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1 Introduction

In the literature on commons games, it is usually argued that the lack of agents’
commitment to their future actions leads to the so-called tragedy of the commons;
that is, if agents condition their actions on the basis of the aggregate stock of the
commons, rather than commit to their initial decisions, then it could worsen the
overconsumption and/or underinvestment of the commons.1 For example, Fersht-
man and Nitzan (Ref. 2) develop a dynamic model of the voluntary provision of
public goods and show that the contribution of conditioning agents to the collec-
tive contributions aggravates the degree of the free-rider problem2. Moreover, us-
ing endogenous growth models, Tornell and Velasco (Ref. 4) and Shibata (Ref. 5)
show that the balanced growth rate without commitment is lower than that with
commitment.3 This paper shows that this relationship between the growth rates
with and without commitment is vulnerable; that is, if preferences include con-
sumption externalities, the growth rate without commitment can be higher than
that with commitment.

The existence of consumption externalities is emphasized in an early work
by Veblen (Ref. 14) and validated as a determinant of aggregate consumption
by Duesenberry (Ref. 15). Moreover, many recent studies analyze the effects of
consumption externalities. For example, to reconcile the equity premium puz-
zle, Abel (Ref. 16), Constantinides (Ref. 17), and Galı́ (Ref. 18) incorporate the
consumption externalities into consumption-based asset pricing models. Liu and
Turnovsky (Ref. 19) examine the effects on the overconsumption phenomena in a
growth model with consumption externalities.4 Along these lines of research, we
construct a simple dynamic game model of common capital accumulation with
consumption externalities and analyze how the presence of these externalities
modifies the conventional results on the growth rates with and without commit-
ment.

2 The Model

There areN homogenous agents in our economy. They jointly produce a good by
using common capital and divide it into consumption and common capital accu-
mulation. The lifetime utility function of each agent is assumed to be additively

1Gordon (Ref. 1) is the first study that presents an example of the tragedy of the commons.
2See also Levhari and Mirman (Ref. 3).
3See also Benhabib and Radner (Ref. 6), Cozzi (Ref. 7), Dockner and Sorger (Ref. 8), Sorger

(Ref. 9), Vencatachellum (Ref. 10), Vencatachellum (Ref. 11), Dockner and Nishimura (Ref. 12),
and Luckraz (Ref. 13).

4See Ljungqvist and Uhlig (Ref. 20), Turnovsky and Monteiro (Ref. 21), and Mino (Ref. 22)
for other recent examples.
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separable in time. The agent’s subjective discount rate is denoted byρ and the
elasticity of intertemporal substitution is represented byη. We specify the life-
time utility function as follows:5

Ūi =

∫ ∞

0

η

η − 1
(
ci c̄
−α
i

)1− 1
η exp(−ρt)dt for i = 1, . . . ,N, (1)

whereci : R+ → R+ is countinuously differentiable; ¯ci =
∑

j,i cj/(N − 1); ρ, η ∈
R++; andα ∈ (−∞, 1). Here,ci is the consumption of agenti and c̄i is the level
of average consumption of other agents, which represents the externalities from
other agents’ consumption. Parameterα represents the magnitude of the external
effects of consumption. Following Dupor and Liu (Ref. 23), we define “jealousy”
and “admiration” as follows.

Definition 2.1. We say that consumption externalities indicate

1. “jealousy” if α > 0 while “admiration” if α < 0.

2. “keeping up with the Joneses” (KUJ) ifα(1 − η) > 0 and “running away
from the Joneses” (RAJ) ifα(1− η) < 0.

The definitions of jealousy and admiration are intuitively interpreted as fol-
lows. If the utility of an agent decreases as others’ consumption rises, we can state
that his preference exhibits jealousy. On the other hand, if the utility increases as
others’ consumption falls, we state that the preference exhibits admiration. Sim-
ilarly, if the marginal utility increases as others’ consumption rises, we state that
his preference exhibits KUJ, and, if not we state that the preference exhibits RAJ.

The production technology is defined as of theAk form, and therefore, the
dynamics of the common capital stock are

k̇ = Ak−
N∑

i=1

ci, givenk0, (2)

wherek : R+ → R+, k0 ∈ R++, andA ∈ R++. Here,k denotes the stock of common
capital,k0 is its initial value, andA is a constant productivity parameter. If each
agent chooses a symmetric strategy, we havec = ci for all i = 1, · · · ,N. In this
case, from (2), the growth rate,g, can be written as

g = A− N
c
k

. (3)

Throughout this paper, we assume the following condition.

5This specification follows Galı́ (Ref. 18).
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Assumption 2.1. It holds that

ψ <
ρ

A
< min

(
1,

1− α
N

)
, (4)

whereψ = (1− α)(1− 1/η).

Here, we impose Assumption 2.1 to ensure that the problem is well defined
and that the rate of balanced growth is positive.6

3 Open-loop Nash Equilibrium

We first consider a situation where agents commit to their announced actions.

Definition 3.1 (Open-loop Nash equilibrium). An N-tuple of consumption paths,
(c1, . . . , cN), is called an open-loop Nash equilibrium if, for each i= 1, . . . ,N, ci

maximizes (1) subject to (2).

An open-loop Nash equilibrium is a plausible equation concept in the situation
where agents can not observe the value of common capital at each time7, and
thus, condition their strategies only on the basis of the initial value of common
capital, and precommit themselves to their future consumption paths. To solve
the problem, we define the following current value Hamiltonian:

Hi =
η

η − 1
(
ci c̄
−α
i

)1− 1
η + qo

i

Ak−
N∑

i=1

ci

 ,

whereqo
i is the costate variable of the common capital. The optimal conditions

for this problem are given as

c
− 1
η

i c̄
−α

(
1− 1

η

)
i = qo

i , (5)

Aqo
i = ρqo

i − q̇o
i , (6)

and

lim
t→∞

qo
i kexp(−ρt) = 0. (7)

6By Assumption 2.1, the value function of each agent is well defined. Some literature studies
the case that it does not exist in finite values and refers to the several concepts of optimality.
See, for example, studies such as Stern (Ref. 24); Seierstad and Sydsæter (Ref. 25); Dockner,
Jorgensen, van Long, and Sorger (Ref. 26).

7For example, if agents have to pay extremely high value of cost to observe the current amount
of instracture accumulated in the economy, they would give up to observe the current amount of
infrastracture and adopt the open-loop Nash equilibrium.
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In equilibrium, it follows from (5) and (6) thatc = c̄i = ci for all i = 1, · · · ,N, and
thus, the Euler equation is given as

ċ
c
=

A− ρ
1− ψ . (8)

Therefore, we have the following result.

Proposition 3.1. The growth rate in the open-loop Nash equilibrium is given by

go =
A− ρ
1− ψ . (9)

Proof. From (3), (5), and (6), we obtain the balanced growth rate in this open-loop
Nash equilibrium. �

Note that from conditions (5) to (7), we have a unique open-loop Nash equi-
librium in this model. It is also easy to show that the open-loop Nash equilibrium
is Pareto efficient. This efficiency result is similar to that derived by Chiarella,
Kemp, van Long, and Okuguchi (Ref. 27), who show, contrary to the traditional
view, that an open-loop Nash equilibrium can be socially efficient in various situ-
ations.

4 Feedback Nash Equilibrium

We next derive the case where each agent cannot commit to his future actions.
This case can be analyzed by applying the feedback Nash equilibrium concept,
which allows agents to choose and expect optimal consumption paths that depend
on the current stock of common capital at each time.

Definition 4.1 (Feedback Nash equilibrium). An N-tuple of consumption paths,
(c1, . . . , cN), is called a feedback Nash equilibrium if, for each i= 1, . . . ,N, ci

maximizes (1) subject to (2) and cj = cj(k) for j , i.

Note that the feedback Nash equilibrium implies that agents can monitor the
stock of common capital, and they condition their future consumption paths on the
value of common capital at each time. We solve the feedback Nash equilibrium
by using dynamic programming. The Hamilton-Jacobi-Bellman equation of this
problem is

ρUi(k) = max
ci

 η

η − 1
(
ci c̄i(k)−α

)1− 1
η + qf

i

Ak−
N∑

i=1

ci

 , (10)
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where c̄i(k) =
∑

j,i cj(k)/(N − 1); qf
i = dUi/dk; and Ui(k), defined by below,

denotes the value function of agenti.

Ui(k) = max
∫ ∞

t

η

η − 1
(
ci c̄i(k)−α

)1− 1
η exp(−ρ(s− t)) ds. (11)

From (10), the first-order condition is obtained as

c
− 1
η

i c̄i(k)−α
(
1− 1

η

)
= qf

i (k). (12)

In what follows, we consider the equilibrium in linear and nonlinear strategies.

4.1 Equilibrium in Linear Strategies

In this subsection, we consider equilibrium where the agents asopt the following
symmetric linear strategy.

c(k) = βk+ γ, (13)

whereβ andγ are constants. In this situation, we have the following lemma:

Lemma 4.1. If agents adopt the linear strategy defined in (13), it holds that

ωBGP =
ρ − ψA

1− α − ψN
for all t ∈ R+, (14)

and

U(k) =
c(k)ψ

ψωBGP
for all k ∈ R+, (15)

whereωBGP denotes the ratio of consumption to common capital in the case that
the agents adopt the linear strategy.

Proof. From (12) it holds that in equilibrium,

U(k) =
1
βψ

c(k)ψ + δ, (16)

whereδ denotes an integral constant. By using (12) and (16), (11) can be written
as

ρ

βψ
c(k)ψ + δ =

(
η

η − 1
− N + A

k
βk+ γ

)
c(k)ψ.
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Therefore, for the above equality to hold for any value ofk, it must hold that

δ = γ = 0 (17)

and

β =
ρ − ψA

1− α − ψN
. (18)

Thus, by substituting (17) and (18) into (13) and (16), we have (14) and (15),
respectively. �

From Lemma 4.1, we have the following proposition.

Proposition 4.1. If agents adopt the linear strategy defined in (13), the growth
rate in the feedback Nash equilibrium is positive and given as

g
f
BGP = N (ωSS− ωBGP) , (19)

whereg f
BGP denotes the growth rate of the economy andωSS= A/N.

Proof. If agents adopt (13), Lemma 4.1 holds. Therefore, substituting (14) into
(3), we get

k̇
k
=

ċ
c
= A+

N (ψA− ρ)
1− α − ψN

= N (ωSS− ωBGP) ,

whereωSS > ωBGP by Assumption 2.1. Next we check that (19) satisfies the
transversality condition. From (15) and (19), we get

U(k) =
cψ0

ψωBGP
exp

(
ψ

[
A(1− α) − ρN

]
1− α − ψN

t

)
.

Therefore, we have

lim
t→∞

U(k) exp(−ρt) = lim
t→∞

cψ0
ψωBGP

exp
(
(α − 1)g f

BGPt
)
= 0 (20)

sinceα < 1 andg f
BGP > 0 by the assumptions. �
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4.2 Equilibrium in Nonlinear Strategies

This subsection considers a more general case where agents adopt symmetric non-
linear strategies.8

Lemma 4.2. In a symmetric feedback Nash equilibrium, it holds that

k = Zc
A

A−ρ (1−ψ) +
c

ωBGP
, (21)

where Z∈ R denotes an integral constant.

Proof. In a symmetric equilibrium, it follows from (12) that (10) can be written
as

ρU =

(
η

η − 1
− N

)
qf

ψ
ψ−1 + qf Ak. (22)

Here, note that from (4), the coefficient of the first term on the right-hand side
of the above equation is positive. Therefore, since (22) is D’Alembert’s (or La-
grange’s) equation, the solution of (22) satisfies the following equation:

k = Zqf − A
A−ρ +

1− α − ψN
ρ − ψA

qf
1

ψ−1 ,

Again, using (12), we get (21). �

The sign ofZ in Lemma 4.2 plays a crucial role in characterizing the dynamics
of the economy, as will be clear in the statement in the last part of this section.
Lemma 4.2 gives the dynamics of the economy as follows.

Proposition 4.2. The dynamics of consumption in a symmetric feedback Nash
equilibrium are characterized by (3) and

ċ
c
=

N(A− ρ)(ωSS− ω)
(1− α − ψN) (ωUB − ω)

, (23)

whereω = c/k and

ωUB =
(1− ψ)A

1− α − ψN
.

8See, for example, Tsutsui and Mino (Ref. 28), Dockner and Sorger (Ref. 8), Sorger (Ref. 9),
Vencatachellum (Ref. 11), and Itaya and Shimomura (Ref. 29).
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Proof. Sinceω = ωUB is not feasible since it violates the differentiability ofc,
we assume thatω , ωUB in the following analyses. From Lemma 4.2, in the
symmetric feedback Nash equilibrium, we have (21). Rearranging (21) yields

Z =

(
k− c

ωBGP

)
c

A
A−ρ (ψ−1).

Taking the logarithm of both sides of the above equation and differentiating them
with respect tot, we have

k̇
k
=

[
(1− α − ψN)

c
k
+ (1− ψ)A

] 1
A− ρ

ċ
c
.

Therefore, by substituting (3) into the above equation, we have (23). �

Note that (23) is a necessary condition for the symmetric feedback Nash equi-
librium, since it is derived from the first-order condition (12).

Before we state Proposition 4.3, we state the following lemma.

Lemma 4.3. In the symmetric feedback Nash equilibrium, it holds that

ω̇ =
N (ωBGP− ω) (ω − ωSS)ω

ωUB − ω
. (24)

Proof. Sinceω = ωUB is not feasible, we assume here thatω , ωUB. Subtracting
(3) from (23), we have

ω̇

ω
=

ċ
c
− k̇

k
=

N (ωBGP− ω) (ω − ωSS)
ωUB − ω

.

The above equation completes the proof. �

Therefore, the dynamics of the economy are summarized as that ofω. We now
state the following proposition.

Proposition 4.3. Denoting the growth rate of consumption in the feedback Nash
equilibrium bygc, we have the following:

1. In the case thatω0 = ωBGP, the growth rate in the feedback Nash equilib-
rium is given by (19).

2. In the case thatω0 > ωBGP, the feedback Nash equilibria are only the steady
states if1− α > N and they converge to steady states if1− α < N: g f

c → 0
as t→ ∞.
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3. In the case thatω < ωBGP, the growth rate in the feedback Nash equilibrium
converges to that in the open-loop Nash equilibrium (9):g

f
c → go as t→ ∞,

whereω0 denotes the initial ratio of c to k:ω = ω0 at t = 0.

Proof. 1. Case 1:ω0 = ωBGP

Substitutingω0 = ωBGP into (3), we have the result.

2. Case 2:ω0 > ωBGP

See Appendix.

3. Case 3:ω0 < ωBGP

It follows from (24) thatω̇ < 0 for all ω < ωBGP and thatω̇ = 0 atω = 0.
Since this impliesω→ 0 ast → ∞, Proposition 4.2 gives

lim
t→∞

ċ
c
=

N(A− ρ)ωSS

(1− α − ψN)ωUB
=

A− ρ
1− ψ ,

where the right-hand side is the same as the growth rate in the open-loop
Nash equilibrium. Therefore, it satisfies the transversality condition under
Assumption 2.1.

�

Figure 1 is the phase diagram in the case that 1− α < N. The solid curves in
Figure 1 depict the loci of capital and consumption satisfying (21) corresponding
to various values ofω0 in Proposition 4.2. The BGP line plots the locus of capital
and consumption in the case thatω0 = ωBGP, and the curves above and below the
BGP line depict the loci in the case thatω0 > ωBGP andω0 < ωBGP, respectively.
The SS line depicts thėk = 0 (ω = ωSS) locus, and thus,̇k > 0 when a path is
located below the line anḋk < 0 when it lies in the area above the line. The slope
of the SS line is larger than that of the BGP line by Assumption 2.1. It should also
be noted that the SS line in the case thatω0 > ωBGP lies in the area below the UB
line. The UB line plotsω = ωUB, at which the slope of the peaks of the curves
drawn from (21) become infinite.

The case thatω0 = ωBGP corresponds to the balanced growth path. Note
that a balanced growth is realized only whenω0 = ωBGP. Here, it should be
noted that the growth rate in this case coincides with (19), and thus, it satisfies the
transversality condition.

In the case thatω0 > ωBGP, since the paths in the area above the UB line
move up in the north-west direction along the curves drawn from (21) and reach
the vertical axis in a finite period, the equilibrium paths drawn from (21) must lie
between the UB and BGP lines. Moreover, since the paths between the UB and
SS line move down in the south-west direction and the paths between the SS and

10
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Figure 1: Dynamics for feedback Nash equilibrium

11



BGP line move up in the north-east direction along the curves, the equilibrium
paths converge to the SS line. This implies there are infinitely many feedback
Nash equilibria which converge to corresponding steady states.9

In the case thatω0 < ωBGP, the paths must be below the BGP line and move
up in the north-east direction along the curves. Along these curves, the growth
rates converge to the balanced growth path in the open-loop Nash equilibrium.
Therefore, we find that there also exist infinitely many nonbalanced growth paths
in the feedback Nash equilibrium .10

5 Comparison of the Growth Rates in Open-loop
and Feedback Nash Equilibria

5.1 Linear Strategies

As Tornell and Velasco (Ref. 4) and Shibata (Ref. 5) illlustrate, in an economy
without consumption externalities, the balanced growth rate in the feedback Nash
equilibrium is lower than that in the open-loop Nash equilibrium. In this section,
we show that the existence of consumption externalities may destroy this relation-
ship between the two equilibrium growth rates.

Theorem 5.1.Under Assumption 2.1, it holds that

g
f
BGP > g

o

if and only if

α < 1− N. (25)

Proof. To compare the growth rates in the open-loop and feedback Nash equilib-
ria, presented in respectively, (9) and (19), we calculate their difference:

g
f
BGP− g

o =
ωBGP

1− ψ (1− α − N) . (26)

Since the first multiplying term is positive by Assumption 2.1, the growth rate in
the feedback Nash equilibrium becomes higher than that in the open-loop Nash
equilibrium if and only if (25) holds. �

9Note that these equilibrium paths are not Markov perfect since the domain of each path does
not span the entire state space. However, we can easily extend the strategy to be made Markov
perfect. For example, by extending the strategy to (21) withω > ωBGP if k > kmax, wherekmax

denotes a maximum value ofk satisfying (21), it can be Markov perfect. See also Clemhout and
Wan Jr. (Ref. 30) and Shibata (Ref. 5).

10See also Shibata (Ref. 5).
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Note that under (25), we can always choose the value ofη to satisfy (4); that is,
we can prove that in this model, there exists a situation in which (26) is positive.
SinceN > 1, (25) states that the growth rate in the feedback Nash equilibrium is
higher than that in the open-loop Nash equilibrium if preferences exhibit admi-
ration to other agents’ consumption. This result shows that although the growth
rate in the feedback Nash equilibrium is lower than that in the open-loop Nash
equilibrium as generally argued, the presence of strong admiration reverses the
conclusion.

Intuitively, the presence of jealousy implies that the utility of agents decreases
with an increase of the others’ consumption. This suggests that the presence of
jealousy is a factor raising their current consumption and reducing their contri-
bution to the accumulation of common capital. On the other hand, the presence
of admiration implies that their utility increases with increase of the others’ con-
sumption, suggesting that admiration is a factor raising contribution to the accu-
mulation of common capital. It shows that the growth rate in the feedback Nash
equilibrium, where agents can change their consumption on the basis of others’
consumption, may be higher than that in the open-loop Nash equilibrium if the
degree of admiration is strong enough. Alternatively, the presence of admiration
can also be interpreted as the other source of the free-rider problem, since they
can enjoy utility from others’ consumption. In this sense, it can be said that the
growth rate without commitment becomes higher than that with commitment if
the free ride on others’ consumption is stronger than that on the common capital
accumulation.

Finally, we make the following remark.

Remark 5.1. The relative magnitude of the two growth rates is irrelevant to
whether preferences exhibit KUJ (α(1− η) > 0) or RAJ (α(1− η) < 0).

Remark 5.1 follows from the fact that (25) does not include the intertemporal
elasticity of substitution.

5.2 Nonlinear Strategies

Finally, we compare the open-loop Nash equilibrium and the nonlinear feedback
Nash equilibrium. It is obvious that the growth rate in the open-loop Nash equi-
librium is higher than that in the feedback Nash equilibrium in the long run in the
case thatZ < 0, where consumption and capital stock converge to a steady state.
In the case thatZ > 0, the growth rate of common capital converges toA since
ω converges to 0. We have the following theorem on the rate of consumption
growth.

13



Theorem 5.2.There exist infinitely many nonlinear feedback Nash equilibria such
that

g f
c > g

o for all t ∈ R+

if and only ifα < 1− N andω0 < ωBGP.

Proof. Rearranging (23), we have

g f
c =

A− ρ
1− ψ

(1− ψ)A− (1− ψ)Nω
(1− ψ)A− (1− α − ψN)ω

.

The above equation implies thatg f
c > go if (1 − ψ)N < (1 − α − ψN), that is,

α < 1− N. �

Therefore, we find the same condition for the ordinal relationship between
growth rates to be destroyed as in the case that agents adopt linear feedback strate-
gies, (25), even if they adopt nonlinear ones.

6 Conclusion

This paper introduced consumption externalities into a dynamic game growth
model of common capital accumulation. Contrary to the general argument that
the growth rate in a feedback Nash equilibrium is lower than that in an open-loop
Nash equilibrium, we showed that in our model, the growth rate in the feedback
Nash equilibrium under both linear and nonlinear strategies could be higher than
that in the open-loop Nash equilibrium if agents strongly admire others’ consump-
tion, while a conventional relationship is maintained between the two growth rates
if the agents envy others’ consumption.

14



Appendix

Proof of Proposition 4.3 in the Case thatω0 > ωBGP

We first consider the case that 1−α > N. Noting thatωSS> ωUB > ωBGP in this case, we
investigate (24) by classifying four cases.

1. ω0 > ωSS

In this case, it must hold that
ω̇ ≥ ω̇0 > 0,

and thus, it follows from (3) that

k̇
k
≤ A− Nω0 < 0.

Therefore, the value ofk reaches 0 in finite time. Since this implies that (21) cannot
hold for anyc ∈ R+ at some finite time, we do not classify this case as feedback
Nash equilibrium.

2. ωSS= ω0

In this case, we have
ω̇ = k̇ = ċ = 0 for all t ∈ R+.

Since this case obviously satisfies the transversality condition and (21) for allt ∈
R+, it must be classified as a feedback Nash equilibrium.

3. ωSS> ω0 > ωUB

In this case, it follows that

ω̇ <
N (ωUB − ωBGP) (ωSS− ω0)ωUB

ωUB − ω0
< 0.

Therefore, the value ofω reachesωUB in finite time, where the right-hand side of
(24) diverges and (21) is not satisfied.

4. ωUB > ω0 > ωBGP

In this case, it holds that

ω̇ >
N (ω0 − ωBGP) (ωSS− ωUB)ωBGP

ωUB − ω0
> 0.

Therefore, the value ofω reachesωUB in finite time, where the right-hand side of
(24) diverges and (21) does not hold. Thus, it cannot be classified as a feedback
Nash equilibrium.

Therefore, in the case that 1− α > N, we have only the steady states as feedback Nash
equilibria.

We next consider the case that 1− α < N. In this case,ωUB > ωSS > ωBGP by
Assumption 2.1. We investigate (24) by classifying two cases.

15



1. ω0 > ωUB

In this case, it holds that
ω̇ ≥ ω̇0 > 0,

and thus, it follows from (3) that

k̇
k
≤ A− Nω0 < 0.

Therefore, the value ofk reaches 0 in finite time. Since this implies that (21) cannot
hold for anyc ∈ R+ at some finite time, we exclude this case as a feedback Nash
equilibrium.

2. ωUB > ω0 > ωBGP

In this case,

ω̇ < 0 if ω0 > ωSS

and

ω̇ > 0 if ω0 < ωSS.

Therefore,ω→ ωSS ast → ∞, where

ω̇ = k̇ = ċ = 0.

The transversality condition is obviously satisfied in this case.
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