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Abstract

This paper studies dynamic price competition over two periods between two
firms selling differentiated durable goods to two buyers who are privately informed
about their types, but have valuations of the two goods dependent on the other
buyer’s type. The firms’ pricing strategy in period 1 must take into account the
buyers’ incentive to wait and learn from the other buyer’s decision. We construct
an equilibrium based on the key observation that the expected price of either good
in period 2 is the same as its price in period 1 on and off the path of play. The
equilibrium is shown to be non-preemptive in the sense that even if either firm fails
to make a sale in period 1, it still makes a sale with positive probability in period
2. A characterization of the equilibrium is given in terms of the probability of delay
as a function of the degree of interdependence between the two buyers.
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1 Introduction

Consumer preferences are intrinsically interdependent in many durable goods markets.
Consider, for example, potential consumers of a new model of an automobile. Purchase
decisions of such a product are accompanied by careful examination of various informa-
tion about it: Consumers collect information from a catalog and magazine articles as

well as from their own experience of products from the same manufacturer. They then
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summarize such information to form an opinion as an estimate of his valuation of the
product. However, the individual piece of information is arguably imperfect, and each
consumer has a better estimate of his valuation when the opinions of all consumers are
pooled.! When direct and truthful communication of opinions is not feasible, hence, each
consumer has an incentive to wait and see the decisions of other consumers to indirectly
learn their opinions.

We are interested in the problem of intertemporal price competition between two
firms selling differentiated durable goods to such interdependent consumers. In our
model, two consumers each have private opinions about the relative superiority of the
two goods, and buy a single unit of either good in one of the two periods in an irre-
versible manner. Hence, a consumer in period 1 must decide between buying today from
either firm for the quoted price, and waiting until tomorrow. If he waits, he has better
information about his valuation, but the price offer by each firm in period 2 is also con-
tingent on the buyers’ decision and can be high or low depending on whether its product
was chosen in period 1. Each firm, on the other hand, needs to set its price taking into
account the consumers’ incentives to ‘wait and see’ as well as the pricing decision of the
other firm. For example, by offering a discount in period 1, a firm may preempt the
market by capturing one of the consumers and then be able to sell the good to the other
consumer at a higher price in period 2. On the other hand, offering a discount may
be detrimental to the profits if, for example, it leads to a more intense competition in
period 2. Further, each firm needs to take into account the information flow generated
by its pricing decision. This simple discussion already suggests the complexity of the
strategic interaction between the consumers, between the firms, and between the firms
and the consumers.

A more detailed description of our model is as follows: Two firms A and B sell durable
goods A and B, respectively, over two periods. There are two consumers ¢ = 1, 2 each
of whom is endowed with the private type s; which represents his opinion about the

goods as described above. We assume that the type s; has a one-dimensional continuous

! A consumer’s opinion hence may be a noisy signal about the true (subjective) value of the product,
or may be his subjective valuation of it. In the former interpretation, the two opinions will be positively
correlated if they are information about the same aspect of the product but can be independent if they are
about different aspects of it (e.g., driving performance and fuel efficiency of an automobile). Valuations
can be interdependent even when the opinions are subjective if, for example, consumers are concerned
with how they are perceived by others. As will be seen, the present paper formulates interdependent
valuations based on independent opinions. While independence is assumed mainly for simplicity, the
same formulation is frequently used in the mechanism design literature. See for example Jehiel and
Moldovanu (2001).



distribution. We express the interdependence of their preferences by assuming that
buyer ¢’s valuation of either good is the weighted sum of his and the other buyer’s types.
We also assume that the consumers’ preferences are idiosyncratic by supposing that the
weight placed on the own opinion is larger than that placed on the other consumer’s
opinion. The types are ordered so that the higher the type s;, the higher is buyer ’s
relative valuation of good B.? Each consumer demands at most one unit of either good
and purchases the product at most once in one of the two periods. In period 1, the firms
quote prices simultaneously, and the consumers make simultaneous decisions on whether
to buy either good or wait until period 2. The public history comprises the prices and
consumer decisions in period 1. Given the updated belief about the consumers’ types,
the firms in period 2 again quote prices simultaneously, and any remaining consumers
make purchase decisions simultaneously again based on the updated beliefs about each
other’s type.

Our analysis focuses on equilibrium in which the buyers’ period 1 behavior facing
any price profile is sorted by their types. Specifically, under any price profile, we assume
that the type space is divided into three intervals: the buyer types in the lowest interval
who have the most favorable opinion about good A choose A in period 1, those in the
highest interval who have the most favorable opinion about good B choose B in period
1, and those in the middle interval who have a moderate opinion about both goods defer
their decisions until period 2.3

The first key observation we make is on the intertemporal property of the prices on
and off the equilibrium path. Specifically, we demonstrate that in equilibrium, the price
path must be a martingale: for each firm, the ez ante expected value of its period 2
price equals its period 1 price both on and off the equilibrium path. This critical result
is then extensively used in the derivation and characterization of an equilibrium. We
first examine if the equilibrium can have the preemptive property. In other words, we
examine if in equilibrium, any firm that successfully attracts one buyer in period 1 also
sells to any remaining buyer in period 2. Although such preemption appears plausible
given the strong position of the firm which wins a buyer in period 1, we show that it is not
consistent with an equilibrium: Preemption requires the period 1 price to be very low,
inducing either firm to profitably increase its period 1 price although it implies giving

up the period 1 market share completely and concentrating on the period 2 market.

2We assume that the probability distribution of the type is independent between the consumers. This
differentiates the present model from the standard models of social learning that suppose that the types

are the noisy signals of the underlying state of the world.
3The thresholds between the intervals depend on the period 1 prices, and one or more of the intervals

may be empty.



This finding leads to the consideration of a strategy profile in which the losing firm
(if any) in period 1 makes a sale in period 2 with positive probability. The main theo-
rem of the paper constructs an equilibrium with this property taking advantage of the
martingale property. We observe that the equilibrium period 1 price, which is uniquely
determined, entails a discount compared with that in the one-period model to reflect
the increased bargaining power of the buyers in the two-period model where they have
a delay option. This discount is shown to be increasing in the degree of interdependence
of the preferences. We can interpret this as the firms’ response to the stronger incentive
of the more interdependent consumers to delay their decisions. Interestingly, however,
we also obtain a counter-intuitive conclusion that the probability of delay in equilibrium
is decreasing in the degree of interdependence. As a natural consequence of this fact, we
also find that the efficiency of the buyers’ decisions in this equilibrium decreases with
the degree of their interdependence.

The paper is organized as follows. After the discussion of the related literature in
the next section, we formulate our model in Section 3. In Section 4, we analyze the
equilibrium in the second period based on the sorting assumption of the buyer behavior
in period 1. Section 5 derives the key martingale property of the price dynamics. We
demonstrate the impossibility of the preemptive equilibrium in Section 6. Section 7
presents the main theorem of the paper that constructs the equilibrium. Characteriza-
tions of this equilibrium as well as comparative statics analysis are given in Section 8.

We conclude with a discussion in Section 9.

2 Related Literature

Our model extends the standard models of dynamic durable good markets in at least two
directions: First, we introduce interdependence in preferences between consumers which
we consider essential for many durable goods as discussed above. Second, we introduce
competition between the firms as a realistic feature of many durable goods markets.
The assumption on the interdependence of preferences in our model implies the
presence of social learning by the consumers. In the social learning literature that begins
with Banerjee (1992) and Bikhchandani et al. (1992), delay induced by learning is one
of the central topics. Among others, Chamley and Gale (1994) and Gul and Lundholm
(1995) present a model of strategic delay in the context of dynamic investment decisions.*

More recently, the literature on social learning looks at the sequential sales of a product

“See also Sgroi (2002) and Gunay (2008a, b). A textbook treatment of social learning and delay can
be found in Chamley (2004).



of uncertain quality by a monopolist, who optimally controls its price contingent on sales
history.> The standard assumption there is that each consumer makes a single decision:
They either take a price offer, or else exit the market. Our model is new in that it
combines the multiple purchase decisions and the strategic pricing of a product. Natural
as it may appear, this combination has not been explored before to the best of our
knowledge perhaps because of the substantial complications expected in the technical
analysis. In particular, there is fundamental difficulty in checking the firms’ deviation
incentives in period 1 when those deviations change the buyers’ delay incentives and also
the outlook of the period 2 market. We show that the problem is solvable with the use
of the martingale property mentioned in the Introduction.

The ability of consumers to wait and look for a better opportunity in later periods as
examined here is the main theme of the literature on durable good monopoly that begins
with the Coase conjecture. The subject is also extensively studied in the marketing
literature on strategic consumers.> The possibility that the buyers face uncertainty in
their valuations is considered, among others, by Yu et al. (2011), and Bhalla (2012).7
Yu et al. (2011) study a two-period model of monopolistic sales when consumers learn
about their valuations in the second period and the monopolist can control the number of
products sold in each period. Bhalla (2012) studies a two-period model of monopolistic
sales in which two consumers each observe a noisy signal about the binary product
quality. When only consumer 1 is active in period 1 and may delay his decision until
period 2, Bhalla (2012) shows that equilibrium pricing depends on the prior probability
of the high quality product.

Problems in which firms with differentiated products compete in price for consumers
who may delay their decisions are studied by Chen and Zhang (2009), Levin et al. (2009),
and Liu and Zhang (2013). In Chen and Zhang (2009), the market consists of two seg-
ments that are loyal to either firm, and one segment that is opportunistic. Levin et
al. (2009) also suppose that the market consists of multiple segments and that the val-
uation of each product is randomly determined every period. Liu and Zhang (2013)
formulate a model of vertical product differentiation when consumer valuations are ran-

dom but fixed over the periods.®

5See, for example, Bose et al. (2006, 2008), Aoyagi (2010), and Bhalla (2013).
®Beginning with Besanko and Winston (1990), one central question in this literature is what happens

to the seller’s revenue when the consumers become non-myopic and is given a chance to delay their
decisions. See Gonsch et al. (2012) for a complete survey of the literature.

"Gunay (2013) considers a model in which the seller but not the buyers is privately informed of the
quality of its good.

SMak et al. (2012) consider price competition when one buyer alternates between two sellers who



To the best of our knowledge, however, the literature has only looked at the private
value environment where each buyer’s valuation is a function only of his own type or
signal. Our model hence departs from the literature with the introduction of social

learning based on interdependent valuations.

3 Model

Two risk neutral firms A and B sell durable goods A and B, respectively, over two
periods t = 1, 2 to two buyers ¢ = 1, 2. Each buyer i has private type s; that affects
his and the other buyer’s valuations of the two goods. Suppose that s; has a uniform
distribution over the unit interval [0, 1]. The value of a single unit of good A to buyer ¢

is given by
vi=u+(1—-Fk)(1—s;) +k(1=sj) =u+1-(1-Fk)s; —ksj,
and that of good B is given by
w; =u+ (1 —k)s; + ksj,

where u and k are constants satisfying 0 < k£ < % and u > % — k.7 When k > 0, the
two buyers’ valuations of the goods are interdependent, and the larger is k, the more
dependent buyers are on the other buyer’s type. Since k < 1/2, each buyer places more
weight on his own type than the other buyer’s type.'® On the other hand, when k = 0,
the valuations are independent. Note also that the value of good B increases with both
s; and s;, whereas that of good A decreases with them. Each buyer demands at most
one unit of either good.

The game proceeds as follows: In period 1, the two firms publicly and simultaneously
quote prices ph and p}3 of their own goods. The two buyers then make simultaneous
decisions on whether to buy either good or not buy and wait. If a buyer chooses to
buy either good, then the decision is irreversible and he makes no further decision. The
buyers’ decisions in period 1 are publicly observed. If there is at least one buyer who
chooses to wait in period 1, the two firms again publicly and simultaneously quote prices
pi and p2B in period 2. Any buyer still in the market in period 2 then chooses to buy

either good or not buy.

supply identical products.

°The latter condition ensures that the buyers’ participation constraint does not bind in the period 2
price equilibrium. The multiplier (1 — k) is added to keep constant the range of valuations regardless of
the value of k.

9The specification of valuations follows that in Aoyagi (2010).



Each firm f chooses its price p'} in period ¢ from the set R, of non-negative real
numbers, whereas each buyer ¢ makes his choice d! in period ¢ from the set D = {A, B, 0},
where d! = () represents i’s decision to make no purchase in period . Any buyer i who
chooses to buy neither good in period 1 makes another decision in period 2 so that d} = ()
can alternatively be interpreted as the decision to wait. A period 1 history h = (p',d")
then consists of a pair p' = (p}q, p}g) € Ri of the prices quoted by the two firms as well
as a pair d* = (d},d}) of the decisions of the two buyers. Denote by H = R% x D? the
set of all period 1 histories. For ¢ = 1, 2, let

H;={h=(p',d") e H: dj =0}
be the set of period 1 histories along which buyer ¢ waits, and
Hy = HiUH>y

be the set of histories along which at least one buyer waits. Firm f’s strategy consists
of its price a} in period 1 as well as the mapping a]% : H — R, that determines its
period 2 price p% = aj%(h) as a function of the period 1 history h € H. On the other
hand, buyer i’s strategy is a mapping 7 : S; x Rﬁ_ — D that determines his period
1 choice as a function of his type s; and the period 1 prices p', along with a mapping
722 25 % Ri x H — D that determines his period 2 choice as a function of his type s;,
the period 1 history h as well as the period 2 price pair p?. Since buyer 4 has a decision
to make in period 2 only if he chooses to wait in period 1, we impose the restriction that
72(si,p%, h) =0 if h ¢ H;.

We will consider an equilibrium of this game which is a natural extension of perfect
Bayesian equilibrium (PBE). Specifically, we impose an additional requirement that
beliefs be obtained through Bayes rule from the buyers’ strategies even when the period 1
price pair is off the path of play.'! The remainder of this section introduces some notation
for the payoffs to present a formal description of the equilibrium. The uninterested reader
can skip to the next section.

For any pair p = (pa,pp) of prices and pair s = (s1,52) of types, let m;(s,p,d;)

denote buyer i’s ex post payoff from decision d; € D:
vi—pa ifd; = A,
ﬂi(sapadi) = \W; —PB lfdz ZB,
0 ifd; = 0.

"Note that in the standard PBE, the belief is obtained through Bayes rule only along the equilibrium

path. Our requirement would be implied by consistency in the definition of a sequential equilibrium

which is defined for finite games.



When the strategies of the firms and the buyers in period 2 are given, buyer i’s ez post
payoff over two periods as a function of his type as well as history h = (p',d") is then

written as:
mi(s,pt,d}) if dl = A or B,

Hi(sapladl | 027T2) = 9 9 9 . 1
T (s,a (h), 77 (si,0 (h),h)) if df =10,

where h = (p',d'). Now for any history h € H, let

Pi(-[h)
denote the conditional distribution of buyer 7’s type s; given h. Each firm f’s period 2
payoff from buyer 4 is expressed as a function of the period 2 price pair p? as well as

when history A and buyer ¢’s period 2 strategies Ti2:

ﬂ%’i(p2|7'1;2, h) = pr( (SZap h) = f|h)

Furthermore, when the two buyers’ strategies 7 = (7!, 72) in both periods as well as the
firms’ strategies 02 = (0%,0%) in period 2 are given, let IT;;(p' | 7,02) denote firm f’s

payoff over two periods from buyer 7 as a function of the period 1 price pair:

Wpi(p' | 71,0%) = pyP (7} (si,p") = f) + E [} (0% (h) | 72, )],

where h = (p', 7 (s1,p"), 74 (s2,p')). Firm f’s per buyer payoffs from both buyers in
period 2 and over two periods are then given by

2

1
7r]2‘(p2 | TQah) = 5 Z 77—?‘,1'(1)2 | Tz?ah')a and Hf( ! | T, J Z Hf, | T, 02)7

i=1
respectively.

In period 2, for any type s;, history h € H;, and period 2 price pair p?, buyer i’s
decision 72(s;,p?,h) € D in period 2 maximizes his expected utility, and for any h € Hio
along which at least one buyer chooses to wait in period 1, the firms’ price pair o2(h)
in period 2 is a NE of the firms’ game in period 2 given the belief P;(- | h) about each
buyer i’s type conditional on h. Formally, for each i = 1, 2, h € H; and p? € R? i 7' is
sequentially rational and satisfies

(sz,p h) € arg[glax E,. [m(s,p2,dlz) | si,h] ,
and for each h € Hy3 and 72 that is sequentially rational, o (h) is sequentially rational
and satisfies for f = A, B, and ¢ # f,

a}%(h) € argmax Wf(pf,al( ) | 72, h).
Py



Furthermore, facing any price pair p', buyer i’s period 1 strategy Til is sequentially
rational given the sequentially rational period 2 strategies 72 and o?: For every type s;,
Til(si,pl) € argrflax E [1'[1-(31,;01,dz1 | 02,7'2)] ,

di

1

and the price pair o+ is a NE of the firms’ game given the buyers’ strategies and the

firms’ period 2 strategies both of which are sequentially rational: For f = A, B, and
L#f,

ajlc € argmax Hf(p}c,a% | 7,0%).
Py

Finally, the conditional distribution P;(- | h) about buyer i’s type s; given history h =
(p',d") € H is derived through Bayes rule whenever a strictly positive measure of types
of buyer i choose d} when faced with p': P; () (s;,p') =d}) > 0. P;(- | h) is arbitrary

otherwise.

4 Equilibrium in Period 2

We begin by solving for an equilibrium in period 2. Consider buyer i’s problem in period
2 following history h € H; along which he chooses to wait d} = ) in period 1. Let e;(h)
be the expected value of buyer j’s type s; implied by the period 1 history h:

ej(h) = Ey[sj | h] = Eg;[s; | p*, dj], (1)

where the conditional expectation Eg, [- | h] given h is taken with respect to the con-
ditional distribution Ps; (- | h) given h. Facing the price pair p? in period 2, buyer i
chooses A in period 2 if

u+1—(1—k)s; — kej(h) — p% > max {u+ (1 —k)s; + ke;j(h) — p}h, 0},
chooses B if

u+ (1 —k)s; + kej(h) — pp > max {u+1— (1 —k)s; — kej(h) — p%, 0},
and chooses () if

0> max {u+1—(1—k)s; — kej(h) —p%, u+ (1 — k)s; + kej(h) —pg } .

In any PBE, hence, buyer 7’s period 2 strategy TZ-Q along any history h € H; must satisfy

. . 1—2ke; (h)—p? +p2 1—ke;(h)—p>
A 1f3i<m1n{ ei(h)_patpp ut 6]()pA}a

2(1—F) ’ Tk
2 2 . 1—2kej(h)—p% +p% —u—ke;(h)+p>
7 (8i,p",h) = { B if s; > max { eggllkI;A Pp % fj_(k) Pp }, (2)
_ . _m2 o . 2
0 if wHEahrh g o cu ke (i



Consider next the firms’ game in period 2 following h € H; along which buyer 7 chooses
to wait in period 1. It follows from (2) that firm A’s period 2 payoff from buyer i along
h € H; is given by

. [1—2kej(h) — p% +p} u+1—kej(h)—p’
wai(0* | 75 h) = PP <3i<m1n{ %(1_k)A £, 1_Jk 4 ‘h :
Likewise, firm B’s period 2 payoff from buyer i is given by

1 —2kej(h) —p% +p% —u—kej(h) +p% ‘h
2(1 — k) ’ 1—k '

7T2B,i(p2 | 7'27h) = pQBPz <3i > max {

We assume throughout that the buyers’ period 1 strategies are such that for any

price pair p', there exist z(p') and y(p') with 0 < z(p') < y(p') < 1 such that

A if s; < z(ph),
Ti(si,p') = 90 if 2(p') < s < y(p'), (3)
B if s; > y(ph).

In other words, when faced with p', buyer i chooses A if his type is at the lower-end of
the type space, B if it is at the higher-end, and () if it is in the middle. For simplicity,
we often omit the dependence of the thresholds on p' and simply write them as 2 and y.

Although we assume that the buyers do not discount the period 2 payoffs, our justi-
fication of this sorting assumption comes from the observation that when they do, their
period 1 strategy must take this form in any equilibrium. Specifically, let § € (0, 1]
denote their discount factor and suppose that when they buy either good in period 2,
the value of the good as well as its price is discounted by d. For example, when buyer ¢
buys A in period 1 for price pl, his payoff equals v; — pl, but when he buys it in period
2 for price p?, his payoff equals d(v; — p%). We have the following observation in this

case.

Lemma 1. Suppose that (o, 7, P) is an equilibrium under positive discounting § < 1
by the buyers. For any buyer i and period 1 price profile p", Til satisfies (3) for some
z=xz(p') and y = y(p') such that 0 <z <y < 1.

The intuition behind Lemma, 1 is as follows: Suppose there is some type s; for whom
choosing A in period 1 is optimal. Consider any type s, < s;. First, no such s} will
choose B in period 1. Second, if s, waits and chooses A in period 2 after some move by
j in period 1, then his payoff conditional on that event is strictly lower than choosing

A in period 1 because of positive discounting. Third, if he waits and chooses B after

10



some move by 7, then his payoff conditional on that event is strictly lower than the
corresponding payoff of type s;. It follows that type s; strictly prefers choosing A to
waiting in period 1.

(3) need not hold under no discounting since choosing A in period 1 may yield the
same payoff as waiting and then unconditionally choosing A in period 2 not just for a
single type but for a range of types. However, Lemma 1 shows that if we require the
buyer behavior to be continuous at § = 1, then it should satisfy (3).

When buyer j’s decision is described by (3), then e;(h) defined in (1) equals:

if d} = A,
2 if df =0, (4)

2
1+y : 1 _
— if dj =

8 N8

ej(h) =

Suppose that both buyers use the same period 1 strategy (3) with z < y. Then the
conditional probability P;(- | h) given h € H; is the uniform distribution over the interval
(z,y). Hence, firm f’s expected payoff 7rj2¢’z. from buyer 7 in period 2 can be explicitly
given as in the proof of Lemma 2 in the Appendix. Furthermore, given the symmetry
between the buyers’ strategies, firm f’s (per buyer) payoff 7r}2¢ from both buyers equals
W%’i after any history h € H; N Hy along which they both wait in period 1. Based on
these payoff functions, the following lemma, identifies the equilibrium of the firms’ game

in period 2.

Lemma 2. Suppose that for some p', the buyers’ behavior in period 1 is described by (3)
for z = z(p*) < y(p') = y. Then the equilibrium price profile (0% (h),0%(h)) in period
2 following history h = (p',d") € Hyy is unique and given as follows:

a) (interior equilibrium) If 1 — 2ke;(h) € [2(1 — k)(2z — y), 2(1 — k)(2y — z)],'? then

(0%(h), 0 (h))
1—2kej(h) +2(1 — k)(y — 22) —1+ 2ke;(h) + 2(1 —k)(2y—:c)> (5)

3 ' 3
. . 1—2ke;(h) T4y
and the two firms segment the market with firm A capturing |z, 0=k T 3

and firm B capturing (%?k()h) + fl:-ii)’-y’ y)
b) (A-corner equilibrium) If 1 — 2ke;(h) > 2(1 — k)(2y — x), then
(0% (h), 05 (h)) = (1 = 2ke;j(h) = 2(1 = k)y, 0), (6)

and firm A monopolizes the market by capturing (z,vy).
ZSince y >z, 2(1 — k) (22 —y) < 2(1 — k)(2y — z).

11



c¢) (B-corner equilibrium) If 1 — 2kej(h) < 2(1 — k)(2z — y), then
(0% (h),0%(R)) = (0, =1 4 2ke;(h) +2(1 — k)z) (7)

and firm B monopolizes the market by capturing (x,y).

p% prB =1- 2kej(h) —2(1 —k)y

) p% = BRa(p})
: P4 —ph=1-2ke;(h) —2(1 — k)z

p% = BRp(p%)

Ry

pi +p2B =2u+1

)

Figure 1: Best-response diagram in period 2: interior equilibrium

Figure 1 illustrates the best-response correspondences and the equilibrium price pro-
file when it is in the interior (Case (a)). Lemma 2 also characterizes the equilibrium of
the one-period game in which the firms quote prices once and the buyers make a single
purchase decision since such a game is equivalent to the period 2 game withz =0,y =1
and e;(h) =1/2.

Proposition 3. In the one-period game, the equilibrium price profile is unique and given
by (pa,ps) = (1 — k,1 — k), and the firms segment the market with firm A capturing
[0,1/2) and firm B capturing (1/2,1].

Proposition 3 shows that the higher the dependence parameter k, the more intense

is the competition between the firms and the lower is the equilibrium price.

12



5 Equilibrium Price Dynamics

In this section, we make some critical observation on the relationship between the period
1 price and the period 2 prices. Specifically, suppose that the period 1 price is p' and that
the buyers’ period 1 strategies are given by (3). While the period 2 prices take different
values depending on the buyers’ decisions in period 1, we show that in equilibrium, for
any price quote p} by firm f in period 1 on or off the equilibrium path, the expected value
of its period 2 price must equal p} after the history h = (p',d') € Hyy. The derivation
of the equilibrium of the full game in the next section fully exploits this martingale

property of the price dynamics.

Lemma 4. (Martingale property) Suppose that (o, 7, P) is an equilibrium, and that the
buyers’ period 1 strategies T' satisfies (3) for any period 1 price pair p* = (ply,pk). Then
for any p*, if x = xz(p') € (0,1), then the expected price of A buyer i will face in period
2 when he waits equals ph. Likewise, if y = y(p') € (0,1), then the expected price of B

buyer i faces in period 2 when he waits equals p}g :

pa = E [05(p',0,d])],
p = E[oh(p',0,d;)] .

Lemma 4 is not an artifact of our assumption that the type distribution is uniform.
Rather, it follows from the general observation that the critical type x at the lower end of
the interval in period 2 is indifferent between the two goods in the B-corner equilibrium,
and that the type y at the higher end is indifferent between the two goods in the A-corner
equilibrium.™® More specifically, the intuition behind Lemma, 4 is as follows: Depending
on the decision of buyer j in period 1, buyer 7 of the critical type  may face either the
interior equilibrium or one of the corner equilibria in period 2 if he chooses to wait. If he
chooses B in period 2 after some decision by j, it implies that the B-corner equilibrium is
in play. Then his payoff from choosing A is just the same as that from choosing B given
the property of such an equilibrium. That is, for type z, making an optimal contingent
choice in period 2 is equivalent to making an unconditional choice of A then. On the
other hand, if he always chooses A in period 2 regardless of j’s period 1 decision, then by
the law of iterated expectation, the his ez ante expected valuation of good A in period

2 is just the same as that in period 1. Given that type z is indifferent between choosing

!3Lemma 4 is reminiscent of the martingale property found in the sequential auction model of Weber
(1981) although the logic here is unrelated.

13



A today and waiting, the expected price in period 2 must then be the same as the price
in period 1. The symmetric argument for type y yields the property of the price of B.
Equilibrium price dynamics is one central topic in the literature on dynamic sales.
Bose et al. (2008) and Bhalla (2013) both show in their respective sequential sales models
that the price path is a super-martingale in the sense that the ez ante expected prices
go down with the progress of sales. In a two-period model in which only one consumer
arrives in period 1 and may delay, on the other hand, Bhalla (2012) shows that the
prices can either increase or decrease over periods depending on the prior belief about
the quality of the good. In a model of online sales with random arrival of consumers,
Gallien (2006) shows that the price path is a sub-martingale. While the price dynamics
in these models is a derivative property of an equilibrium, the martingale property in
our model is the key building block of an equilibrium as seen below and must hold both

on and off the equilibrium path.

6 Impossibility of a Preemptive Equilibrium

Before turning to the analysis of the full model, it is useful to first examine the buyer
behavior in the simplified model in which the period 2 prices are not contingent on the
outcome of period 1. Specifically, suppose that the symmetric price profile such that
ply = pk in period 1 and p% = p% in period 2 is exogenously given. If we write z = z(p')
and y = y(p') in (3), then by symmetry, y = 1 — z. Clearly, full delay (i.e., z = 0) takes
place if p}q > p%. Hence, suppose that A = p?q — ph > 0. If A > 0, a buyer may delay his
decision only if he intends to make different choices depending on the outcome of period
1. Specifically, when A > 0, it must be the case that when buyer 7 waits but buyer j
chooses either product in period 1, i’s period 2 choice mimics j’s choice in period 1. In

this case, any type s; € (z,1 — x) prefers waiting to choosing A in period 1 if

1 1 T 2
— — R < — — e
1 (1 k?)SZ k2 DA 517{]_ (1 k)SZ k2 pA}

+(1—2x){1—(1—k)si—k%—p?4} (8)
+x{(1—k)si+k(1—§)—p23}.

The left-hand side is i’s payoff from choosing A today while the right-hand side is his
payoff from waiting: The three terms correspond to 7’s choice of A, A, and B in period 2
when j’s decision in period 1 is A, (), and B, respectively. Since type s; = x is indifferent

between A and waiting, the equality should hold in (8) for s; = z. Upon simplification,
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this equality is equivalent to
(2 — 3k)z? — (1 — 2k)z — A = 0.

Solving for x satisfying = € (0, %), we obtain

1-2k++/(1—2k)2+4(2—3k)A .
v 2(2—3k) it Ae (0, 7],

=2 if A=0.

(9)

While the buyer behavior is uniquely described by (9) when A > 0, when A = 0, we

1-2k

s 555 | 18 also a valid threshold.'* In this case, every

can also verify that any x € [0

type s; € (:c, %) chooses A in period 2 regardless of j’s decision in period 1, and

hence is indifferent between waiting and choosing A in period 1. Note, however, that
only x = % describes behavior that is continuous in A at A = 0. The following

proposition summarizes these observations.

Proposition 5. (Buyer behavior along a fized price path) Suppose that the buyer be-
havior is described by (3) under the symmetric and fized price profile (p',p?). Then z
is uniquely given by (9) when A = p% —pY >0, and z € [O, %] when A = 0. For
x given in (9), if buyer i waits and buyer j moves in period 1, then i chooses the same

firm as j in period 2, and the probability of delay 1 — 2x is increasing in k.

We now proceed to the analysis of the equilibrium of our original model in which
the period 2 prices are contingent on the period 1 outcome. In this section, we examine
whether or not the equilibrium can be preemptive in the sense that the firm which
successfully attracts one buyer in period 1 also attracts any remaining buyer in period 2.
In other words, along the equilibrium path, the choice of A by a single buyer in period
1 is followed by the A-corner equilibrium in period 2, and the choice of B is followed
by the B-corner equilibrium in period 2. As seen in Proposition 5, such a property
characterizes buyer behavior under the fixed price path.

Suppose that (0,7, P) is a symmetric preemptive equilibrium. Denote the critical
types in (3) by #* = z(¢') and y* = y(o') under the equilibrium price profile o' in

period 1. By symmetry, we have y* =1 — z*.

Y This follows since for any such z, type s; < = finds A better than B even after j’s choice of B in
period 1:

1 1
1—(1—k)si—k#—pi§(1—k)si+ #—pQB.

15



First, by Lemma 2, the A-corner equilibrium is played after h = (o!,d"') with d' =
(0, A) if and only if

*
1 -2k <%> >2(1 — k) {2(1 — %) — 2*} .
This along with y* =1 — z* > z* implies that the relevant range of z* is given by
3—4k 1
*
— =]. 1
v 6[6—7k’2] (10)
By symmetry, this condition is also necessary and sufficient for the B-corner equilibrium
to be played after h = (o!,d") with d' = ((}, B).
Next, by the martingale property (Lemma 4), the period 1 price oi(= o) equals

the expected equilibrium price in period 2:

0114 =z {1 —kx* —2(1 —k)(1 —z")}
1 —k+2(1 — k)(1 - 32%)

+ (1 —227) 3 (1)

+ 250
= (6 — Tk)(z*)> = (5 — 6k)z* + 1 — k.

When z* satisfies (10), the range of o} is given by

k(1 —Fk) k
1
€ |——, —|. 12
e | ] (12)
Hence, the period 1 price in a preemptive equilibrium, if any, must be significantly lower
than, say, the equilibrium price 1 — k in the one-period model. The following proposition
shows that this low price gives either firm an incentive to deviate and increase its price.
In fact, setting a sufficiently high price in period 1 is a profitable deviation although it

implies giving up the market share in period 1.

Proposition 6. (Impossibility of a Preemptive Equilibrium) Suppose that the buyers
behavior in period 1 is described by (3). Then there exists no symmetric equilibrium
(0,7, P) such that the on-the-path period 1 history h = (o',d") induces the A-corner
equilibrium if d* = (0, A) and the B-corner equilibrium if d' = (), B).

7 Existence of a Non-Preemptive Equilibrium

Having seen in the previous section that the equilibrium cannot be preemptive, we

turn to the alternative possibility where the period 2 equilibrium is always an interior
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equilibrium. In other words, even if only one firm wins a buyer in period 1, some buyer
types still choose the other firm in period 2. In this section, we present the main theorem
of the paper that proves the existence of such a non-preemptive equilibrium.

Recall that H; is the set of histories along which buyer ¢ waits in period 1. Suppose
now that for some period 1 price pair p', every history h = (p',d') € H; induces an

interior equilibrium in period 2. By Lemma 2(a), this holds if and only if

2(1 — k) (22 —y) < 1 — 2ke;(p', 0, B)
<1-— Zkej(pl,v),@)
< 1-2ke;(p',0,A4) < 2(1 - k)(2y — ).

Substituting e;(p',0, A) = £ and e;(p',0, 4) = 1% and rearranging, we see that these

conditions are equivalent to
41 —k)z—(2-3k)y<1—k and (2-3k)z—4(1 —k)y < -1 (13)

Since Elej(h)] = %, the expected price that buyer i will face in period 2 is then given by

B0 d =0,d)y] = L2 2REl W+ 20 = By — 20)

3
1+ 2(y — 2z
= (-2
14 2kEe; ()] + 2(1 — k) (2y — 2) (14)
B [o}(p" d} = 0,d})] = R ’
—-1+4+2(2y — x)
=(1-k) 3 .
Hence, by the martingale property (Lemma 4),
1+ 2(y — 2z
ph= (1) 222D (15)
and
" —142(2y — x)
pp = (1-k) 3 : (16)
Define . )
_ _Pa _ _PB
m=i_g o=y

to be the period 1 prices adjusted by the degree of interdependence. We then have

1 1
qA:§(1—4$+2y), and qBZE(—1+4y—2x).
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Solving for x and y yields:
1 294 —qs
2 2 ’
17
_ 1. 2 1
Y73 2
Write 7r}2¢*(h) = 7r}2¢(02(h) | 72,h) for firm f’s (per buyer) payoff in period 2 along the
history h = (p',d') when the equilibrium strategies 0> and 72 are played in period 2. It
readily follows from Lemma 2 that 7rj2¢*(h) for h = (p',d') € Hy3 is given by

1 {1—2kej(h)+2(1 —k)(y —2z)}?

Tr =

T y—=x 18(1 — k) ’
2 (h) = 1 {1—2kej(h)+2(1—k)(2y — z)}?
B y—x 18(1 — k) '

Firm f’s (per buyer) payoff II; over two periods is then written as:
Ma(p' | 0% 7) = pha + (y = 2) o7 (0", 0, 4)
+ (= o)F (0,0,0) + (1 - )75 (', 0, B)]
(' | 0%, 7) = ph(1 - y) + (y — o) [o75 (01,0, 4)
+ (1

0
+ (= o)F (,0,0) + (1 - )7k (', 0, B)].

(18)

Substitution of 7% into (18) yields upon simplification
a(p' | 0,7)

=phz + [(1—k)2{1+2(y—2x)}2+k2y(1—:1:)(1-I-x—y)] .

1
18(1 — &)
Now rewrite II; as a function of (g4,¢B): ﬂf(qA,qB) = I¢(p' | 02,7). Substituting
(17), we obtain

~ 1 2q4—gB 1k
IT4(ga,9B) = (1 — k)gqa (5 - 5 > +— 74

k? 1 2q5—qa) (1 2q4-gB qa+qs
v (o sAB T EAN (2, A T EB ) (g
+18(1—k) (2+ 2 5T 3 2

Suppose now that o' = (¢, 0%) is the equilibrium price pair in period 1. If for any
price pair p' in the neighborhood of o', every history h = (p',d') € H; induces an
interior equilibrium in period 2, then we can identify the equilibrium price pair o' as a
solution to the first-order conditions of the maximization of IT4 and the corresponding
payoff function 15 of firm B. Furthermore, if the equilibrium price pair is symmetric
(g4,98) = (q,q), then ¢ must satisfy %ZI—:(q, q) = 0. The following theorem identifies an
equilibrium through this consideration.
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Theorem 7. (Non-preemptive equilibrium) Let q be given by

—36(1—k)2 —k2+/{36(1—k)2+k2}>+3k2{72(1—k)2 +k2}

: if k>0,
1 if k=0.
There exists a symmetric equilibrium (o, 7, P) in which the firms quote 0'114 = 0113 =

(1 — k)q in period 1 and the buyers’ period 1 strategies Til on the equilibrium path are

described by (3) for z = % and y = %q.

The proof in the Appendix constructs the equilibrium by specifying the buyer re-
sponse to every off-equilibrium price pair in period 1. For a period 1 price pair that
corresponds to a unilateral deviation, this construction determines the profitability of
the deviation. For illustration, suppose that firm A unilaterally deviates and slightly
cuts its price in period 1. This deviation is followed by higher values of the thresholds z
and y: More buyer types immediately choose A, and less buyer types immediately choose
B. These thresholds then determine the active buyer types in the period 2 market and
the payoff of the deviating firm there. Hence, the profitability of the price cut in period
1 depends on the change in immediate sales in period 1 as well as on the change in the
payoff in period 2, both of which are caused by the change in the thresholds x and y.
Evaluation of the profitability of a deviation hence requires the exact identification of
the thresholds based on the martingale property.

Given that the equilibrium price in the one period model equals 1 — k as seen earlier,
we can interpret ¢ as a discount in response to the increased bargaining power of the
buyers with an option to wait until period 2.

As can be readily verified from (26) and as illustrated in Figure 2, the adjusted price

1
9
1—k

=4q

is decreasing in the dependence parameter k. We can interpret this as the firms’ response
to the stronger incentive of the more interdependent consumers to delay their decisions.

Note that when the buyers are completely independent so that & = 0, the equilibrium
in Theorem 7 entails full delay since z = 0 and y = 1."® On the other hand, when k = 0,

there exists another equilibrium with no delay as follows: The firms quote o' = (1,1)
1
2
B if s; > 3. The conditional distribution (- | h) when either buyer waits (i.e., after

in period 1, and all buyer types move in period 1: Type s; chooses A if s; < 5 and

any h € Hjs) is the same as the prior (i.e., the uniform distribution over [0,1]). Since

'5When the buyers discount the period 2 payoffs by § < 1, we can show that the equilibrium with
k = 0 involves delay when ¢ is large. This equilibrium approaches the full delay equilibrium as § — 1.
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Figure 2: ¢ as a function of k.

the period 2 equilibrium price pair along any such history is again (1, 1), and since the
buyers have no incentive to learn from the behavior of the other, their decision in period
1 not to wait is optimal. When k > 0, however, there is no equilibrium of this type. If
every buyer type moves in period 1 and if the price in period 2 is the same as that in
period 1, then there exists a buyer type who has an incentive to wait and see. In other

words, only the first equilibrium for £ = 0 is robust to a small perturbation in the value
of k.

8 Delay and Efficiency

According to Theorem 7, the proportion of types who wait in period 1 is given by
1 —2— (1 —y) = q, which is a decreasing function of k as seen above. Hence, we have

the following corollary.

Corollary 8. (Delay as a function of k) In the equilibrium of Theorem 7, the probability

of delay by either buyer equals q and decreases as they become more interdependent.

Corollary 8 appears counter-intuitive since in general, the more interdependent is a
buyer, the stronger is his incentive to learn from the behavior of the other buyer. In

fact, we have seen in Proposition 5 that a higher degree of interdependence implies a

20



larger delay when the period 2 price is not contingent on history. At first glance, it may
seem that the smaller dellay by a more interdependent buyer in Corollary 8 is caused by
a lower adjusted price 10_—fk = ¢ in period 1 associated with a higher k. However, because
of the martingale property (Lemma 4) and (14), the expected adjusted price in period

2 also equals
1

1—k
and is lowered by the same margin. Hence, the lower price in period 1 alone does not

E [U%(h)] =1—-2zx=q for h € His,

explain the decrease in delay in Corollary 8. Rather, the intuition is that in order to
sustain the lower expected price in period 2, the threshold value x needs to be larger since
q and z are inversely related as seen above: The larger is x, the smaller the interval of
active buyer types in period 2, and the more intense the competition between the firms.
Since a higher z is by definition equivalent to less delay, we have Corollary 8.

We next turn to the (in)efficiency of the buyer decisions in equilibrium. First, the
fully efficient outcome is obtained when the two buyers make their decisions after truth-
fully sharing private information about their types. Accordingly,

) A ifui>vi<:>(1—k)si+k3j<%,
buyer 7 should choose
B ifu; <vi e (1-k)s;+ks; > %
After some algebra, we can verify that the expected value of the ez post optimal decision

is given by
E [max {u;, v;}| = E'[max {1 — (1 — k)s; — ksj, (1 — k)s; + ks;}] = %

In the equilibrium of Theorem 7, on the other hand,

(

A if s; <candsj <z,
si < 5 and s; € (z,1 — ),
ors; <l—cands;>1-uz,
B if s;>cands; <u,
si > 3 and s; € (2,1 — ),

buyer 7 chooses

ors;>1—cands; >1—u,

where z = %, and ¢ = To0=F) + % is the critical type of buyer ¢ that is indifferent
between A and B in the period 2 market when j chooses A in period 1 (i.e., after
h = (c',0, A)). By symmetry, the critical type of i indifferent between A and B in period

2 when j chooses B in period 1 is given by 1 — ¢. The ex post optimal and equilibrium
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Figure 3: Optimal and equilibrium decisions by buyer 4

decisions are illustrated in Figure 8. The shaded areas in the figure represent the signal

realizations that lead to inefficient decisions.'6

The expected value of the equilibrium decisions is hence given by

T c 1 1 l1—c 1
/ {/ v;dS; -I—/ widsi} ds; -I—/ {/ v;ds; -I-/ widsi} ds;j
0 0 c 1-z 0 1—c
-z 1
+/ / v;ds; +/1 w;ds; de (20)
T 0 5
k

=2 [cx + %(1 —k)(1 -2z + g(l — 20)352] + 3% (1 —2z).

M

As seen in Figure 4, the efficiency of the equilibrium buyer decisions is strictly de-
creasing in the dependence parameter k. This is expected from Corollary 8 since more

interdependent buyers tend to move in period 1 more often.

9 Discussions

Throughout the paper, we have confined ourselves to the model with no discounting. An

alternative interpretation of the no discounting assumption is that period 1 corresponds

“Indicated in the shaded areas are the (inefficient) equilibrium actions.
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Figure 4: Equilibrium efficiency as a function of k.

to an advance sales period of the product.'” In this case, the consumption of the product
takes place only after period 2 even if it is purchased in period 1. When there is positive
discounting, the most significant change takes place in the martingale property. It is then
stated as the indifference condition for the critical type x between choosing A in period
1 and waiting and then unconditionally choosing A in period 2, and the condition for
type y between B in period 1 and the unconditional choice of B in period 2. With this
change, however, we expect the equilibrium under discounting to approach that under
no discounting as the discount factor approaches one. We have not pursued this formally
since the equation characterizing the equilibrium price as well as the specification of the
off-equilibrium behavior is significantly more complex, and since this exercise does not
appear to add new insights.

The assumption of the uniform distribution of the types is standard in the models of
product differentiation and perhaps is the only one that admits analytical derivation of
the equilibrium in our framework. While we admit that the assumption is restrictive in
some ways, we also note that the specification of the distribution becomes less important
when the degree of differentiation becomes small compared with the absolute values of
the products as represented by the constant « in the valuation function. Furthermore, our

result suggests that problems with alternative distributions can be numerically analyzed

17See for example Yu et al. (2011).
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with the help of the martingale property.

Unlike in the majority of the social learning literature that assumes that a consumer’s
type s; is a noisy signal of the underlying state w, we have adopted an alternative
framework in which there is no w and the consumer types s; and sy are independent.
In defense of our assumption, we should note that a few technical problems would arise
under the alternative assumption of correlated signals. First, we would need to specify
a family of conditional distributions of the signal for each state w. Specification of
such conditional distributions is nontrivial and any specification would involve far more
complicated analysis if possible at all.'® Second, if the firms do not know the realization
of w, then we should consider the firms’ incentive to learn w through their pricing
strategy. If they know w, on the other hand, we should think about their signaling
incentives. Our assumption helps us abstract from these considerations, which could
significantly complicate the problem.

In one interesting extension, we can consider a model in which the consumers are
different in their interdependence levels. Targeting a particular class of consumers is
shown to be a useful sales strategy in different contexts, and it would be interesting to

examine if this is also the case in the present setting.'

Appendix

Proof of Lemma 2. Since the conditional probability P;(- | h) of s; given h € H; is
the uniform distribution over the interval (z,y), firm A’s payoff from buyer ¢ in period

2 is explicitly given by:

'i (1—2ke](h —p4+p% _ )
-z 2(1—k)
2 _
if u+1 kiejk) pA Z ! 2k6JE}11) kI))A+pB 6 (xJ y)7
i <u+1—lclejlgh)—p?4 _ I)
2 212y )T -
TrAyl(p | Tis ) i 172kejgh)7;1)1124+p23 S u+17kej(h)fp124 c ($ y)
2(1—k = 1—k ) )
9 . . 1—2ke;(h)—p%+p%  u+tl—ke;(h)—p?
Pa if min { ;(17]9) Ba 1—]k A > Y,
. 1—2ke;(h)—p% +p%  u+l—ke;(h)—p%
0 if min { 5= ) Tk <z,

8One possibility is the binary specification of the signal. However, we have the problem of having no
pure equilibrium in a stage game in this case.
9Tn a model where the dependence levels of consumers are observable to a monopolist seller, Aoyagi

(2010) shows that it is optimal for the seller to target the least dependent consumers first and then move

in the increasing order of the dependence levels.
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and firm B’s payoff from buyer i is given by:

fﬁ _ 1—2ke; (h)—p% +p%
y— Yy 2(1—k)
.o —u—kej(h)+p? 1—2ke; (h)—p% +p2
lf lik = S J2(1_k)A = € (Iay)a
ﬁ _ —u—ke;(h)+p%
wha? | 72,0y = 4T T T
s ’ - .o 1=2ke; (h)—p? +p2 —u—ke;(h)+p>
if ]2(1_k)A B < 1J_k £ e (I,y),
. 1—2ke;j(h)—p%+p% —u—ke;(h)+p
0 if max { é(l*k)A B TE 2 2 Y
9 . 1—2ke;(h)—p4+p% —u—ke;j(h)+p
\PB if max { R il G

We assume in the rest of the proof that v > 2(1 — k) to avoid tedious case separation
in the description of the best response that is immaterial to the description of the
equilibrium.?°

Let Ry,..., R4 be the sets of price profiles (p%,p%) as illustrated in Figure 1. Ex-

plicitly, they are the set of (p?,p%) satisfying p?, p% > 0, and

Ry: 1—2kej(h) —2(1 — k)y < p% —p% <1—2kej(h) —2(1 — k),
p?4+p23§2u+1;

Ro: u+1—kej(h)—(1—k)y<pi <u+1—kej(h)—(1-k)z,
PA+pE > 2u+1;

Ry: p% <u+1—kej(h)—(1-k)y,
ph =Py < 1= 2kej(h) = 2(1 = k)y;

Ry: p%4 > min {p% + 1 —2kej(h) — 2(1 — k)z, u+ 1 — kej(h) — (1 — k)z} .

20This condition ensures that the intersection between p% — p% = 1 — 2ke;(h) — 2(1 — k)x and p% =

—142ke; (h)+2(1—k 2.
+2ke; ( )w;( )y+ph given by

(P, 95) = (1 = 2ke; (h) +2(1 = k)(y — 22),2(1 — k) (y — 2)),

—2ke; —2(1-k)=z 2 .
1= 2ke; (h) 22(1 Hlotes given by

and the intersection between p% —p% = 1 — 2ke; (h) —2(1 —k)y and p% =
(P3,pB) = 2(1 = k)(y — x), =1 + 2ke; (h) + 2(1 — k)(2y — z)),

are both below the participation constraint line p% + p% = 2u + 1 so that the diagram is as depicted
in Figure 1. The condition v > 1 — k implied by this ensures that the maximum of 7% (p” | 77,h)
over Ry is achieved at the left-end of the region at p% = u + 1 — ke;(h) — (1 — k)y, and also that the
maximum of 7% (p* | 77,h) over the corresponding set is achieved at the lower-end of the region at

p%h = u+ kej(h) + (1 — k)x so that the best response functions are as described in Figure 1.
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We can express 77 ;(p” | 72,h) in terms of these sets as
)

( p? 1—2ke; (h)—p% +p2 .
e (TR a) W @Rph) € R,
2 2
% (u+17k:ej(h)pr _ l’) lf( 2 9 R
2 (2.2 - T P4, PR) € Ra,
(0”1, h) = y; oy
Pa if (pA7pB) € Rs,
\0 if (p,247p23) € R4-

It follows that firm A’s period 2 best response correspondence is given by

2

R, if 0 < p% < max {0, —1 + 2ke;(h) + 2(1 — k)z},
{ 1—2ke; (h)—2(1—k)z+p% }
2

if p% > max {0, —1 + 2ke;(h) + 2(1 — k)z}, and
p% < max {0, —1 + 2ke;(h) +2(1 — k)(2y — )},
{1 — 2ke;j(h) —2(1 — k)y +p2B}
if p% > max {0, —1 + 2ke;(h) +2(1 — k)(2y — z)}, and
ph < u+kej(h) + (1 - Ky,
\{u-l—l—kej(h)—(l—k)y} if p2 > u+ kej(h) + (1 — k)y.

BR4(p}) =

Likewise, firm B’s period 2 best response correspondence is given by

2

R, if 0 < p% < max {1 — 2ke;j(h) — 2(1 — k)y, 0},
{ —14+2ke; (h)+2(1—k)y+p% }
2

if p% > max {1 — 2ke;(h) — 2(1 — k)y, 0}, and
p% < max {0, 1 — 2ke;(h) —2(1 — k)(2z — y)},
{1 — %ke; — 2(1 — k) +p§,}
if p% > max {0, 1 — 2ke;j(h) — 2(1 — k)(2z — y)}, and
P4 <u+1—kej(h) — (1 —k)z,
\{u—kkej(h) ra —k)x} if p2 > u+ 1 - kej(h) — (1 — k)z.

BRp(p%) =

Figure 1 depicts these best response correspondences for the case 2(1 — k)z < 1 —
2ke;(h) < 2(1 — k)y. Note also that when p% — p% < 1 — 2ke;j(h) — 2(1 — k)y, firm A
monopolizes the market under (p%,p%), and that when p% — p% > 1 — 2ke;(h) — 2(1 —
k)z, firm B monopolizes the market under (p?q,pZB). Note also that the participation
constraint does not bind for the critical type that is indifferent between firms A and B
if p§ +p% <2u+ 1.
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a) 1 —2kej(h) € [2(1 = k)22 —y), 2(1 — k)(2y — x)].
The best response correspondences p% = BR4(p%) and p% = BRp(p?) have a unique
intersection
1 —2kej(h) +2(1 —k)(y —2x) —1+2kej(h)+2(1 —Fk)(2y —x)
3 ’ 3 ’
which satisfies 1 — 2ke;(h) — 2(1 — k)z < p% —p% < 1 —2ke;j(h) —2(1 — k)y and also

pi + pQB < 2u+1 when u > % — k. Hence, the two firms segment the market and the

1—2ke;(h) +
SaR T B

critical type is given by s; =

b) 1 —2kej(h) > 2(1 - k)(2y — ).

P . PA = ph =1 2ke;(h) = 2(1 = k)y

P4 —ph =1 —2kej(h) —2(1 - k)z
P4 = BRa(p%) . ph=BRs(?)

PA Py =2u+1

I

Figure 5: Best-response diagram: A-corner equilibrium

As seen in Figure 5, the unique fixed point of the joint best-response correspondence

(p%.p%) — (BRa(p%), BRg(p%)) is given by
(1 —2kej(h) —2(1 —k)y, 0).
Since p% — p% = 1 — 2ke;(h) — 2(1 — k)y, firm A monopolizes the market.
c) 1 —2kej(h) <2(1 —=Fk)(2z —y).

As in the previous case, the unique fixed point of the joint best-response correspon-

dence (p%,p%) — (BRA(pQB), BRB(pQA)) is given by
(0, =1 4 2kej(h) +2(1 — k)x).
Since p% — p% > 1 — 2ke;(h) — 2(1 — k)z, firm B monopolizes the market.

This completes the proof. O
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Proof of Lemma 1. We will show that if 7 (s;,p!) = A for some s; and s} < s;, then
7i(sh,p') = A. By setting z(p') = sup {si : rl(si,pt) = A}, it would then follow that
th(si,pt) = Aifs; < z.

Suppose that 7} (s;,p!) = A and that s; < s;. Since type s; prefers choosing A to

choosing B in period 1, we have
Ey,[vi | si] — ply > Eg;[wi | si] — pp. (21)

Likewise, since type s; prefers choosing A in period 1 to waiting and then choosing either

A, 0, or B in period 2, we also have

By [vi | si] —ply >0 Z P(h) max {Ey;[v; | si,h] — 0%4(h), 0, Es,[w; | si,h] — oB(h)},
heH,;
(22)

where H;(p') = {h = (p',d") : d} =0} is the set of period 1 histories along which the

firms quote p' and buyer i chooses to wait. Note now that
B, [v; | sil=(1—k)(s; —s) + Es [vi | si] > Eg,[v; | 5], and
By [w; | si] = —(1 = k)(s; — 8;) 4+ Es;[wi | s3] < Es;[w; | si].
It then immediately follows that (21) holds for type s} so that it strictly prefers choosing

A to choosing B in period 1. To see that s, also prefers choosing A to waiting, add
(1 — k)(s; — s%) to both sides of (22). We then have

Eg;[vi | si] = pia
> (L= 0)(1=k)(si — )

+46 5 P(h) max {E i | 54 h] — 02 (h), (1 — k) (s — 1),
heH,;

(1= k)(si = 5}) + By, [y | 55,1 = o ()}
>0 Z P(h) max {E,[v; | sj,h] — a?(h), 0, By [w; | si,h] — op(h)},

heH,;
which shows that (22) holds for type s, with strict inequality, and hence it strictly
prefers choosing A to waiting. It can be shown similarly that there exists y such that
tl(si,pt) = B if s; > y. If 5; € (z,y), then we cannot have 7} (s;,p!) = A since that
would imply 7}(s},p!) = A for some s. > =z, a contradiction. Since we cannot have

7} (si,p') = B either, we must have 7/ (s;,p') = 0. O

Proof of Lemma 4. We first show that if 02(h) is as given by Lemma 2, then after any

djl-, type z’s payoff from unconditionally choosing A in period 2 equals that from following
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the sequentially rational strategy 77: E;, [7ri2(:1:,3j,02(h),7'i2 (z,h,02(h)) | si,h], where
h = (p', 0, d}) For this, note that type z is the lowest type in the period 2 market. Hence,
after any decision djl- of buyer j, if d* = (0, djl) is followed by an interior equilibrium or an
A-corner equilibrium (Lemma 2), then type z will optimally choose A in period 2 after
d'. On the other hand, if d' is followed by a B-corner equilibrium, then type z is just
indifferent between A and B after h = (p',d'): When 1 — 2ke;(h) < 2(1 — k)(2z — y),
(7) implies that

type z’'s payoff from choosing A
=u+1-(1—-k)z—kejh)—0

=u+ (1 —k)z+kej(h) — (—1+2ke;(h) +2(1 — k)z)
= type z’s payoff from choosing B.

It follows that in period 2, choosing A unconditionally is optimal for type x regardless
of buyer j’s decision d; or the type of equilibrium that follows d'. This in turn implies
that type z’s payoff from waiting in period 1 equals that from waiting and then uncon-
ditionally choosing A in period 2. Now in period 1, if x > 0 and waiting is strictly better
than choosing A, then for € > 0 small, type s; = x — € > 0 also finds it strictly better
off waiting, which is a contradiction to the sequential rationality of Til. On the other
hand, if z < 1 and choosing A in period 1 is strictly better than waiting, then for € > 0
small, type s; = z + € < 1 finds it strictly better off choosing A in period 1, which is
again a contradiction to the sequential rationality of 7}'. Hence, type s; = = is indifferent
between choosing A and waiting in period 1. Combining the two observations together,

we have
E[vi|3i=x]—ph=E[Esj [vi|3i=x,h]—a%(h)‘si=x],

where the left-hand side is buyer i’s payoff from buying A in period 1, and the right-
hand side is his payoff from waiting and then unconditionally choosing A in period 2.

However, since we have by the law of iterated expectations

E[’l)i|3i=x]=E|:E5j ['Ui|8i=$,h]

SZ'ZJ?],

the above implies that
pa=E[o4(p',0,d;)] .

The symmetric discussion proves the statement for the price of B. [
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A 1
Proof of Proposition 6. Define ¢ = f_—lk = % to be the adjusted period 1 price in

equilibrium. Tt follows from (12) that the range of ¢ is given by

ac [6—k7k’4(1k—k)]' (23)

Firm A’s payoff over two periods under (g, q) is given by

ﬂA(QaQ)

= (1 —k)gz* + (1 —2z%) [x*wzl*(al, B, A) 4+ (1 — 22*)n% (o1, 0, 0)
=z {(6 —7k)(z*)* — (5 — 6k)z* + 1 — k}

(1= 22" {1 — kz* — 2(1 — k)(1 — 2%)}

{1—k+201—k)(1 —22%)}>

1—2z"
+(1-227) 181 = k)
1—k
= (=24 3k)(z*)® + (5 — TE)(z*)* + (=3 + 4k)z* + —5
= p(z").
Since ¢ is convex over [O, 3(52%%}, and since 0 < % < % < % < 3(52%%, for z*

satisfying (10), we have

p(a") < max {90 (%) Y @}

k =74 43k k
=max -, ———— ¢ = —.
8 250 8

Consider now firm A’s deviation from o to p!; > u+1. Define g4 = %, z = z(py,oh)
and y = y(pY, o). It is clear that no buyer chooses A in period 1 and hence z = 0. On
the other hand, the martingale property (Lemma 4) under the price pair (p!j, (1 — k)q)
implies that

14+ ky+2(1—k) 2y
(1-Fkg=y 3( ) +(1—-y)

1+ k(l+y)+2(1—k) -2y
3 2

or equivalently,

1+ 3¢q
y=—0 (24)

Firm A’s payoff over the two periods under (g4, q) is given by

i {1 ky +2(1 - )y}’ {1— k(1 +y)+2(1 — k)y)?
B T (= h)
= ﬁ ({41 - k)? =B} y? + {41 = k)2 + K}y + (1 - k)?] .
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Since y > i by (24), we have

. 1 9 , 3,1
1T — |- (1—-k — k| > =(1—-k). 25
It follows from (9) and (25) that for any ¢ satisfying (23),
f-[A(QAa Q) > ﬂA(qa q)
Hence, o}y = (1 — k)q cannot be an equilibrium price for firm A. O

Proof of Theorem 7. Consider the following pair of a strategy profile (o, 7) and

conditional beliefs P;(- | h) is a symmetric equilibrium of the two-period model.

— Period 1 strategies:

For ¢ given in (26), firm f quotes
o = (1 -k, (26)

1 1
and for any p' = (p!|,pk) and (qa,qp) = (ﬁ—Ak, %)v buyer i’s decision is given by (3)

for z and y defined as follows:

1. If max{qa,qB} > S?EI_—EIZ), 2g4 —qp < 1, and 2¢q — g4 < 1, then
1 —-2q4+4¢p _1+2qp —qa
r=—"-"" and y=—"7--""-.
2 2
2. Ifﬁ < ga <1 and gg > max {6?(’112’];), %}, then
3(1 —
3327( 94) and y=1.
4
3. If g4 < ﬁ and qp > ggf—fz), then
3 — 2k —2k)2 —12(4 - 3k)(1 — k
BT RV L3 e v e STTRN
2(4 — 3%)
4. IfﬁquglanquZmaX{6%;32),qB2+1},then
3(1 —
z=0 and yzl—%.
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5. If gp < ;5 and g4 > g2, then

3 —2k+ /(3 —2k)2 —12(4 — 3k)(1 — k)gp
2(4 — 3k) '

r=0 and y=1-

6. If min{qa,qp} > 1, then
r=0 and y=1.

7. If max {qa,qp} < S?E;—fl,z), then

— Beliefs:

The conditional distribution P;(- | h) about buyer i’s type s; given history h = (p',d")
is derived through Bayes’ rule if buyer i chooses d; with positive probability when faced
with pt: P (7}(si,p') = d}) > 0. Otherwise, P;(- | h) equals the prior and is given by

the uniform distribution over [0, 1].

— Period 2 strategies:

Let ej(h) = Fj;[s; | h] denote the expected value of s; according to the conditional
distribution P, (- | h) specified above. Then the firms’ strategy profile o2 in period 2 is
given as in Lemma 2, and each buyer’s strategy is given by (2).

Figure 6 illustrates the classification of the period 1 price pair (g4, qp) = (%, %)
in Theorem 7. Note that the equilibrium price pair in period 1 belongs to R;.

It is clear from the discussion in the preceding section that the period 2 strategies
of the firms and buyers are optimal. In what follows, we first show that the period 1
strategies of the buyers are optimal, and then show that the firms’ period 1 price quote
(26) is also optimal given the buyers’ strategies. In what follows, given any price pair
p' and decision pair d' in period 1, let p?*(dl) = a]% (p',d") denote the price quoted by
firm f after history h = (p',d").

Step 1. We first examine the optimality of the buyers’ period 1 strategies for each

period 1 price profile as classified in Figure 6.

1. (ga,qB) € Ry: max{qa,qp} > ggf—fl,:), 2g4 —qp < 1, and 2gp — g4 < 1.

Substituting
1—2q4 +9qB 14 2gp —qa
r=y o ad y=
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qB

= \\

-3k 6(1—k)

Figure 6: Classification of the period 1 price pair (g4,qB)-

into the conditions (13) ensuring the interior equilibrium in period 2 after every
d' (i.e., d* = (0, A), (0,0), and (0, B)), we obtain

(6 — 5k)ga — 2kqp >k, and (6 — 5k)qp — 2kqy > k. (27)

As is clear from Figure 6, (ga,qp) under consideration satisfies these conditions.
The period 2 equilibrium prices are then given by (6) for each d', and the expected
period 2 price is given by (14).
Note from (15) and (16) that when § = 1, (z,y) is chosen so that the period 1
price of good f equals its expected period 2 price. In other words, for f = A and
B,

p; = zpF (0, A) + (y — 2)pF*(0,0) + (1 — y)p7* (0, B).

We will now examine buyer ¢’s incentive depending on his type s;. Note first that

the following inequalities hold under (27):

; 1-k(l+y) z+y 1-klz+y) z+y 1—kx+x+y
= T 6(1— k) 3 6(1— k) 3 61—k 3

<y. (28)

In the above, s; < x implies that s; chooses A in period 1, and s; > y implies

that s; chooses B in period 1. On the other hand, Lemma 2 implies that the three
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quantities in the middle are the critical types s; of buyer 7 who are indifferent
between A and B in period 2 after buyer j’s choice of djl- = B, () and A in period 1,
respectively. It follows that there are the following six cases to consider depending

on buyer #’s decision over two periods.

e Type s; chooses A in period 1 & s; < .
It follows from (28) that any such type, if forced to wait in period 1, would
choose A in period 2 regardless of buyer j’s decision in period 1. If type s;

chooses A in period 1, his expected payoff equals
1
Evi | si] —pa-

By Lemma 4, however, the above is also type s;’s expected payoff from waiting
and then choosing A after any d;. Hence, choosing A in period 1 is just as

good as waiting, and is optimal.

e Type s; waits in period 1 and then chooses A in period 2 regardless of buyer

4’s decision d;: si € (:17, % + L?)

Any such type s; prefers A to B if forced to move in period 1 since

1—qa+ 1 z+ 1— k(14 T+
qgatas 1 Y _ (14+y) y

2 6 3 6(1 — k) 3

It then follows from the same logic as above that any such type is indifferent

between choosing A and waiting in period 1. Hence, waiting is optimal for s;.

e Type s; waits in period 1 and then chooses A if d} = Aor (), and B if d]l = B:

. 1-k(14y) +y  1=k(z+y) +
si€ (LR + oy, LHe o o),

Let p%(d') = 0% (p',d"). Then type s;’s decision in period 2 implies:

ES]‘ [v’i |p17d} = A] _pi*(q)aA) > ESj [wl |p17d]1' = A] _p?(waA)a
By, [vi | p',dj = 0] = p%(0,0) > Ey; [wi | p',dj = 0] = pF (0,0),
E.

s; [wi | p',dj = B] = p§ (0,B) > By, [v; | p',dj = B] = p' (0, B).

Hence, type s;’s payoff from waiting is greater than or equal to his payoff from
choosing A after any d; or choosing B after any djl-. Since his payoff from
choosing A in period 1 equals that from waiting and then choosing A after
any d; (Lemma 4), and likewise his payoff from choosing B in period 1 equals
that from waiting and then choosing B after any d;, we see that waiting in

period 1 is optimal for any such type s;.
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e Type s; waits in period 1 and then chooses A if djl. = A and B if () or djl. = B:

) 1-k(z+y) +y 1k +
i € ( S0k T =7 6(14:5) + I_?,y>

By the same logic as above, type s;’s payoff from waiting in period 1 is greater

than or equal to choosing either A or B in period 1.

e Type s; waits in period 1 and then chooses B after any d;: s; € (61(175,?) + %ﬂ, y)

e Type s; chooses B in period 1: s; > y.
By the same logic as in the first two cases, choosing B and waiting in period

1 are both optimal for any type in these two intervals.

3—2k ga+l
6(1- k)’ 2

2. (ga,qB) € Rot 5 < qa <1 and gp > max {

Since y =1, d; = B occurs with probability zero. We can see that when

1—
x:w and y=1,

qa = ﬁ is equivalent to the condition
1 —k(z+y) >2(1 - k)(2z —y),

which ensures the interior equilibrium in period 2 after d' = (0, A) and (0, 0).
Furthermore, g4 > ﬁ also implies
1—k(z+1) z+1 l—kz x+41

< <1
TST60-k 3 “e1-k ' 3 =

The two quantities in the middle are the critical types of buyer ¢ who are indifferent
between A and B in period 2 after d; = () and djl- = A, respectively. Therefore, we

need to check the optimality of i’s behavior in the following four cases.

e Type s; chooses A in period 1: s; < x.
e Type s; waits in period 1 and then chooses A after d} = Aor : s; €
1—k(z+1) 41
(5’37 DR "“TT)-
e Type s; waits in period 1 and then chooses A after d} = A and chooses B

T — 0 s I—k(z+1) +1 1k +1
after d; = 0: s; € (W + 2 6(1_]9;‘) + %)

e Type s; waits in period 1 and then chooses B after d]l = Aor (: s; >

1—kx z+1
60—k)+ 3

The discussion is essentially identical to that in the first case and hence is omitted.
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3. (g4,9B) € R3: qa < ﬁ and ¢qp > gz;—fz).
When

L3 2k + /(3 — 2k)2 — 12(4 — 3k)(1 — k)ga

d y=1
2(4 — 3k) e y=4

ga < ﬁ implies that = € (%&:}ﬁ), %) It then follows that

1 —2ke;(p',0,0) =1 —k(z +1) <2(1 —k)(2z — 1), and
1—2ke;(p',0,A) =1 —kz > 2(1 — k)(2z — 1).

By Lemma 2, hence, (d},d;) = (0,0) is followed by a B-corner equilibrium and

(d},d;) = (), A) is followed by an interior equilibrium in period 2. Furthermore,

the expected price of B in period 2 equals

E [pF (d")] = zpF (0, A) + (1 — 2)pE (0,0)

:x—1+kx+2(31—k)(2_$) +(1—2){-1+k(1+2)+2(1 - k)z}

—3(1 — k) + 22(6 — 5k) — 22%(4 — 3k)

3
2 6—5k 1> (6—5k)2
=590 (e 5 oo 0 Y
(6 — 5k)?
_6(4—3k)_(1_k)'

On the other hand, since ¢gp > 6%1__2% & p}B > %, the expected price of B in

period 2 is lower than p}B if

(6 — 5k)? 3 —2k
6 —3n TR <

< ke(0,1).

Therefore, any type s; is better off waiting and choosing B in period 2 after any

d} than choosing B in period 1. Furthermore, since z < %,

1—k 1 1 1—k 1
e (:zr-l-)_l_x-l- - :v_l_ﬂv-l- <1,

6(1— k) 3 “6(1-k 3 =

where the two quantities in the middle are the critical types who are indifferent
between A and B in period 2 after djl- = () and djl- = A, respectively. It follows that

there are the following four possibilities to consider.
e Type s; chooses A in period 1: s; < x.
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e Type s; waits in period 1 and then in period 2 chooses A after d; = A or

ai=0: s; € (z, S + 24).

By construction, choosing A in period 1 yields the same payoff as waiting
and then choosing A after any d}. On the other hand, waiting in period 1 is
at least as good as waiting and then choosing B after any d}, and the latter
dominates choosing B in period 1 by the above discussion. Hence, choosing
A and waiting are both optimal in period 1 for any type in the above two
cases.

e Type s; waits in period 1 and then in period 2 chooses A after d; = A and

chooses B after d]l =0: s € (% + “’T"'l, 61(1_1“;:) + ”T‘H>

e Type s; waits in period 1 and then in period 2 chooses B after djl- = Aor ()

. 1—kzx z+1
$i > G-k T 3

In these two cases, type s; prefers choosing B in period 2 after some d; to

choosing A after any d}. By construction, waiting and then choosing A after
any d; yields exactly the same payoff as choosing A in period 1. Hence, he
prefers waiting to choosing A in period 1. On the other hand, waiting in
period 1 is at least as good as waiting and then choosing B after any d;, and
the latter dominates choosing B in period 1 by the above discussion. Hence,

waiting is optimal for type s;.
4. (qa,qp) € Ry: This case is similar to when (g4, qp) € Rs.
5. (q4,qB) € Rs: This case is similar to when (g4, qp) € Rs.

6. (¢a,9B) € Rg: min{qa,qp} > 1.

Every type waits since

r=0 and y=1.

The equilibrium price pair in period 2 then equals (p%*(0,0), p% (0,0)) = (1 — k,1 — k).

It follows that waiting is optimal since it yields
max {Fv; | s)] — (1 —k), Elw; | s)]—(1—-k)},
whereas choosing A or B in period 1 yields at most
max {E[v; | s;] — (1 —k)qa, Elv; | si] — (1 —k)gB}.

7. (ga,qB) € Ry: max{qa,qp} < 6%112],2)-
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No type waits since

1 —qga+gqs

—

By construction, the conditional belief P;(- | h) of s; given h € H; is the uniform

([:y:

distribution over [0,1]. Hence, any buyer who waits will face the price pair (1 —
k,1 — k) in period 2.

Consider any type s; < z. He prefers A to B if forced to choose between them in
period 1. If he waits and chooses A after any djl., then his payoff from waiting is
dominated because he faces a higher price of A in period 2. If he waits and then

chooses A after d; = A and B after d; = B, then his payoff is given by

zF [vi | si,pl,d} = A] +(1—-2)FE [wi | si,pl,d} = B] —(1—k)

x{u—l—l—(l—k)si—kg}—i—(l—x){u+(1—k)si+k1;$}—(1—k)

=u—i—x—(1—k)+(1—k)si(1—2x)+§(1—2x2).

On the other hand, choosing A in period 1 yields

E[vi|si]—(1—k)qA:u-l-l—(l—k)si—g—(l—k)q/;.

Choosing A in period 1 is hence optimal if

u—l—x—(1—k)+(1—k)3i(1—2x)+§(1—2x2)

k
§u+1—(1—k)si—§—(1—k)q,4,

or equivalently,
(1—k)ga<2—z—k—2(1—2)(1 —k)s; — k(1 —z?).
Since s; < z and g4 < 6%1_—_2],2), this is in turn implied by

3 -2k
6

<201 —k)— (3—2k)z + (2 — k)z?

3-2k )2 (3 — 2k)2
=(2—k){x—m} +2(1—k)—m.

We can verify that this inequality holds since k < % and

3—2k (3 — 2k)?
]

(1 —2k)(9 —4k) > 0.

The symmetric argument proves that choosing B in period 1 is optimal when

S; > .
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Step 2. We now examine the optimality of the price ¢ in (26).

Since 6%1:2:) < g < 1, the price pair (g, q) belongs to the interior of region 1 in Figure

6. Hence, for any (ga,qg) in the neighborhood of (q,q), any history h = (p',d') is
followed by an interior equilibrium of Lemma 2. It follows that the equilibrium price
must satisfy the first-order condition g}l—:(q A,qp) = 0. Partially differentiating I14 with

respect to g4, we obtain

Ol 4 1 294 —qp
oA —(1— - Z4A T EB
s = (1 - ) (5 - 24702

k? 1 (1  2qa—gs qa + qp
S I e SN 124 124146
+18(1—k)[ 2(2+ 2 2

1 29 —qa qa +qB

i T A T I O
w522 (1- 25

L (1 2B —qa 1 294 —gB
2 (2 + 2 > <2 + 2 '
Al 4

If (¢, q) is the symmetric period 1 price profile in equilibrium, then m(q, q) = 0 must

(29)

hold. Substitution of g4 = gp = ¢ into (29) yields upon simplification

2 _ 2
(1— k) k 1 k k [

q+

3
* 144(1 — k) 2 20—k | 1 2 q2] =0, (30)

1
2 2

or equivalently,
3k2% +2{36(1 — k)2 + k*} g — {72(1 — k) + K*} = 0.

The non-negative solution to this quadratic equation is given by (26).

We now show that any ¢ € (0,1) satisfying (30) is a global maximizer: IT4(q,q) >
T4(qa,q) for any g4 # q.

a) (ga,q) € Ri: 24 —q<1and 2g—qa <1.

The second-order derivative of f[(qA, gp) with respect to g4 is given by

0?11 4 k?

] = 1+—— (-5-3 6

o, (g4, 48) o _k)Q( aB + 6qa),
Al 4

which is < 0 when g4 < qBTH. It follows that rTr,
for any such ¢4. This in turn implies that ¢4 = ¢ maximizes fIA(qA,q) over qa €

+1
201, 4.

(qa,qp) is strictly decreasing
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b)

(94,9) € Ro: 255 < gqa <2¢— L.
Since y = 1, we have either d; = A or (), and both d' = (0, A) and (0, () are followed

by an interior equilibrium in period 2. Since

pia = api (0, 4) + (1 —2)p (0,0)

Il—kx+2(13—k)(1—2x) (-2

3 —4dz
3 )

1—k(z+1)+2(1 — k)(1 - 22)
3

— (1-k)

we have
3 —4dzx

3 bl

qa =

and gy € [ﬁ, 2q — 1} S x € [ﬁ:;?] fIA can be expressed in terms of = as:

4(qa, q8)

= (1= k)qaz + (1 — o) {or% (0, 4) + (1 - 2)7% (0,0)}

— (- k)3 —34:1:33

+ﬁ [{1+2(1—k)(l—2x)}{1—2k+2(1—k)(1—2x)}

+ k% + k2x(1 — )

We can verify that ’5%:“ < 0 for z € so that %%f > 0 for g4 €. Tt is hence maximized
over this region when ¢4 = 2¢g — 1. Since I1,4 is continuous at qga = 2q — 1, we have

[14(2¢ — 1,q) < I 4(q, q) from case 1 above.

(qAaq) € R3: g4 < ﬁ

Since y = 1 again, we have either djl- = Aor (). d' = (0, A) is followed by an interior

equilibrium in period 2, while d' = (0, ()) is followed a B-corner equilibrium in period

2. Since
pa = (0,4) + (1 - 2) p% (0,0)
:xl—kx—|—2(13—k)(1—2x) (=)0
:xl—kx+2(1—k)(1—2x)
3 ;
we have

1 — kz+2(1 — k)(1 — 22)
3(1— k) ’

qa ==
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and g4 € [O, ﬁ) S € {?Zgl_gﬁ), %} 14 can be expressed in terms of z as

A

[La(q4,98) = (1 = k)qaz + (1 — )z} (0, A)

= %2{1 —kzx+2(1-k)(1-22)}
+ mu —kz +2(1 — k)(1 —2z)}?
- BiH {1 — kz+2(1 — k)(1 — 2z)}

x{l—kr+2(1-k)(1+2x)}.
After some algebra, we see that

Py 3v{k+ (1 —k)(9% —8)} —6+4k “0
o2 9(1 — k) ’

and .
OTl 4

D 0.
ox <

_3(0=k)
413k

r=

These inequalities together imply that ’5%:“ < 0 over z € (34&1:3];), ﬂ), and hence

1-3k
3(1—k)

that 14 is maximized when z = 35 - Equivalently, T4(qa,q) is maximized when

ga = ﬁ over g4 € [O, ﬁ} Since f[A(qA,q) is continuous at g4 = 4——k3k’ we

conclude that ﬂA(ﬁ, q) < fIA(q, q) from the above two cases.

d) (a1,4) € Raz qa > 3.
Since # = 0, we have either dj = B or 6, and both d' = (§, B) and (9,9) are followed

by an interior equilibrium in period 2. Firm A’s payoff over two periods then equals:

4(q4,9B)

=y {yr3 (0,0) + (1 — )75 (0, B)}
1

= %0-H y{l — ky +2(1 — k)y}?

+ (1= y){1 = k(1 +y) +2(1 - Ky}
By Lemma 4, we have

pi = yp5 (0,0) + (1 —y)pE (0, B)
:y—1+ky+2(;—k)(2y—l) -y
14 k4201 -K)2y - 1)

3 bl

—1+Ek(1+y)+2(1 —k)(2y — 1)
3
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w. Hence y is independent of ¢4, and so is I14. Tt follows

_ g+l
)

or equivalently, y =

that T4 (g4, q) = ﬂA(%,q). Since I 4(-,q) is continuous at g4 , the analysis

in the first case implies that ﬂA(q,q) > fIA(qA, q) for any as > %1.

This completes the proof. O
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