, if k ≤ k1,

w1 =
2 − γ + γk + γτd2

4
, w2 = k + τd2, if k1 < k ≤ k2,

w1 = w2 =
2 − γ

4 − γ
, if k2 < k,

(12)

where k1 ≡ 2 − γ − τ(4d1 − γd2)
4 − γ

, k2 ≡ 2 − γ − τ(4 − γ)d2

4 − γ
.
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The equilibrium profits of the downstream and the upstream firms are:

(1)

⎧⎪⎪⎨
⎪⎪⎩

πD1 =
((2 − γ)(1 − k) − 2τd1 + γτd2)2

(2 − γ)2(2 + γ)2
− F (d1),

πD2 =
((2 − γ)(1 − k) − 2τd2 + γτd1)2

(2 − γ)2(2 + γ)2
− F (d2),

if k ≤ k1,

(2)

⎧⎪⎪⎨
⎪⎪⎩

πD1 =
(2 − γ + γk + γτd2)2

4(2 − γ)2(2 + γ)2
− F (d1),

πD2 =
((8 − γ2)(1 − k) − 2γ − (8 − γ2)τd2)2

16(2 − γ)2(2 + γ)2
− F (d2),

if k1 < k ≤ k2,

(3)

⎧⎪⎨
⎪⎩

πD1 =
4

(4 − γ)2(2 + γ)2
− F (d1),

πD2 =
4

(4 − γ)2(2 + γ)2
− F (d2),

if k2 < k.

(13)

(1)

⎧⎪⎪⎨
⎪⎪⎩

πU1 =
(k + τd1)((2 − γ)(1 − k) − 2τd1 + γτd2)

(2 − γ)(2 + γ)
,

πU2 =
(k + τd2)((2 − γ)(1 − k) − 2τd2 + γτd1)

(2 − γ)(2 + γ)
,

if k ≤ k1,

(2)

⎧⎪⎪⎨
⎪⎪⎩

πU1 =
(2 − γ + γk + γτd2)

8(2 − γ)(2 + γ)
,

πU2 =
(k + τd2)((8 − γ2)(1 − k) − 2γ − (8 − γ2)τd2)

4(2 − γ)(2 + γ)
,

if k1 < k ≤ k2,

(3)

⎧⎪⎪⎨
⎪⎪⎩

πU1 =
2(2 − γ)

(4 − γ)2(2 + γ)
,

πU2 =
2(2 − γ)

(4 − γ)2(2 + γ)
,

if k2 < k.

(14)

4 Endogenous product differentiation

We now discuss how each downstream firm determines its products positions.

4.1 No investment cost (F = 0)

We now suppose that F = 0 for any di (i = 1, 2). Each downstream firm freely sets γ =

1 − d1 − d2 to maximize its own profit. We consider two cases: that with no competing

potential supplier and that with potential suppliers.
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4.1.1 No potential supplier

Differentiating πDi with respect to di, we have:

∂πD1

∂d1
=

∂πD2

∂d2
=

16(d1 + d2)
(3 − d1 − d2)3(3 + d1 + d2)3

≥ 0. (15)

Therefore, each downstream firm chooses di = 1/2 (i = 1, 2).

Proposition 1 When there is no potential competitor for either upstream firm, if F = 0 for

any di (i = 1, 2), d1 = d2 = 1/2 in equilibrium.

4.1.2 Potential suppliers

To clarify the analysis, we now restrict the choices of the downstream firms. We tentatively

assume that each downstream firm has only two options, di = 0 and di = 1/2 (i = 1, 2).

Because of the simplification, the game is reduced to a simple 2×2 matrix. In the main text,

we only solve the 2 × 2 matrix. Fortunately, we can show that the equilibrium outcomes

derived by the 2 × 2 matrix really appear as equilibrium outcomes in the game in which

each downstream firm freely sets di ∈ [0, 1/2] (i = 1, 2).11 Roughly speaking, in this setting,

the profit functions of the downstream firms are convex with respect to di. Therefore, the

boundaries, di = 0 and di = 1/2, may be the best candidates.

There are three cases, depending on the endogenous and exogenous variables: (1) k ≤ k1,

(2) k1 < k ≤ k2, and (3) k2 < k (see equation (12)). When each firm chooses di = 0

(i = 1, 2), that is, γ = 1, the first case appears if k ≤ 1/3 and the third case appears if

1/3 < k. When one downstream firm chooses di = 0 and another chooses dj = 1/2 (i = 1, 2,

i �= j), that is, γ = 1/2, the first case appears if k ≤ (3 − 4τ)/7, the second case appears if

(3−4τ)/7 < k ≤ 3/7, and the third case appears if 3/7 < k. When each firm chooses di = 1/2

(i = 1, 2), that is, γ = 0, the first case appears if k ≤ (1 − τ)/2 and the third case appears if

(1 − τ)/2 < k. We summarize the discussion in the following figure.
11 The calculus is highly complex but does not provide any economic information. The calculus is available

from the authors on request.
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*************************

Figure 1 here

*************************

In Figure 1, (1), (2), and (3) refer to the equation number in equation (13) that applies to each

region. For instance, suppose that the values of k and τ are in region (e). When d1 = d2 = 0,

the third profit function (3) in equation (13) applies; when di = 0 and dj = 1/2, the second

profit function (2) in equation (13) applies; when d1 = d2 = 1/2, the first profit function (1) in

equation (13) applies. The payoff matrix is described in Table 1 (note that, γ = 1− d1 − d2).

*************************

Table 1 here

*************************

In region (e), both firms choose di = 1/2 (i = 1, 2) in equilibrium if k > 15τ − 3, otherwise

a firm chooses di = 0 and another firm chooses dj = 1/2 (i = 1, 2, i �= j) in equilibrium. We

can apply this argument to all eight regions. Solving the payoff matrices for the eight regions,

we have Proposition 2.

Proposition 2 When there are potential competitors for the upstream firms, if F = 0 for

any di (i = 1, 2), depending on the exogenous values (k and τ), the following outcome appears

in equilibrium:

d1 = d2 = 1/2 if

⎧⎨
⎩

k ≤ 33/109 and k ≤ (6 − 19τ)/6 or
33/109 ≤ k ≤ 12/31 and k ≥ 15τ − 3 or
12/31 ≤ k,

d1 = 0 d2 = 1/2 if 1/3 ≤ k ≤ 12/31 and k ≤ 15τ − 3,

d1 = d2 = 0 if k ≤ 1/3 and k ≥ 1 − 4τ.

(16)

Proof: See Appendix.

The result is summarized in Figure 2.
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*************************

Figure 2 here

*************************

We now mention the intuition behind Proposition 2. In this setting, when a downstream

firm enhances its degree of product differentiation (increases in di), it has a benefit and a

cost. The benefit stems from the mitigation of competition between the downstream firms.

The cost stems from the increase in its procurement cost if the competitive force of potential

suppliers (their marginal costs are k + τdi) is effective.

When τ is small, because the increase in di is less effective in increasing the procurement

cost (k + τdi), both downstream firms enhance the degree of product differentiation (see the

left side in Figure 2).

When k is small (k ≤ 1/3), there can be two equilibria if τ is in the medium range

((1− k)/4 ≤ τ ≤ 6(1− k)/19 if k < 33/109, (1− k)/4 ≤ τ ≤ (k + 3)/15 if 33/109 ≤ k < 1/3).

That is, strategic complementarity concerning the strategies of product differentiation exists

(see the lower central area in Figure 2). When a downstream firm engages in product R&D,

this investment mitigates the competition between the downstream firms and enhances the

profits of both. The increase in the profit of the downstream firm that does not engage in

product R&D provides greater incentive to do so. On the other hand, when a downstream

firm does not engage in product R&D, the profit levels of both downstream firms are not

large. Because of the limited profitability, product R&D undertaken by a downstream firm

does not compensate for the increase in its procurement cost k + τdi. Therefore, if τ is in the

medium range, two equilibrium outcomes can appear.

If k is small and τ is sufficiently large, no downstream firm engages in product R&D

because the increase in the procurement cost (k + τdi) is significant (see the lower right side

of Figure 2).

When k is large, another interesting property can appear. Before we mention this property,
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we explain the relationship between wholesale prices and the value of k. In this model, k = 1/3

is a critical value concerning the strategies of product differentiation. If k is larger than 1/3,

potential suppliers do not function as a constraint on upstream firms when downstream firms

do not engage in product R&D (that is, d1 = d2 = 0 and γ = 1 − d1 − d2 = 1). From

the discussion of Section 3.1, when each upstream firm monopolistically supplies input, the

wholesale price is wi = (2 − γ)/(4 − γ) = 1/3, which is smaller than k if no downstream firm

engages in product R&D (d1 = d2 = 0).

When k is larger than 1/3 but is insufficiently large, if a downstream firm engages in

product R&D, the price set by the upstream firm that supplies to another downstream firm

becomes binding because the increase in the degree of product differentiation enhances the

incentive for the upstream firms to set their prices at higher levels. This is because wi in

(6) is decreasing in γ. Because the price of the upstream firm that supplies the nonengaging

downstream firm (call it firm i) is binding, the wholesale price for firm i is positively correlated

with the value of di. This feature of the wholesale price diminishes the incentive of firm i to

engage in product R&D. Therefore, if k is in the medium range (1/3 < k < 12/31) and the

value of τ is large (τ > (k + 3)/15), only one downstream firm engages in product R&D (see

the upper right side of Figure 2). In this case, the profit of the engaging downstream firm is

smaller than that of the nonengaging downstream firm.

4.2 Positive investment cost

From the discussion in the previous subsection, one may conclude that the degree of product

differentiation is large even when k is large. We now show that this conclusion is not always

true.

Following the discussion of Lin and Saggi (2002), we now suppose that each downstream

firm has to incur an investment cost for its product R&D. We now specify the investment cost

as F (di) = cd2
i /2. The marginal investment cost is F ′(di) = cdi.
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4.2.1 No potential supplier

Substituting γ = 1 − (d1 + d2) into πD1 and πD2, we have:

πDi =
4

(3 + d1 + d2)2(3 − d1 − d2)2
− cd2

i /2, (i = 1, 2). (17)

Differentiating πDi with respect to di, we have:

∂πDi

∂di
=

16(d1 + d2)
(3 + d1 + d2)3(3 − d1 − d2)3

− cdi. (18)

We now provide three equilibrium outcomes that include minimum differentiation. Given

that d2 = 0, the marginal benefit from the investment (the partial derivative of ΠD1 ≡
πD1 + F (d1)) is zero when d1 = 0.

*************************

Figure 3 here

*************************

If c is large enough, firm 1 also chooses d1 = 0. We have the following proposition:

Proposition 3 Suppose that F (di) = cd2
i /2 for any di ∈ [0, 1/2] (i = 1, 2). d1 = d2 = 0 is

an equilibrium outcome if c > 2272/99225 � 0.02230. The profits of the downstream and the

upstream firms are:

πDi =
4
81

, πUi =
2
27

. (19)

Proof: Given that d2 = 0, differentiating πD1 with respect to d1, we have,

∂πD1

∂d1

∣∣∣∣
d2=0

=
d1(16 − c(3 − d1)3(3 + d1)3)

(3 − d1)3(3 + d1)3
. (20)

Because (3 − d1)3(3 + d1)3 is decreasing in d1 ∈ [0, 1/2], the partial derivative is (i) always

positive or (ii) negative (resp. positive) if d1 is small (resp. large) or (iii) always negative.

Therefore, the net profit of firm 1 is maximized when d1 = 0 or d1 = 1/2. If d1 = 0 maximizes
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the net profit, d1 = d2 = 0 is an equilibrium outcome. When d1 = 0, the net profit is 4/81.

When d1 = 1/2, it is (512 − 1225c)/9800. A simple calculation (4/81 − (512 − 1225c)/9800)

leads to this proposition. Q.E.D.

Given that d2 = 1/2, the marginal benefit from firm 1’s investment is always positive (see

Figure 4).

*************************

Figure 4 here

*************************

If c is small enough, firm 1 also chooses d1 = 1/2. We have the following proposition:

Proposition 4 Suppose that F (di) = cd2
i /2 for any di ∈ [0, 1/2] (i = 1, 2). d1 = d2 = 1/2 is

an equilibrium outcome if c < 1/16 � 0.0625. The profits of the downstream and the upstream

firms are:

πDi =
1
16

− c

8
, πUi =

1
8
. (21)

Proof: Given that d2 = 1/2, the partial derivative of ΠD1 is

∂ΠD1

∂d1

∣∣∣∣
d2=1/2

=
512(2d1 + 1)

(7 + 2d1)3(5 − 2d1)3
. (22)

We now consider two functions.

y1 =
512(2x + 1)

(7 + 2x)3(5 − 2x)3
, y2 = cx.

On the domain [0, 1/2], there is only one intersection of y1 and y2 if and only if c ≥ 1/16

otherwise there is no intersection. In other words, for any d1 ≤ 1/2, the partial derivative of

ΠD1 is larger than the marginal investment cost if and only if c < 1/16. Therefore, d1 = 1/2

is the optimal choice of firm 1 if c ≤ 1/16. Q.E.D.

The downstream firm’s profit in which d1 = d2 = 1/2 is larger than that in which d1 =

d2 = 0 if and only if c < 17/162. When 1/16 < c < 17/162, maximum differentiation does

not appear in equilibrium even though it is more profitable for the downstream firms.

15



For intermediate values of c, there can be another symmetric equilibrium. We now suppose

that d1 = d2 = x. The first-order condition of each firm is

32x

(3 + 2x)3(3 − 2x)3
− cx = 0 → xe ≡ 1

2

√
9 − 2

(
4
c

)1/3

. (23)

We can show that given dj = xe, the optimal choice of firm i is di = dj = xe. In this case,

the profits of the downstream and upstream firms are (see Figure 5):

πDi =
4

(3 + 2xe)2(3 − 2xe)2
− c(xe)2

2
, πUi =

2(1 + 2xe)
(3 + 2xe)2(3 − 2xe)

. (24)

*************************

Figure 5 here

*************************

Figure 6 provides an example in which multiple equilibria appear when c is an intermediate

value. In Figure 6, given that dj = 1/10, the optimal choice of firm i is also di = 1/10.

Moreover, given that dj = 1/2, the optimal choice of firm i is also di = 1/2. Both cases can

appear as equilibrium outcomes. xe has an interesting property. As the coefficient of the

marginal investment cost increases, xe increases.

*************************

Figure 6 here

*************************

Summary The above discussion is summarized in Figure 7.

*************************

Figure 7 here

*************************

This result is in contrast with that in Brekke and Straume (2004). Using a Hotelling location

model with upstream units, they show that the existence of those upstream units enhances

16



the degree of product differentiation.12 In our setting, however, upstream units may diminish

the degree of product differentiation. To prove that the statement is true, we reconsider the

setting of Lin and Saggi (2002) (there is no upstream unit). In their model, the profit of

each (downstream) firm and the marginal gain of product innovation are (we assume that the

marginal cost is h and the demand functions are the same ones discussed here):

πi =
(1 − h)2

(3 − di − dj)2
,

∂πi

∂di
=

2(1 − h)2

(3 − di − dj)3
, i �= j. (25)

Because the marginal gain from the product innovation is positive for any dj ∈ [0, 1/2], the

equilibrium investment levels must be positive for any c (note that the marginal cost of the

investment is cdi). Therefore, we find that if c is large, the existence of upstream units

diminishes the degree of product differentiation.

4.2.2 Potential suppliers

In this part, our main focus is the comparison between the case in which each upstream firm

monopolistically supplies its input, and that in which it faces potential input suppliers. We

only discuss region (a) in the previous subsection. That is, for any di ∈ [0, 1] the first equation

in equation (13) applies. Substituting γ = 1 − (d1 + d2) into πD1 in equation (13), we have:

πD1 =
((1 + d1 + d2)(1 − k) − (2d1 − d2 + d1d2 + d2

2)τ)2

(3 − d1 − d2)2(1 + d1 + d2)2
− cd2

1/2. (26)

Differentiating πDi with respect to di, we have:

∂πD1

∂d1
=

2((1 + d1 + d2)(1 − k) − (2d1 − d2 + d1d2 + d2
2)τ)

(3 − d1 − d2)3(1 + d1 + d2)3
(27)

×((1 + d1 + d2)2(1 − k) − (6 + 2d2
1 + (9 − 2d1 + d2

1)d2 − 2(2 − d1)d2
2 + d3

2)τ) − cd1.

12 Note that, in their model, there is no investment cost for product innovation. Even though we introduce

the product innovation costs discussed here into their model, the main result of their paper holds. That is,

upstream units enhance the degree of product differentiation in Brekke and Straume (2004).
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Given that d2 = 0, if the partial derivative is strictly positive, then the optimal value of d1 is

positive. Substituting d2 = 0 into the partial derivative, we have:

∂πD1

∂d1

∣∣∣∣
d2=0

=
2((1 + d1)(1 − k) − 2d1τ)

27

× ((1 − k + 2τ)d2
1 + 2(1 − k)d1 + (1 − k − 6τ)) − cd1. (28)

If k + 6τ < 1, when d1 = 0, this is positive for any c(> 0). From the discussion, we have the

following proposition:

Proposition 5 If k + 6τ < 1, the value of γ is lower than 1 for any c.

The small values of k and τ mean that upstream market competition is intense. In other words,

if the procurement conditions for the downstream firms are preferable, the downstream firms

tend to differentiate their products.

5 Concluding remarks

Using a simple product differentiation model with elastic demands, we investigate the relation-

ship between differentiation strategies and vertical relations. Depending on the competitive

structure in the upstream market, three differentiation patterns (maximum, minimum, and

partial) can appear in equilibrium even though each downstream firm freely determines the

degree of product differentiation. These results are somewhat different from those of previous

studies (Brekke and Straume (2004) and Matsushima (2004, 2008)) that discuss how upstream

units affect the differentiation strategies of downstream firms. Our model provides additional

insights into the relationship between product differentiation and vertical relations.

We only consider the quantity-setting model. If we employed a price-setting model, the

competition structure in the downstream market would be quite different. Although a price-

setting model is more complex than the quantity-setting model employed in this paper, in-

vestigating a price-setting model may be considered for future research.
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Table 1: An example of a payoff matrix

d2 = 0 d2 = 1/2
d1 = 0 4/81 (3 + k)2/225

4/81 (27 − 31k)2/3600
d1 = 1/2 (27 − 31k)2/3600 (2 − 2k − τ)2/16

(3 + k)2/225 (2 − 2k − τ)2/16

23



τ

k

0 1/2

1/2

1/3

3/7
(g) (h)

(d) (e) (f)

(b)
(c)

(a)

Region di = 0 di = 0, dj = 1/2 di = 1/2
(a) (1) (1) (1)
(b) (1) (2) (1)
(c) (1) (2) (3)
(d) (3) (1) (1)
(e) (3) (2) (1)
(f) (3) (2) (3)
(g) (3) (3) (1)
(h) (3) (3) (3)

Figure 1: The relationship between k, τ , and the profit functions in Eq. (13).
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Figure 2: The equilibrium outcome.
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Figure 3: The marginal benefit from firm 1’s investment (d2 = 0).
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Figure 4: The partial derivative of πD1 (d2 = 1/2).
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Figure 5: The profits of the downstream and the upstream firms.
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0
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Figure 6: Complementarity between the choices of di (c = 15625/351232).
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Figure 7: Multiple equilibria
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Technical appendix

Proof of Proposition 2 We must verify the equilibrium outcomes in the eight regions in

Figure 1.

Region (a): The values of k and τ are in region (a). For any di (i = 1, 2), the first profit

function (1) in equation (13) applies. The payoff matrix is described as follows (note that,

γ = 1 − d1 − d2 and we assume that F (di) = 0 in this section):

d2 = 0 d2 = 1/2

d1 = 0
(1 − k)2

9
4(3 − 3k − 2τ)2

225
(1 − k)2

9
(6 − 6k + τ)2

225

d1 = 1/2
(6 − 6k + τ)2

225
(2 − 2k − τ)2

16
4(3 − 3k − 2τ)2

225
(2 − 2k − τ)2

16

Given that d2 = 0, firm 1 also chooses d1 = 0 if

(1 − k)2

9
− 4(3 − 3k − 2τ)2

225
=

(k − (1 − 4τ))(11 − 11k − 4τ)
225

≥ 0.

We find that both firms choose di = 0 (i = 1, 2) in equilibrium if k ≥ 1 − 4τ . Given that

d2 = 1/2, firm 1 also chooses d1 = 1/2 if

(2 − 2k − τ)2

16
− (6 − 6k + τ)2

225
=

(6 − 19τ − 6k)(54 − 54k − 11τ)
3600

≥ 0.

We find that both firms choose di = 1/2 (i = 1, 2) in equilibrium if k ≤ (6−19τ)/6. From the

discussion, we find that no case in which only one firm chooses di = 0 appears in equilibrium

because there is no k that satisfies both k ≤ 1 − 4τ and k ≥ (6 − 19τ)/6.

Region (b): The values of k and τ are in region (b). When d1 = d2 = 0 or d1 = d2 = 1/2,

the first profit function (1) in equation (13) applies. When di = 0 and dj = 1/2 (i = 1, 2,

i �= j), the second profit function (2) in equation (13) applies. The payoff matrix is described

as follows (note that, γ = 1 − d1 − d2 and we assume that F (di) = 0 in this section):
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d2 = 0 d2 = 1/2

d1 = 0
(1 − k)2

9
(3 + k)2

225
(1 − k)2

9
(27 − 31k)2

3600

d1 = 1/2
(27 − 31k)2

3600
(2 − 2k − τ)2

16
(3 + k)2

225
(2 − 2k − τ)2

16

Given that d2 = 0, firm 1 also chooses d1 = 0 if

(1 − k)2

9
− (3 + k)2

225
=

8(2 − k)(1 − 3k)
225

≥ 0.

We find that both firms choose di = 0 (i = 1, 2) in equilibrium for any k and τ . Given that

d2 = 1/2, firm 1 also chooses d1 = 1/2 if

(2 − 2k − τ)2

16
− (27 − 31k)2

3600
=

(3 − 15τ + k)(57 − 61k − 15τ)
3600

≥ 0.

We find that both firms choose di = 1/2 (i = 1, 2) in equilibrium if k ≥ 15τ − 3. Given that

d2 = 0, firm 1 chooses d1 = 1/2 if

(1 − k)2

9
− (3 + k)2

225
=

8(2 − k)(1 − 3k)
225

≤ 0

(2 − 2k − τ)2

16
− (27 − 31k)2

3600
=

(3 − 15τ + k)(57 − 61k − 15τ)
3600

≤ 0.

We find that only one firm chooses di = 0 in equilibrium if k = 1/3 and τ ≥ 2/9.

Region (c): The values of k and τ are in region (c). When d1 = d2 = 0, the first profit

function (1) in equation (13) applies. When di = 0 and dj = 1/2 (i = 1, 2, i �= j), the second

profit function (2) in equation (13) applies. When d1 = d2 = 1/2, the third profit function (3)

in equation (13) applies. The payoff matrix is described as follows (note that, γ = 1− d1 − d2

and we assume that F (di) = 0 in this section):
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d2 = 0 d2 = 1/2

d1 = 0
(1 − k)2

9
(3 + k)2

225
(1 − k)2

9
(27 − 31k)2

3600

d1 = 1/2
(27 − 31k)2

3600
1
16

(3 + k)2

225
1
16

Given that d2 = 0, firm 1 also chooses d1 = 0 if

(1 − k)2

9
− (3 + k)2

225
=

8(2 − k)(1 − 3k)
225

≥ 0.

We find that both firms choose di = 0 (i = 1, 2) in equilibrium for any k and τ . Given that

d2 = 1/2, firm 1 also chooses d1 = 1/2 if

1
16

− (27 − 31k)2

3600
= −(42 − 31k)(12 − 31k)

3600
≥ 0.

We find that no case in which both firms choose di = 1/2 (i = 1, 2) appears in equilibrium.

Given that d2 = 0, firm 1 chooses d1 = 1/2 if

(1 − k)2

9
− (3 + k)2

225
=

8(2 − k)(1 − 3k)
225

≤ 0,

1
16

− (27 − 31k)2

3600
= −(42 − 31k)(12 − 31k)

3600
≤ 0.

We find that only one firm chooses di = 0 in equilibrium if k = 1/3.

Region (d): The values of k and τ are in region (d). When d1 = d2 = 0, the third profit

function (3) in equation (13) applies. In the remaining cases, the first profit function (1) in

equation (13) applies. The payoff matrix is described as follows (note that, γ = 1 − d1 − d2

and we assume that F (di) = 0 in this section):
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d2 = 0 d2 = 1/2

d1 = 0
4
81

4(3 − 3k − 2τ)2

225
4
81

(6 − 6k + τ)2

225

d1 = 1/2
(6 − 6k + τ)2

225
(2 − 2k − τ)2

16
4(3 − 3k − 2τ)2

225
(2 − 2k − τ)2

16

Given that d2 = 0, firm 1 also chooses d1 = 0 if

4
81

− 4(3 − 3k − 2τ)2

225
= −4(14 − 9k − 6τ)(4 − 9k − 6τ)

2025
≥ 0.

Because k ≤ (3 − 4τ)/7 in this region, the above inequality does not hold. We find that no

case in which both firms choose di = 0 (i = 1, 2) appears in equilibrium. Given that d2 = 1/2,

firm 1 also chooses d1 = 1/2 if

(2 − 2k − τ)2

16
− (6 − 6k + τ)2

225
=

(6 − 19τ − 6k)(54 − 54k − 11τ)
3600

≥ 0.

We find that both firms choose di = 1/2 (i = 1, 2) in equilibrium for any k and τ . Given that

d2 = 0, firm 1 chooses d1 = 1/2 if

4
81

− 4(3 − 3k − 2τ)2

225
= −4(14 − 9k − 6τ)(4 − 9k − 6τ)

2025
≤ 0,

(2 − 2k − τ)2

16
− (6 − 6k + τ)2

225
=

(6 − 19τ − 6k)(54 − 54k − 11τ)
3600

≤ 0.

We find that no case in which only one firm chooses di = 0 appears in equilibrium.

Region (e): The values of k and τ are in region (e). When d1 = d2 = 0, the third profit

function (3) in equation (13) applies. When di = 0 and dj = 1/2 (i = 1, 2, i �= j), the second

profit function (2) in equation (13) applies. When d1 = d2 = 1/2, the first profit function (1)

in equation (13) applies. The payoff matrix is described as follows (note that, γ = 1− d1 − d2

and we assume that F (di) = 0 in this section):
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d2 = 0 d2 = 1/2

d1 = 0
4
81

(3 + k)2

225
4
81

(27 − 31k)2

3600

d1 = 1/2
(27 − 31k)2

3600
(2 − 2k − τ)2

16
(3 + k)2

225
(2 − 2k − τ)2

16

Given that d2 = 0, firm 1 also chooses d1 = 0 if

4
81

− (3 + k)2

225
= −(3k − 1)(19 + 3k)

2025
≥ 0.

We find that both firms choose di = 0 (i = 1, 2) in equilibrium if k = 1/3. Given that

d2 = 1/2, firm 1 also chooses d1 = 1/2 if

(2 − 2k − τ)2

16
− (27 − 31k)2

3600
=

(3 − 15τ + k)(57 − 61k − 15τ)
3600

≥ 0.

We find that both firms choose di = 1/2 (i = 1, 2) in equilibrium if k ≥ 15τ − 3. Given that

d2 = 0, firm 1 chooses d1 = 1/2 if

4
81

− (3 + k)2

225
= −(3k − 1)(19 + 3k)

2025
≤ 0,

(2 − 2k − τ)2

16
− (27 − 31k)2

3600
=

(3 − 15τ + k)(57 − 61k − 15τ)
3600

≤ 0.

We find that only one firm chooses di = 0 in equilibrium if k ≤ 15τ − 3.

Region (f): The values of k and τ are on region (f). When d1 = d2 = 0 or d1 = d2 = 1/2,

the third profit function (3) in equation (13) applies. When di = 0 and dj = 1/2 (i = 1, 2,

i �= j), the second profit function (2) in equation (13) applies. The payoff matrix is described

as follows (note that, γ = 1 − d1 − d2 and we assume that F (di) = 0 in this section):
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d2 = 0 d2 = 1/2

d1 = 0
4
81

(3 + k)2

225
4
81

(27 − 31k)2

3600

d1 = 1/2
(27 − 31k)2

3600
1
16

(3 + k)2

225
1
16

Given that d2 = 0, firm 1 also chooses d1 = 0 if

4
81

− (3 + k)2

225
= −(3k − 1)(19 + 3k)

2025
≥ 0.

We find that both firms choose di = 0 (i = 1, 2) in equilibrium if k = 1/3. Given that

d2 = 1/2, firm 1 also chooses d1 = 1/2 if

1
16

− (27 − 31k)2

3600
=

(42 − 31k)(31k − 12)
3600

≥ 0.

We find that both firms choose di = 1/2 (i = 1, 2) in equilibrium if k ≥ 12/31. Given that

d2 = 0, firm 1 chooses d1 = 1/2 if

4
81

− (3 + k)2

225
= −(3k − 1)(19 + 3k)

2025
≤ 0,

1
16

− (27 − 31k)2

3600
=

(42 − 31k)(31k − 12)
3600

≤ 0.

We find that only one firm chooses di = 0 in equilibrium if 1/3 ≤ k ≤ 12/31.

Region (g): The values of k and τ are in region (g). When d1 = d2 = 0 or di = 0 and

dj = 1/2 (i = 1, 2, i �= j), the third profit function (3) in equation (13) applies. When

d1 = d2 = 1/2, the first profit function (1) in equation (13) applies. The payoff matrix is

described as follows (note that, γ = 1−d1−d2 and we assume that F (di) = 0 in this section):
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d2 = 0 d2 = 1/2

d1 = 0
4
81

64
1225

4
81

64
1225

d1 = 1/2
64

1225
(2 − 2k − τ)2

16
64

1225
(2 − 2k − τ)2

16

Given that d2 = 0, firm 1 also chooses d1 = 0 if

4
81

− 64
1225

= − 284
99225

≥ 0.

We find that no case where both firms choose di = 0 (i = 1, 2) appears in equilibrium. Given

that d2 = 1/2, firm 1 also chooses d1 = 1/2 if

(2 − 2k − τ)2

16
− 64

1225
=

(102 − 70k − 35τ)(38 − 70k − 35τ)
19600

≥ 0.

Because k ≤ (1 − τ)/2 in this region, the above inequality always holds. We find that both

firms choose di = 1/2 (i = 1, 2) in equilibrium for any τ and k. Given that d2 = 0, firm 1

chooses d1 = 1/2 if

4
81

− 64
1225

= − 284
99225

≤ 0,

(2 − 2k − τ)2

16
− 64

1225
=

(102 − 70k − 35τ)(38 − 70k − 35τ)
19600

≤ 0.

We find that no case where only one firm chooses di = 0 appears in equilibrium.

Region (h): The values of k and τ are in region (h). For any di , the third profit function (3)

in equation (13) applies. The payoff matrix is described as follows (note that, γ = 1− d1 − d2

and we assume that F (di) = 0 in this section):

d2 = 0 d2 = 1/2
d1 = 0 4/81 64/1225

4/81 64/1225
d1 = 1/2 64/1225 1/16

64/1225 1/16
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We find that both firms choose di = 1/2 (i = 1, 2) in equilibrium for any k and τ . The other

two cases do not appear in equilibrium.
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