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Abstract

We consider the problem of probabilistically allocating a single
indivisible good among agents when monetary transfers are allowed.
We construct a new strategy-proof rule, called the second price trad-
ing rule, and show that it is second best efficient. Furthermore, we
give the second price trading rule three characterizations with (1)
strategy-proofness, “budget-balance”, equal treatment of equals, weak
decision-efficiency, and simple generatability, (2) strategy-proofness,
“equal rights lower bound”, equal treatment of equals, weak decision-
efficiency, and simple generatability, (3) strategy-proofness, “envy-
freeness, no-trade-no-transfer”, equal treatment of equals, weak decision-
efficiency, and simple generatability.

Keywords: Strategy-proofness, Probabilistic allocation problem, Second
price trading rule, Budget-balance, Second best efficiency

JEL Classification numbers: D71, D78

1 Introduction

We study the probabilistic allocation problem of a single indivisible good
among agents when monetary compensations are possible. Each agent has
a preference expressed by quasi-linear utility function and maximizes his ex-
pected utility. A rule determines an assignment probability of the indivisible
good and a monetary transfer to each agent for each preference profile. We
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consider incentive-compatible rules that elicit the preference of each agent.
We especially focus on strategy-proof rule, where the truthful report of one’s
preference is always dominant strategy.

On the deterministic allocation problems, many researches have stud-
ied the class of the Groves rules, which is the only class of rules satisfy-
ing strategy-proofness and decision-efficiency [Holmström (1979)]. Decision-
efficiency requires that the good is assigned to an agent who has the high-
est value. Among them, the Vickery (1961) rule1 is one of the most ana-
lyzed rules. It is well-known that the Vickery rule is the only deterministic
rule satisfying strategy-proofness, individual rationality, non-positive trans-
fer, and either decision-efficiency [Holmström (1979)], envy-freeness [Svens-
son (1983)], or equal treatment of equals2 (anonymity)3 [Ashlagi and Serizawa
(2012)]. Individual rationality requires that no one be worse off than the
initial state. Non-positive transfer requires that any agent’s transfer be non-
positive. Envy-freeness requires that no one prefer other agent’s assignment
to his own. Equal treatment of equals requires that the agents who have
the same preference be treated equally. Anonymity requires that a rule be
defined independently of the names of the agents.4

Although the Vickery rule has excellent features, it has also several draw-
backs. A well-known drawback is that the Vickery rule does not satisfy
budget-balance. Budget-balance requires that the total amount of monetary
transfers is always zero. This implies that monetary transfers flow out of
agents. This drawback is, however, not particular to the Vickery rule, because
all the Groves rules do not satisfy budget-balance [Green and Laffont (1977)].
Furthermore, even if we consider finitely restricted domains, there exists no
deterministic rule satisfying strategy-proofness, budget-balance, and5 neither
decision-efficiency [Ohseto (2000)], envy-freeness [Ohseto (2000)], nor equal
treatment of equals [Kato et al. (2015)]. Hence, it is very difficult to achieve
budget-balance among deterministic rules.6

To improve welfares of agents but not achieving budget-balance, the Bai-

1Sometimes, this rule is called VCG [Vickery (1961), Clarke (1971), and Groves (1973)]
rule.

2Strictly speaking, the results on the deterministic model are valid with equal treatment
of equals in welfare or anonymity in welfare.

3See also Sakai (2013).
4Anonymity implies equal treatment of equals.
5Ando et al. (2008) have constructed a rule satisfying strategy-proofness, budget-

balance, individual rationality, and weak symmetry on heavily restricted domain.
6Fujinaka (2008) has designed an outstanding rule, which satisfies Bayesian incentive

compatibility, individual rationality, budget-balance, decision-efficiency, envy-freeness, and
anonymity, but does not strategy-proofness.
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ley (1997) rule has been recently paid attention by many researchers.7 The
Bailey rule is a redistribution rule of some payments of Vickery rule maintain-
ing strategy-proofness, decision-efficiency, and individual rationality [Porter
et al. (2004) and Cavallo (2006)]. The Bailey rule has excellent features
for efficiency and fairness. Not only there exists no Groves rule that Pareto-
dominates the Bailey rule [Guo et al. (2013)], but also the Bailey rule satisfies
anonymity and other condition of fairness [Porter et al. (2004)]. Although
the Bailey rule does not satisfy envy-freeness, this drawback is inevitable
among deterministic rules, because any rule satisfying strategy-proofness,
anonymity, envy-freeness, and individual rationality is dominated by some
strategy-proof rule [Sprumont (2013)].

Other drawback of the Vickery rule is that it does not satisfy equal rights
lower bound. Equal rights lower bound8 requires that any agent’s assignment
be at least better than the equal assignment. This drawback is also not
particular to the Vickery rule, because there exists no deterministic rule
satisfying strategy-proofness and equal rights lower bound [Moulin (2010)].

Hence, in order to overcome these drawbacks, we need expand the research
scope from deterministic rules to probabilistic ones. Among probabilistic
rules, there exist many rules satisfying strategy-proofness, budget-balance,
equal rights lower bound, and envy-freeness. For example, the rule which al-
ways assigns the indivisible good with the equal probability and no monetary
transfer to each agent trivially satisfies these desirable properties. However,
by Holmström’s (1979) theorem, it is impossible to design a probabilistic rule
satisfying strategy-proofness and Pareto-efficiency. Thus, the first interesting
question we should answer is “what rule satisfying these desirable properties
is second best efficient?” After then, the second interesting question is “Is it
the only rule satisfying desirable properties?”

To answer the questions, we construct a new rule, called the second price
trading rule, which satisfies strategy-proofness, budget-balance, equal rights
lower bound, and envy-freeness. Then, we show that this rule is second best
efficient. Furthermore, we show that the second price trading rule is only
rule satisfying strategy-proofness, equal treatment of equals, weak decision-
efficiency, simple generatability, and either budget-balance or equal rights
lower bound. Weak decision-efficiency requires that almost all probability
be assigned the agent(s) who has the first highest value, and all probability
be assigned the agents who have at least the second highest value. Simple
generatability requires that the probability can be generated by a simple

7See Porter et al. (2004), Cavallo (2006), Atlamaz and Yengin (2008), Guo and Conitzer
(2009), Moulin (2009), Moulin (2010), and Clippel et al. (2014).

8This property is called unanimity lower bound by Moulin (2010).
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device. We also show that the second price trading rule is only rule satisfying
strategy-proofness, equal treatment of equals, weak decision-efficiency, simple
generatability, envy-freeness, and no-trade-no-transfer. No-trade-no-transfer
requires that when all agents get the equal probability, their transfers are
zero.

The rest of this paper is organized as follows: Section 2 sets up the model.
Section 3 introduces a new rule. Section 4 defines axioms. Section 5 states
results. Section 6 verifies independence of axioms. All proofs are provided
in Section 7.

2 Model

Let N = {1, 2, . . . , n} be the set of agents, where we assume n ≥ 3. We con-
sider an environment with a single indivisible good, hereafter called good, and
one divisible good called money. The good can be allocated probabilistically.

Each agent i ∈ N has a preference over bundles consisting of a probabil-
ity si ∈ [0, 1] that he gets the good and a monetary transfer ti ∈ R that he
receives. We assume that this preference is represented by a utility function
ui(si, ti) = sivi + ti for some vi ∈ V ≡ R+. Since a preference is identi-
fied by vi, we regard vi and V as the preference and the set of preferences,
respectively. We call a list v ≡ (vi)i∈N ∈ V n a preference profile.

The set of feasible allocations is

Z = {(si, ti)i∈N ∈ ([0, 1]× R)n :
∑
i∈N

si = 1 and
∑
i∈N

ti ≤ 0}.

A rule is a function f : V n → Z. Given a rule f and a preference profile
v ∈ V n, we denote by fi(v) ≡ (si(v), ti(v)) ∈ [0, 1] × R agent i’s assignment
under f(v). For any v ∈ V n and N ′ ⊆ N , let vN ′ ∈ V #N ′

and v−N ′ ∈ V #N\N ′

denote (vj)j∈N ′ and (vj)j /∈N ′ , respectively.

3 New Rule

To define a new rule, we need some notation. For any v ∈ V n, let denote
v(1) and v(2) the first and the second highest value among v, respectively. In
formally, v(1) = maxi∈N vi and v(2) = maxi∈N\{i∗} vi where i

∗ ∈ argmaxi∈N vi.
So, v(1) = v(2) may occur. For any v ∈ V n, define [1v] = {i ∈ N : vi = v(1)}
and [2v] = {i ∈ N : vi = v(2)}. Notice that [1v] = [2v] when v(1) = v(2).

Then, we introduce the new rule. It is just like a trading rule as follow.
Initially, all agents have the equal probability 1

n
. They trade the probability
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at the second price v(2). The agents in [1v] are buyers, and the others are
sellers, except the case #[1v] = 1 and #[2v] = 1, where the agent in [2v]
is neither buyer nor seller. Each seller sells the initial probability 1

n
. Each

buyer buys equally the sold probability.

Definition The second price trading rule is defined as follows. For any
v ∈ V n, when #[1v] = 1 and #[2v] = 1,

fi(v) =


(n−1

n
,−n−2

n
v(2)) if i ∈ [1v],

( 1
n
, 0) if i ∈ [2v],

(0, 1
n
v(2)) otherwise,

and when #[1v] = 1 and #[2v] > 1,

fi(v) =

{
(1,−n−1

n
v(2)) if i ∈ [1v],

(0, 1
n
v(2)) otherwise,

and when #[1v] > 1

fi(v) =

{
( 1
#[1v]

,−( 1
#[1v]

− 1
n
)v(2)) if i ∈ [1v],

(0, 1
n
v(2)) otherwise.

4 Axioms

We introduce some properties that the second price trading rule satisfies.
First, strategy-proofness says that it is a dominant strategy for any agent to
report his true preference.

Definition A rule f satisfies strategy-proofness (SP) if for any v ∈ V n,
any i ∈ N , and any v′i ∈ V , it holds that

si(v)vi + ti(v) ≥ si(v
′
i, v−i)vi + ti(v

′
i, v−i).

Second best efficiency says that the rule is in the Pareto frontier among
strategy-proof rules.

Definition A strategy-proof rule f is second best efficient if there does
not exist other strategy-proof rule f ∗ such that for any v ∈ V n and any
i ∈ N ,

s∗i (v)vi + t∗i (v) ≥ si(v)vi + ti(v),

and for some v ∈ V n and some j ∈ N ,

s∗j(v)vj + t∗j(v) > sj(v)vj + tj(v).
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Budget balance says that the transfers among agents are closed.

Definition A rule f satisfies budget balance (BB) if for any v ∈ V n, it
holds that ∑

i∈N

ti(v) = 0.

Equal treatment of equals says that the agents who have the same pref-
erence get the same assignment.

Definition A rule f satisfies equal treatment of equals (ETE) if for
any v ∈ V n and any i, j ∈ N , if vi = vj, then it holds that

fi(v) = fj(v).

Equal rights lower bound says that the assignment is at least better than
the equal assignment ( 1

n
, 0).

Definition A rule f satisfies equal rights lower bound (ERLB) if for
any v ∈ V n and any i ∈ N , it holds that

si(v)vi + ti(v) ≥
1

n
vi.

Envy-freeness says that no agent prefers another agent’s assignment to
his own assignment.

Definition A rule f satisfies envy-freeness (EF) if for any v ∈ V n and
any i, j ∈ N , it holds that

si(v)vi + ti(v) ≥ sj(v)vi + tj(v).

No-trade-no-transfer says that when all agents get the equal probability
1
n
, their transfers are zero.

Definition A rule f satisfies no-trade-no-transfer (NTNT) if for any
v ∈ V n if for any i ∈ N ,

si(v) =
1

n
,

then for any i ∈ N , it holds that

ti(v) = 0.

Weak decision-efficiency says that almost all probability is assigned the
agent(s) whose valuation is the first highest, and all probability is assigned
the agents whose valuations are at least the second highest.
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Definition A rule f satisfies weak decision-efficiency (wDE) if for any
v ∈ V n, it holds that ∑

i∈[1]

si(v) ≥
n− 1

n
,

and ∑
i∈[1]∪[2]

si(v) = 1.

Simple generatability says that the probability can be generated by a
simple device, like n balls.

Definition A rule f satisfies simple generatability (SG) if for any v ∈
V n and any i ∈ N , there exist some non-negative integers m,m′ ≤ n such
that

si(v) =
m′

m
.

5 Results

We state the results. All proofs are provided in the final section. The first
result says that the new rule satisfies our main axiom, strategy-proofness.

Theorem 1 The second price trading rule satisfies strategy-proofness.

The next result says that the new rule is in the frontier among strategy-
proof rules.

Theorem 2 The second price trading rule is second best efficient.

From the above result, we can say that the new rule is not bad. To say
that the new rule is good, we need to show that the new rule has a special
feature. The next three results say that the new rule is the only rule satisfying
good properties.

Theorem 3 A rule satisfies strategy-proofness, budget-balance, equal treat-
ment of equals, weak decision-efficiency, and simple generatability if and only
if it is the second price trading rule.

Theorem 4 A rule satisfies strategy-proofness, equal rights lower bound,
equal treatment of equals, weak decision-efficiency, and simple generatability
if and only if it is the second price trading rule.
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Theorem 5 A rule satisfies strategy-proofness, envy-freeness, no-trade-no-
transfer, equal treatment of equals, weak decision-efficiency, and simple gen-
eratability if and only if it is the second price trading rule.

6 Independence of Axioms

We verify that none of the axioms in Theorems 3, 4, and 5 is redundant. We
exhibit rules that satisfy all but one of the axioms. Let n = 3.

Example 1 (not SP) Let f be as follows: for any v ∈ V 3 and any i ∈ N ,
when #[1v] = 3,

fi(v) = (
1

3
, 0),

and when #[1v] < 3,

fi(v) =

{
( 1
#[1v ]

,−( 1
#[1v ]

− 1
3
)v(1)) if i ∈ [1v],

(0, 1
3
v(1)) otherwise.

This rule satisfies all but not strategy-proofness.

Example 2 (not ETE) Let f be as follows: for any v ∈ V 3, when v =
(0, 0, 0),

f1(v) = (1, 0) and f2(v) = f3(v) = (0, 0),

and when v ̸= (0, 0, 0),

f(v) is determined by the second price trading rule.

This rule satisfies all but not equal treatment of equals.

Example 3 (not wDE) Let f be as follows: for any v ∈ V 3 and any i ∈ N ,

fi(v) = (
1

3
, 0),

This rule satisfies all but not weak decision-efficiency.

Example 4 (not SG) Let f be as follows: for any v ∈ V 3 and any i ∈ N ,
when for some α > 0, v = (α, 0, 0), v = (0, α, 0), or v = (0, 0, α),

fi(v) =

{
(2
3
, 0) if i ∈ [1v],

(1
6
, 0) otherwise,
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and when the other cases,

f(v) is determined by the second price trading rule.

This rule satisfies all but not simple generatability.

Example 5 (not BB, not ERLB, not NTNT) Given α > 0. Let f be
as follows: for any v ∈ V 3 and any i ∈ N ,

si(v) is determined by the second price trading rule,

and

ti(v) = −α + his transfer determined by the second price trading rule.

This rule satisfies all but not budget-balance, not equal rights lower bound,
and not no-trade-no-transfer.

Example 6 (not BB, not ERLB, not EF) Given α > 0. Let f be as
follows: for any v ∈ V 3 and any i ∈ N ,

si(v) is determined by the second price trading rule,

and when #{j ∈ N : vj = 0} = 2 and i ∈ {j ∈ N : vj = 0},

ti(v) = −α + his transfer determined by the second price trading rule,

and when #{j ∈ N : vj = 0} = 2 and i /∈ {j ∈ N : vj = 0},

ti(v) = his transfer determined by the second price trading rule,

and when #{j ∈ N : vj = 0} = 1 and i ∈ {j ∈ N : vj = 0},

ti(v) = his transfer determined by the second price trading rule,

and when #{j ∈ N : vj = 0} = 1 and i /∈ {j ∈ N : vj = 0},

ti(v) = −α + his transfer determined by the second price trading rule,

and when the other cases,

ti(v) = his transfer determined by the second price trading rule.

This rule satisfies all but not budget-balance, not equal rights lower bound,
and not envy-freeness.
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7 Proofs

Throughout the all proofs, we use the following Lemma which have been
shown by Myerson (1981).

Lemma (Myerson, 1981) A rule f satisfies strategy-proofness if and only
if for any i ∈ N , any vi, v

′
i ∈ V such that vi ≤ v′i, and any v−i ∈ V n−1, it

holds that
si(vi, v−i) ≤ si(v

′
i, v−i),

and that

ti(vi, v−i) = ti(0, v−i)− si(vi, v−i)vi +

∫ vi

0

si(xi, v−i)dxi.

From this, we also have the following easily.9 If a rule f satisfies strategy-
proofness, then for any i ∈ N , any vi, v

′
i ∈ V such that vi ≤ v′i, and any

v−i ∈ V n−1, it holds that

ti(v
′
i, v−i) = ti(vi, v−i)− si(v

′
i, v−i)v

′
i + si(vi, v−i)vi +

∫ v′i

vi

si(xi, v−i)dxi.

7.1 Proof of Theorem 1

We show that the second price trading rule satisfies strategy-proofness. Let
f denote the second price trading rule. Let i ∈ N . Let v ∈ V n. We divide
the argument into two cases.

Case 1. The number of agent whose valuation is the first highest in
N \ {i} is 1.
Let vi1 , vi2 ∈ V denote the first and the second highest valuation in N \ {i},
respectively. Note that

si(v) =


0 if vi ≤ vi2 ,
1
n

if vi2 < vi < vi1 ,
1
2

if vi = vi1 ,
n−1
n

if vi1 < vi.

Note also that

ti(0, v−i) =
1

n
vi2 .

9Subtract ti(vi, v−i) from ti(v
′
i, v−i).
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Then, it follows that

ti(0, v−i)−si(vi, v−i)vi+

∫ vi

0

si(xi, v−i)dxi =


1
n
vi2 if vi ≤ vi2 ,

0 if vi2 < vi < vi1 ,

−(1
2
− 1

n
)vi1 if vi = vi1 ,

−n−2
n
vi1 if vi1 < vi.

Thus, we have ti(vi, v−i) = ti(0, v−i)− si(vi, v−i)vi +
∫ vi
0

si(xi, v−i)dxi. Then,
Myerson’s Lemma implies that f satisfies strategy-proofness.

Case 2. The number of agents whose valuations are the first highest in
N \ {i} is more than 1.
Let m denote the number of agents whose valuations are the first highest in
N \ {i}. Let vi1 ∈ V denote the first highest valuation in N \ {i}. Note that

si(v) =


0 if vi < vi1 ,

1
m+1

if vi = vi1 ,

1 if vi1 < vi.

Note also that

ti(0, v−i) =
1

n
vi1 .

Then, it follows that

ti(0, v−i)− si(vi, v−i)vi +

∫ vi

0

si(xi, v−i)dxi =


1
n
vi1 if vi < vi1 ,

−( 1
m+1

− 1
n
)vi1 if vi = vi1 ,

−n−1
n
vi1 if vi1 < vi.

Thus, we have ti(vi, v−i) = ti(0, v−i)− si(vi, v−i)vi +
∫ vi
0

si(xi, v−i)dxi. Then,
Myerson’s Lemma implies that f satisfies strategy-proofness.

2

7.2 Proof of Theorem 2

We show that the second price trading rule is the second best efficient. Let
f denote the second price trading rule. Let f ∗ be a strategy-proof rule as
follows: for any v ∈ V n, it holds that

s∗i (v)vi + t∗i (v) ≥ si(v)vi + ti(v). (1)

Let v ∈ V n. For simplicity of notation, we assume 1 ∈ [1v] and 2 ∈ [2v]. We
divide the argument into three cases.
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Case 1: #[1v] = 1 and #[2v] > 1.
Note that

fi(v) =

{
(1,−n−1

n
v2) if i ∈ [1v],

(0, 1
n
v2) otherwise.

We claim that s∗1(v) = 1. Suppose to the contrary that s∗1(v) < 1. Then,
from (1), we have

s∗1(v)v2 + t∗1(v) > s1(v)v2 + t1(v).

For any i ̸= 1, from (1), we also have

s∗i (v)v2 + t∗i (v) ≥ si(v)v2 + ti(v).

By summing up these inequalities, it follows that

v2 > v2,

which is a contradiction. So, we have

s∗1(v) = 1.

This implies for any i ̸= 1,
s∗i (v) = 0.

So, for any i ∈ N , it holds that

t∗i (v) = ti(v).

Case 2: #[1v] = 1 and #[2v] = 1.
Note that

fi(v) =


(n−1

n
,−n−2

n
v2) if i ∈ [1v],

( 1
n
, 0) if i ∈ [2v],

(0, 1
n
v2) otherwise,

By case 1, it holds that

f ∗
2 (v̂2, v−2) = (0,

1

n
v̂2),

where v̂2 = v(3). Since f ∗ satisfies SP, it follows that

1

n
v̂2 ≥ s∗2(v)v̂2 + t∗2(v). (2)

12



By combining the inequalities (1) and (2), we have

(s∗2(v)−
1

n
)(v2 − v̂2) ≥ 0.

Since v2 − v̂2 > 0, this implies that

s∗2(v) ≥
1

n
.

We claim that s∗2(v) =
1
n
. Suppose to the contrary that s∗2(v) >

1
n
. Then, for

any i ∈ N , from (1), we have

s∗i (v)v1 + t∗i (v) ≥ si(v)v1 + ti(v),

where the inequality is strict for agent 2. By summing up these inequalities,
it follows that

v1 > v1,

which is a contradiction. So, we have

s∗2(v) =
1

n
.

This implies that

s∗1(v) ≤
n− 1

n
.

We claim that s∗1(v) =
n−1
n
. Suppose to the contrary that s∗1(v) <

n−1
n
. Then,

from (1), we have

s∗1(v)v2 + t∗1(v) > s1(v)v2 + t1(v).

For any i ̸= 1, from (1), we also have

s∗i (v)v2 + t∗i (v) ≥ si(v)v2 + ti(v).

By summing up these inequalities, it follows that

v2 > v2,

which is a contradiction. So, we have

s∗1(v) =
n− 1

n
.

This implies for any i ̸= 1, 2,

s∗i (v) = 0.
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So, for any i ∈ N , it holds that

t∗i (v) = ti(v).

Case 3: #[1v] > 1.
Note that

fi(v) =

{
( 1
#[1v ]

,−( 1
#[1v ]

− 1
n
)v1) if i ∈ [1v],

(0, 1
n
v1) otherwise,

We claim that for any j /∈ [1v], s
∗
j(v) = 0. Suppose to the contrary that for

some h /∈ [1v], s
∗
h(v) > 0. Then, from (1), we have

s∗h(v)v1 + t∗h(v) > sh(v)v1 + th(v).

For any j /∈ [1v], from (1), we also have

s∗j(v)v1 + t∗j(v) ≥ sj(v)v1 + tj(v).

Note that ∑
i∈[1v ]

s∗i (v)v1 +
∑
i∈[1v]

t∗i (v) ≥
∑
i∈[1v]

si(v)v1 +
∑
i∈[1v ]

ti(v).

By summing up these inequalities, we have∑
i∈N

s∗i (v)v1 +
∑
i∈N

t∗i (v) >
∑
i∈N

si(v)v1 +
∑
i∈N

ti(v),

which implies v1 > v1, a contradiction. So, for any j /∈ [1v], we have

s∗j(v) = 0.

Then, for any j /∈ [1v], it follows that

t∗j(v) = tj(v).

These imply that for any i ∈ [1v], it holds that

s∗i (v)vi + t∗i (v) = si(v)vi + ti(v).

Thus, f is the second best efficient.
2
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7.3 Proof of Theorem 3

In the following, for any partition (I, C,O) of N where some set may be
empty, we use the notation v = (v1I , vC , v

0
O) in which for any i, j ∈ I, any

k ∈ C, and any h, h′ ∈ O, v1i = v1j > vk > v0h = v0h′ , where v1i and v0h are any
values in V .

Let f be a rule satisfying SP, BB, ETE, wDE, and SG. We show that
for any v ∈ V n, f(v) coincides with the allocation determined by the second
price trading rule. To do so, we prove the following induction.

1. (A0) For any (v1I , vC , v
0
O) ∈ V n such that #C = 1 and #I = 1,

f(v1I , vC , v
0
O) coincides with the allocation determined by the second

price trading rule.
(B0) For any (v1I , v

0
O) ∈ V n, f(v1I , v

0
O) also do.

2. Given any integer c such that 2 ≤ c ≤ n− 2. If
(A) for any (v1I , vC , v

0
O) ∈ V n such that #C ≤ c − 1 and #I = 1,

f(v1I , vC , v
0
O) coincides with the allocation determined by the second

price trading rule, and
(B) for any (v1I , vC , v

0
O) ∈ V n such that #C ≤ c − 2 and I ̸= ∅,

f(v1I , vC , v
0
O) also do, then

(A′) for any (v1I , vC , v
0
O) ∈ V n such that #C = c and #I = 1, f(v1I , vC , v

0
O)

also do, and
(B′) for any (v1I , vC , v

0
O) ∈ V n such that #C = c − 1 and I ̸= ∅,

f(v1I , vC , v
0
O) also do.

The First Part.
Before proving (A0) and (B0), we show preliminary results. Pick up any two
agents, say 1, 2 ∈ N , and set O = N \ {1, 2}. Let v1i , v

0
i ∈ V be such that

v1i > v0i . By ETE and BB, we have for any i ∈ N ,

fi(v
0
O∪{1,2}) = (

1

n
, 0).

By wDE, SG, and ETE, we have

s1(v
1
1, v

0
O∪{2}) = 1.

By Myerson’s Lemma, it holds that

t1(v
1
1, v

0
O∪{2}) = −n− 1

n
v02.

Then, by ETE and BB, it follows that for any i ̸= 1,

fi(v
1
1, v

0
O∪{2}) = (0,

1

n
v02).
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So, f(v11, v
0
O∪{2}) coincides with the allocation determined by the second price

trading rule. By wDE and ETE, we have

s1(v
1
{1,2}, v

0
O) = s2(v

1
{1,2}, v

0
O) =

1

2
.

By wDE and SG, for any v̂2 ∈ V such that v0i < v̂2 < v11, it follows that
s2(v

1
1, v̂2, v

0
O) is either 0 or 1

n
.

We claim that for any such v̂2, it holds that

s2(v
1
1, v̂2, v

0
O) =

1

n
.

Suppose to the contrary that for some v̂2 ∈ V such that v0i < v̂2 < v11, it
holds that

s2(v
1
1, v̂2, v

0
O) = 0.

Then, by Myerson’s Lemma, there exists a ∈ V such that v̂2 ≤ a ≤ v11, and
the following is satisfied: For any v′2 ∈ V such that v0i < v′2 < a, we have

s2(v
1
1, v

′
2, v

0
O) = 0

and for any v′2 ∈ V such that a < v′2 < v11, we have

s2(v
1
1, v

′
2, v

0
O) =

1

n
.

Furthermore, Myerson’s Lemma gives that

t2(v
1
{1,2}, v

0
O) ̸= −(

1

2
− 1

n
)v11.

By ETE and BB, it holds that for any i ̸= 1, 2,

ti(v
1
{1,2}, v

0
O) ̸=

1

n
v11.

By wDE and ETE, we have

s3(v
1
{1,2,3}, v

0
O\{3}) =

1

3
.

By wDE, for any v̂3 ∈ V such that v0i ≤ v̂3 < v11, it follows that

s3(v
1
{1,2}, v̂3, v

0
O\{3}) = 0.

Then, Myerson’s Lemma gives that

t3(v
1
{1,2,3}, v

0
O\{3}) ̸= −(

1

3
− 1

n
)v11.
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Repeating the same argument, we have

tn(v
1
N) ̸= −(

1

n
− 1

n
)v11 = 0.

Since, by ETE and BB, it must be tn(v
1
N) = 0, this is contradiction. Thus,

for any v̂2 ∈ V such that v0i < v̂2 < v11, it holds that

s2(v
1
1, v̂2, v

0
O) =

1

n
.

Then, by Myerson’s Lemma, we have

f2(v
1
1, v2, v

0
O) =

{
(1
2
,−(1

2
+ 1

n
)v11) if v2 = v11,

( 1
n
, 0) if v11 > v2 > v0i .

(3)

The (A0) Part .
Let (v1I , vC , v

0
O) ∈ V n be such that #C = 1 and #I = 1. We denote I = {i1}

and C = {i2}. From (3), we have fi2(v
1
I , vC , v

0
O) = ( 1

n
, 0). Then, by wDF, we

have

si1(v
1
I , vC , v

0
O) =

n− 1

n
.

Since, from (3), fi1(v̂i1 , vC , v
0
O) = (1

2
,−(1

2
− 1

n
)vi2) where v̂i1 = vi2 , by Myer-

son’s Lemma, we have

ti1(v
1
I , vC , v

0
O) = −n− 2

n
vi2 .

Then, by BB and ETE, for any h ∈ O, it holds that

fh(v
1
I , vC , v

0
O) = (0,

1

n
vi2).

Thus, (A0) is valid.
The (B0) Part .

Let v = (v1I , v
0
O) ∈ V n. When #I = 0 or 1, we have already shown as the

preliminary results. So, consider the case of #I > 1.
Let i, j ∈ I. From (3), it follows that

fi(v
1
{i,j}, v

0
O∪I\{i,j}) = (

1

2
,−(

1

2
− 1

n
)v1i ).

Then, by BB and ETE, for any h ∈ O ∪ I \ {i, j}, it follows that

fh(v
1
{i,j}, v

0
O∪I\{i,j}) = (0,

1

n
v1i ),
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that is, f(v1{i,j}, v
0
O∪I\{i,j}) coincides with the allocation determined by the

second price trading rule. By the similar way, we can show that for any
k ∈ I \ {i, j}, f(v1{i,j,k}, v0O∪I\{i,j,k}) coincides with the allocation determined
by the second price trading rule. Repeating the same argument, we have
(B0). Thus, the first part is valid.

The Second Part .
Given any integer c such that 2 ≤ c ≤ n− 2. Before proving (A′) and (B′),
we show preliminary results. Let (v1I , vC′ , v0O) ∈ V n be such that #C ′ = c−1
and #I = 1. For simplicity of notation, we denote I = {1}, and v2 as the
highest valuation in C ′. Pick up any agent h ∈ O.

Note that by wDE, SG, and ETE, we have

sh(vh, v
1
I , vC′ , v0O\{h}) =


0 if v0h ≤ vh ≤ v2,

0 or 1
n

if v2 < vh < v11,
1
2

if vh = v11.

We claim that for any vh ∈ V such that v2 < vh < v11, we have

sh(vh, v
1
I , vC′ , v0O\{h}) =

1

n
.

Suppose to the contrary that for some v̂h ∈ V such that v2 < v̂h < v11, it
holds that

sh(v̂h, v
1
I , vC′ , v0O\{h}) = 0.

Then, by Myerson’s Lemma, there exists a ∈ V such that v̂h ≤ a ≤ v11, and
the following is satisfied: For any v′h ∈ V such that v0h < v′h < a, we have

sh(v
′
h, v

1
I , vC′ , v0O\{h}) = 0

and for any v′h ∈ V such that a < v′h < v11, we have

sh(v
′
h, v

1
I , vC′ , v0O\{h}) =

1

n
.

Since, by the induction hypothesis (A), fh(v
1
I , vC′ , v0O) = (0, 1

n
v2), Myerson’s

Lemma also gives that

th(v
1
I∪{h}, vC′ , v0O\{h}) ̸= −(

1

2
− 1

n
)v11.

Note that, by wDE, for any j ∈ C ′, sj(v
1
I∪{h}, vC′ , v0O\{h}) = 0. Since, by

the induction hypothesis (B), for any j ∈ C ′, fj(v
1
I∪{h}, vC′\{j}, v

0
O∪{j}\{h}) =

(0, 1
n
v11), by strategy-proofness, it holds that

tj(v
1
I∪{h}, vC′ , v0O\{h}) =

1

n
v11.
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By ETE and BB, it holds that for any i ∈ O \ {h},

ti(v
1
I∪{h}, vC′ , v0O\{h}) ̸=

1

n
v11.

Pick up any agent h′ ∈ O \ {h}. By wDE, SG, and ETE, we have

sh′(v1I∪{h,h′}, vC′ , v0O\{h,h′}) =
1

3
.

By wDE, for any v̂h′ ∈ V such that v0h′ ≤ v̂h′ < v11, it follows that

sh′(v̂h′ , v1I∪{h}, vC′ , v0O\{h,h′}) = 0.

Then, Myerson’s Lemma gives that

th′(v1I∪{h,h′}, vC′ , v0O\{h,h′}) ̸= −(
1

3
− 1

n
)v11.

Repeating the same argument, we have for any i ∈ I ∪O,

si(v
1
I∪O, vC′) =

1

n− (c− 1)

and

ti(v
1
I∪O, vC′) ̸= −(

1

n− (c− 1)
− 1

n
)v11.

By the induction hypothesis (B) and SP, for any k ∈ C ′, it holds that

tk(v
1
I∪O, vC′) =

1

n
v11.

These, however, contradict BB. Thus, for any vh ∈ V such that v2 < vh < v11,
we have

sh(vh, v
1
I , vC′ , v0O\{h}) =

1

n
.

Then, by Myerson’s Lemma, we have

fh(vh, v
1
I , vC′ , v0O\{h}) =


(0, 1

n
v2) if v0h ≤ vh ≤ v2

( 1
n
, 0) if v2 < vh < v11

(1
2
,−(1

2
− 1

n
)v11) if vh = v11.

(4)

The (A′) Part .
Let v = (v1I , vC , v

0
O) ∈ V n be such that #C = c and #I = 1. We denote

I = {i1}, and vi2 as the highest valuation in C, that is, i2 ∈ [2v]. We divide
the argument into two cases.
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The case 1: #[2v] = 1.
From (4), we have fi2(v

1
I , vC , v

0
O) = ( 1

n
, 0). Then, by wDF, we have

si1(v
1
I , vC , v

0
O) =

n− 1

n
.

Since, from (4), fi1(v̂i1 , vC , v
0
O) = (1

2
,−(1

2
− 1

n
)vi2) where v̂i1 = vi2 , by Myer-

son’s Lemma, we have

ti1(v
1
I , vC , v

0
O) = −n− 2

n
vi2 .

Then, for any i ̸= i1, i2, it holds that

si(v
1
I , vC , v

0
O) = 0.

By the induction hypothesis (A), for any k ∈ C \ {i2}, it follows that

fk(v
1
I , vC\{k}, v

0
O∪{k}) = (0,

1

n
vi2).

So, by SP, for any k ∈ C \ {i2}, it holds that

tk(v
1
I , vC , v

0
O) =

1

n
vi2 .

Then, by BB, for any h ∈ O, it follows that

th(v
1
I , vC , v

0
O) =

1

n
vi2 .

The case 2: #[2v] > 1.
From (4), for any i ∈ [2v], we have fi(v

1
I , vC , v

0
O) = (0, 1

n
vi2). Then, by wDF,

we have
si1(v

1
I , vC , v

0
O) = 1.

Since, by the induction hypothesis (B), fi1(v̂i1 , vC , v
0
O) = ( 1

#[2v ]+1
,−( 1

#[2v ]+1
−

1
n
)vi2) where v̂i1 = vi2 , by Myerson’s Lemma, we have

ti1(v
1
I , vC , v

0
O) = −n− 1

n
vi2 .

Then, for any i /∈ [1v] ∪ [2v], it holds that

si(v
1
I , vC , v

0
O) = 0.
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By the induction hypothesis (A), for any k ∈ C \ [2v], it follows that

fk(v
1
I , vC\{k}, v

0
O∪{k}) = (0,

1

n
vi2).

So, by SP, for any k ∈ C \ [2v], it holds that

ti(v
1
I , vC , v

0
O) =

1

n
vi2 .

Then, by BB and ETE, for any h ∈ O, it also follows that

th(v
1
I , vC , v

0
O) =

1

n
vi2 .

Thus, (A′) is valid.
The (B′) Part .

Let v = (v1I , vC , v
0
O) ∈ V n be such that #C = c − 1 and I ̸= ∅. If #I = 1,

then the induction hypothesis (A) implies the conclusion. So, consider the
case of #I > 1.

Let i, j ∈ I. Let i2 ∈ C be such that his valuation vi2 is the highest in C.
From (A′), it holds that

fj(v̂j, v
1
i , vC , v

0
I\{i,j}, v

0
O) = (0,

1

n
vi2)

where v̂j = vi2 , and that for any v′j ∈ V such that v1i > v′j > vi2 ,

sj(v
′
j, v

1
i , vC , v

0
I\{i,j}, v

0
O) =

1

n
.

Since, by wDE and ETE, sj(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) =

1
2
, by Myerson’s Lemma,

it follows that

tj(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) = −(

1

2
− 1

n
)v1i .

Then, for any k ̸= i, j, we have

sk(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) = 0.

Note that by the induction hypothesis (B), for any k ∈ C, it follows that

fk(v
1
{i,j}, vC\{k}, v

0
I\{i,j}, v

0
O∪{k}) = (0,

1

n
v1i ).

So, by SP, for any k ∈ C, we have

tk(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) =

1

n
v1i .
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Then, by BB and ETE, for any h ∈ O ∪ I \ {i, j}, it also follows that

th(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) =

1

n
v1i ,

that is, f(v1{i,j}, vC , v
0
I\{i,j}, v

0
O) coincides with the allocation determined by

the second price trading rule. By the similar way, we can show that for
any k ∈ I \ {i, j}, f(v1{i,j,k}, vC , v

0
I\{i,j,k}, v

0
O) coincides with the allocation

determined by the second price trading rule. Repeating the same argument,
we have (B′). Thus, the second part is valid. Therefore, this theorem is
valid.

2

7.4 Proof of Theorem 4

Let f be a rule satisfying SP, ERLB, ETE, wDE, and SG. We show that
for any v ∈ V n, f(v) coincides with the allocation determined by the second
price trading rule. To do so, we prove the following induction.

1. (A0) For any (v1I , vC , v
0
O) ∈ V n such that #C = 1 and #I = 1,

f(v1I , vC , v
0
O) coincides with the allocation determined by the second

price trading rule.
(B0) For any (v1I , v

0
O) ∈ V n, f(v1I , v

0
O) also do.

2. Given any integer c such that 2 ≤ c ≤ n− 2. If
(A) for any (v1I , vC , v

0
O) ∈ V n such that #C ≤ c − 1 and #I = 1,

f(v1I , vC , v
0
O) coincides with the allocation determined by the second

price trading rule, and
(B) for any (v1I , vC , v

0
O) ∈ V n such that #C ≤ c − 2 and I ̸= ∅,

f(v1I , vC , v
0
O) also do, then

(A′) for any (v1I , vC , v
0
O) ∈ V n such that #C = c and #I = 1, f(v1I , vC , v

0
O)

also do, and
(B′) for any (v1I , vC , v

0
O) ∈ V n such that #C = c − 1 and I ̸= ∅,

f(v1I , vC , v
0
O) also do.

The First Part.
Before proving (A0) and (B0), we show preliminary results. Pick up any two
agents, say 1, 2 ∈ N , and set O = N \ {1, 2}. Let v1i , v

0
i ∈ V be such that

v1i > v0i . By ETE and ERLB, we have for any i ∈ N ,

fi(v
0
O∪{1,2}) = (

1

n
, 0).
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By wDE, SG, and ETE, we have

s1(v
1
1, v

0
O∪{2}) = 1.

By Myerson’s Lemma, it holds that

t1(v
1
1, v

0
O∪{2}) = −n− 1

n
v02.

Then, by ETE, ERLB, and feasibility of transfer, it follows that for any i ̸= 1,

fi(v
1
1, v

0
O∪{2}) = (0,

1

n
v02).

So, f(v11, v
0
O∪{2}) coincides with the allocation determined by the second price

trading rules. By wDE and ETE, we have

s1(v
1
{1,2}, v

0
O) = s2(v

1
{1,2}, v

0
O) =

1

2
.

By wDE and SG, for any v̂2 ∈ V such that v0i < v̂2 < v11, it follows that
s2(v

1
1, v̂2, v

0
O) is either 0 or 1

n
.

We claim that for any such v̂2, it holds that

s2(v
1
1, v̂2, v

0
O) =

1

n
.

Suppose to the contrary that for some v̂2 ∈ V such that v0i < v̂2 < v11, it
holds that

s2(v
1
1, v̂2, v

0
O) = 0.

Then, by SP, we have

t2(v
1
1, v̂2, v

0
O) =

1

n
v02,

which contradicts ERLB. Thus, for any v̂2 ∈ V such that v0i < v̂2 < v11, it
holds that

s2(v
1
1, v̂2, v

0
O) =

1

n
.

Then, by Myerson’s Lemma, we have

f2(v
1
1, v2, v

0
O) =

{
(1
2
,−(1

2
+ 1

n
)v11) if v2 = v11,

( 1
n
, 0) if v11 > v2 > v0i .

(5)

The (A0) Part .
Let (v1I , vC , v

0
O) ∈ V n be such that #C = 1 and #I = 1. We denote I = {i1}
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and C = {i2}. From (5), we have fi2(v
1
I , vC , v

0
O) = ( 1

n
, 0). Then, by wDF, we

have

si1(v
1
I , vC , v

0
O) =

n− 1

n
.

Since, from (5), fi1(v̂i1 , vC , v
0
O) = (1

2
,−(1

2
− 1

n
)vi2) where v̂i1 = vi2 , by Myer-

son’s Lemma, we have

ti1(v
1
I , vC , v

0
O) = −n− 2

n
vi2 .

Then, for any h ∈ O, it holds that

sh(v
1
I , vC , v

0
O) = 0.

By ETE and feasibility of transfer, for any h ∈ O, it also holds that

th(v
1
I , vC , v

0
O) ≤

1

n
vi2 .

We claim that th(v
1
I , vC , v

0
O) =

1
n
vi2 . Suppose to the contrary that

th(v
1
I , vC , v

0
O) <

1

n
vi2 .

By wDE, SG, and ETE, we have

sh(v̂h, v
1
I , vC , v

0
O\{h}) = 0,

where v̂h = vi2 . Then, by SP, it holds that

th(v̂h, v
1
I , vC , v

0
O\{h}) = th(v

1
I , vC , v

0
O) <

1

n
vi2 ,

which contradicts ERLB. So, for any h ∈ O, it holds that

th(v
1
I , vC , v

0
O) =

1

n
vi2 .

Thus, (A0) is valid.
The (B0) Part .

Let v = (v1I , v
0
O) ∈ V n. When #I = 0 or 1, we have already shown as the

preliminary results. So, consider the case of #I > 1.
Let i, j ∈ I. From (5), it follows that

fi(v
1
{i,j}, v

0
O∪I\{i,j}) = (

1

2
,−(

1

2
− 1

n
)v1i ).
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For any h ̸= i, j, it holds that

sh(v
1
{i,j}, v

0
O∪I\{i,j}) = 0.

By ETE and feasibility of transfer, for any h ̸= i, j, it also follows that

th(v
1
{i,j}, v

0
O∪I\{i,j}) ≤

1

n
v1i .

We claim that th(v
1
{i,j}, v

0
O∪I\{i,j}) =

1
n
v1i . Suppose to the contrary that

th(v
1
{i,j}, v

0
O∪I\{i,j}) <

1

n
v1i .

By wDE, for any v̂h ∈ V such that v0h < v̂h < v1i , it follows that

sh(v
1
{i,j}, v̂h, v

0
O∪I\{i,j,h}) = 0.

By ETE, we have

sh(v
1
{i,j,h}, v

0
O∪I\{i,j,h}) =

1

3
.

Then, Myerson’s Lemma implies that

th(v
1
{i,j,h}, v

0
O∪I\{i,j,h}) = th(v

1
{i,j}, v

0
O∪I\{i,j})−

1

3
v1i < −(

1

3
− 1

n
)v1i ,

which contradicts ERLB. Thus, for any h ̸= i, j, it holds that

th(v
1
{i,j}, v

0
O∪I\{i,j}) =

1

n
v1i ,

that is, f(v1{i,j}, v
0
O∪I\{i,j}) coincides with the allocation determined by the

second price trading rule. By the similar way, we can show that for any
k ∈ I \ {i, j}, f(v1{i,j,k}, v0O∪I\{i,j,k}) coincides with the allocation determined
by the second price trading rule. Repeating the same argument, we have
(B0). Thus, the first part is valid.

The Second Part .
Given any integer c such that 2 ≤ c ≤ n− 2. Before proving (A′) and (B′),
we show preliminary results. Let (v1I , vC′ , v0O) ∈ V n be such that #C ′ = c−1
and #I = 1. For simplicity of notation, we denote I = {1}, and v2 as the
highest valuation in C ′. Pick up any agent h ∈ O.

Note that by wDE, SG, and ETE, we have

sh(vh, v
1
I , vC′ , v0O\{h}) =


0 if v0h ≤ vh ≤ v2,

0 or 1
n

if v2 < vh < v11,
1
2

if vh = v11.

25



We claim that for any vh ∈ V such that v2 < vh < v11, we have

sh(vh, v
1
I , vC′ , v0O\{h}) =

1

n
.

Suppose to the contrary that for some v̂h ∈ V such that v2 < v̂h < v11, it
holds that

sh(v̂h, v
1
I , vC′ , v0O\{h}) = 0.

Since, by the induction hypothesis (A), fh(v
1
I , vC′ , v0O) = (0, 1

n
v2), by SP, we

have

th(v̂h, v
1
I , vC′ , v0O\{h}) =

1

n
v2,

which contradicts ERLB. So, for any vh ∈ V such that v2 < vh < v11, we have

sh(vh, v
1
I , vC′ , v0O\{h}) =

1

n
.

Then, by Myerson’s Lemma, we have

fh(vh, v
1
I , vC′ , v0O\{h}) =


(0, 1

n
v2) if v0h ≤ vh ≤ v2

( 1
n
, 0) if v2 < vh < v11

(1
2
,−(1

2
− 1

n
)v11) if vh = v11.

(6)

The (A′) Part .
Let v = (v1I , vC , v

0
O) ∈ V n be such that #C = c and #I = 1. We denote

I = {i1}, and vi2 as the highest valuation in C, that is, i2 ∈ [2v]. We divide
the argument into two cases.

The case 1: #[2v] = 1.
From (6), we have fi2(v

1
I , vC , v

0
O) = ( 1

n
, 0). Then, by wDF, we have

si1(v
1
I , vC , v

0
O) =

n− 1

n
.

Since, from (6), fi1(v̂i1 , vC , v
0
O) = (1

2
,−(1

2
− 1

n
)vi2) where v̂i1 = vi2 , by Myer-

son’s Lemma, we have

ti1(v
1
I , vC , v

0
O) = −n− 2

n
vi2 .

Then, for any i ̸= i1, i2, it holds that

si(v
1
I , vC , v

0
O) = 0.

By the induction hypothesis (A), for any k ∈ C \ {i2}, it follows that

fk(v
1
I , vC\{k}, v

0
O∪{k}) = (0,

1

n
vi2).
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So, by SP, for any k ∈ C \ {i2}, it holds that

tk(v
1
I , vC , v

0
O) =

1

n
vi2 .

We claim that for any h ∈ O, it holds that

th(v
1
I , vC , v

0
O) =

1

n
vi2 .

Suppose to the contrary that for some h ∈ O, it holds that

th(v
1
I , vC , v

0
O) ̸=

1

n
vi2 .

If th(v
1
I , vC , v

0
O) >

1
n
vi2 , then, by ETE, it violates the feasibility of transfer.

So, consider the case of th(v
1
I , vC , v

0
O) < 1

n
vi2 . By wDE, SG, and ETE, we

have
sh(v̂h, v

1
I , vC , v

0
O\{h}) = 0,

where v̂h = vi2 . Then, by SP, it holds that

th(v̂h, v
1
I , vC , v

0
O\{h}) = th(v

1
I , vC , v

0
O) <

1

n
vi2 ,

which contradicts ERLB. So, for any h ∈ O, it holds that

th(v
1
I , vC , v

0
O) =

1

n
vi2 .

The case 2: #[2v] > 1.
From (6), for any i ∈ [2v], we have fi(v

1
I , vC , v

0
O) = (0, 1

n
vi2). Then, by wDF,

we have
si1(v

1
I , vC , v

0
O) = 1.

Since, by the induction hypothesis (B), fi1(v̂i1 , vC , v
0
O) = ( 1

#[2v ]+1
,−( 1

#[2v ]+1
−

1
n
)vi2) where v̂i1 = vi2 , by Myerson’s Lemma, we have

ti1(v
1
I , vC , v

0
O) = −n− 1

n
vi2 .

Then, for any i /∈ [1v] ∪ [2v], it holds that

si(v
1
I , vC , v

0
O) = 0.

By the induction hypothesis (A), for any k ∈ C \ [2v], it follows that

fk(v
1
I , vC\{k}, v

0
O∪{k}) = (0,

1

n
vi2).
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So, by SP, for any k ∈ C \ [2v], it holds that

tk(v
1
I , vC , v

0
O) =

1

n
vi2 .

We claim that for any h ∈ O, it holds that

th(v
1
I , vC , v

0
O) =

1

n
vi2 .

Suppose to the contrary that for some h ∈ O, it holds that

th(v
1
I , vC , v

0
O) ̸=

1

n
vi2 .

If th(v
1
I , vC , v

0
O) >

1
n
vi2 , then, by ETE, it violates the feasibility of transfer.

So, consider the case of th(v
1
I , vC , v

0
O) < 1

n
vi2 . By wDE, SG, and ETE, we

have
sh(v̂h, v

1
I , vC , v

0
O\{h}) = 0,

where v̂h = vi2 . Then, by SP, it holds that

th(v̂h, v
1
I , vC , v

0
O\{h}) = th(v

1
I , vC , v

0
O) <

1

n
vi2 ,

which contradicts ERLB. So, for any h ∈ O, it holds that

th(v
1
I , vC , v

0
O) =

1

n
vi2 .

Thus, (A′) is valid.
The (B′) Part .

Let v = (v1I , vC , v
0
O) ∈ V n be such that #C = c − 1 and I ̸= ∅. If #I = 1,

then the induction hypothesis (A) implies the conclusion. So, consider the
case of #I > 1.

Let i, j ∈ I. Let i2 ∈ C be such that his valuation vi2 is the highest in C.
From (A′), it holds that

fj(v̂j, v
1
i , vC , v

0
I\{i,j}, v

0
O) = (0,

1

n
vi2)

where v̂j = vi2 , and that for any v′j ∈ V such that v1i > v′j > vi2 ,

sj(v
′
j, v

1
i , vC , v

0
I\{i,j}, v

0
O) =

1

n
.

Since, by wDE and ETE, sj(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) =

1
2
, by Myerson’s Lemma,

it follows that

tj(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) = −(

1

2
− 1

n
)v1i .
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Then, for any k ̸= i, j, we have

sk(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) = 0.

Note that by the induction hypothesis (B), for any k ∈ C, it follows that

fk(v
1
{i,j}, vC\{k}, v

0
I\{i,j}, v

0
O∪{k}) = (0,

1

n
v1i ).

So, by SP, for any k ∈ C, we have

tk(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) =

1

n
v1i .

We claim that for any h ∈ O, it holds that

th(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) =

1

n
v1i .

Suppose to the contrary that for some h ∈ O, it holds that

th(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) ̸=

1

n
v1i .

If th(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) >

1
n
v1i , then, by ETE, it violates the feasibility of

transfer. So, consider the case of th(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) < 1

n
v1i . By wDE

and ETE, we have

sh(v
1
{i,j,h}, vC , v

0
I\{i,j}, v

0
O\{h}) =

1

3
.

Since, by wDE, for any v′h ∈ V such that v1i > v′h > v0h,

sh(v
′
h, v

1
{i,j}, vC , v

0
I\{i,j}, v

0
O\{h}) = 0,

by Myerson’s Lemma, we have

th(v
1
{i,j,h}, vC , v

0
I\{i,j}, v

0
O\{h}) = th(v

1
{i,j}, vC , v

0
I\{i,j}, v

0
O)−

1

3
v1i < −(

1

3
− 1

n
)v1i ,

which contradicts ERLB. So, by ETE, for any h ∈ O∪I \{i, j}, it holds that

th(v
1
{i,j}, vC , v

0
I\{i,j}, v

0
O) =

1

n
v1i ,

that is, f(v1{i,j}, vC , v
0
I\{i,j}, v

0
O) coincides with the allocation determined by

the second price trading rule. By the similar way, we can show that for
any k ∈ I \ {i, j}, f(v1{i,j,k}, vC , v

0
I\{i,j,k}, v

0
O) coincides with the allocation

determined by the second price trading rule. Repeating the same argument,
we have (B′). Thus, the second part is valid. Therefore, this theorem is
valid.

2
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7.5 Proof of Theorem 5

Let f be a mechanism satisfying SP, EF, NTNT, ETE, wDE, and SG. In the
following, for any partition (I, C,X) of N where some set may be empty, we
use the notation v = (v1I , vC , v

x
X) in which for any i, j ∈ I, any k ∈ C, and

any h, h′ ∈ X, v1i = v1j > vk > vxh = vxh′ , where v1i and vxh are any values in V .

1. (A0) For any C ⊂ N such that #C = 1, and any I ⊂ N such that
#I = 1, f(v1I , vC , v

x
X) coincides with the allocation determined by the

quasi second price mechanism.
(B0) For any I ⊂ N , f(v1I , v

x
X) also do.

2. Given any integer c such that 2 ≤ c ≤ n− 1. If
(A) for any C ⊂ N such that #C = c − 1, and any I ⊂ N such that
#I = 1, f(v1I , vC , v

x
X) coincides with the allocation determined by the

quasi second price mechanism, and
(B) for any C ⊂ N such that #C = c− 2, and any non-empty I ⊂ N ,
f(v1I , vC , v

x
X) also do, then

(A′) for any C ⊂ N such that #C = c, and any I ⊂ N such that
#I = 1, f(v1I , vC , v

x
X) also do, and

(B′) for any C ⊂ N such that #C = c− 1, and any non-empty I ⊂ N ,
f(v1I , vC , v

x
X) also do.

The First Part.
Pick up any two agents, say 1, 2 ∈ N , and set X = N \{1, 2}. Let v11, vx1 ∈ V
be such that v11 > vx1 . By ETE and NTNT, we have for any i ∈ N ,

fi(v
x
X∪{1,2}) = (

1

n
, 0).

Then, by wDE, SG, and ETE, we have

s1(v
1
1, v

x
X∪{2}) = 1.

By Myerson’s Lemma, we also have

t1(v
1
1, v

x
X∪{2}) = −n− 1

n
vx2 .

Then, by ETE, EF and feasibility of transfer, it follows that for any i ̸= 1,

fi(v
1
1, v

x
X∪{2}) = (0,

1

n
vx2 ).
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So, f(v11, v
x
X∪{2}) coincides with the allocation determined by the quasi second

price mechanism. By wDE, SG, and ETE, we have

s1(v
1
{1,2}, v

x
X) = s2(v

1
{1,2}, v

x
X) =

1

2
.

By wDE and SG, for any v̂2 ∈ V such that vx1 < v̂2 < v11, it follows that
s2(v

1
1, v̂2, v

x
X) is either 0 or 1

n
.

We claim that for any such v̂2, it holds that

s2(v
1
1, v̂2, v

x
X) =

1

n
.

Suppose to the contrary that for some v̂2 ∈ V such that vx1 < v̂2 < v11, it
holds that

s2(v
1
1, v̂2, v

x
X) = 0.

Then, by Myerson’s Lemma, there exists a ∈ V such that v̂2 ≤ a ≤ v11, and
the following is satisfied: For any v′2 ∈ V such that vx1 < v′2 < a, we have

s2(v
1
1, v

′
2, v

x
X) = 0

and for any v′2 ∈ V such that a < v′2 < v11, we have

s2(v
1
1, v

′
2, v

x
X) =

1

n
.

Furthermore, Myerson’s Lemma gives that

t2(v
1
{1,2}, v

x
X) = −(

1

2
− 1

n
)v11 − (a− vx1 )

1

n
.

If t3(v
1
{1,2}, v

x
X) ≥ 1

n
v11, then agent 1 envies agent 3. So, it must be

t3(v
1
{1,2}, v

x
X) <

1

n
v11.

By wDE, for any v̂3 ∈ V such that vx1 < v̂3 < v11, it follows that

s3(v
1
{1,2}, v̂3, v

x
X\{3}) = 0.

By ETE, we have

s3(v
1
{1,2,3}, v

x
X\{3}) =

1

3
.

Then, Myerson’s Lemma implies that

t3(v
1
{1,2,3}, v

x
X\{3}) = t3(v

1
{1,2}, v

x
X)−

1

3
v11 < −(

1

3
− 1

n
)v11.
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If t4(v
1
{1,2,3}, v

x
X\{3}) ≥

1
n
v11, then agent 3 envies agent 4. So, it must be

t4(v
1
{1,2,3}, v

x
X\{3}) >

1

n
v11.

By repeating the same argument, we have

tn(v
1
{1,2,...,n}) < −(

1

n
− 1

n
)v11 = 0.

Since, by ETE, for any i ∈ N , si(v
1
{1,2,...,n}) = 1

n
, this contradicts NTNT.

Thus, for any v̂2 ∈ V such that vx1 < v̂2 < v11, it holds that

s2(v
1
1, v̂2, v

x
X) =

1

n
.

Then, by Myerson’s Lemma, we have

f2(v
1
1, v2, v

x
X) =

{
(1
2
,−(1

2
+ 1

n
)v11) if v2 = v11,

( 1
n
, 0) if v11 > v2 > vx1 .

(7)

The (A0) Part .
Let C ⊂ N be such that #C = 1, and I ⊂ N be such that #I = 1. Let
v = (v1I , vC , v

x
X) ∈ V n. We denote I = {i1} and C = {i2}. From (7), we have

fi2(v
1
I , vC , v

x
X) = ( 1

n
, 0). Then, by wDF, we have

si1(v
1
I , vC , v

x
X) =

n− 1

n
.

Since, from (7), fi1(v̂i1 , vC , v
x
X) = (1

2
,−(1

2
− 1

n
)vi2) where v̂i1 = vi2 , by Myer-

son’s Lemma, we have

ti1(v
1
I , vC , v

x
X) = −n− 2

n
vi2 .

Then, for any h ∈ X, it holds that

sh(v
1
I , vC , v

x
X) = 0.

By ETE and feasibility of transfer, for any h ∈ X, it also holds that

th(v
1
I , vC , v

x
X) ≤

1

n
vi2 .

We claim that th(v
1
I , vC , v

x
X) =

1
n
vi2 . Suppose to the contrary that

th(v
1
I , vC , v

x
X) <

1

n
vi2 .
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By wDE, SG, and ETE, it follows that

sh(v
1
I , vC , v̂h, v

x
X\{h}) = 0,

where v̂h = vi2 . Then, SP implies that

th(v
1
I , vC , v̂h, v

x
X\{h}) = th(v

1
I , vC , v

x
X) <

1

n
vi2 .

For k ̸= i1, i2, h, by wDE and EF, it follows that

tk(v
1
I , vC , v̂h, v

x
X\{h}) = th(v

1
I , vC , v̂h, v

x
X\{h}) <

1

n
vi2 .

By repeating the same argument, we have,

th′(v1I , vC , v̂X) <
1

n
vi2 ,

where for any h′ ∈ X, v̂h′ = vi2 . Since f(v
1
1, v̂X∪{i2}) coincides with the alloca-

tion determined by the quasi second price mechanism, this is a contradiction.
Thus, for any h ∈ X, it holds that

th(v
1
I , vC , v

x
X) =

1

n
vi2 .

Thus, (A0) is valid.
The (B0) Part .

Let I ⊂ N be non-empty set. Let v = (v1I , v
x
X) ∈ V n. When #I = 1, we

have already shown. So, consider the case of #I > 1.
Let i, j ∈ I. From (7), it follows that

fi(v
1
{i,j}, v

x
X∪I\{i,j}) = (

1

2
,−(

1

2
− 1

n
)v1j ).

Then, for any h ̸= i, j, it follows that

sh(v
1
{i,j}, v

x
X∪I\{i,j}) = 0.

By ETE and feasibility of transfer, for any h ̸= i, j, it also follows that

th(v
1
{i,j}, v

x
X∪I\{i,j}) ≤

1

n
v1i .

We claim that th(v
1
{i,j}, v

x
X∪I\{i,j}) =

1
n
v1i . Suppose to the contrary that

th(v
1
{i,j}, v

x
X∪I\{i,j}) <

1

n
v1i .
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By wDE, for any v̂h ∈ V such that vx1 < v̂h < v11, it follows that

sh(v
1
{i,j}, v̂h, v

x
X∪I\{i,j,h}) = 0.

By ETE, we have

sh(v
1
{i,j,h}, v

x
X∪I\{i,j,h}) =

1

3
.

Then, Myerson’s Lemma implies that

th(v
1
{i,j,h}, v

x
X∪I\{i,j,h}) = th(v

1
{i,j}, v

x
X∪I\{i,j})−

1

3
v1i < −(

1

3
− 1

n
)v1i .

For k ̸= i, j, h, if tk(v
1
{i,j,h}, v

x
X∪I\{i,j,h}) ≥

1
n
v1i , then agent h envies agent k.

So, it must be

tk(v
1
{i,j,h}, v

x
X∪I\{i,j,h}) <

1

n
v1i .

By repeating the same argument, we have

tn(v
1
{1,2,...,n}) < −(

1

n
− 1

n
)v1i = 0.

Since, by ETE, for any i ∈ N , si(v
1
{1,2,...,n}) = 1

n
, this contradicts NTNT.

Thus, for any h ̸= i, j, it holds that

th(v
1
{i,j}, v

x
X∪I\{i,j}) =

1

n
v1i ,

that is, f(v1{i,j}, v
x
X∪I\{i,j}) coincides with the allocation determined by the

quasi second price mechanism. By the same way, we can show that for any
k ∈ I \ {i, j}, f(v1{i,j,k}, vxX∪I\{i,j,k}) coincides with the allocation determined
by the quasi second price mechanism. By repeating the same argument, we
have (B0). Thus, the first part is valid.

The Second Part .
Given any integer c such that 2 ≤ c ≤ n − 1. Let C ′ ⊂ N be such that
#C ′ = c − 1. Let I ⊂ N be such that #I = 1. Let (v1I , vC′ , vxX) ∈ V n. For
simplicity of notation, we denote I = {1}, and v2 as the highest valuation in
C ′. Pick up any agent h ∈ X.

Note that by wDE, SG, and ETE, we have

sh(vh, v
1
I , vC′ , vxX\{h}) =


0 if vxh ≤ vh ≤ v2,

0 or 1
n

if v2 < vh < v11,
1
2

if vh = v11.
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We claim that for any vh ∈ V such that v2 < vh < v11, we have

sh(vh, v
1
I , vC′ , vxX\{h}) =

1

n
.

Suppose to the contrary that for some v̂h ∈ V such that v2 < v̂h < v11, it
holds that

sh(vh, v
1
I , vC′ , vxX\{h}) = 0.

Then, by Myerson’s Lemma, there exists a ∈ V such that v̂h ≤ a ≤ v1, and
the following is satisfied: For any v′h ∈ V such that vxh < v′h < a, we have

sh(v
′
h, v

1
I , vC′ , vxX\{h}) = 0

and for any v′h ∈ V such that a < v′h < v11, we have

sh(v
′
h, v

1
I , vC′ , vxX\{h}) =

1

n
.

Since, by the induction hypothesis (A), fh(v
1
I , vC′ , vxX) = (0, 1

n
v2), Myerson’s

Lemma also gives that

th(v
1
I∪{h}, vC′ , vxX\{h}) = −(

1

2
− 1

n
)v11 −

1

n
(a− v2).

Note that, by wDE, for any j ∈ C ′, sj(v
1
I∪{h}, vC′ , vxX\{h}) = 0. Since, by

the induction hypothesis (B), for any j ∈ C ′, fj(v
1
I∪{h}, vC′\{j}, v

x
X∪{j}\{h}) =

(0, 1
n
v11), by strategy-proofness, it holds that

tj(v
1
I∪{h}, vC′ , vxX\{h}) =

1

n
v11.

These imply that agent h envies agent j. Thus, for any vh ∈ V such that
v2 < vh < v11, we have

sh(vh, v
1
I , vC′ , vxX\{h}) =

1

n
.

Then, by Myerson’s Lemma, we have

fh(vh, v
1
I , vC′ , vxX\{h}) =


(0, 1

n
v2) if vxh ≤ vh ≤ v2

( 1
n
, 0) if v2 < vh < v11

(1
2
,−(1

2
− 1

n
)v11) if vh = v11.

(8)

The (A′) Part .
Let C ⊂ N be such that #C = c, and I ⊂ N be such that #I = 1. Let
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v = (v1I , vC , v
x
X) ∈ V n. We denote I = {i1}, and vi2 as the highest valuation

in C, that is, i2 ∈ [2]. We divide the argument into two cases.
The case 1: #[2] = 1.

From (8), we have fi2(v
1
I , vC , v

x
X) = ( 1

n
, 0). Then, by wDF, we have

si1(v
1
I , vC , v

x
X) =

n− 1

n
.

Since, from (8), fi1(v̂i1 , vC , v
x
X) = (1

2
,−(1

2
− 1

n
)vi2) where v̂i1 = vi2 , by Myer-

son’s Lemma, we have

ti1(v
1
I , vC , v

x
X) = −n− 2

n
vi2 .

Then, for any i ̸= i1, i2, it holds that

si(v
1
I , vC , v

x
X) = 0.

By the induction hypothesis (A), for any k ∈ C \ {i2}, it follows that

fk(v
1
I , vC\{k}, v

x
X∪{k}) = (0,

1

n
vi2).

So, by SP, for any k ∈ C \ {i2}, it holds that

tk(v
1
I , vC , v

x
X) =

1

n
vi2 .

Then, by EF, for any h ∈ X, it follows that

th(v
1
I , vC , v

x
X) =

1

n
vi2 .

The case 2: #[2] > 1.
From (8), for any i ∈ [2], we have fi(v

1
I , vC , v

x
X) = (0, 1

n
vi2). Then, by wDF,

we have
si1(v

1
I , vC , v

x
X) = 1.

Since, by the induction hypothesis (B), fi1(v̂i1 , vC , v
x
X) = ( 1

#[1̂]
,−( 1

#[1̂]
− 1

n
)vi2)

where v̂i1 = vi2 and #[1̂] is at (v̂i1 , vC , v
x
X), by Myerson’s Lemma, we have

ti1(v
1
I , vC , v

x
X) = −n− 1

n
vi2 .

Then, by wDE and EF, for any i /∈ [1] ∪ [2], it holds that

fi(v
1
I , vC , v

x
X) = (0,

1

n
vi2).
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Thus, (A′) is valid.
The (B′) Part .

Let C ⊂ N be such that #C = c − 1, and I ⊂ N be non-empty set. Let
v = (v1I , vC , v

x
X) ∈ V n. If #I = 1, then the induction hypothesis (A) implies

the conclusion. So, consider the case of #I > 1.
Let i, j ∈ I. Let i2 ∈ C be such that his valuation vi2 is the highest in C.

From (A′), it holds that

fj(v̂j, v
1
i , vC , v

x
I\{i,j}, v

x
X) = (0,

1

n
vi2)

where v̂j = vi2 , and that for any v′j ∈ V such that v1i > v′j > vi2 ,

sj(v
′
j, v

1
i , vC , v

x
I\{i,j}, v

x
X) =

1

n
.

Since, by wDE and ETE, sj(v
1
{i,j}, vC , v

x
I\{i,j}, v

x
X) =

1
2
, by Myerson’s Lemma,

it follows that

tj(v
1
{i,j}, vC , v

x
I\{i,j}, v

x
X) = −(

1

2
− 1

n
)v1i .

Then, for any k ̸= i, j, we have

sk(v
1
{i,j}, vC , v

x
I\{i,j}, v

x
X) = 0.

Note that by the induction hypothesis (B), for any k ∈ C,

fk(v
1
{i,j}, vC\{k}, v

x
I\{i,j}, v

x
X∪{k}) = (0,

1

n
v1i ).

So, by SP, for any k ∈ C, we have

tk(v
1
{i,j}, vC , v

x
I\{i,j}, v

x
X) =

1

n
v1i .

Then, by EF, for any h ∈ X ∪ I \ {i, j}, it also follows that

th(v
1
{i,j}, vC , v

x
I\{i,j}, v

x
X) =

1

n
v1i ,

that is, f(v1{i,j}, vC , v
x
I\{i,j}, v

x
X) coincides with the allocation determined by

the quasi second price mechanism. By the same way, we can show that for
any k ∈ I \ {i, j}, f(v1{i,j,k}, vC , v

x
I\{i,j,k}, v

x
X) coincides with the allocation

determined by the quasi second price mechanism. By repeating the same
argument, we have (B′). Thus, the second part is valid. Therefore, this
theorem is valid.

2
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