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Abstract

We study deterministic voting mechanisms by considering an ordinal notion of

Bayesian incentive compatibility (OBIC). If the beliefs of agents are independent and

generic, we show that any OBIC mechanism is dominant strategy incentive compatible

under an additional mild requirement. Our result works in a large class of preference

domains (that include the unrestricted domain, the single peaked domain, a specific

class of single crossing domains) and under a weaker notion of OBIC that we call locally

OBIC. We also discuss the implications of assuming unanimity on our results.
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1 Introduction

Dominant strategy incentive compatible (DSIC) mechanisms play a central role in the theory

of mechanism design. Among other things, such mechanisms enjoy a strong robustness fea-

ture due to their prior-free property. Unfortunately, in voting environments, DSIC turns out

to be too demanding. In particular, the seminal Gibbard-Satterthwaite theorem (Gibbard,

1973; Satterthwaite, 1975) shows that the only deterministic dominant strategy incentive

compatible (DSIC) voting mechanism satisfying unanimity is a dictatorship if there are at

least three alternatives. A crucial assumption in this result is that the domain (of prefer-

ences of agents) must be unrestricted. A large body of literature in social choice theory has

tried to relax the assumption of unrestricted domain in the Gibbard-Satterthwaite theorem,

while still working with deterministic DSIC mechanisms. This has led to various (possibility)

characterizations of DSIC mechanisms in restricted domains - an excellent survey is Barbera

(2010).

A natural question to ask is if there is any loss of generality in not considering a weaker

solution concept in such voting environments that can depend on the priors of the agents -

the most prominent such solution concept being the Bayes-Nash equilibrium. d’Aspremont

and Peleg (1988) introduced the notion of ordinal Bayesian incentive compatibility (OBIC)

in this context. OBIC is a natural weakening of DSIC to ordinal voting mechanisms. A

voting mechanism is OBIC if for every agent, his interim/expected allocation probability

vector from truth-telling first-order-stochastic-dominates any interim allocation probability

vector obtained by deviating. This notion is equivalent to requiring that the expected utility

from truth-telling must be no less than the expected utility from deviating for all possible

utility representation of the ordinal preference of the agent.

Our main result shows that if the priors of the agents are independent and generic, then in

a large class of domains, an ordinal deterministic mechanism is OBIC and satisfies elementary

monotonicity if and only if it is a DSIC mechanism. 1 This result holds even if we weaken

OBIC to only allow manipulations of each agent to his adjacent preferences - we call this

requirement locally OBIC (LOBIC). Notice that the result does not require unanimity or any

restriction on number of alternatives. Our result establishes a strong robustness property of

DSIC mechanisms in voting environments.

We call the domains where our main result holds local domains. A domain is local if

every locally dominant strategy incentive compatible mechanism is a DSIC mechanism. Two

recent papers by Carroll (2012) and Sato (2013) give a comprehensive description of domains

that are local. Some of the prominent domains identified in these papers are the unrestricted

domain, the single peaked domain (Moulin, 1980), and a particular class of single crossing

1We discuss elementary monotonicity and generic priors later.
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domains (Carroll, 2012; Saporiti, 2009). An implication of our result is that in all these

domains, any locally OBIC mechanism (with respect to independent generic prior) satisfying

elementary monotonicity must be a DSIC mechanism.

The proof of our main result reveals another surprising fact. In any domain, locally

OBIC with respect to independent generic priors and elementary monotonicity implies locally

DSIC. This shows that if we only care about designing mechanisms that satisfy local incentive

constraints, then our main result is true in any domain. 2

Majumdar and Sen (2004) investigated OBIC mechanisms in the unrestricted domain.

They assumed that agents have independent priors. If these are uniform priors, then they

show that a large class of interesting non-dictatorial social choice functions are OBIC in

the unrestricted domain. However, if the priors are generic, then the negative result in the

Gibbard-Satterthwaite theorem persists: if there are at least three alternatives and priors are

generic, then in the unrestricted domain, a deterministic unanimous OBIC mechanism is a

dictatorship. We can reinterpret this result as follows. If there are at least three alternatives

and the priors are generic, then in the unrestricted domain, a unanimous OBIC mechanism

is a DSIC mechanism. Our results generalize this interpretation of their result. Notice that

our result works in a large class of domains and uses elementary monotonicity while their

genericity result is for the unrestricted domain and uses unanimity.

We show that the conclusion in the Majumdar and Sen (2004) result (using unanimity)

crucially relies on the unrestricted domain assumption, and it may not extend to restricted

domains. In particular, we construct a non-DSIC unanimous mechanism that is OBIC with

respect to some generic priors when the domain of preferences is restricted to be the single

peaked domain - this mechanism works even if there are only two alternatives.

However, we note that such OBIC mechanisms violate elementary monotonicity. Ele-

mentary monotonicity is a well-studied axiom in social choice theory (Moulin, 1983). It

requires the following. Suppose agent i has a preference Pi where a is ranked just above

b and consider a preference profile P−i of other agents such that the mechanism chooses b

at the profile (Pi, P−i). Now, suppose agent i reports another preference P ′i where only the

positions of a and b are swapped from Pi (maintaining the positions of other alternatives).

Elementary monotonicity requires that the outcome at the new profile (P ′i , P−i) must be b.

Since our result seems to restore the genericity result of Majumdar and Sen (2004) in a

large class of domains by replacing unanimity with elementary monotonicity, it is natural

to ask if elementary monotonicity is too strong a condition. As noted in Moulin (1983) and

Majumdar and Sen (2004), it is satisfied by many well known social choice functions. 3 For

2 Carroll (2012) and Sato (2013) contain extensive discussions motivating mechanism design with local

incentive compatibility.
3We use the terms social choice function and mechanism interchangeably throughout the paper.
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instance, the well known scoring rules like the Borda and the plurality rules satisfy elementary

monotonicity. Further, in the unrestricted domain with at least three alternatives, we show

that LOBIC with generic priors and unanimity imply elementary monotonicity. This leads

to an immediate strengthening of the result in Majumdar and Sen (2004) as we can now

replace their OBIC requirement by the weaker LOBIC: in the unrestricted domain with at

least three alternatives, a unanimous and LOBIC mechanism is a DSIC mechanism if the

priors are independent and generic. Further, it shows that our main result using elementary

monotonicity is stronger than their result.

In the single peaked domain, we introduce a significantly weaker condition than elemen-

tary monotonicity that we call weak elementary monotonicity. We show that in that domain,

every unanimous and LOBIC (with respect to independent generic priors) mechanism sat-

isfying weak elementary monotonicity must be a DSIC mechanism. This illustrates that in

specific restricted domains, we can replace elementary monotonicity in our result by a weaker

version of elementary monotonicity if we assume unanimity.

Interestingly, when agents have uniform priors (a non-generic prior), Majumdar and Sen

(2004) show that every neutral social choice function satisfying elementary monotonicity is

OBIC in the unrestricted domain. Since neutrality is also a relatively weak requirement,

it shows that a large class of non-DSIC mechanisms are OBIC with uniform priors in the

unrestricted domain. 4 Our result shows two very different implications of elementary mono-

tonicity with generic priors and uniform priors.

In summary, our results suggest that as far as ordinal deterministic mechanisms are

concerned, there is no loss of generality in focusing attention to DSIC mechanisms (under

elementary monotonicity) in many domains. However, the nature of equivalence is nuanced.

Our results parallel recent contributions in the single object auction quasilinear utility

models (and some of its extensions) by Manelli and Vincent (2010) and Gershkov et al.

(2013) who establish a weaker version of equivalence between Bayesian incentive compatible

and DSIC mechanisms. We discuss the precise connection between these results and ours

later in the paper.

Our results suggest that if we want to expand the set of incentive compatible mechanisms,

then we need to go beyond OBIC deterministic mechanisms, and consider cardinal and/or

randomized voting mechanisms. A small literature (Borgors and Smith, 2014; Kim, 2014) in

strategic voting considers the consequences of using cardinal mechanisms with Bayesian in-

centive compatibility. These papers also consider randomization and work in the unrestricted

domain. In such cardinal environment, type of an agent is a von-Neumann-Morgenstern util-

ity function over alternatives. They compare the interim expected utilities of agents from

these mechanisms to DSIC mechanisms. While Borgors and Smith (2014) show that such

4In Section 6, we illustrate that this result may no longer be true in the restricted domain.
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mechanisms improve upon the random cardinal DSIC mechanisms, Kim (2014) shows that

such mechanisms improve upon the ordinal BIC mechanisms. 5 Along with these results,

our results help to delineate the boundaries of OBIC and DSIC equivalence in voting envi-

ronments.

OBIC mechanisms have been studied in the context of matching problems in Majumdar

(2003); Ehlers and Masso (2007). These papers study the implication of stability and OBIC

in two-sided matching problems. The general conclusion in these papers is that stability and

OBIC are too restrictive in the two-sided matching problems. Though our main result can

be applied in private good allocation problems like the matching problems (by suitably re-

defining the notations and definitions), elementary monotonicity is a condition used in voting

environment. Since we use elementary monotonicity in our main result, and its implications

in private good problems is not very clear, we restrict ourselves to voting problems.

The rest of the paper is organized as follows. We introduce our model and assumptions

about beliefs in Section 2. In Section 3, we formally state the result of Majumdar and Sen

(2004) and show how this result breaks down if we consider a model with two alternatives

or restrict the domain to the single peaked domain. Section 4 presents our main result

and its proof. In Section 5, we show how our main result changes in specific domains if

we restrict attention to unanimous social choice functions. We discuss several extensions

and implications of our result in Section 6. Finally, we conclude in Section 7. Appendix

A contains all the omitted proofs and Appendix B contains some omitted examples and

illustrations.

2 The Model

Let A be a finite set of alternatives and P be the set of all strict linear orders over A. Let

D ⊆ P be some subset of strict linear orders. We will refer to D as the domain. There are

n agents. The set of agents is denoted by N = {1, . . . , n}. The private preference (type) of

each agent i ∈ N is a strict linear order Pi ∈ D.

A social choice function (scf) is a map f : Dn → A.

Definition 1 An scf f : Dn → A is dominant strategy incentive compatible (DSIC)

if for every i ∈ N , every P−i, and every Pi ∈ D, there exists no P ′i ∈ D such that

f(P ′i , P−i)Pif(Pi, P−i).

5Kim (2014) also considers OBIC deterministic mechanisms in the single peaked domain. He shows

that such OBIC mechanisms satisfying unanimity must be peaks only. However, he has no results on the

equivalence between OBIC and DSIC mechanisms.
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We now define the notion of ordinal Bayesian incentive compatiblity. For this, we need to

define beliefs. A belief for agent i is a mapping βi : Dn → [0, 1] such that
∑

P∈Dn βi(P) = 1.

Throughout the paper, we will assume that agents have common belief, i.e., βi = βj for all

i, j ∈ N . Denote this common belief as β. For every agent i ∈ N and every agent P−i, denote

the conditional belief of agent i that others have preferences P−i when he has preference Pi

as β(P−i|Pi).

We will also assume that beliefs are independent, i.e., for every agent i ∈ N , there

exists a probability distribution µi : D → [0, 1] such that for every P−i ∈ Dn, the conditional

belief that agents other than i have preference P−i when i has preference Pi is

β(P−i|Pi) = ×j 6=iµj(Pj).

Since we will only deal with common and independent beliefs, we will assume that the

underlying probability distributions of agents are {µi}i∈N , and refer to them as priors of

agents. Further, for agent i, the probability that agents other than i have a type profile P−i

will be denoted as µ(P−i) ≡ ×j 6=iµj(Pj).

Given a social choice function f , we can compute the interim allocation probability of

each agent from this scf using the priors. For this, consider a profile of priors {µi}i∈N . For

each agent i ∈ N , define πf
i (a, Pi) as the interim allocation probability of the scf f choosing

alternative a when agent i reports Pi as his type:

πf
i (a, Pi) =

∑
P−i∈Dn−1:f(Pi,P−i)=a

µ(P−i).

Note that πf
i depends on the priors, but we have suppressed it to make the notation less

complex.

A utility function is a map u : A → R. A utility function u represents a preference

ordering P if for all a, b ∈ A, u(a) > u(b) if and only if aPb. Denote the set of all utility

functions representing a preference ordering P as U(P ).

We are now ready to define the notion of ordinal Bayesian incentive compatibility. It was

introduced to the literature by d’Aspremont and Peleg (1988).

Definition 2 An scf f is ordinally Bayesian incentive compatible (OBIC) with re-

spect to profile of priors {µi}i∈N if for every i ∈ N , for every Pi, P
′
i ∈ D, for every u ∈ U(Pi),

we have ∑
a∈A

u(a)πf
i (a, Pi) ≥

∑
a∈A

u(a)πf
i (a, P ′i ).

An equivalent definition using first order stochastic dominance can also be given. For

any alternative a ∈ A and any Pi ∈ D, let B(a, Pi) := {a} ∪ {b ∈ A : bPia}.
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Definition 3 An scf f is ordinally Bayesian incentive compatible (OBIC) with re-

spect to profile of priors {µi}i∈N if for every i ∈ N , for every Pi, P
′
i ∈ D, and for every

a ∈ A, we have ∑
b∈B(a,Pi)

πf
i (b, Pi) ≥

∑
b∈B(a,Pi)

πf
i (b, P ′i ).

OBIC is clearly a weakening of DSIC. A well known fact to note is that if an scf is OBIC

with respect to all beliefs, then it is DSIC.

2.1 Generic Priors and G-OBIC

We make the following assumption about generic priors in the paper.

Definition 4 The profile of priors {µi}i∈N is generic if for every j ∈ N and for every

S, T ⊆ Dn−1 we have [ ∑
P−j∈S

µ(P−j) =
∑

P−j∈T

µ(P−j)
]
⇔ [S = T ].

Genericity requires that if we consider an agent i and consider two distinct subsets of

profiles of types of agents in N \ {i}, then the probability that agents in N \ {i} have types

in these subsets cannot be the same.

Mathematically, these priors are generic in a topological sense. Denote by ∆ the unit

simplex of dimension |D| − 1. The set of common independent beliefs is the n-th order

Cartesian product of unit simplices ∆, and is given by ∆n. The set of priors ruled out by

genericity are given by equations that define a finite set of hyperplanes in ∆n. Excluding

these hyperplanes excludes only a set of Lebesgue measure zero in ∆n. Hence, the generic

beliefs identified in Definition 4 is a generic (in a topological sense) subset of ∆n, i.e., a

dense subset of the set of all common independent beliefs whose complement has measure

zero (Majumdar and Sen, 2004) - to be precise, Majumdar and Sen (2004) show this fact

when D = P , but an identical proof works if D ⊆ P . Notice that generic priors require that

agents must be ex-ante asymmetric, i.e., for any i, j ∈ N , µi 6= µj.

If we consider any prior over D ( P , it also defines a prior over P . Then, we can imagine

∆ to be a unit simplex of dimension |P| − 1. Obviously, such priors define beliefs that have

Lebesgue measure zero in this extended simplex. Hence, our set of generic priors is not

generic if we extend it to P and then consider its genericity.

One notable prior that is not generic is the uniform prior.

Definition 5 A profile of independent priors {µi}i∈N are uniform priors if for every i ∈
N , for every Pi, P

′
i ∈ D, we have

µi(Pi) = µi(P
′
i ).
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We will discuss the implications of using uniform priors later and assume for the moment

generic priors.

Definition 6 An scf f is G-OBIC if there exist some profile of generic priors {µi}i∈N
such that f is OBIC with respect to {µi}i∈N .

An important point to remember is that G-OBIC requires OBIC with respect to some profile

of generic priors (it may be just one profile of generic priors), but not all profile of generic

priors. For instance, an scf may be OBIC with respect to uniform priors, but it can still be

G-OBIC if it is OBIC with respect to some profile of generic priors.

3 Equivalence of G-OBIC and DSIC under Unanimity

We now discuss the implication of G-OBIC along with unanimity. Initially, we discuss this

implication in the unrestricted domain. To do so, we need the following standard definition of

unanimity. At any preference ordering P , we will denote by P (k) the k-th ranked alternative

according to P .

Definition 7 An scf f : Dn → A is unanimous if for every P ≡ (P1, . . . , Pn) with

P1(1) = . . . = Pn(1), we have f(P) = P1(1).

An scf f is a dictatorship if there exists an agent (called the dictator) i such that for every

P ∈ Dn, f(P) = Pi(1). Gibbard (1973) and Satterthwaite (1975) showed that if |A| ≥ 3 and

D = P , then an scf is DSIC and unanimous if and only if it is a dictatorship. The following

result from Majumdar and Sen (2004) extends the Gibbard-Satterthwaite theorem in the

unrestricted domain.

Theorem 1 (Majumdar and Sen (2004)) Let |A| ≥ 3 and f : Pn → A be a unanimous

scf, where P is the unrestricted domain. Then, f is G-OBIC if and only if it is DSIC.

We must point out that the proof in Majumdar and Sen (2004) is direct. Instead of show-

ing that every unanimous and G-OBIC mechanism is DSIC, and then using the Gibbard-

Satterthwaite theorem to conclude dictatorship, they directly prove that G-OBIC and una-

nimity imply dictatorship. Hence, one does not obtain any intuition from their proof whether

Theorem 1 will hold in other domains.

We now show how relaxing the assumptions in Theorem 1 alters the equivalence between

G-OBIC and DSIC.
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3.1 Two Alternatives

We start off by giving an example of an scf with two alternatives and three agents which is

unanimous and G-OBIC but not DSIC. This shows that Theorem 1 fails if |A| = 2.

Example 1 Let A = {a, b} and N = {1, 2, 3}. The scf f we consider is defined below

formally. If all the agents have the same top ranked alternative, then f picks that alternative.

Else, f picks the alternative which is top ranked for less number of agents.

Formally, given a preference profile P ≡ (P1, P2, P3), alternative a is the loser at P if

|{i ∈ N : bPia}| > |{i ∈ N : aPib}|. Else, b is the loser at P. Since there are odd number of

agents, the loser is well defined. We denote the loser at profile P as κ(P).

Now, the scf f̄ is defined as follows. For any preference profile P ≡ (P1, P2, P3), define

f̄(P) =

{
P1(1) if P1(1) = P2(1) = P3(1)

κ(P) otherwise

Clearly, f̄ is unanimous. We next argue that f̄ is G-OBIC. Since there are only two

alternatives, we only need to show that πf̄
i (Pi(1), Pi) ≥ πf̄

i (Pi(1), P ′i ) for all i ∈ N , for all

Pi, P
′
i . For simplicity, for every agent i ∈ N , we will denote the preference ordering where a

is top ranked as Pi and the preference ordering where b is top ranked as P ′i . For every i ∈ N ,

let the probability that agent i has type Pi be pi and the probability that he has type P ′i be

(1− pi). Now, we can compute the interim allocation probabilities for agent 1 as follows.

If agent 1 has type P1 (where a is top ranked), then the probability that b will be the

outcome in f̄ is the probability that agents 2 and 3 have different types. This probability is

exactly p2(1 − p3) + p3(1 − p2) = p2 + p3 − 2p2p3. Hence, if agent 1 has type P1, then the

probability that a will be the outcome in f̄ is 1− p2 − p3 + 2p2p3. An analogous calculation

can be used to compute interim allocation probabilities when agent 1 has type P ′1. This is

summarized in Table 1.

P1 P ′1
πf̄

1 (a, ·) 1− p2 − p3 + 2p2p3 p2 + p3 − 2p2p3

πf̄
1 (b, ·) p2 + p3 − 2p2p3 1− p2 − p3 + 2p2p3

Table 1: Interim allocation probabilities of agent 1 in f̄

The interim allocation probabilities of agents 2 and 3 can be computed in an analogous

manner. It is easily seen from Table 1 that OBIC constraints can be satisfied for agent 1

if and only if 1 − p2 − p3 + 2p2p3 ≥ p2 + p3 − 2p2p3, which is equivalent to requiring that

(1− 2p2)(1− 2p3) ≥ 0. Collecting the OBIC constraints for all agents, we can then conclude
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that f̄ is OBIC if and only if priors satisfy

(1− 2p2)(1− 2p3) ≥ 0

(1− 2p1)(1− 2p3) ≥ 0

(1− 2p1)(1− 2p2) ≥ 0

This is possible if and only if either p1, p2, p3 ∈ (0, 0.5) or p1, p2, p3 ∈ (0.5, 1). To see why

p1, p2, p3 can be picked such that the priors become generic, note that the set of priors

satisfying either p1, p2, p3 ∈ (0, 0.5) or p1, p2, p3 ∈ (0.5, 1) is a subset of (0, 1)3 with a non-

empty interior. Hence, it will have a non-empty intersection with the set of generic priors. 6

This example also illustrates that Theorem 1 is not true if we do not assume unanimity.

This is because even when there are more than three alternatives we can define the scf f̄ by

considering any two alternatives a, b ∈ A. Such an scf will not be unanimous any more (with

range two), but it will be G-OBIC.

3.2 Single Peaked Domain

We now consider the single peaked domain which is a smaller domain than the unrestricted

domain. Single peaked domain is an important domain restriction in strategic voting lit-

erature with applications in political economy and other disciplines. It is a domain where

existence of anonymous, unanimous, and DSIC scfs is guaranteed (Moulin, 1980), and thus,

allows one to escape the negative consequences of the Gibbard-Satterthwaite theorem.

In this domain, we give an example of an scf with three alternatives and three agents

that is G-OBIC, unanimous, anonymous but not DSIC. 7

The single peaked domain is defined as follows. Let � be a strict linear order of the set

of alternatives A.

Definition 8 A preference ordering P is single peaked with respect to � if for every b, c ∈ A
with P (1) � b � c or c � b � P (1), we have bPc.

Our scf in this domain is an extension of the scf we considered for the two alternatives

case. We assume that A = {a, b, c} and N = {1, 2, 3} - we will later clarify why at least

three agents are required. Suppose the preferences are single peaked with respect to the

strict linear order � given by a � b � c. The set of all single peaked preference orderings

with respect to � is denoted by S. For this example, the domain S is shown in Table 2,

where each column is a preference in S. Before defining the scf, we note that a and b are the

6For instance, one can verify that p1 = 0.49, p2 = 0.47, p3 = 0.43 results in generic priors.
7Informally, anonymity requires that if we permute the preferences of agents and consider the new profile

of preferences, the outcome at the new profile must be the same as the old one.
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a b b c

b a c b

c c a a

Table 2: The single peaked domain

two “left-most” alternatives in �. Our scf considers the number of agents who prefer a to b

and the number of agents who prefer b to a. We say a is a loser in {a, b} at P if

|{i ∈ N : aPib}| < |{i ∈ N : bPia}|.

Else, we say b is a loser in {a, b} at P. We denote by κa,b(P) the loser in {a, b} at P.

Now, the scf f ∗ is defined as follows. For any preference profile P ∈ S3, define

f ∗(P) =


P1(1) if P1(1) = P2(1) = P3(1)

a if ¬(P1(1) = P2(1) = P3(1)) and aPib for all i ∈ N
b if ¬(P1(1) = P2(1) = P3(1)) and bPia for all i ∈ N
κa,b(P) otherwise,

where we used the notaion ¬(P1(1) = P2(1) = P3(1)) to mean that the top ranked alternatives

of agents are not the same (“logical not” operation). The following proposition shows that

f ∗ is G-OBIC.

Proposition 1 The scf f ∗ is unanimous, anonymous, and G-OBIC, but not DSIC.

The proof of Proposition 1 is given in Appendix A. It builds on the ideas developed in the

previous section for establishing f̄ as a G-OBIC scf.

4 Equivalence of Locally G-OBIC and DSIC Mechanisms

Although we constructed a non-DSIC scf f ∗ in the single peaked domain and showed it to

be unanimous and G-OBIC in Proposition 1, we would now like to point out that f ∗ violates

a mild monotonicity property. Consider the profiles of preferences shown in Table 3. By

definition, f ∗(P1, P2, P3) = b and f ∗(P ′1, P2, P3) = a. Notice that the preferences of agents

2 and 3 did not change across the two profiles. Moreover, the only change in agent 1’s

preference is that a and b swapped their positions: a is top ranked and b second ranked in

P1 and b becomes top ranked and a second ranked P ′1. This means, even though the position

of b improves in agent 1’s ranking and the scf was picking b in the starting profile, the scf

does not pick b any more. We call this violated property elementary monotonicity. We show

below that if a unanimous and G-OBIC scf is not DSIC, then it must fail this property in a

large class of domains.
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P1 P2 P3 P ′1 P2 P3

a a b b a b

b b a a b a

c c c c c c

Table 3: Violation of elementary monotonicity by f ∗

To define elementary monotonicity formally, we introduce some notation. Consider an

agent i and two alternatives a, b ∈ A. Suppose Pi is a preference ordering such that Pi(k) = a

and Pi(k + 1) = b. Now, consider P ′i such that P ′i (k + 1) = a, P ′i (k) = b, and P ′i (j) = Pi(j)

for all j /∈ {k, k + 1}. In other words, a and b are consecutively ranked in Pi, and P ′i is

constructed by swapping only their positions. In this case, we say that P ′i is a (a, b)-swap

of Pi. Note that if P ′i is an (a, b)-swap of Pi, then the position of b improves from Pi to P ′i .

Hence, (a, b)-swap is different from (b, a)-swap.

Definition 9 An scf f satisfies elementary monotonicity if for every i ∈ N , every

P−i ∈ Dn−1, and every Pi, P
′
i ∈ D such that P ′i is a (a, b)-swap of Pi for some a, b ∈ A and

f(Pi, P−i) = b, we have f(P ′i , P−i) = b.

As discussed earlier, a large class of scfs satisfy elementary monotonicity. Moulin (1983)

contains an extensive discussion on the scfs that satisfy elementary monotonicity - see also

Majumdar and Sen (2004). Notable examples include all the scoring rules (like Borda rule,

plurality rule) and all the Condorcet rules (rules that pick the majority winner whenever it

exists, e.g., the Kramer rule, the Copeland rule, the Top-cycle rule, the uncovered set rule).

We now define the class of restricted domains we consider. For this, we first introduce

the notion of local incentive compatibility.

Definition 10 An scf f is locally dominant strategy incentive compatible (LDSIC)

if for every i ∈ N , every P−i ∈ Dn−1, and every Pi ∈ D there exists no P ′i ∈ D such that P ′i
is an (a, b)-swap of Pi for some a, b ∈ A and

f(P ′i , P−i)Pif(Pi, P−i).

Local DSIC only prevents manipulations across types which are swaps of each other.

Using the notion of LDSIC, we now define a class of domains.

Definition 11 A domain D is a local domain if every LDSIC f : Dn → A in that domain

is also DSIC.

The role of local domain and related discussions are done after we state our main result. To

be able to state our main result, we need to define a local version of OBIC.
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Definition 12 An scf f is locally ordinally Bayesian incentive compatible (LO-

BIC) with respect to profile of priors {µi}i∈N if for every i ∈ N , for every Pi, P
′
i ∈ D such

that P ′i is an (x, y)-swap of Pi for some x, y ∈ A, and for every a ∈ A, we have∑
b∈B(a,Pi)

πf
i (b, Pi) ≥

∑
b∈B(a,Pi)

πf
i (b, P ′i ).

An scf f is G-LOBIC if there exists some profile of generic priors {µi}i∈N such that f is

LOBIC with respect to {µi}i∈N .

Clearly, if f is OBIC, then it is also LOBIC. In general, LOBIC is a very weak incentive

compatibility requirement since it requires only a small subset of incentive constraints to

hold. Further, LOBIC may not imply OBIC even in the local domain - local domain only

requires that LDSIC implies DSIC. We now state the main result of the paper.

Theorem 2 Suppose D is a local domain and f : Dn → A is an scf on this domain. Then,

the following statements are equivalent.

1. f is G-LOBIC and satisfies elementary monotonicity.

2. f is DSIC.

Note that Theorem 2 does not assume unanimity. It also does not require any condition

on the range of the scf. Before giving the proof of Theorem 2, we make some remarks.

• G-LOBIC and LDSIC. The proof of Theorem 2 reveals another interesting result.

In any domain D, G-LOBIC and elementary monotonicity are equivalent to LDSIC -

see Lemma 2 in the proof of Theorem 2 below. The proof of Theorem 2 then follows

by the definition of local domain. Thus, if we use local incentive constraints, then our

main result becomes very strong since it works in any domain of preferences.

• Which domains are local? There are two recent papers that identify many in-

teresting local domains. Sato (2013) identifies necessary and sufficient conditions for a

domain to be a local domain. One of his sufficient conditions is a minimal connected-

ness property that requires that we should be able to go from one preference ordering

to another in a domain by performing swaps in a “minimal” way - we refer the reader

to Sato (2013) for details. 8 He shows that this necessary condition is satisfied by the

unrestricted domain and the single peaked domain. His condition also holds in some

generalizations of the single

8The proof of Theorem 4 discusses these conditions in some detail.
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Carroll (2012) considers the same question, but his results are slightly general since he

allows his scfs to be randomized (Sato (2013), like us, restricts attention to deterministic

scfs). He identifies specific domains that are local - they include the unrestricted

domain, the single peaked domain, and the successive single crossing domain. 9

These papers show that there are important restricted domains, like the single peaked

domain and the single crossing domain, that are local. 10 However, there are local

domains not covered in these papers, and our result works in those domains too.

• Elementary monotonicity and uniform priors. Elementary monotonicity plays

an important role in the analysis of OBIC scfs with uniform priors and correlated pri-

ors. Majumdar and Sen (2004) show that when agents have uniform priors, every

neutral scf satisfying elementary monotonicity is OBIC in the unrestricted domain -

we discuss this result further in Section 6. Thus, they show that a large class of scfs

that are not DSIC are OBIC with uniform priors in the unrestricted domain. A similar

result is shown with correlated priors in Bhargava et al. (2014). Theorem 2 shows that

elementary monotonicity brings us back to DSIC scfs under independent generic priors

in a large class of domains. We will also show later that in the unrestricted domain, el-

ementary monotonicity is weaker than unanimity for a G-LOBIC scf. Hence, Theorem

2 is a stronger than Theorem 1 in the unrestricted domain.

• Independence of G-LOBIC and elementary monotonicity. The scf f ∗ dis-

cussed in Proposition 1 is an example of an scf that satisfies G-LOBIC but fails el-

ementary monotonicity. Hence, we cannot hope to drop elementary monotonicity in

Theorem 2. However, we will show later that we can replace elementary monotonicity

with other properties in specific domains. In particular, unanimity and G-LOBIC will

imply DSIC in the unrestricted domain and a significantly weaker version of elementary

monotonicity along with unanimity will work in the single peaked domain.

4.1 Proof of Theorem 2

The proof is done by establishing two important lemmas. We start by identifying a property

that is implied by G-LOBIC.

Definition 13 An scf f satisfies swap monotonicity if for every i ∈ N , for every Pi, P
′
i ∈

D, where P ′i is an (a, b)-swap of Pi, we have for every P−i ∈ Dn−1,

9For a definition and analysis of the single crossing domain, see Saporiti (2009). Successive single crossing

is a class of single crossing domains identified in Carroll (2012).
10A prominent example of a domain that is not local is the multidimensional separable domain studied in

Barbera et al. (1993); Le Breton and Sen (1999).
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• f(P ′i , P−i) = f(Pi, P−i) if f(Pi, P−i) /∈ {a, b},

• f(P ′i , P−i) ∈ {a, b} if f(Pi, P−i) ∈ {a, b}.

Our first claim shows the necessity of swap monotonicity.

Lemma 1 If an scf is G-LOBIC, then it satisfies swap monotonicity.

Proof : Let f be an LOBIC scf with respect to independent generic priors {µi}i∈N . For

this, consider agent i ∈ N , and pick two preference orderings Pi and P ′i such that P ′i is an

(a, b) swap of Pi. By definition Pi(k) = a, Pi(k + 1) = b and P ′i (k + 1) = a, P ′i (k) = b for

some k and Pi(j) = P ′i (j) for all j /∈ {k, k + 1}. We will do the proof in three steps.

Step 1. Consider an alternative x ∈ A \ {a, b} such that Pi(k
′) = P ′i (k

′) = x, where k′ < k.

We will show that {P−i ∈ Dn−1 : f(Pi, P−i) = x} = {P−i ∈ Dn−1 : f(P ′i , P−i) = x}. We

do this using induction on k′. If k′ = 1, by observing that Pi(k
′′) = P ′i (k

′′) for all k′′ < k,

LOBIC implies that ∑
P−i:f(Pi,P−i)=Pi(1)

µ(P−i) ≥
∑

P−i:f(P ′i ,P−i)=Pi(1)

µ(P−i)∑
P−i:f(P ′i ,P−i)=P ′i (1)

µ(P−i) ≥
∑

P−i:f(Pi,P−i)=P ′i (1)

µ(P−i).

Combining these inequalities, we get∑
P−i:f(Pi,P−i)=Pi(1)

µ(P−i) =
∑

P−i:f(P ′i ,P−i)=Pi(1)

µ(P−i).

Since priors are generic, we get that

{P−i : f(Pi, P−i) = Pi(1)} = {P−i : f(P ′i , P−i) = Pi(1)}.

Now, suppose the claim is true for all k′′ < k′. Notice that the top k′ alternatives in Pi and

P ′i are the same - denote this set as B. Now, we apply LOBIC to top k′ alternatives in Pi

and P ′i to get ∑
P−i:f(Pi,P−i)∈B

µi(P−i) ≥
∑

P−i:f(P ′i ,P−i)∈B

µi(P−i)∑
P−i:f(P ′i ,P−i)∈B

µi(P−i) ≥
∑

P−i:f(Pi,P−i)∈B

µi(P−i).

Using genericity of µi gives us

{P−i : f(Pi, P−i) ∈ B} = {P−i : f(P ′i , P−i) ∈ B}.

15



Using the induction hypothesis, we have for all k′′ < k′,

{P−i : f(Pi, P−i) = Pi(k
′′)} = {P−i : f(P ′i , P−i) = Pi(k

′′)}.

Hence, we get

{P−i : f(Pi, P−i) = Pi(k
′)} = {P−i : f(P ′i , P−i) = Pi(k

′)}.

Step 2. In this step, we show that {P−i : f(Pi, P−i) ∈ {a, b}} = {P−i : f(P ′i , P−i) ∈ {a, b}}.
Applying LOBIC, we get ∑

P−i:f(Pi,P−i)∈B(b,Pi)

µi(P−i) ≥
∑

P−i:f(P ′i ,P−i)∈B(b,Pi)

µi(P−i)∑
P−i:f(P ′i ,P−i)∈B(a,P ′i )

µi(P−i) ≥
∑

P−i:f(Pi,P−i)∈B(a,P ′i )

µi(P−i).

Since B(b, Pi) = B(a, P ′i ), by genericity we get

{P−i : f(Pi, P−i) ∈ B(b, Pi)} = {P−i : f(P ′i , P−i) ∈ B(b, Pi)}.

By Step 1, this implies that {P−i : f(Pi, P−i) ∈ {a, b}} = {P−i : f(P ′i , P−i) ∈ {a, b}}.

Step 3. Consider an alternative x ∈ A \ {a, b} such that Pi(k
′) = P ′i (k

′) = x, where

k′ > k + 1. Using the facts in Steps 1 and 2, we can mimic the method in Step 1 to show

that {P−i ∈ Dn−1 : f(Pi, P−i) = x} = {P−i ∈ Dn−1 : f(P ′i , P−i) = x}.

Steps 1, 2, and 3 show that f satisfies swap monotonicity. �

Note that Lemma 1 holds in any arbitrary domain. We now use this to prove the following

result.

Lemma 2 Suppose D is any domain and f : Dn → A is an scf on this domain. Then, the

following statements are equivalent.

1. f is G-LOBIC and satisfies elementary monotonicity.

2. f is LDSIC.

Proof : First, we show that a LDSIC scf f satisfies elementary monotonicity. To see this,

consider i ∈ N and P−i. Let Pi and P ′i be two preferences in D such that P ′i is an (a, b)-swap

of Pi and f(Pi, P−i) = b. Assume for contradiction that f(P ′i , P−i) = c 6= b. If cPib, then i

can manipulate from Pi to P ′i . If bPic, then, by construction, bP ′i c, and again, agent i can

manipulate from P ′i to Pi. This is a contradiction.
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Further, an LDSIC scf is LOBIC with respect to any priors, and hence, G-LOBIC. Now,

we show that if f : Dn → A is G-LOBIC and satisfies elementary monotonicity, then it is

LDSIC. Fix an agent i and P−i. Now, pick two preference orderings Pi and P ′i such that P ′i
is an (a, b) swap of Pi, where Pi(k) = a, Pi(k + 1) = b and P ′i (k + 1) = a, P ′i (k) = b for some

k. Suppose f(Pi, P−i) = x and f(P ′i , P−i) = y. Suppose Pi(k
′) = x. If k′ < k or k′ > k + 1,

then by Lemma 1, we have y = x (swap monotonicity). So, agent i cannot manipulate from

Pi to P ′i . If k′ = k, then x = a, and by swap monotonicity f(P ′i , P−i) ∈ {a, b}. Since aPib,

agent i cannot manipulate from Pi to P ′i . The other possibility is k′ = k + 1. In that case,

x = b, and elementary monotonicity ensures that f(P ′i , P−i) = b. Hence, agent i cannot

manipulate from Pi to P ′i . This shows that f is LDSIC. �

Proof of Theorem 2: This follows from Lemma 2 and the definition of a local domain (every

LDSIC scf is a DSIC scf).

5 G-LOBIC with Unanimity and DSIC Mechanisms

In this section, we investigate if we can replace/weaken elementary monotonicity in Theorem

2 by other reasonable conditions. One familiar axiom used in strategic voting literature is

Pareto efficiency.

Definition 14 An scf f is Pareto efficient if for every P ∈ Dn there exists no b ∈ A

such that bPif(P) for all i ∈ N .

We first show that if there are two agents, then elementary monotonicity is implied in any

domain by G-LOBIC and Pareto efficiency.

Proposition 2 Suppose n = 2. Then, every Pareto efficient and G-LOBIC scf satisfies

elementary monotonicity.

Proof : Let f be a Pareto efficient scf that is LOBIC with respect to generic priors. Pick a

profile (P1, P2). Suppose f(P1, P2) = b and aP1b. We need to show that if P ′1 is an (a, b)-swap

of Pi, then f(P ′1, P2) = b. Since aP1b and f(P1, P2) = b, Pareto efficiency implies that bP2a.

But bP ′1a and Pareto efficiency implies that f(P ′1, P2) 6= a. Since f is G-LOBIC, by swap

monotonicity (Lemma 1), f(P ′1, P2) ∈ {a, b}, and hence, f(P ′1, P2) = b. �

Note that Proposition 2 holds in every domain D. This gives us the following simple

corollary.

Corollary 1 Let n = 2 and D be a local domain. Then, every Pareto efficient and G-

LOBIC scf f : Dn → A is DSIC.
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Proof : This follows from Theorem 2 and Proposition 2. �

Corollary 1 is not true if n > 2 - the scf f ∗ defined in Proposition 1 is an example of a

Pareto efficient scf that is G-LOBIC in the single peaked domain (a local domain) but not

DSIC. Corollary 1 also explains why we needed at least three agents for the scf in Proposition

1.

In some specific domains, we can replace Pareto efficiency by unanimity in Proposition 2

and Corollary 1. For instance, in the proofs of Theorems 3 and 4, we show that G-LOBIC

and unanimity implies Pareto efficiency in the unrestricted domain and in the single peaked

domain respectively. This implies that if there are two agents and the domain is either the

unrestricted domain or the single peaked domain, then every unanimous G-LOBIC scf is a

DSIC scf. We now discuss the implications of assuming unanimity when n ≥ 3.

5.1 Unrestricted Domain

We now explore the implication of G-LOBIC along with unanimity when n ≥ 3. Our first

result assumes the unrestricted domain.

Theorem 3 Suppose |A| ≥ 3 and f : Pn → A is a G-LOBIC scf, where P is the unrestricted

domain. If f satisfies unanimity, then it satisfies elementary monotonicity. Hence, if f is

G-LOBIC and unanimous, then it is DSIC.

The proof of this theorem is given in Appendix A. Note that Theorem 3 is a strengthening

of Theorem 1 since we use G-LOBIC instead of G-OBIC. However, one can still deduce the

result of Theorem 3 from existing results in the literature as follows. Carroll (2012) notes

that his results also hold if we consider Bayesian incentive compatibility. Since he shows

local incentive compatibility implies full incentive compatibility in the unrestricted domain,

we can conclude that if f is LOBIC (with respect to any prior) then it is OBIC. We can

then use Theorem 1 to conclude that if f is G-LOBIC and unanimous, then it must be a

dictatorship.

However, we give an independent proof in Appendix A. Our proof establishes directly

that in the unrestricted domain, unanimity and G-LOBIC imply elementary monotonicity,

and then the result follows by using Theorem 2 and noting that the unrestricted domain is a

local domain. Since the proof of Theorem 1 in Majumdar and Sen (2004) directly establishes

dictatorship (using induction on the number of agents), our proof provides an alternate and

stronger version of their result.

Theorem 3 implies that under G-LOBIC, elementary monotonicity is weaker than una-

nimity in the unrestricted domain. This implies that our main result in Theorem 2 is a

stronger result than Theorem 1.
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P1 P2 P3 P ′1 P2 P3

a a b b a b

b b a a b a

c c c c c c

d d d d d d

Table 4: Weak elementary monotonicity

5.2 Single Peaked Domain

Unfortunately, Theorem 3 heavily relies on the unrestricted domain assumption and Proposi-

tion 1 shows that it cannot be extended to restricted domains like the single peaked domain.

We are able to show that the conclusions of Theorem 2 can nevertheless be obtained in the

single peaked domain by assuming unanimity and a significantly weaker version of elementary

monotonicity. We discuss this next.

As before, we will assume that S is the single peaked domain with respect to an ordering

� over alternatives in A. We now introduce a weakening of the elementary monotonicity

condition.

Definition 15 An scf f : Sn → A satisfies weak elementary monotonicity if for every

i ∈ N , for every Pi, P
′
i ∈ S such that P ′i is a (Pi(1), Pi(2))-swap of Pi and for every P−i such

that f(Pi, P−i) = Pi(2), Pj ∈ {Pi, P
′
i} for all j 6= i, and Pj 6= Pk for some j, k ∈ N \ {i}, we

have f(P ′i , P−i) = f(Pi, P−i).

Weak elementary monotonicity applies to very specific type profiles. First, it requires that

P ′i is an (a, b)-swap of Pi, where Pi(1) = a, Pi(2) = b, i.e., the swaps happen at the top.

Second, it requires that every agent in N \{i} must have either Pi or P ′i as his type. Finally,

agents in N \ {i} cannot have the same type, i.e., there is at least one agent who has Pi as

his type and at least one agent who has P ′i as his type.

A typical pair of type profiles where weak elementary monotonicity can be applied is

shown in Table 4. We assume A = {a, b, c, d} and a � b � c � d and n = 3. Profiles

(P1, P2, P3) and (P ′1, P2, P3) in Table 4 differ in agent 1’s preference and P ′1 is a (a, b)-swap

of Pi. Also, notice that a and b are neighbors in �, and P2 = P1, P3 = P ′1 (hence, P2 6= P3).

Weak elementary monotonicity applies to such profiles and requires that if f(P1, P2, P3) = b,

then f(P ′1, P2, P3) = b.

The following result shows that weak elementary monotonicity can be used with unanim-

ity in the single peaked domain to get a counterpart of Theorem 2.

Theorem 4 Suppose f : Sn → A is a unanimous scf. Then, the following statements are

equivalent.
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1. f is G-LOBIC and satisfies weak elementary monotonicity.

2. f is DSIC.

The proof of Theorem 4 is in Appendix A. Since weak elementary monotonicity is an

extremely weak condition, this result shows how little is required on top of unanimity to

get the counterpart of Theorem 3 in the single peaked domain. We believe that in specific

restricted domains, we can find similar weakening of elementary monotonicity that may be

used in conjunction with unanimity to get a result similar to Theorem 4.

The result in Theorem 4 can also be extended to some extensions of single peaked domain.

For instance, Demange (1982) defines a notion of single peakedness on a tree graph, which

requires single peakedness along paths of a tree graph whose vertices are alternatives. Our

result can be easily extended to such a domain.

6 Discussions

We discuss some extensions and implications of our result.

Weaker OBIC-DSIC equivalence. The G-OBIC and DSIC equivalence established in

this paper is very strong - under some reasonable assumptions, every G-OBIC mechanism is

a DSIC mechanism. However, one could consider the following weaker notion of equivalence.

Definition 16 A pair of scfs f : Dn → A and f ′ : Dn → A are weakly equivalent if for

every i ∈ N , for every Pi ∈ D, and for every a ∈ A,

πf
i (a, Pi) = πf ′

i (a, Pi).

We can then ask if for every OBIC mechanism f , there exists a DSIC mechanism f ′ that is

weakly equivalent to f . Of course, one can ask this question under additional conditions like

unanimity or elementary monotonicity. Since, this is a weaker requirement, it is plausible

that we can get the weak equivalence in a larger class of domains than identified in Theorem

2. However, the answer does not look very clear.

In Appendix B, we show that for the scf f ∗ considered in Proposition 1, there is no DSIC,

unanimous, and anonymous scf that is weakly equivalent to it. The scf f ∗ is an anonymous

and unanimous scf. Further, Proposition 1 showed that f ∗ is OBIC with respect to a large

class of priors (including generic priors). This illustrates that we can have unanimous and

anonymous scfs that are OBIC in the single peaked domain for which there are no weakly

equivalent DSIC, unanimous, and anonymous scf.
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We point out that in cardinal environments with quasilinear preferences over transfers,

more specifically, in the single object auction problem and in some specific one dimensional

mechanism design problems, the weak equivalence question has been addressed in Manelli

and Vincent (2010) and Gershkov et al. (2013). They show that for every Bayesian incen-

tive compatible single object auction mechanism, there exists a DSIC single object auction

mechanism that generates the same interim allocation probability of winning the object for

every agent. 11

Apart from the weak equivalence notion, there are many other subtle differences between

these papers and ours. First, they look at cardinal mechanisms with quasilinearity, whereas

ours is a completely ordinal environment without transfer. Second, they allow for mecha-

nisms to be randomized - their result will fail if we restrict attention to only deterministic

mechanisms (an example is available upon request). On the other hand, our results are

for deterministic mechanisms and we do not know if our result will continue to hold if we

consider randomized voting mechanisms. Finally, our results require independent generic

priors but the results in these papers only make the independence assumption - see Kushnir

(2014) for extension of the results in Manelli and Vincent (2010); Gershkov et al. (2013) to

correlated priors.

Chung and Ely (2007); Chen and Li (2014) address a related issue in quasilinear environ-

ment with transfers. They consider a mechanism designer who has no specific information

about beliefs of agents. They show that if the designer wants to maximize the worst case

(over a set of possible beliefs) revenue from the mechanisms, then he should use a dominant

strategy mechanism in the single object auction and other specific settings. These results

provide a different foundation for dominant strategy mechanisms in their cardinal quasilinear

setting than ours - see also Borgors (2013).

Necessary conditions on domains. We do not know if our main result can hold in

domains that are not local. We have used the idea of local incentive constraints extensively

in our proof. Indeed, Lemma 2 established equivalence between G-LOBIC and G-LDSIC

under elementary monotonicity in any arbitrary domain. Using this and the results in Sato

(2013), we can easily identify necessary conditions on the domain for the equivalence of

G-LOBIC and DSIC. For instance, consider the following condition from Sato (2013).

Definition 17 A domain D is connected if for every P, P ′ ∈ D, there exists a sequence

of distinct types (P = P 0, P 1, . . . , P k, P k+1 = P ′) such that for all j ∈ {0, 1, . . . , k}, P j ∈ D
and P j+1 is a (x, y)-swap of P j for some x, y ∈ A.

11They also consider an even weaker notion of equivalence, where they compare interim expected utilities

of agents.
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Connectedness requires that we can go from any type in a domain to another type using a

sequence of distinct types that are generated by swaps. Sato (2013) gives many examples

of domains, which include the unrestricted domain and the single peaked domain, that are

connected. He shows that if a domain is a local domain, then it must be connected. We can

now prove the following lemma.

Lemma 3 Suppose D is a domain such that every G-LOBIC scf f : Dn → A satisfying

elementary monotonicity is DSIC. Then, D is connected.

Proof : By Lemma 2, any G-LOBIC scf f : Dn → A satisfying elementary monotonicity is

LDSIC. Since, LDSIC implies DSIC in D, by Sato (2013), D is connected. �

Since the separable domains in Le Breton and Sen (1999) are not connected, a conse-

quence of this lemma is that G-LOBIC and elementary monotonicity does not imply DSIC in

these domains. We do not have any necessary conditions on domains where G-OBIC along

with elementary monotonicity will imply DSIC.

Indirect implications. We can use our results to strengthen some results on DSIC mech-

anisms. We list some of these results below.

• Description of mechanisms. In many domains, the class of DSIC mechanisms have

been explicitly characterized. For instance, in the single peaked domain, Moulin (1980)

shows that the only DSIC, anonymous and unanimous mechanisms are generalized

median voting mechanisms. 12 Our Theorem 4 will imply that in the single peaked

domain, the only G-OBIC, unanimous, and anonymous mechanisms satisfying weak

elementary monotonicity are generalized median voting mechanisms.

Similarly, Saporiti (2009) shows that in the maximal single crossing domain, the only

DSIC, anonymous, and unanimous mechanisms are generalized median voting mecha-

nisms. Since the maximal single crossing domain is a local domain (Carroll, 2012), our

Theorem 2 will imply that in the maximal single crossing domain, the only G-OBIC,

unanimous, and anonymous mechanisms satisfying elementary monotonicity are gen-

eralized median voting mechanisms.

• Group strategy-proof mechanisms. Barbera et al. (2010) identify a large class of

domains where DSIC imply the stronger property of group strategy-proofness. Group

strategy-proofness requires that no coalition of agents can manipulate the mechanism.

12A generalized median voting scf is defined by locating n − 1 phantom peaks at various alternatives and

then taking the median of these peaks and the top ranked alternatives of n agents.
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The class of such domains include many local domains (unrestricted domain, single

peaked domain). Our results will imply that if any such domain is a local domain,

then a G-OBIC mechanism satisfying elementary monotonicity will be a group strategy-

proof mechanism.

• Optimization. Gershkov et al. (2014) find the expected utility maximizing DSIC,

unanimous, and anonymous mechanism in the maximal single crossing domain of

Saporiti (2009). Using our Theorem 2, their mechanism will also remain optimal if

they search over the set of all G-OBIC mechanisms satisfying elementary monotonic-

ity.

Uniform priors. Though uniform priors are non-generic, they play an important role in

decision theory. In their paper, Majumdar and Sen (2004) show that in the unrestricted

domain, there are unanimous scfs that are OBIC with respect to uniform priors but not

DSIC. They show that any scf satisfying neutrality and elementary monotonicity is OBIC

with respect to uniform priors. These conditions are mild and hence, cover many scfs.

Unfortunately, this result is no longer true in restricted domains. This is an artifact of

the notion of Bayesian incentive compatibility. Suppose we have an OBIC (with respect to

uniform priors) scf in a domain D and we consider the restriction of this scf to a smaller

domain D′. The restriction of the original scf need not be OBIC with respect to uniform

priors in the smaller domain D′.
Appendix B contains an example of an scf in the unrestricted domain that is OBIC

with respect to uniform priors but its restriction to the single peaked domain is no longer

OBIC with respect to uniform priors. This illustrates that unlike in the unrestricted domain,

elementary monotonicity and neutrality are not sufficient conditions for an scf to be OBIC

with uniform priors in restricted domains.

7 Conclusion

We have identified a large class of domains where G-LOBIC and elementary monotonicity are

equivalent to DSIC. The equivalence of G-LOBIC and elementary monotonicity with LDSIC

works in every domain. We also explored the consequence of using unanimity in place of

elementary monotonicity. Unfortunately, except for the unrestricted domain, unanimity is

not enough to guarantee similar equivalences. However, in restricted domains like the single

peaked domain, we can replace elementary monotonicity by a significantly weaker condition

along with unanimity to get our result. Our results are foundations in the sense that they

point out an amazing robustness property of DSIC mechanisms in voting environments. To
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look beyond DSIC mechanisms, our results point to the use of cardinal and/or randomized

BIC mechanisms in voting environments.

Appendix A: Omitted Proofs

Proof of Proposition 1

Clearly, f ∗ is unanimous and anonymous. However, f ∗ is not DSIC. To see this, consider a

profile P such that for all agents i 6= 3, we have Pi(1) = a - note that since a is the leftmost

alternative, there is a unique preference ordering where a is top ranked. For agent 3, pick

any preference ordering where b is preferred to a. As a result, f ∗(P) = b. A possible profile

is shown in Table 5 - note that aP1b. Now, fixing the preference profile of all agents except

agent 1, if agent 1 reports a preference ordering P ′1 such that P ′1(1) = b, P ′1(2) = a, then f ∗

will choose a - see Table 5. Hence, agent 1 can manipulate.

P1 P2 P3 P ′1 P2 P3

a a b b a b

b b a a b a

c c c c c c

Table 5: Failure of DSIC of f ∗

However, we show that f ∗ is G-OBIC. Let the prior of each agent i be given by the map

µi : S → (0, 1). To show that f ∗ is OBIC with respect to {µi}i∈N such that these are generic

priors, we will compute the interim allocation probabilities of every agent in {1, 2, 3}.
If an agent i ∈ {1, 2, 3} has type Pi then define

Of∗

i (Pi) := {x ∈ A : f ∗(Pi, P−i) = x for some P−i}.

By definition of f ∗, for every i ∈ {1, 2, 3} and for every Pi ∈ S, Of∗

i (Pi) ⊆ {a, b, Pi(1)}, and if

Pi(1) 6= c, then Of∗

i (Pi) = {a, b}. Let P̄ be the unique preference ordering where the leftmost

alternative a is top ranked. Denote the probability that agent i has type P̄ as qi ≡ µi(P̄ ).

Similarly, denote by q̂i ≡ µi(P̂ ), where P̂ is the unique ordering where alternative c is top

ranked. We fix an agent i ∈ {1, 2, 3} and denote the other two agents in {1, 2, 3} as j and k.

We consider three possible cases.

Case 1. Suppose Pi = P̄ . Note that Of∗

i (Pi) = {a, b}. Then his interim allocation proba-

bility for alternative a can be computed as follows. Note that f ∗(Pi, Pj, Pk) 6= a if Pj and

Pk are such that either (aPjb and bPka) or (aPkb and bPja). The probability of this event is

qj(1− qk) + qk(1− qj).
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Here, we used the fact that the probability that agent j has type Pj such that bPja is just

(1− pj) and, similarly, the probability that agent k has type Pk such that bPka is (1− qk).

Since f ∗(Pi, Pj, Pk) ∈ {a, b}, the interim allocation probability of choosing a at Pi for agent

i is

1− qj − qk + 2qjqk,

and the interim allocation probability of choosing b at Pi for agent i is

qj + qk − 2qjqk.

Case 2. Suppose Pi is such that Pi(1) = b - this is possible for two preference orderings.

Note that Of∗

i (Pi) = {a, b}. Then, his interim allocation probability for alternative b can be

computed as follows. Note that f ∗(Pi, Pj, Pk) 6= b if Pj and Pk are such that either (aPjb

and bPka) or (aPkb and bPja). The probability of this event is

qj(1− qk) + qk(1− qj).

Hence, the interim allocation probability of choosing b at Pi for agent i is

1− qj − qk + 2qjqk.

Since Of∗

i (Pi) = {a, b}, the interim allocation probability of choosing a at Pi for agent i is

qj + qk − 2qjqk.

Case 3. Suppose Pi is such that Pi(1) = c, i.e., Pi = P̂ . Then, Of∗

i (Pi) = {a, b, c}. His

interim allocation probability for alternative c can be computed straightforwardly - c is cho-

sen if and only if Pj(1) = Pk(1) = Pi(1) = c. This is possible if and only if both agents j

and k have the type P̂ . The probability of this event is q̂j q̂k. Hence, the interim allocation

probability for alternative Pi(1) at Pi for agent i is q̂j q̂k. Next, the interim allocation prob-

ability for agent i for alternative a can be computed as follows. For this, note that cPibPia.

Hence, f ∗(Pi, Pj, Pk) = a if Pj and Pk are such that either (aPjb and bPka) or (aPkb and

bPja) - notice that these events ensure that tops of all agents are not the same and a is not

dominated by b. The probability of this event is

qj(1− qk) + qk(1− qj).

Hence, the interim allocation probability of choosing a at Pi for agent i is

qj + qk − 2qjqk.
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Since Of∗

i (Pi) = {a, b, Pi(1)}, the interim allocation probability of choosing b at Pi for agent

i is

1− qj − qk + 2qjqk − q̂j q̂k.

We enumerate all the interim allocation probabilities in Table 6 by considering the three

cases for an agent i ∈ {1, 2, 3} by denoting the other two agents as j and k.

Case 1: Pi = P̄ Case 2: Pi(1) = b Case 3: Pi = P̂

πf∗

i (a, Pi) 1− qj − qk + 2qjqk qj + qk − 2qjqk qj + qk − 2qjqk

πf∗

i (b, Pi) qj + qk − 2qjqk 1− qj − qk + 2qjqk 1− qj − qk + 2qjqk − q̂j q̂k
πf∗

i (c, Pi) 0 0 q̂j q̂k

Table 6: Interim allocation probabilities

Now, notice from Table 6 that if agent i has type Pi such that Pi(1) = a, the only OBIC

constraint to satisfy is

1− qj − qk + 2qjqk ≥ qj + qk − 2qjqk.

Alternatively, we must have

(1− 2qj)(1− 2qk) ≥ 0. (1)

This prevents any manipulation of agent i to a type in Case 2 or Case 3. Also, Inequality 1

ensures OBIC constraints when agent i has a type Pi such that Pi(1) = b. Finally, Inequality

1 also ensures OBIC constraints when agent i has a type Pi such that Pi(1) = c - this can be

verified by checking from Table 6 that the truthtelling lottery first-order stochastic dominates

other lotteries as long as Inequality 1 is satisfied.

Hence, f ∗ is OBIC if and only if the priors of agents 1,2, and 3 satisfy

(1− 2q2)(1− 2q3) ≥ 0,

(1− 2q1)(1− 2q3) ≥ 0,

(1− 2q1)(1− 2q2) ≥ 0.

This is satisfied if and only if q1, q2, q3 ∈ (0, 0.5) or q1, q2, q3 ∈ (0.5, 1). It also puts no

restriction on the probabilities of orderings in S \ {P̄}. Hence, the set of priors of all agents

satisfying q1, q2, q3 ∈ (0, 0.5) or q1, q2, q3 ∈ (0.5, 1) is a full dimensional subset of the set of

all independent priors. As a result, it must have a non-empty intersection with the set of

independent generic priors.
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Proof of Theorem 3

We first show that if f : Pn → A is G-LOBIC and unanimous, then it is Pareto efficient.

Suppose f is G-LOBIC and unanimous but assume for contradiction that it is not Pareto

efficient. For this, we consider a profile P such that f(P) = b but there exists a ∈ A

such that aPib for all i ∈ N . Consider an agent i ∈ N such that Pi(k) = a and k 6= 1.

Suppose Pi(k − 1) = x. Consider P ′i which is a (x, a)-swap of Pi. By swap monotonicity,

f(P ′i , P−i) = b. We can repeat such swaps to reach a preference ordering P ′′i for agent i such

that P ′′i (1) = a and f(P ′′i , P−i) = b. Now, we can repeat this procedure for every agent j

such that Pj(k) = a and k 6= 1 to arrive at a profile P′′ such that f(P′′) = b. But this will

contradict unanimity since P ′′j (1) = a for all j ∈ N .

Hence, we show that any f : Pn → A that is G-LOBIC and Pareto efficient must satisfy

elementary monotonicity. By Theorem 2, we will be done.

To do so, we consider an agent i ∈ N , a preference profile P−i of other agents, and Pi, P
′
i

such that P ′i is an (a, b)-swap of Pi and f(Pi, P−i) = b. The two profiles are shown in Table

7. Notice that there are some agents in P−i who prefer a to b and some prefer b to a. If

all the agents in P−i prefer a to b, then the outcome at (Pi, P−i) cannot be b due to Pareto

efficiency. Similarly, if all the agents in P−i prefer b to a, the outcome at (P ′i , P−i) cannot be

a, and hence, must be b, which gives us the desired result.

Hence, we will assume that there is at least one agent in P−i who prefers a to b and at

least one agent who prefers b to a.

Pi P−i P ′i P−i

· . . . . . . · . . . . . .

· . . . . . . · . . . . . .

a b . . . a . . . b b . . . a . . .

b . . . . . . a . . . . . .

· a . . . b . . . · a . . . b . . .

· . . . . . . · . . . . . .

Table 7: Profiles (Pi, P−i) and (P ′i , P−i)

We will now show that f(P ′i , P−i) = b. By swap monotonicity, f(P ′i , P−i) ∈ {a, b}. As-

sume for contradiction that f(P ′i , P−i) = a. Now, we do the proof in steps. In the proof, if

x and y are consecutive alternatives in an ordering, an (x, y)-swap of this ordering will be

referred to as a swap.

Step 1. We modify the profile (Pi, P−i) to bring one of the alternatives not in {a, b} (such

an alternative exists since |A| ≥ 3) just below {a, b} for all the agents. Let x /∈ {a, b} be
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some alternative. If aPjx and bPjx for some j ∈ N , then we can do a series of swaps to

lift x up such that it is just below b if aPjb or just below a if bPja (note that none of these

swaps will involve b). By swap monotonicity, the outcome at the new profile continues to

be b. Using a similar argument, if bPjx and xPja for some j ∈ N , then we can come to a

preference ordering where x is just below a maintaining the outcome to be b.

Now, consider j ∈ N , such that xPjb. If x and b are not consecutive in Pj, then again we

can do a series of swaps to come to a preference ordering such that x is just above b (note

again that none of these swaps will involve b). By swap monotonicity, the outcome at the

new profile continues to be b. Let us denote this new profile by P̄.

So, we have reached a profile, where for every j ∈ N , either x is just above b in P̄j

or [x is just below b if aP̄jb and x is just below a if bP̄ja]. Now, we pick a j ∈ N such

that x is just above b in P̄j. We do a (x, b)-swap to get a preference ordering P̄ ′j . By swap

monotonicity f(P̄ ′j , P̄−j) ∈ {x, b}. We repeat this procedure for every agent k such that

x is just above b in P̄k. Denote the new profile as P̄′. By repeated application of swap

monotonicity, f(P̄′) ∈ {x, b}. But bP̄ ′jx for all j ∈ N . Hence, by Pareto efficiency, f(P̄′) = b.

Now, consider the (a, b)-swap of P̄ ′i and denote this preference ordering as P̄ ′′i . Since

f(P ′i , P−i) = a, an analogous argument will show that f(P̄ ′′i , P̄
′
−i) = a. The two profiles

(P̄ ′i , P̄
′
−i) and (P̄ ′′i , P̄

′
−i) are shown in Table 8.

P̄ ′i P̄ ′−i P̄ ′′i P̄ ′−i
· . . . . . . · . . . . . .

· . . . . . . · . . . . . .

a b . . . a . . . b b . . . a . . .

b . . . . . . a . . . . . .

x a . . . b . . . x a . . . b . . .

· x . . . x . . . · x . . . x . . .

· . . . . . . · . . . . . .

Table 8: Profiles (P̄ ′i , P̄
′
−i) and (P̄ ′′i , P̄

′
−i)

Step 2. In this step, we modify the profile (P̄ ′i , P̄
′
−i) in a particular way. First, we look at

an agent j ∈ N , such that aP̄ ′jb and bP̄ ′jx. We perform a (b, x) swap for each of these agents.

The new profile is shown in Table 9. By swap monotonicity, the outcome at the new profile

must be in {b, x}. But since a is ranked higher than x for all the agents, Pareto efficiency

implies the outcome at the new profile must be b.

Step 3. In this step, we modify the profile in Table 9 further. In particular, we lift x just
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Agent i Other agents

· . . . . . .

· . . . . . .

a b . . . a . . .

x . . . . . .

b a . . . x . . .

· x . . . b . . .

· . . . . . .

Table 9: New profile in Step 2

above a. For agent i and for all j 6= i such that x is just below a, this can be done by

a (a, x)-swap. For all other agents, this requires a series of swaps - note that these swaps

can be done by without involving b. The new profile is shown in Table 10. Since none of

the swaps involve b, swap monotonicity implies that the outcome at the new profile remains b.

Agent i Other agents

· . . . . . .

· . . . . . .

x b . . . x . . .

a . . . a . . .

b x . . . . . .

· a . . . b . . .

· . . . . . .

Table 10: New profile in Step 3

Step 4. In this step, we modify the profile in Step 3 by changing only agent i’s preference

ordering. We do this by doing an (a, b)-swap of the preference ordering of agent i in the

profile shown in Table 10. The new profile is shown in Table 11. By swap monotonicity,

the outcome at the new profile is in {a, b}. But x is better than a for all agents, and hence,

Pareto efficiency implies the outcome at the new profile is b.

Step 5. In this step, we modify the profile in Step 4 by changing the preferences of those

agents who prefer x to a and a to b (the third column of agents in Table 11). We perform a

series of swaps to bring x just one position above b. The new profile is shown in Table 12.

By swap monotonicity, the outcome at this profile remains b.
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Agent i Other agents

· . . . . . .

· . . . . . .

x b . . . x . . .

b . . . a . . .

a x . . . . . .

· a . . . b . . .

· . . . . . .

Table 11: New profile in Step 4

Agent i Other agents

· . . . . . .

· . . . . . .

x b . . . a . . .

b . . . . . .

a x . . . x . . .

· a . . . b . . .

· . . . . . .

Table 12: New profile in Step 5

Step 6. Now, we perform an (x, b)-swap of preferences of those agents who rank x just

above b in the profile in Step 5 - this will be agent i and agents in the third column in Table

12. The new profile is shown in Table 13. By swap monotonicity, the outcome at the new

profile is in {x, b}. But b is preferred to x for all the agents. Hence, Pareto efficiency implies

the outcome at the new profile remains b.

Agent i Other agents

· . . . . . .

· . . . . . .

b b . . . a . . .

x . . . . . .

a x . . . b . . .

· a . . . x . . .

· . . . . . .

Table 13: New profile in Step 6
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Step 7. Finally, we perform a (x, a)-swap for the preferences of all agents in the profile in

Step 6 who rank x just above a - this will include agent i and agents in the second column

of Table 13. The new profile is shown Table 14. By swap monotonicity, the outcome at this

profile remains b.

But the profile shown in Table 14 is exactly the profile (P̄ ′′i , P̄
′
−i) (see Table 8) and we

had assumed that f(P̄ ′′i , P̄
′
−i) = a. This is a contradiction.

Agent i Other agents

· . . . . . .

· . . . . . .

b b . . . a . . .

a . . . . . .

x a . . . b . . .

· x . . . x . . .

· . . . . . .

Table 14: New profile in Step 7

Proof of Theorem 4

Let f be a unanimous scf that is G-LOBIC. The proof goes in many steps.

Step 1. In this step, we collect some facts about single peaked domain from Sato (2013).

These facts will be used in subsequent steps. We have already defined the notion of a

connected domain in Definition 17. We now propose a strengthening of this notion.

Definition 18 A distinct sequence of types (P 0, P 1, . . . , P k, P k+1) is without restoration

if there exists no distinct j, j′ ∈ {0, 1, . . . , k} and x, y ∈ A such that P j+1 is a (x, y)-swap of

P j and P j′+1 is a (y, x)-swap of P j′.

The without restoration property requires that no pair of alternatives is swapped more

than once along the sequence. With this notion, we can strengthen the notion of connected-

ness.

Definition 19 A domain D is connected without restoration if for every P, P ′ ∈ D,

there exists a sequence of distinct types (P = P 0, P 1, . . . , P k, P k+1 = P ′) without restoration

such that for all j ∈ {1, . . . , k}, P j ∈ D and for all j ∈ {0, 1, . . . , k}, P j+1 is a (x, y)-swap

of P j for some x, y ∈ A.
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Sato (2013) shows that if a domain is connected without restoration, then it is a local

domain. The unrestricted domain and the single peaked domains are examples of domains

that are connected without restoration. We will use this fact in our proofs.

Step 2. In this step, we will prove a claim using the facts in Step 1.

Claim 1 Suppose Pi ∈ S is a preference ordering such that aPib. Then, there exists a

preference ordering P ′i ∈ S such that P ′i (1) = a and B(b, Pi) = B(b, P ′i ). Moreover, for all

P−i ∈ Sn−1 with f(Pi, P−i) = b, we have f(P ′i , P−i) = b.

Proof : The first part of the claim follows from the single peaked domain - if aPib, then we

can always lift a to the top and keep all the alternatives that are above b in Pi between a and b

and all others below b in the new preference ordering. Let P ′i be such an ordering. By the facts

in Step 1, we know that there is a distinct sequence of types (Pi = P 0, P 1, P 2, . . . , P k, P k+1 =

P ′i ) without restoration such that consecutive types in the sequence are swaps of each other.

Since B(b, Pi) = B(b, P ′i ) and the sequence is without restoration, none of these swaps

involve b. By repeatedly applying swap monotonicity along the sequence, we get f(P ′i , P−i) =

f(Pi, P−i) = b. �

Step 3. In this step, we show that if an scf is G-LOBIC and unanimous, then it must be

Pareto efficient. For this consider a profile P with f(P) = b. Assume for contradiction that

there exists a 6= b such that aPib for all i ∈ N . By Claim 1, there exists a preference profile

P′ such that f(P′) = b and P ′i (1) = a for all i ∈ N . This is a contradiction since unanimity

implies that f(P′) = a.

Step 4. Now, consider an agent i ∈ N and P−i ∈ Sn−1. Let Pi, P
′
i ∈ S be such that P ′i is an

(a, b)-swap of Pi and f(Pi, P−i) = b. We will show that f(P ′i , P−i) = b. We consider various

cases.

Case 1. Suppose Pi(k) = a and k > 1, i.e., the swap from Pi to P ′i is not happening at

the top of the preference ordering. Since a and b are consecutively ranked in Pi and P ′i and

neither of them are top ranked in Pi and P ′i , it must be that a and b are not neighbors (in

�). This is because if a and b are neighbors then they can only be swapped if they are at

the top.

Hence, consider a neighbor c of a such that c is between a and b in � (i.e., if a � b,

then a � c � b and if b � a then b � c � a). By definition, cPia and cP ′i b. Further, for

any other agent j 6= i, there are four possible rankings between a, b, c in Pj: (1) cPjaPjb, (2)

cPjbPja, (3) bPjcPja, and (4) aPjcPjb. The two profiles (Pi, P−i) and (P ′i , P−i) are shown in
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Table 15. Table 15 shows that there are four group of agents in P−i with different possible

rankings between a, b, c. We now modify the profile (Pi, P−i) in a sequence of steps to reach

the profile (P ′i , P−i).

Pi P−i P ′i P−i

· . . . . . . . . . . . . · . . . . . . . . . . . .

c c . . . c . . . b . . . a . . . c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . . . . . . . . . . . . . . . . .

a a . . . b . . . c . . . c . . . b a . . . b . . . c . . . c . . .

b . . . . . . . . . . . . a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . . · b . . . a . . . a . . . b . . .

· . . . . . . . . . . . . · . . . . . . . . . . . .

Table 15: Profiles (Pi, P−i) and (P ′i , P−i)

Step 1a. In this step, we modify the preferences of agents in P−i who rank a better than

c better than b. For each such agent j, we construct P ′j such that P ′j(1) = a, P ′j(2) = c and

B(b, P ′j) = B(b, Pj). Notice that since a and c are neighbors, single peakedness implies that

such a P ′j can be constructed such that it is single peaked. Further, using a reasoning similar

to Claim 1, we can argue that we can go from Pj to P ′j using a without restoration sequence

and since B(b, P ′j) = B(b, Pj), b will not be involved in any swaps. As a result, the outcome

at the new profile will be b. The new profile is shown in Table 16.

Pi Other agents

· . . . . . . . . . a . . .

c c . . . c . . . b . . . c . . .

· . . . . . . . . . . . .

a a . . . b . . . c . . . . . .

b . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 16: Profile in Step 1a.

Step 1b. In this step, we modify the profile in Table 16 as follows. For every agent other

than i who rank a at the top, c second, we perform the (a, c)-swap. Notice that this leads

to a feasible single peaked preference ordering since a and c are neighbors. The new profile
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is shown in Table 17. By swap monotonicity, the outcome at the new profile is b.

Pi Other agents

· . . . . . . . . . c . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

a a . . . b . . . c . . . . . .

b . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 17: Profile in Step 1b.

Step 1c. In this step, we perform (a, b)-swap of Pi to reach P ′i . The new profile is shown in

Table 18. By swap monotonicity, the outcome at the new profile is in {a, b}. Note that at the

new profile cPja for all j ∈ N . Hence, by Pareto efficiency the outcome at the new profile is b.

P ′i Other agents

· . . . . . . . . . c . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

b a . . . b . . . c . . . . . .

a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 18: Profile in Step 1c.

Step 1d. We can now consider the profile in Table 18 and alter the preferences of last

(fifth) column of agents by performing a (c, a)-swap and then doing a sequence of without

restoration swaps to go to their preference in Step 1a (see preferences in Table 16). The new

profile is shown in Table 19.

Since none of these swaps involve alternative b, the outcome at this new profile is b due

to swap monotonicity. But this profile is exactly (P ′i , P−i). Hence, f(P ′i , P−i) = b.

Case 2. The other case is Pi(k) = a and k = 1, i.e., the swap from Pi to P ′i is occurring

at the top. The profile (Pi, P−i) is shown below in Table 20. We now do the proof in many
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P ′i Other agents

· . . . . . . . . . . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

b a . . . b . . . c . . . c . . .

a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 19: Profile in Step 1d.

steps.

Pi P−i

a . . . . . .

b a . . . b . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

Table 20: Profile in Case 2.

Step 2a. Now, consider every agent j 6= i such that aPjb (agents in second column of Table

20). By Claim 1, we can construct a preference ordering from Pj such that a is top ranked

and the outcome remains b. We change the preferences of all the agents in the profile in

Table 20 who prefer a to b in this manner to arrive at the new profile. The new profile is

shown in Table 21 and the outcome at the new profile is b.

Pi P−i

a a . . . . . .

b . . . b . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

Table 21: Profile in Step 2a.

Step 2b. Now, for every agent j 6= i such that a is top tanked in the profile in Table 20,
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we consider a preference ordering where a is top ranked and b is second ranked. The new

profile is shown in Table 22.

Pi P−i

a a . . . . . .

b b . . . b . . .

· . . . . . .

· . . . a . . .

· . . . . . .

Table 22: Profile in Step 2b.

By Sato (2013), such a preference ordering can be reached by swaps without restoration.

Hence, a will not be involved in such swaps. Swap monotonicity implies that the outcome

at the new profile is not a.

Step 2c. Now, consider every agent j 6= i such that b is preferred to a in the preference profile

in Step 2b (agents in third column of Table 22). By Claim 1, we can construct a preference

ordering from this preference ordering such that b is top ranked and the alternatives that

were below a do not change. The new profile is shown in Table 23. By definition, we can

go to this new profile by doing a sequence of without restoration swaps that do not involve

a. Hence, by swap monotonicity, the outcome at the new profile is not a. Then, by Pareto

efficiency, the outcome at this new profile must be b.

Pi P−i

a a . . . b . . .

b b . . . . . .

· . . . . . .

· . . . a . . .

· . . . . . .

Table 23: Profile in Step 2c.

Step 2d. In this step, we consider all the agents who have b top-ranked in the profile in

Step 2c (agents in the third column in Table 23). For every such agent, we consider another

preference ordering where b is top-ranked and a is second ranked. The new profile is shown

in Table 24. By Sato (2013), we can go to this new preference ordering by doing a sequence

of without restoration swaps. Hence, by swap monotonicity, the outcome at the new profile

is b.
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Pi P−i

a a . . . b . . .

b b . . . a . . .

· . . . . . .

· . . . . . .

· . . . . . .

Table 24: Profile in Step 2d.

Now, consider any agent who ranks a at the top in the profile in Step 2d. If his preference

ordering is not the same as Pi, then we can transform it to Pi by a sequence of without

restoration swaps. Since this will not involve any swaps of b, by swap monotonicity the

outcome will remain b at the new profile. A similar argument can be made to transform the

preference ordering of every agent who ranks b at the top to the preference ordering P ′i . As a

consequence, the profile in Table 24 can be transformed to a profile where every agent j 6= i

has preference ordering Pi or P ′i and the outcome at this profile is b. Denote this profile as

(Pi, P̄−i).

Now, assume for contradiction f(P ′i , P−i) = a. We now repeat the above procedure at

the profile (P ′i , P−i) to arrive at the profile (P ′i , P̄−i) and the outcome at this profile is a.

If all j 6= i have preference Pi, then unanimity implies f(Pi, P̄−i) = a, hence, we reach a

contradiction. Similarly, if all j 6= i have preference P ′i , then unanimity implies f(P ′i , P̄−i) =

b, and again, we reach a contradiction. Hence, there exist j, k 6= i such that P̄j = Pi and

P̄k = P ′i . Since f(Pi, P̄i) = b, weak elementary monotonicity implies that f(P ′i , P̄−i) = b.

This is a contradiction. This completes the proof.

Appendix B

Failure of Weak Equivalence under Unanimity and Anonymity

Here, we will show that for the scf f ∗ identified in Proposition 1, there is no DSIC, unanimous,

and anonymous scf that is weakly equivalent to it for a generic set of priors. Without loss

of generality, we show this for N = {1, 2, 3}.
To remind, an scf is anonymous if by permuting the preferences of agents, the outcome

remains the same at the new profile. Hence, f ∗ is an anonymous scf if the number of agents

is three.

We remind some of the notations we used earlier. Suppose the domain is single peaked

with respect to �. As before, we denote the left-most alternative and the second left-most

alternative according to � as a and b respectively. The unique type where a is top ranked is
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denoted by P̄ . The probability that agent i ∈ {1, 2, 3} has type P̄ is denoted as qi.

For agent 1, the interim allocation probabilities from f ∗ were computed earlier in the

proof of Proposition 1. We will only be interested in the interim allocation probabilities of

alternatives a and b when P1(1) ∈ {a, b}. We reproduce that part of the interim allocation

probabilities below in Table 25.

Case 1: P1(1) = a Case 2: P1(1) = b

πf∗

1 (a, P1) 1− q2 − q3 + 2q2q3 q2 + q3 − 2q2q3

πf∗

1 (b, P1) q2 + q3 − 2q2q3 1− q2 − q3 + 2q2q2

Table 25: Interim allocation probabilities of a and b

We also remind that since f ∗ is OBIC, we must have

(1− 2q2)(1− 2q3) ≥ 0.

This implies that either q2, q3 ∈ [0, 0.5] or q2, q3 ∈ [0.5, 1].

Now, assume for contradiction that there is a DSIC, unanimous, and anonymous scf f

that is weakly equivalent to f ∗. By Moulin (1980), f must be a median voter scf. To remind,

when there are three agents, a median voter scf is defined by locating two phantom peaks -

denote them by a1, a2 ∈ A. At every preference profile (P1, P2, P3) ∈ S3, a median voter scf

chooses the alternative which is the median of (a1, a2, P1(1), P2(1), P3(1)) according to the

ordering �. We will argue that the location of phantom peaks a1 and a2 for f has to be

different (i.e., a1 6= a2) and both of them have to be located either at a or at b.

Note that if agent 1 has type P̄ , then for any P−1, the outcome of f ∗ can only be a or b.

Hence, the interim allocation probability of all the alternatives except a and b are zero (see

Table 25). This means that for all c /∈ {a, b},

πf
1 (c, P̄ ) = πf∗

1 (c, P̄ ) = 0,

where the first equality followed from the weak equivalence of f and f ∗. Now, if the location

of one of the phantom peaks of f is not in {a, b}, then when agents 2 and 3 have their top

ranked alternative outside {a, b}, because of the median property, the scf will not choose a

or b. As a result, we will have πf
1 (c, P̄ ) > 0, contradicting the above equation. Hence, the

phantom peaks must be located either at a or b.

If both the phantom peaks are located at a, then the median will be a when agent 1 has

type P̄ , irrespective of the type of agents 2 and 3. Hence, πf
1 (a, P̄ ) = 1. But, using Table 25

and weak equivalence of f and f ∗, we can conclude that πf
1 (a, P̄ ) = πf∗

1 (a, P̄ ) < 1, which is

a contradiction. Hence, both the phantom peaks cannot be at a.
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Consider any preference ordering where b is top ranked - denote it by P̂ . Note that

πf (b, P̂ ) = πf∗
1 (b, P̂ ) < 1 (Table 25). In that case, if both the phantom peaks are located at

b, by the median property the scf f will choose b as the outcome for any preference ordering

of agents 2 and 3. Hence, πf (b, P̂ ) = 1, which is a contradiction. Hence, we conclude that

in the median voter scf f , one of the phantom peaks is located at a and the other one is

located at b.

Now, in the median voter scf f , if agent 1 has type P̄ , then f chooses a if at least

one more agent has his top ranked alternative a (this follows from the median property),

i.e., at least one more agent has type P̄ . The probability of this event is exactly 1 − (1 −
q2)(1 − q3) = q2 + q3 − q2q3. Hence, we have πf

1 (a, P̄ ) = q2 + q3 − q2q3. But from Table 25,

πf∗

1 (a, P̄ ) = 1 − q2 − q3 + 2q2q3. This implies that q2 + q3 − q2q3 = 1 − q2 − q3 + 2q2q3, or

equivalently,

q2 + q3 =
1 + 3q2q3

2
. (2)

Now, consider the case where agent 1 has a type where his top ranked alternative is b -

as before, denote such a type as P̂ . In this case, f chooses a as the outcome if both agent

2 and agent 3 have their top ranked alternative as a (by the median property), i.e., agent

2 and agent 3 have type P̄ . The probability of this event is q2q3. Hence, πf
1 (a, P̂ ) = q2q3.

But from Table 25, πf∗

1 (a, P̂ ) = q2 + q3 − 2q2q3. This implies that q2q3 = q2 + q3 − 2q2q3, or

equivalently,

q2 + q3 = 3q2q3. (3)

Equations 2 and 3 give us q2q3 = 1
3

and q2 + q3 = 1. But this has no real solution.

This shows that there is no DSIC, unanimous, and anonymous scf that is weakly equiv-

alent to f ∗.

Uniform Priors Example

Suppose A = {a, b, c} and n = 2. Consider the unrestricted domain consisting of 6 possible

types for each agent. The type profiles along with the outcome of an scf f̃ is shown in Table

26. In Table 26, a preference ordering aPbPc is written as abc. Also, the rows of Table are

preferences of agent 1 and columns of agent 2. The profiles corresponding to top four rows

and first four columns correspond to the single peaked domain (with respect to the ordering

a � b � c).

The scf f̃ in Table 26 is unanimous, but not DSIC - e.g., agent 2 can manipulate when

his true type is cba and agent 1 reports abc by reporting bca (notice that the manipulation

took place inside the single peaked domain, and hence, the scf is not DSIC in the single
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abc bac bca cba acb cab

abc a a b a a a

bac b b b b a b

bca b b b b b c

cba c b c c c c

acb a a a c a a

cab a c c c c c

Table 26: An OBIC scf with respect to uniform priors

peaked domain also). However, this is a neutral scf satisfying elementary monotonicity - in

fact, f̃ is equivalent to the Borda scoring rule where the top ranked alternative gets score

2, the second ranked alternative gets score 1 and ties are broken in favor of agent 1’s top

ranked alternative. Hence, it is OBIC with respect to uniform priors in the unrestricted

domain (Majumdar and Sen, 2004).

We now consider the single peaked domain and uniform priors in the single peaked do-

main. Now, we calculate the interim allocation probabilities for agent 2 in the single peaked

domain from f̃ . They are shown in Table 27. Now, notice that

πf̃
2 (a, abc) + πf̃

2 (b, abc) =
3

4
< 1 = πf̃

2 (a, bac) + πf̃
2 (b, bac).

This implies that f̃ is not OBIC with respect to uniform priors in the single peaked domain.

a b c

πf̃
2 (·, abc) 1

4
1
2

1
4

πf̃
2 (·, bac) 1

4
3
4

0

πf̃
2 (·, bca) 0 3

4
1
4

πf̃
2 (·, cba) 1

4
1
2

1
4

Table 27: Interim allocation probability of agent 2 in f̃
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