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Abstract

In this paper we analyse scoring auctions with general non-quasilinear scoring rules.
We assume that cost function of each �rm is additively separable in quality and type.
In sharp contrast to the recent results in the literature we show the following. (i)
Equilibria in scoring auctions can be computed without any endogeneity problems and
we get explicit solutions. (ii) We provide a complete characterisation of such equilibria
and compare quality, price and expected scores across �rst-score and second-score
auctions. (iii) We show that such properties and rankings depend on the curvature
properties of the scoring rule and the distribution function of types.
JEL Classi�cation: D44, H57, L13

1 Introduction

In the modern world, auctions are used to conduct a huge volume of economic transactions.
Governments use them to sell treasury bills, foreign exchange, mineral rights including oil
�elds, and other assets such as �rms to be privatized. Government contracts are typically
awarded by procurement auctions, which are also often used by �rms subcontracting work
or buying services and raw materials. In OECD (2011) it is reported that the procurement

�I would like to thank Masaki Aoyagi, Estelle Cantillon, Daisuke Hirata, Makoto Hanazono, Jinwoo Kim,
Eiichi Miyagawa, Yasuyuki Miyahara, Jun Nakabayashi and Makoto Yano for extremely helpful comments.
Earlier versions were presented at the IEFS Japan Annual Meeting, Kobe and at seminars at the Mita o¢ ce
of Kyoto University in Tokyo, Seoul National University, Hanyang University, Kobe University, Nagoya
University and ISER, Osaka University. Comments from the participants at all places were very helpful.
The paper was written when I was a �Visiting Research Scholar�at the Institute of Social and Economic
Research, Osaka University in 2013-14. ISER provided me with excellent research facilites and stimulating
intellectual ambience and I am very grateful for that.
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of public services accounts for approximately 17% of GDP of EU countries. Clearly public
procurements constitute a signi�cant part of the economic activities in many countries (see
Koning and Meerendonk, 2013).
The theory of auction provides the necessary analytical framework to study such pro-

curements. In the canonical model there is one indivisible object up for sale and there are
some potential bidders. In any standard auction the object is sold to the highest bidder. In
a procurement auction, where the auctioneer is the buyer, the object is sold to the lowest
bidder. The payment by each bidder depends on the type of auction used by the seller.
There is a huge literature around this model.
It may be noted that the benchmark model of auctions is really a price-only auctions.

For example, in the traditional theory of standard procurement auctions, the auctioneer
cares only about the price of the object, but not the other attributes. However, in many
procurement situations, the buyer cares about attributes other than price when evaluating
the o¤ers submitted by suppliers1. Non-monetary attributes that buyers care about include
quality, time to completion etc. For example, in the contract for the construction of a new
aircraft, the speci�cation of its characteristics is probably as important as its price. Under
these circumstances, auctions are usually multidimensional. The essential element of such
multi-dimensional auctions is a scoring rule. In the scoring auction, bidders are asked to
submit a set of multidimensional bids that include price and some non-price attributes, such
as quality. The bids are then transformed into a score by an ex ante publicly announced
scoring rule, and the bidder whose score is the highest is awarded the contract. We now
provide a few real life examples of such scoring auctions.
The Department of Defence in USA often relies on competitive source selection to procure

weapon systems. Each individual component of a bid of the weapon system is evaluated and
assigned a score, these scores are summed to yield a total score, and the �rm achieving the
highest score wins the contract (see Che, 1993). For highway construction projects, states
like Alaska, Colorado, Florida, Michigan, North Carolina, and South Dakota use quality-
over-price ratio rules, in which the score is computed based on the quality divided by price.
This scoring rule is also extensively used in Japan. Ministry of Land, Infrastructure and
Transportation in Japan allocates most of the public construction project contracts through
scoring auctions based on quality-over-price ratio rules (see Hanazono, Nakabayashi and
Tsuruoka, 2013). In a country like India where fuel costs are very high, airlines greatly
value the fuel cost savings. Airline companies in India typically purchase new aircraft after
evaluating competing o¤ers (that include price as well as various quality parameters) from
big aircraft suppliers like Boeing and Airbus. For example, in 2011 IndiGo, a low-cost Indian
airline, received multidimensional bids (price, fuel e¢ ciency of engines etc.) from both Airbus
and Boeing. Indigo gave the contract to Airbus and ordered 180 Airbus A320s for a valuation
of $15.6 billion.2 A few years back, Government of India sought multidimensional bids from

1�For public funds to be spent e¢ ciently and e¤ectively, value for money is the key principle in pub-
lic procurement. Low-price auctions have been widespreadly used to allocate contracts as a competitive,
transparent, and accountable mechanism. However, costs are not the sole indicator in assessing the best
value-for-money contract. More and more procurement buyers, thus, introduce awarding mechanisms with
which relevant prices and qualities of proposals in the whole procurement cycle are assessed�(Section 1 in
Nakabayashi and Hirose, 2013).

2As Airbus o¤ers more fuel-e¢ cient aircraft, in Indian aviation market the demand for its aircarfts is
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various companies for renovation of New Delhi�s international airport. Finally, GMR won
the contract.
Till date, most papers on scoring auctions (except a couple of very recent ones) have

dealt only with quasilinear scoring rules. However, in real life, non-quasilinear scoring rules
(like the quality-to-price ratio) are often used. As such, in this paper we analyse scoring
auctions with non-quasilinear scoring rules. We �rst proceed to provide a brief literature
review.

Relevant Literature Che (1993) is a pioneer in analysing such scoring auctions. In
his model both the quality and the bidder�s types are single-dimensional, and the scoring
rule is quasilinear. Che (1993) computes equilibria in �rst-score and second-score auctions
and also analyses optimal mechanisms when types are identically and independently dis-
tributed. Branco (1997) analyses the properties of optimal mechanisms when types are
single-dimensional but correlated.
The paper by Asker and Cantillon (2008) deals with multidimensional types in a scoring

auction. This paper de�nes a �pseudotype�and shows that if the scoring rule is quasilinear
and types are independently distributed then every equilibrium in the scoring auction is
typewise outcome equivalent to an equilibrium in the scoring auction where suppliers are
constrained to bid only on the basis of their pseudotypes.
Asker and Cantillon (2010) analyses optimal mechanisms with one-dimensional quality

and two-dimensional discrete types. Nishimura (2012) computes optimal mechanisms with
multidimensional quality and single-dimensional types that are identically and independently
distributed.
In may be noted that in all the above papers the scoring rule in quasilinear. Very

few papers in the literature deal with general non-quasilinear scoring rules. Hanazono,
Nakabayashi and Tsuruoka (2013) is an important contribution in this regard. This paper
considers a broad class of scoring rules and computes equilibria for �rst-score and second-
score auctions and compares expected scores. Hanazono (2010) provides an example with
a speci�c non-quasilinear scoring rule and a speci�c cost function3. Very recently, in an
interesting contribution, Wang and Liu (2014) analyses equilibrium in �rst-score auctions
with a di¤erent non-quasilinear scoring rule.
However, it may be noted that in all the above mentioned papers with non-quasilinear

scoring rules explicit solution for the equilibrium strategies are not always obtained. For ex-
ample, in Hanazono, Nakabayashi and Tsuruoka (2013) the choice of �quality�in equilibrium
is endogenous in the �score�under the general scoring function. Moreover, the comparison
of expected scores is based on properties of induced utility whose arguments are implicitly
de�ned.4

increasing. Boeing�s market share has slumped in the Indian market and Airbus now controls about 73%
of the Indian pie. See Keller (2011) and Singhal (2011) for the information regarding the order for Airbus
aircrafts placed by some of the Indian airline companies.

3This short note is written in Japanese. I am grateful to Masaki Aoyagi for helping me understand the
results of this paper.

4This paper avoids speci�c functional forms but instead imposes some restrictions on the induced utility.
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Contributions of this paper We take Hanazono et al (2013) as a point of departure and
ask the following questions.
Can we get explicit solutions for equilibrium strategies with general non-quasilinear scor-

ing rules? Can we provide a complete characterisation of such equilibria? Also, can we
get a ranking of the expected scores (in �rst-score and second-score auctions) by using the
curvature properties of the scoring rule and properties of the distribution function of types?
If so, under what conditions can the above be achieved?
We show that all the above can be achieved if the cost function of each �rm is additively

separable in quality and type. Our computations provide a much simpler way to derive
equilibria in scoring auctions without any endogeneity problems. We get explicit solutions.
We provide a complete characterisation of such equilibria and also provide ranking of
the two auction formats. We show that such properties of the equilibria and ranking of
expected scores depend on the curvature properties of the scoring rule and properties of the
distribution function of type. This stands in contrast to the results derived in Hanazono
et al (2013)5. We also compute equilibria for the case of multi-dimensional quality and
multi-dimensional types. We show that such equilibria are very similar to the case with
one-dimensional type and quality. Our approach helps in dealing with most non-quasilinear
scoring rules. It essentially complements the one taken in Hanazono et al (2013).

Plan of the paper In section 2 we provide the model of our exercise. In section 3 we
compute the equilibria for �rst-score and second-score auctions. Section 4 provides the
equilibrium characterisations. In section 5 we give the main results on the comparison of
expected scores. Section 6 extends our model to multi-dimensional quality and types. Lastly,
we provide some concluding remarks and possible scope for future research in this area. All
proofs are provided in the appendix.

We now proceed to provide the model of our exercise.

2 The Model

A buyer solicits bids from n �rms. Each bid, (p; q), speci�es an o¤er of promised quality,
q and price, p, at which a �xed quantity of products with the o¤ered level of quality q
is delivered. The quantity is normalized to one. For simplicity quality is modelled as a
one-dimensional attribute.
A scoring rule is a function S : R2++ �! R : (p; q) �! S(p; q) that associates a score to

any potential contract and represents a continuous preference relation over contract charac-
teristics (p; q).

Assumption 1 S (:) is strictly decreasing in p and strictly increasing in q. That is,
Sp < 0 and Sq > 0. We assume that the partial derivatives Sp; Sq; Spp; Spq; Sqq exist and
they are continuous in all (p; q) 2 R2++.

5Unlike Hanazono (2010) and Wang and Liu (2014) we deal with general non-quasilinear scoring rules.
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A scoring rule is quasilinear if it can be expressed as � (q) �p or any monotonic in-
creasing function thereof. For quasilinear rules we must have Spp = 0 and Spq = 0. For
non-quasi-linear rules we must have at least one of the following: Spp 6= 0 or Spq 6= 0.

The auction rules: The buyer awards the contract to a �rm whose o¤er achieves the
highest score. This is similar to a standard auction. We consider the following auctions.

1. First-score auction: The winning �rm�s o¤er is �nalised as the contract. This auction
rule is a multi-dimensional analogue of the �rst price auction.

2. Second-score auction: Here the winning �rm is required to match the highest re-
jected score. In meeting this score, the �rm is free to choose any quality-price combi-
nation. This auction rule is a multi-dimensional analogue of the second-price auction.

We provide the following example to illustrate the above two auctions. Let the scoring
rule be S (p; q) = 2q � p. Suppose two �rms A and B o¤er (5; 7) and (3; 5) as their (p; q)
pairs. We have S (5; 7) = 9 and S (3; 5) = 7. Under both auction formats (�rst-score and
second-score) �rm A is declared the winner. The �nal contract awarded to �rm A is (5; 7)
under the �rst-score auction and any (p; q) satisfying S (p; q) = 7 under the second-score
auction.

The cost to the supplier is C (q; x) where x is the type.

Assumption 2 We assume Cq > 0, Cqq � 0 and Cx > 0.

Prior to bidding each �rm i learns its cost parameter xi as private information. The buyer
and other �rms (i.e. other than �rm i) do not observe xi but only knows the distribution
function of the cost parameter. It is assumed that xis are identically and independently
distributed over [x; �x] where 0 � x < �x.

If supplier i wins the contract, its payo¤ is p� C (q; xi).

We now provide our most important assumption which separates our paper from the rest
of the papers of this genre.

Assumption 3 Cost is additively separable in quality and type.

That is, C (q; x) = c (q) + � (x) where c0 (:) > 0, c00 (:) � 0, � (x) � 0 and �0 (:) > 0.

De�ne �i = � (xi). Let � = � (x) and let �� = � (�x). Clearly, 0 � � < ��. Since xis
are identically and independently distributed over [x; �x], so are the �is over

�
�; ��
�
. Let the

distribution function of �i be F (:) and the density function be f (:). Note that f (�) � 0
8� 2

�
�; ��
�
.

We can now write the cost for supplier i as C (q; �i) = c (q) + �i, where �i is the type of
supplier i.

We also assume the following.
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Assumption 4

�(Sq)
2

Sp
Spp + 2SqSpq � SpSqq � (Sp)2 c00 (:) < 0 for all (p; q) 2 R2++

It may also be noted that when c00 (:) > 0 then both for the quasilinear rule (S (p; q) = � (q)� p)
and the quality-to-price ratio

�
S (p; q) = q

p

�
(which is a non-quasilinear rule) the above is

always satis�ed.

The following may be noted.

1. The assumption (cost is additively separable in quality and type) is consistent with
the set of assumptions in Hanazono et al (2013) and Asker and Cantillon (2008).

2. Additive separability implies Cq� (:) = 0. This is di¤erent from Che (1993), Branco
(1997) and Nishimura (2012).6

3. Our cost, C (q; �i) = c (q) + �i, can be interpreted in the following way. c (q) is the
variable cost and �i is the �xed cost of �rm i. This means, the variable costs are same
across �rms but the �xed costs are private information. �i can be interpreted to be
the inverse of managerial e¢ ciency which is private information to the �rm. Higher is
�i, lower is the managerial e¢ ciency, and consequently, higher will be the cost.

3 Equilibrium in �rst-score and second-score auctions

We now provide the equilibrium for �rst-score and second-score auctions. The proofs are
given in the appendix.

Proposition 1 In a �rst-score auction there is a symmetric equilibrium where a supplier
with type � chooses

�
pI (�) ; qI (�)

�
. Such pI (:) and qI (:) are obtained by solving the following

equations:

�Sq (:)
Sp (:)

= c0 (:)

p� c (q) = � + 
 (�)

where


 (�) =
1

(1� F (�))n�1
Z ��

�

(1� F (t))n�1 dt

6In Che (1993) we have Cq� (:) > 0 and in Branco (1997) we have Cq� < 0. In Nishimura (2012) C� has
strictly increasing di¤erences in (q; �).
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Proposition 2 In a second-score auction there is a weakly dominant strategy equilibrium
where a supplier with type � chooses

�
pII (�) ; qII (�)

�
. Such pII (:) and qII (:) are obtained

by solving the following equations:

�Sq (:)
Sp (:)

= c0 (:)

p� c (q) = �

Comment For both �rst-score and second-score auctions the equation,�Sq(:)

Sp(:)
= c0 (:), holds

true in equilibrium. Note that this equation is independent of �. From this equation we get
the price, p, as a function of the quality, q (say p = � (q)). We can then substitute p = � (q)
into the next equation to get q as a function of �. Next, using this we derive p as a function
of �.
In the appendix we provide a proof of the above two propositions. Here we provide a

brief sketch of the argument.
First, consider proposition 1. For any quality, q, let 	(s; q) be the price required to

generate a score of s. That is, S (	 (s; q) ; q) = s. Clearly, 	(:) is well de�ned and it is
strictly decreasing in s and strictly increasing in q.
Consider any symmetric equilibrium of �rst-score auction where a bidder with type �

bids (p; q). Let the score generated by such a bid be S (p; q) = s. Since 	(:) is well de�ned
and is strictly decreasing in s we can think of the equilibrium as where a bidder bids a score
s and quality q. The payo¤ (conditional on winning) with a score s to a bidder with type �
is

	(s; q)� c (q)� �:
In any equilibrium, for any type �, the quality choice, q, must be such so as to maximise

	(s; q)� c (q)� �. The FOC and SOC for such a maximisation are as follows:

	q (:)� c0 (:) = 0���� (1a)
	qq � c00 (:) < 0���� (1b)

Note that

	qq � c00 (:) < 0() �(Sq)
2

Sp
Spp + 2SqSpq � SpSqq � (Sp)2 c00 (:) < 0

Given our assumption 4, the SOC (which is (1b)) will always be satis�ed.

Note that we have the following7:

	q (:) = �
Sq (:)

Sp (:)
and 	s (:) =

1

Sp (:)
���� (2)

7From S (p; q)� s = 0 we can implicitly solve for p and then use the implicit function theorem.
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Hence we can rewrite (1a) as follows:

�Sq (:)
Sp (:)

= c0 (:)���� (3)

Consequently, in any equilibrium (3) will be satis�ed. Now let�s suppose that all �rms other
than �rm i choose (p; q) according to the equations in proposition 1 (i.e. �Sq(:)

Sp(:)
= c0 (:) and

p� c (q) = � + 
 (�)). Thereafter, using standard auction theoretic techniques we can show
that it is optimal for �rm i to choose (p; q) by following the same equations.
Now consider the case of second-score auction (proposition 2). What matters to any

�rm i is the maximum of scores quoted by other �rms8. Let the maximum of the scores
quoted by �rms other than i be �. Now let �rm i choose

�
pII ; qII

�
by following the two

equations in proposition 2 (i.e. �Sq(:)

Sp(:)
= c0 (:) and p� c (q) = �) and thereby pick up a score

s = S
�
pII ; qII

�
. Using standard techniques it can be shown that regardless of �, it is always

better for �rm i to choose
�
pII ; qII

�
by following these two equations.

Several observations can be made.

1. In Che (1993) the scoring rule is quasilinear and he gets explicit solutions for equilib-
rium strategies. Our equilibrium results are close to Che (1993). In Hanazono et al
(2013) the scoring rule is non-quasilinear but explicit solutions for equilibrium strate-
gies are not obtained in general. In most cases the equilibrium strategies are only
derived implicitly9.

2. In our case, the cost function is additively separable in quality and type and we get
explicit solutions for equilibrium strategies for both kinds of scoring rules: quasilin-
ear and non-quasilinear. Additive separability of the cost function makes equilibrium
computations very simple. This stands in sharp contrast to all the recent papers that
deal with non-quasilinear scoring rules.

3. Moreover, our assumptions are also milder and are satis�ed a by a large class of scoring
rules.

4. When the scoring rule is quasilinear Sp (:) is a constant and Sq is independent of p
(since Spp = Sqp = 0). Note that in any auction the equation �Sq(:)

Sp(:)
= c0 (:) is satis�ed.

This means the quality, q, is constant and same for the two auctions.

We illustrate the above two propositions in two examples given below.

8Note that in a second-score auction the winning �rm is required to match the highest rejected score. In
meeting this score, the �rm is free to choose any quality-price combination.

9Wang and Liu (2014) use a speci�c scoring rule but here also equilibrium strategies are only derived
implicitly.
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Example 1 (non-quasilinear scoring rule) Let S (p; q) = q
p
and C (q; �) = 1

2
q2+ �. Let

� be uniformly distributed over [1; 2] and n = 2.

In a �rst-score auction the symmetric equilibrium is as follows.

pI (�) = 2 + �; qI (�) =
p
2 + � 8� 2 [1; 2] :

In a second-score auction the symmetric equilibrium is as follows.

pII (�) = 2�; qII (�) =
p
2� 8� 2 [1; 2] :

Example 2 (quasilinear scoring rule) Let S (p; q) = q � p and C (q; �) = 1
2
q2 + �. Let

� be uniformly distributed over [1; 2] and n = 2.
In a �rst-score auction the symmetric equilibrium is as follows.

pI (�) =
3

2
+
1

2
�; qI (�) = 1 8� 2 [1; 2] :

In a second-score auction the symmetric equilibrium is as follows.

pII (�) =
1

2
+ �; qII (�) = 1 8� 2 [1; 2] :

4 Equilibrium Characterisation

We now provide some properties of the symmetric equilibria that were derived in the previous
section. All proofs are given in the appendix. First, we de�ne the following:

A (p; q) = �Sq (p; q)
Sp (p; q)

Spp (p; q) + Sqp (p; q)

B (p; q) = �Sq (p; q)
Sp (p; q)

Spq (p; q) + Sp (p; q) c
00 (q) + Sqq (p; q)

H (p; q) = Spp (p; q) [Sp (p; q) c
00 (q) + Sqq (p; q)]� [Sqp (p; q)]2

Lemma 1 pI
�
��
�
= pII

�
��
�
and qI

�
��
�
= qII

�
��
�
.

Comment A �rm with the highest type
�
��
�
quotes the same price and quality across

�rst-score and second-score auctions (lemma 1). This is true regardless of the fact whether
the scoring rule is quasilinear or not. Lemma 2 below will be useful in proving some of our
results.

Lemma 2 Suppose A (p; q) 6= 0 8 (p; q) 2 R2++.
B (p; q) � 0 =) A (p; q) < 0:

We now proceed to consider scoring rules that are non-quasilinear. Note that for such
rules we must have at least one of the following: Spp 6= 0, Spq 6= 0.
The next proposition compares the equilibrium scores quoted �rst-score and second-score

auctions. Let SI (�) = S
�
pI (�) ; qI (�)

�
and SII (�) = SII

�
pII (�) ; qII (�)

�
. In the �rst-score

and second-score auctions the equilibrium scores quoted by a �rm with type � is SI (�) and
SII (�) respectively.
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Proposition 3 If A (p; q) 6= 0 8 (p; q) 2 R2++ then SI (�) < SII (�) 8� 2
�
�; ��
�
. Also,

d
d�
SI (�) ; d

d�
SII (�) < 0 8� 2

�
�; ��
�
.

Comment The above result also holds for quasilinear scoring rules. In a �rst-score auction
(or second-score auction) the price and quality in equilibrium will satisfy the equation,
p � c (q) = � + 
 (�) (or p � c (q) = �). We have earlier noted that if the scoring rule is
quasilinear (Spp = Sqp = 0) then quality is constant and same for the two auctions. This
means price quoted in a �rst-score auction will be higher than the price quoted in a second-
score auction. Consequently, the score quoted in a �rst-score auction will be lower than the
score quoted in a second-score auction.
The equilibrium score quoted by any type � 2

�
�; ��
�
is strictly higher in the second-score

auction as compared to the equilibrium score in �rst score-auction. This is analogous to
the standard benchmark model where for any particular type, the bid in the second-price
auction is always higher than the bid in the �rst-price auction. Proposition 3 also shows that
equilibrium scores are decreasing in type, �. This means the winner in any auction is the
�rm with the lowest type (least cost). That is, the symmetric equilibria are always e¢ cient.
This is similar to the case where the scoring rule is quasilinear.

Proposition 4 (i) If A (p; q) > 0 8 (p; q) 2 R2++ then qI (�) > qII (�) 8� 2
�
�; ��
�
. Also,

dqI(�)
d�
; dq

II(�)
d�

> 0 8� 2
�
�; ��
�
:

(ii) If A (p; q) < 0 8 (p; q) 2 R2++ then qI (�) < qII (�) 8� 2
�
�; ��
�
. Also, dq

I(�)
d�
; dq

II(�)
d�

<
0 8� 2

�
�; ��
�
:

(iii) If A (p; q) = 0 8 (p; q) 2 R2++ then qI (�) = qII (�) 8� 2
�
�; ��
�
. Also, dq

I(�)
d�
; dq

II(�)
d�

=
0 8� 2

�
�; ��
�
:

Comment We now try to provide an intuition behind the above result. It may be noted
that 	qs = � A(:)

(Sp)
2 . This implies that 	qs has the opposite sign of A (:). We know that for

both auctions 	q (:) = c0 (:). From this we can derive that
dq
ds
= � 	qs

	qq�c00 . Since 	qq� c
00 < 0,

dq
ds
has the same sign as 	qs. This means that

dq
ds
has the opposite sign of A (:) in both

auctions. When A (:) > 0 then dq
ds
< 0. Since SI (:) < SII (:) (see proposition 3) we must

have qI (:) > qII (:). Again, when A (:) < 0 then dq
ds
> 0. Using a similar logic we must have

qI (:) < qII (:).
From proposition 4 it follows that for � < ��, whether the quality quoted in �rst-score

auction is higher (or lower) than the quality quoted in second-score auction depends crucially
on the sign of the term A (p; q). In fact, this term plays a crucial role in determining whether
the equilibrium quality quoted in any auction is increasing in � or not.
However, the next result shows that comparison of price quoted in �rst-score auction with

the one quoted in second-score auction depends crucially on the sign of the term B (p; q).
This term also determines whether the equilibrium price quoted in any auction is increasing
in � or not.
We now proceed to state the next result.
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Proposition 5 Suppose A (p; q) 6= 0 8 (p; q) 2 R2++.
(i) If B (p; q) < 0 8 (p; q) 2 R2++ then pI (�) > pII (�) 8� 2

�
�; ��
�
. Also, dp

I(�)
d�
; dpII(�)

d�
>

0 8� 2
�
�; ��
�
.

(ii) If B (p; q) > 0 8 (p; q) 2 R2++ then pI (�) < pII (�) 8� 2
�
�; ��
�
. Also, dp

I(�)
d�
; dpII(�)

d�
<

0 8� 2
�
�; ��
�
.

(iii) If B (p; q) = 0 8 (p; q) 2 R2++ then pI (�) = pII (�) 8� 2
�
�; ��
�
. Also, dp

I(�)
d�
; dpII(�)

d�
=

0 8� 2
�
�; ��
�
.

Comment Lemma 2 shows that the signs of A (:) and B (:) are related. From lemma 2 we
know that A (p; q) > 0 =) B (p; q) < 0. Proposition 4 demonstrates that A (p; q) > 0 =)
qI (�) > qII (�). From proposition 5 we get B (p; q) < 0 =) pI (�) > pII (�). This clearly
means A (p; q) > 0 =) qI (�) > qII (�) and pI (�) > pII (�). From proposition 5 we also get
that B (p; q) � 0 =) pI (�) � pII (�). Lemma 2 shows that B (p; q) � 0 =) A (p; q) < 0.
Combining this with proposition 4 and lemma 2 we get that B (p; q) � 0 =) pI (�) � pII (�)
and qI (�) < qII (�).

We now proceed to discuss the impact of increase in n (the number of bidders) on
equilibrium quality and price in both auctions. For any given �, let qI (n; �) and qII (n; �)
be the quality quoted in �rst-score and second score auctions respectively when the number
of bidders is n. Similarly, for any given �, let pI (n; �) and pII (n; �) be the price quoted in
�rst-score and second-score auctions respectively when the number of bidders is n.

Proposition 6 For all n > m
(i) qII (n; �) = qII (m; �).
(ii) If A (p; q) > 0 8 (p; q) 2 R2++ then qI (n; �) < qI (m; �).
(iii) If A (p; q) < 0 8 (p; q) 2 R2++ then qI (n; �) > qI (m; �).

Proposition 7 Suppose A (p; q) 6= 0 8 (p; q) 2 R2++. Then for all n > m
(i) pII (n; �) = pII (m; �).
(ii) If B (p; q) = 0 8 (p; q) 2 R2++ then pI (n; �) = pI (m; �).
(iii) If B (p; q) > 0 8 (p; q) 2 R2++ then pI (n; �) > pI (m; �).
(iv) If B (p; q) < 0 8 (p; q) 2 R2++ then pI (n; �) < pI (m; �).

For any given type � let SI (n; �) and SII (n; �) be the scores quoted in equilibrium in
�rst-score and second-score auction respectively when the number of bidders is n. That is,
SI (n; �) = S

�
pI (n; �) ; qI (n; �)

�
and SII (n; �) = S

�
pII (n; �) ; qII (n; �)

�
. The next propo-

sition explores how the equilibrium score quoted changes with an increase in the number of
bidders. The proof is in the appendix.

Proposition 8 (i) For all n > m, SII (n; �) = SII (m; �).
(ii) For all n > m, SI (n; �) > SI (m; �).
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Comment In the second-score auction the quality and price quoted in equilibrium are
independent of the number of bidders. Consequently, the score quoted in equilibrium is
invariant with respect to the number of bidders. This is similar to the second-price auction
in the benchmark model, where, regardless of the number of bidders, all bidders bid their
valuations.
In the �rst-score auction as the competition intensi�es (n increases) the score quoted by

any type increases. This is in line with the conventional wisdom which suggests that any
increase in competition should induce a bidder with type � to quote a higher score. This is
also similar to the �rst-price auction in the benchmark model where bids increase with the
number of bidders.

5 Expected Scores

The previous section provided equilibrium characterisation for �rst-score and second-score
auctions. We now proceed to give our results on expected scores. Before giving our main
results we need to discuss some preliminaries on order statistics.

5.1 Order Statistics : some notations and preliminaries

Let y1; y2::yn denote a random sample of size n drawn from F (:): Then x1 � x2::: � xn
where xis are yis arranged in increasing magnitudes, are de�ned to be the order statistics
corresponding to the random sample y1; y2::::yn:
We would be interested in x1 (lowest order statistic) and x2 (second lowest order sta-

tistic). The corresponding distribution functions and density functions are F1(:); F2(:) and
f1(:); f2(:): Note that

F1(x) = 1� (1� F (x))n and F2(x) = 1� (1� F (x))n � nF (x) (1� F (x))n�1

f1(x) = n (1� F (x))n�1 f(x) and f2(x) = n(n� 1)F (x) (1� F (x))n�2 f(x)

Note that F2(x) = F1(x)� nF (x) (1� F (x))n�1

5.2 Comparison of expected scores

In proposition 5 it is shown that SI (�) < SII (�) for all � 2
�
�; ��
�
and both SI (�) and

SII (�) are strictly decreasing in �. As noted before, the winner in any auction is the �rm
with the lowest type.

The following two lemmas will help us in comparing the expected scores across auctions.
The proofs appear in the appendix.
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Lemma 3 (i) In a �rst-score auction the expected score is as follows:

�I =

Z ��

�

SI (�) f1 (�) d�

= S
�
pI
�
��
�
; qI
�
��
��
�
Z ��

�

F1 (�) (1 + 

0 (�))Sp

�
pI (�) ; qI (�)

�
d�

(ii) In a second-score auction the expected score is as follows:

�II =

Z ��

�

SII (�) f2 (�) d�

= S
�
pII
�
��
�
; qII

�
��
��
�
Z ��

�

F2 (�)Sp
�
pII (�) ; qII (�)

�
d�

Lemma 4 Z ��

�

F1 (�) (1 + 

0 (�)) d� =

Z ��

�

F2 (�) d�

where


 (�) =
1

(1� F (�))n�1
Z ��

�

(1� F (t))n�1 dt

Comment From lemma 1 we know pI
�
��
�
= pII

�
��
�
and qI

�
��
�
= qII

�
��
�
. This means

S
�
pI
�
��
�
; qI
�
��
��
= S

�
pII
�
��
�
; qII

�
��
��
:

Using this and lemma 3 one clearly gets that to compare �I and �II we need to compare
the following terms:"Z ��

�

F1 (�) (1 + 

0 (�))Sp

�
pI (�) ; qI (�)

�
d�

#
and

"Z ��

�

F2 (�)Sp
�
pII (�) ; qII (�)

�
d�

#
:

Note that if the scoring rule is quasilinear (i.e. S (p; q) = � (q)� p) then Sp = �1.
Hence, from lemma 3 the next result follows.

Proposition 9 If the scoring rule is quasilinear then �I = �II .

Comment The above result is well known (See Che, 1993, Asker and Cantillon, 2008 and
Hanazono et al, 2013). For scoring auctions this is the analogue of revenue equivalence
theorem of the canonical model.

Note that we had earlier de�ned the following: H (p; q) = Spp [Spc00 + Sqq]� (Sqp)2 :
We now proceed to provide our main results on expected scores when the scoring rules

are non-quasilinear. We show that such results depend on the curvature properties of the
scoring rule and the properties of the distribution function of types. The following result
will help us in the ranking of the expected scores. The proof is given in the appendix.
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Lemma 5 Suppose A (p; q) 6= 0 8 (p; q) 2 R2++.
(i) If H (p; q) < 0 8 (p; q) 2 R2++ then

�Sp
�
pI (�) ; qI (�)

�
< �Sp

�
pII (�) ; qII (�)

�
8� 2

�
�; ��
�

and
d

d�

�
�Sp

�
pI (�) ; qI (�)

��
;
d

d�

�
�Sp

�
pII (�) ; qII (�)

��
< 0 8� 2

�
�; ��
�
:

(ii) If H (p; q) � 0 8 (p; q) 2 R2++ then

�Sp
�
pI (�) ; qI (�)

�
� �Sp

�
pII (�) ; qII (�)

�
8� 2

�
�; ��
�

and
d

d�

�
�Sp

�
pI (�) ; qI (�)

��
;
d

d�

�
�Sp

�
pII (�) ; qII (�)

��
� 0 8� 2

�
�; ��
�
:

Note that for non-quasilinear scoring rules we must have at least one of the following:
Spp 6= 0, Spq 6= 0. Proposition 10 shows that like the quasilinear case, we can have expected
score equivalence with non-quasilinear scoring rules.

Proposition 10 If 8 (p; q) 2 R2++ Spc
00 + Sqq = 0 and Sqp = 0 then �I = �II .

Comment We illustrate proposition 10 with the following example. Let S (p; q) = 10q�p2,
C (q; �) = q+ � and � is uniformly distributed over [1; 2]. The scoring rule is non-quasilinear
and satis�es all our assumptions. Here it can be easily shown that �I = �II .
However, when either Spc00 + Sqq 6= 0 or Spq 6= 0 we do not always have a clear ranking

of the two auctions in terms of expected scores. In fact, it can be shown that depending on
the distribution function of types we can get di¤erent rankings with the same scoring rule
and cost function. We illustrate our point with the �quality over price�scoring rule.10

Example 3 Let S (p; q) = q
p
and C (q; �) = 1

2
q2 + �. Suppose � be uniformly distributed

over [1; 2] and n = 2. For this distribution we have

f1 (�) = 2 (2� �) and f2 (�) = 2 (� � 1)

The equilibria are as follows:

First-score auction:

price: pI (�) = 2 + �

quality : qI (�) =
p
2 + �

score: sI (�) =
qI (�)

pI (�)
=

1p
2 + �

Expected score: �I =

Z 2

1

sI (�) f1 (�) d� = 0:548 72

10I must thank Kasunori Yamada for helping me with the computations using MATLAB.
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Second-score auction:

price: pII (�) = 2�

quality: qII (�) =
p
2�

score: sII (�) =
qII (�)

pII (�)
=

1p
2�

Expected score: �II =

Z 2

1

sII (�) f2 (�) d� = 0:552 28

Example 4 Let S (p; q) = q
p
and C (q; �) = 1

2
q2+�. Now suppose n = 2 and � is distributed

over [1:2; 1:203731] with density f (x) = 500x3 � 600 and distribution function F (x) =
125x4 � 600x+ 2304

5
. For this distribution we have

f1 = 2

�
�125x4 + 600x� 2299

5

��
500x3 � 600

�
and

f2 = 2

�
125x4 � 600x+ 2304

5

��
500x3 � 600

�
Now the equilibria are as follows:

First-score auction:

price: pI (�) = 2

 
� +

25�5 � 300�2 + 4598�
10

� 18197
100

�125�4 + 600� � 2299
5

!

quality : qI (�) =

vuut2 � + 25�5 � 300�2 + 4598�
10

� 18197
100

�125�4 + 600� � 2299
5

!

score: sI (�) =
qI (�)

pI (�)
=

1r
2
�
� +

25�5�300�2+ 4598�
10

� 18197
100

�125�4+600�� 2299
5

�
Expected score: �I =

Z 1:203731

1:2

sI (�) f1 (�) d� = 0:6469

Second-score auction:

price: pII (�) = 2�

quality: qII (�) =
p
2�

score: sII (�) =
qII (�)

pII (�)
=

1p
2�

Expected score: �II =

Z 1:203731

1:2

sII (�) f2 (�) d� = 0:6449
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Comment The above examples clearly demonstrate that the distribution of types plays a
major role in the ranking of expected scores. Even if the scoring rule and cost functions are
the same, the ranking of expected revenues can get reversed if the distribution of types are
di¤erent. Hence, we need to put restrictions on both the scoring rule and the distribution
function to get a ranking of expected scores.
The following proposition provides su¢ cient conditions under which expected score in a

second-score auction is higher than in a �rst-score auction.

Proposition 11 Suppose A (p; q) 6= 0 8 (p; q) 2 R2++. If H (p; q) < 0 8 (p; q) 2 R2++ and
SII

�R ��
�
�f2 (�) d�

�
> SI (�) then �I < �II .

Comment From lemma 3 we know that to compare �I and �II we need to compare the
following terms:Z ��

�

F1 (�) (1 + 

0 (�))

�
�Sp

�
pI (�) ; qI (�)

��
d� and

Z ��

�

F2 (�)
�
�Sp

�
pII (�) ; qII (�)

��
d�:

From lemma 4 we also know that
R ��
�
F1 (�) (1 + 


0 (�)) d� =
R ��
�
F2 (�) d�. Intuitively this

means that if �Sp
�
pII (�) ; qII (�)

�
is high enough compared to �Sp

�
pI (�) ; qI (�)

�
then we

should have �I < �II . Lemma 5 shows that if H (p; q) < 0 then �Sp
�
pII (�) ; qII (�)

�
>

�Sp
�
pI (�) ; qI (�)

�
. This together with SII

�R ��
�
�f2 (�) d�

�
> SI (�) ensures that �II is

strictly higher than �I .

We now proceed to provide an alternative set of su¢ cient conditions for �II to be strictly
greater than �I .
Now suppose f (�) > 0 8� 2

�
�; ��
�
. This means that F�1 (:) is well de�ned. Let �̂ =

F�1
�
1
n

�
. It is easy to check that

f2 (�) < f1 (�) 8� 2
�
�; �̂
�
and

f2 (�) > f1 (�) 8� 2
�
�̂; ��
�
.

Note that

�II =

Z ��

�

SII (�) f2 (�) d� =

Z �̂

�

SII (�) f2 (�) d� +

Z ��

�̂

SII (�) f2 (�) d�

Similarly

�I =

Z ��

�

SI (�) f1 (�) d� =

Z �̂

�

SI (�) f1 (�) d� +

Z ��

�̂

SI (�) f1 (�) d�

It may be noted that proposition 5 shows S
�
pI (�) ; qI (�)

�
< S

�
pII (�) ; qII (�)

�
8� 2

�
�; ��
�
.

This together with the fact that f2 (�) > f1 (�) 8� 2
�
�̂; ��
�
means thatZ ��

�̂

SII (�) f2 (�) d� >

Z ��

�̂

SI (�) f1 (�) d�:
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Hence, intuitively if SII (�) is high enough for � 2
�
�; �̂
�
then �II will be higher than

�I . The next proposition identi�es such su¢ cient conditions.

Proposition 12 For any non-quasilinear scoring rule if

f (�) > 0 8� 2
�
�; ��
�
and

SII
�
�̂
�
�

�
1�

�
n�1
n

�n�
SI (�)�

�
n�1
n

�n�1
SI
�
��
�

1�
�
n�1
n

�n � �n�1
n

�n�1
then �I < �II .

Comment Unlike Hanazono et al (2013), for non-quasilinear scoring rules, we get the
ranking of expected scores directly from the curvature properties of the scoring rule and prop-
erties of the distribution function.
We now proceed to compute equilibria in �rst-score and second-score auctions when both

quality and types are multidimensional.

6 Extension: Multidimensional quality and multidi-
mensional types

The good is characterized by its price, p, and m non-monetary attributes, (q1; q2; ::qm) 2 Rm+ .
We call these attributes as qualities. The scoring rule is S (p; q1; q2; ::qm). We have Sp (:) < 0
and Sqi > 0. Supplier i�s pro�t from selling the good is given by p � C (q1; q2::qm; xi),
where xi = (xi1; x

i
2; ::x

i
n) 2 Rn+, is supplier i�s type. Types are identically and independently

distributed according to the continuous joint density function h with support on �ni=1 [x; �x].
Cost is strictly increasing in q1; q2; ::qm and xi1; x

i
2; ::x

i
n.

We assume additive separability. That is,

C
�
q1; q2::qm; x

i
1; x

i
2; ::x

i
n

�
= c (q1; q2::qm) + �

�
xi1; x

i
2; ::x

i
n

�
with cqi > 0 and �xij > 0.

Let �i = � (xi1; x
i
2; ::x

i
n).

Remark Clearly the lowest value of �i is � = � (x; x::::x) and the highest value of �i is
�� = � (�x; �x; :::�x). Since a type,

�
�i1; �

i
2; ::�

i
n

�
, is distributed according to the continuous joint

density function h with support on �ni=1
�
�; ��
�
; we can think of �i as a derived random

variable distributed over
�
�; ��
�
with distribution function F (:) and density function f (:).

Both F (:) and f (:) can be computed using standard statistical techniques.

Hence, we can write

C
� �

= c (q1; q2::qm) + �iq1; q2::qm; xi1; x
i
2; ::x

i
n
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where �i is the type of supplier i. �is are identically and independently distributed over
�
�; ��
�

with distribution function F (:) and density function f (:).
Note that additive separability of the cost function helps us to deal with the case of mul-

tidimensional types just as a single dimensional type.

The following can be shown. The proofs follow directly from the proofs of propositions
1 and 2.

Proposition 13 (i) In a �rst-score auction there is a symmetric equilibrium where a
supplier with type k chooses pI (k) ; qI1 (k) ; q

I
2 (k) ; ::q

I
m (k). Such p

I (:) and qIi (:)s are obtained
by solving the following equations:

�Sqi (:)
Sp (:)

= cqi (:) for all i 2 f1; 2::mg

p� c (q1; q2; ::qm)
= � + 
 (�)

where


 (�) =
1

(1� F (�))n�1
Z ��

�

(1� F (t))n�1 dt

Proposition 14 In a second-score auction there is a weakly dominant strategy equilibrium
where a supplier with type k chooses pI (k) ; qI1 (k) ; q

I
2 (k) ; ::q

I
m (k). Such p

II (:) and qIIi (:)s
are obtained by solving the following equations:

�Sqi (:)
Sp (:)

= cqi (:) for all i 2 f1; 2::mg

p� c (q1; q2; ::qm) = �

Comment Propositions 13 and 14 provide the equilibrium for �rst-score and second-score
auctions when both quality and type are multidimensional. Charaterisation of equilibrium
and ranking of expected scores is left for future research.

7 Conclusion

In this paper we analysed scoring auctions with general non-quasilinear scoring rules. We
demonstrated that additive separability of cost functions vastly simpli�es the equilibrium
computations. Unlike recent papers, we get explicit solutions for the Bayesian-Nash equi-
librium without any endogeneity problems. Moreover, we analyse the properties of such
equilibria and the ranking of expected scores across �rst-score and second-score auctions
and demonstrate that they depend only on the curvature properties of the scoring rule and
distribution function of types. Our approach helps in dealing with most non-quasilinear
scoring rules. The following may be noted.
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1. We noted that additive separability of cost function implies that multidimensional
types can be expressed as a single dimensional type. In this paper we concentrated
mainly on single dimensional quality. Characterisation of equilibrium and ranking of
expected scores when quality is multidimensional is an open question and is left for
future research.

2. Optimal mechanisms (that maximise expected scores) have been derived in the litera-
ture for quasi-linear scoring rules (See Che, 1993, Asker Cantillon, 2010 and Nishimura,
2012). However, such optimal mechanisms for general non-quasilinear scoring rules
have not been adequately analysed in the literature. This is an open question and is
left for future research.
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Appendix

Proof of Proposition 1 In the main body of the paper (see the comment after proposition
2) we have introduced 	(q; s) and have given a sketch of the proof. There we have shown
that in any equilibrium the following equation (which we now reproduce below) will always
be satis�ed.

�Sq (:)
Sp (:)

= c0 (:)���� (3)

We now show that there is a symmetric equilibrium where a bidder with type � chooses
pI (�) and qI (�). Such pI (:) and qI (:) are obtained by solving the following equations:

�Sq (:)
Sp (:)

= c0 (:)���� (4a)

p� c (q) = � + 
 (�)���� (4b)

where 
 (�) =
1

(1� F (�))n�1
Z ��

�

(1� F (t))n�1 dt���� (4c)

First note that (4a) is same as (3) and it is true at any equilibrium. Now we show why
(4b) is needed. To do this let�s suppose that all �rms j = 2; 3::n choose pI (�j) and qI (�j)
according to (4a) and (4b). Then we show that it is optimal for �rm 1 to choose the same
strategy. Note that from (4b) we have

8� 2
�
�; ��
�
; pI (�)� c

�
qI (�)

�
= � + 
 (�)���� (5)

Di¤erentiating both sides of (5) w.r.t. � we have

8� 2
�
�; ��
�
;
dpI (�)

d�
� c0 (q (�)) dq

I (�)

d�
= 1 + 
0 (�)

=
(n� 1) f (�)
(1� F (�))n

Z ��

�

(1� F (t))n�1 dt���� (6)

From (6) we clearly have

dpI (�)

d�
� c0 (q (�)) dq

I (�)

d�
> 0���� (7)

For any �rm j 2 f2; 3::ng the choice of pI (�j) ; qI (�j) leads to score S
�
pI (�j) ; q

I (�j)
�
.

Then we can say that any �rm j 2 f2; 3::ng with type �j chooses score S
�
pI (�j) ; q

I (�j)
�

and quality qI (�j).
Let

Ŝ (�) = S
�
pI (�) ; qI (�)

�
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Then, we have that any �rm j 2 f2; 3::ng with type � chooses score Ŝ (�) and qualities
q (�). Now note the following:

d

d�
Ŝ (�) = Sp (:)

dpI (�)

d�
+ Sq (:)

dqI (�)

d�

= Sp (:)
dpI (�)

d�
� Cq (:)Sp (:)

dqI (�)

d�
(using (4a))

= Sp (:)

�
dpI (�)

d�
� Cq (:)

dqI (�)

d�

�
���� (8)

From (8) we have

d

d�
Ŝ (�) < 0 (since Sp (:) < 0 and

dpI (�)

d�
� Cq (:)

dqI (�)

d�
> 0 (from 7)

The above means that for any �rm j 2 f2; 3::ng the score quoted is strictly decreasing in �.
Hence, the scores of �rms 2; 3::n lie in the interval

h
Ŝ
�
��
�
; Ŝ (�)

i
.

Now take the case of �rm 1. It has to choose a score, s1 and a quality, q, given the choice
of �rms 2; 3::n. Clearly s1 2

h
Ŝ
�
��
�
; Ŝ (�)

i
. Note that choosing s1 is equivalent to choosing

z s.t. s1 = Ŝ (z). Hence, the probability of winning for �rm 1 is as follows:

Prob.
�
Ŝ (z) > max

j 6=1

�
Ŝ (�j)

��
= Prob.

�
Ŝ (z) >

�
Ŝ

�
min
j 6=1

(�j)

���
(since Ŝ 0 (:) < 0)

= Prob.
�
z < min

j 6=1
(�j)

�
���� (9) :

We know that � is distributed over
�
�; ��
�
with distribution function F (:) and density function

f (:). From the basic theory of order statistics (see section 5.1) we also know that the
lowest order statistic from among (n� 1) i.i.d random variables has a distribution function
G (:) = 1� (1� F (:))n�1. That is, for the random variables �2; �3::�n

Prob
�
min
j 6=1

(�j) < �

�
= G (�) = 1� (1� F (�))n�1 :

Using (9) we can write

Prob.
�
Ŝ (z) > max

j 6=1

�
Ŝ (�j)

��
= Prob.

�
z < min

j 6=1
(�j)

�
= 1�G (z) = (1� F (z))n�1 :

That is, if �rm 1 chooses a score of s1 = Ŝ (z) it wins with probability (1� F (z))n�1 : Let
it choose quality x and let it�s type be �1. Then, �rm 1�s cost is c (x) + �1. Therefore, �rm
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1�s expected payo¤ by choosing a score s1 = Ŝ (z) and quality x is

�1 = (1� F (z))n�1
h
	
�
x; Ŝ (z)

�
� c (x)� �1

i
���� (10)

Firm 1�s choice variables are x and z. Note that from the 1OCs for an optimum we have

@�1
@x

= 0 =) 	q

�
x; Ŝ (z)

�
� c0 (x) = 0���� (11)

From earlier discussions we know that (11) is equivalent to

�Sq (:)
Sp (:)

= c0 (:)���� (12)

The above is same as (4a).
We now proceed to deal with the optimal choice of z. It may be noted that

@	
�
x; Ŝ (z)

�
@z

= 	s

�
x; Ŝ (z)

�
Ŝ 0 (z)

By using (2) and (8)

	s

�
x; Ŝ (z)

�
Ŝ 0 (z) =

1

Sp (p (z) ; q (z))
Sp
�
pI (z) ; qI (z)

� �dpI (z)
dz

� c0 (q (z)) dq
I (z)

dz

�
=

dpI (z)

dz
� c0 (q (z)) dq

I (z)

dz

= 1 + 
0 (z) =
(n� 1) f (z)
(1� F (z))n

Z ��

z

(1� F (t))n�1 dt (from 6)

That is,

@	
�
x; Ŝ (z)

�
@z

= 1 + 
0 (z) =
(n� 1) f (z)
(1� F (z))n

Z ��

z

(1� F (t))n�1 dt���� (13)

Now note that from (10) and (13) we have

@

@z
�1 = � (n� 1) (1� F (z))n�2 f (z)

h
	
�
x; Ŝ (z)

�
� c (x)� �1

i
+ (1� F (z))n�1

@	
�
x; Ŝ (z)

�
@z

= (1� F (z))n�2
24 � (n� 1) f (z)n	�x; Ŝ (z)�� c (x)� �1o
+(1� F (z)) (n�1)f(z)

(1�F (z))n
R ��
z
(1� F (t))n�1 dt

35
= (n� 1) (1� F (z))n�2 f (z)

24 1
(1�F (z))n�1

R ��
z
(1� F (t))n�1 dt

�
n
	
�
x; Ŝ (z)

�
� c (x)� �1

o 35
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From above and using de�nition of 
 (z) (see 4c) we get that

@

@z
�1 = (n� 1) (1� F (z))n�2 f (z)

h

 (z)�

n
	
�
x; Ŝ (z)

�
� c (x)� �1

oi
���� (14)

Note that (n� 1) (1� F (z))n�2 f (z) > 0 for all z 2
�
�; ��
�
.

Also note that by using (13) we get that

@

@z

h

 (z)�

n
	
�
x; Ŝ (z)

�
� c (x)� �1

oi
= 
0 (z)�

@	
�
x; Ŝ (z)

�
@z

= 
0 (z)� [1 + 
0 (z)] using (13)
= �1 < 0 ������ (15)

From (4b) we know that

pI (�)� c
�
qI (�)

�
= � + 
 (�)

=) 	
�
qI (�) ; Ŝ (�)

�
� c

�
qI (�)

�
= � + 
 (�)���� (16)

We know that �rm 1�s choice of x is such that (12) (which is same as 4a) is satis�ed.
Using this fact and (16) we get that

if z = �1 then 
 (z)�
n
	
�
x; Ŝ (z)

�
� c (x)� �1

o
= 0���� (17)

This means (see 14 and 17)

@

@z
�1 = 0 at z = �1 ���� (18)

Moreover, from (14), (15) and (18) we clearly get that

z < �1 =)
@

@z
�1 > 0 and

z > �1 =)
@

@z
�1 < 0. ����(19)

(18) and (19) implies that z = �1 is the optimal choice for �rm 1. Therefore �rm 1�s
choice of quality, x and score, Ŝ (z) must satisfy (12) and (17). This is same as 4a and 4b.

24



That is, we have proved that in a �rst-score auction there is a symmetric equilibrium
where a bidder with pseudo-type � chooses pI (�) and qI (�). Such pI (:) and qI (:) are obtained
by solving the following equations:

�Sq1 (:)
Sp (:)

= c0 (:)

p� c (q) = � +
1

(1� F (�))n�1
Z ��

�

(1� F (t))n�1 dt:

This completes our proof for proposition 1.�

Proof of Proposition 2 We will now show that in a second-score auction the weakly
dominant strategy for each �rm with type � is to choose p (�) and q (�) that are obtained by
solving the following equations:

�Sq (:)
Sp (:)

= c0 (:)���� (20a)

p = c (q) + � ���� (20b)

Let the score quoted by �rm i by following 20a and 20b be s. That is, s = S (p (�) ; q (�)).
It may be recalled from our earlier discussions that (20a) which is same as (3) and it is
equivalent to (1a) reproduced below.

	q (:)� c0 (:) = 0���� (1a)

From (1a) we get q as a function of s. From earlier discussion we know that for any s, the
quality choice, q, (as in 1a above) is such so as to maximise 	(q; s)� c (q)� �. Then, using
the envelope theorem we get

d

ds
[	 (q (s) ; s)� c (q)� �] = 	s =

1

Sp (:)
< 0 (see (2)) ���� (21) :

Now clearly (by using the equivalence of (1a) and (20a),

	(q (s) ; s) = pII (�)

The above implies from (20b)

	(q (s) ; s)� c (q (s))� � = 0���� (22)

Now let �rm i follow (20a) and (20b) and thereby pick up a score s. Let the maximum
of the scores quoted by �rms other than i be �. Now if s > � then by following (20a) and
(20b) �rm i wins the contract. As per the rules of the second score auction, the winner is
required to match the highest rejected score which is �. In meeting this score, the �rm is
free to choose any quality-price combination. Clearly, �rm i will choose qualities so as to
maximise 	(q; �)� c (q)� �. Those choice of qualities must satisfy the following equation:

	q (q; �) � c0 (q) = 0 � � � � (23)
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The �rm�s pro�t by meeting a score � is therefore 	(q (�) ; �)� c (q (�))� �. Since � < s and
using (21) and (22)

	(q (�) ; �)� c (q (�))� � > 	(q (s) ; s)� c (q (s))� � = 0�� (24)

If �rm i decides to pick up any score, � 6= s (by choosing (p; q) other than as in 20a and
20b),then it would not matter as long as � > �. If � < �, then �rm would not win the
contract and earn zero payo¤. Hence if s > � then the �rm�s best strategy is to quote a score
s. Similarly, it can be shown that is s < � then also the �rm�s best strategy is to quote a
score s. In other words, choice of s is a weakly dominant strategy.�

Proof of Lemma 1 Note that by using the L�Hospital�s rule we get

lim
��!��


 (�) = lim
��!��

1

(1� F (�))n�1
Z ��

�

(1� F (t))n�1 dt

= lim
��!��

d
d�

�R ��
�
(1� F (t))n�1 dt

�
d
d�
(1� F (�))n�1

= lim
��!��

1� F (�)
(n� 1) f (�) = 0:

Hence, using propositions 1 and 2, for the type ��, in both �rst-score and second-score auc-
tions, p

�
��
�
, q
�
��
�
is obtained by solving the following equations.

�Sq (:)
Sp (:)

= c0 (:)

p = c (q) + �

This shows that pI
�
��
�
= pII

�
��
�
and qI

�
��
�
= qII

�
��
�
. �

Proof of Lemma 2 Since by assumption Spp and Sqp are continuous 8 (p; q) 2 R2++, then
A (p; q) = �Sq

Sp
Spp + Sqp 6= 0 8 (p; q) 2 R2++ implies either (a) 8 (p; q) 2 R2++ A (p; q) > 0 or

(b) 8 (p; q) 2 R2++ A (p; q) < 0.
It may be noted that

B (p; q) = �Sq
Sp
Spq + Spc

00 + Sqq = �
1

Sp

�
SqSpq � (Sp)2 c00 � SpSqq

�
< � 1

Sp

"
(Sq)

2

Sp
Spp � SqSpq

#
(assumption 4 of our model)

=
Sq
Sp

�
�Sq (:)
Sp (:)

Spp (:) + Sqp (:)

�
:
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Since Sp < 0 and Sq > 0 the above means that

�Sq (:)
Sp (:)

Spp (:) + Sqp (:) > 0 =) �Sq
Sp
Spq + Spc

00 + Sqq < 0:

()
�Sq
Sp
Spq + Spc

00 + Sqq � 0 =) �Sq
Sp
Spp + Sqp < 0:

()
B (p; q) � A (p; q) < 0

Proof of Proposition 3 In equilibrium, in both �rst-score and second-score auctions the
following is true:

�Sq (p; q)
Sp (p; q)

= c0 (q)���� (25)

From (25) we get p implicitly a function of q. That is, p = � (q) and we have

�Sq (� (q) ; q)
Sp (� (q) ; q)

� c0 (q) = 0

()
Sp (� (q) ; q) c

0 (q) + Sq (� (q) ; q) = 0���� (26)

Using the implicit function theorem we get that

�0 (q) = �
�
c0Spq + Spc

00 + Sqq
c0Spp + Sqp

�
���� (27) :

Using (25) we have

�0 (q) = �
"
�Sq
Sp
Spq + Spc

00 + Sqq

�Sq
Sp
Spp + Sqp

#
���� (28)

Note that �0 (q) is well de�ned since 8 (p; q) 2 R2++, �
Sq
Sp
Spp + Sqp 6= 0.

Since by assumption Spp and Sqp are continuous 8 (p; q) 2 R2++, then A (p; q) = �
Sq
Sp
Spp+

Sqp 6= 0 8 (p; q) 2 R2++ implies either (a) 8 (p; q) 2 R2++ A (p; q) > 0 or (b) 8 (p; q) 2 R2++
A (p; q) < 0.
Note that for both auctions (from (25) using the fact that c0 (:) = �Sq

Sp
)

�0 (q)� c0 (q) = �0 (q) +
Sq
Sp

=

h
� (Sq)

2

Sp
Spp + 2SqSqp � SpSqq � (Sp)2 c00

i
Sp

h
�Sq
Sp
Spp + Sqp

i ���� (29)
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Note that by assumption the numerator of (31) is strictly negative. Since Sp < 0 we have
that

if 8 (p; q) 2 R2++, A (p; q) = �
Sq
Sp
Spp + Sqp > 0 then �0 (q)� c0 (q) > 0 and

if 8 (p; q) 2 R2++, A (p; q) = �
Sq
Sp
Spp + Sqp < 0 then �0 (q)� c0 (q) < 0 ���� (30)

Now note the following.

d

dq
S (� (q) ; q) = Sp�

0 (q) + Sq

= Sp�
0 (q)� Spc0 (q) (from 25)

= Sp [�
0 (q)� c0 (q)]���� (31)

From (30) we know that �0 (q)�c0 (q) has the same sign as A (p; q) =
�
�Sq
Sp
Spp + Sqp

�
. Since

Sp < 0 from (31) we get that d
dq
S (� (q) ; q) has the opposite sign of A (p; q).

Now suppose A (p; q) > 0. This means d
dq
S (� (q) ; q) < 0. Since qI (�) > qII (�)

when A (p; q) > 0 we must have S
�
�
�
qI (�)

�
; qI (�)

�
< S

�
�
�
qII (�)

�
; qII (�)

�
. Now since

pI (�) = �
�
qI (�)

�
and pII (�) = �

�
qII (�)

�
for � 2

�
�; ��
�
this implies S

�
pI (�) ; qI (�)

�
<

S
�
pII (�) ; qII (�)

�
. This means SI (�) < SII (�).

Now suppose A (p; q) = �Sq
Sp
Spp + Sqp < 0. This means d

dq
S (� (q) ; q) > 0. Since qI (�) <

qII (�) when A (p; q) < 0 we must have S
�
�
�
qI (�)

�
; qI (�)

�
< S

�
�
�
qII (�)

�
; qII (�)

�
. Now

since pI (�) = �
�
qI (�)

�
and pII (�) = �

�
qII (�)

�
for all � 2

�
�; ��
�
this implies S

�
pI (�) ; qI (�)

�
<

S
�
pII (�) ; qII (�)

�
.

Using (7) and (8) we know that d
d�
S
�
pI (�) ; qI (�)

�
< 0. Using a exactly similar method

we can show that d
d�
S
�
pII (�) ; qII (�)

�
< 0.

This completes proof of proposition 3.�

Proof of Proposition 4 (i) and (ii) Note that in equilibrium, in both �rst-score and
second-score auctions �Sq(p;q)

Sp(p;q)
= c0 (q). As in (25), we get p implicitly a function of q. That

is, p = � (q). In a �rst-score auction we have (see proposition 1)

pI � c
�
qI
�

= � + 
 (�)

=) �
�
qI
�
� c

�
qI
�
= � + 
 (�)���� (32)

In second-score auction we have (see proposition 2)

pII � c
�
qII
�

= �

=) �
�
qII
�
� c

�
qII
�
= � ���� (33)

Now using (32) and (33), for any � 2
�
�; ��
�
we get

�
�
qI (�)

�
� c

�
qI (�)

�
= � + 
 (�) and

�
�
qII (�)

�
� c

�
qII (�)

�
= � ���� (34)
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From (34) it is clear that for any � 2
�
�; ��
�

�
�
qI (�)

�
� c

�
qI (�)

�
> �

�
qII (�)

�
� c

�
qII (�)

�
���� (34a)

Now let 8 (p; q) 2 R2++, A (p; q) = �Sq
Sp
Spp + Sqp > 0. For any � 2

�
�; ��
�
if possible let�s

suppose qI (�) � qII (�). Since from (30) we have �0 (q) � c0 (q) > 0 when A (p; q) > 0, we
must have �

�
qI (�)

�
�c
�
qI (�)

�
� �

�
qII (�)

�
�c
�
qII (�)

�
. But this contradicts (34a). Hence,

when A (p; q) > 0 we must have qI (�) > qII (�).
Now let 8 (p; q) 2 R2++, A (p; q) = �

Sq
Sp
Spp+Sqp < 0. From (30) we have �0 (q)�c0 (q) < 0.

Now using a logic similar to the one used in the previous paragraph we get qI (�) < qII (�).
From (32) we get that in a �rst-score auction the following is true for all � 2

�
�; ��
�

�
�
qI (�)

�
� c

�
qI (�)

�
= � + 
 (�)���� (35)

From (35) we get that for all � 2
�
�; ��
�
we have

�
�0
�
qI (�)

�
� c0

�
qI (�)

�� dqI (�)
d�

= 1+ 
0 (�) =
(n� 1) f (�)
(1� F (�))n

Z ��

�

(1� F (t))n�1 dt��� (36) :

Since (n�1)f(�)
(1�F (�))n

R ��
�
(1� F (t))n�1 dt > 0 from (36) we get that dqI(�)

d�
has the same sign as

�0
�
qI (�)

�
� c0

�
qI (�)

�
. From (32) we know that

if 8 (p; q) 2 R2++, A (p; q) > 0 then �0 (:)� c0 (:) > 0 and
if 8 (p; q) 2 R2++, A (p; q) < 0 then �0 (:)� c0 (:) < 0.

This shows that

if 8 (p; q) 2 R2++, A (p; q) > 0 then
dqI (�)

d�
> 0 8� 2

�
�; ��
�
and

if 8 (p; q) 2 R2++, A (p; q) < 0 then
dqI (�)

d�
< 0 8� 2

�
�; ��
�
.

Using a similar logic we can show that in a second-score auction,

if 8 (p; q) 2 R2++, A (p; q) > 0 then
dqII (�)

d�
> 0 8� 2

�
�; ��
�
and

if 8 (p; q) 2 R2++, A (p; q) < 0 then
dqII (�)

d�
< 0 8� 2

�
�; ��
�

(iii) Now suppose A (p; q) = �Sq
Sp
Spp + Sqp = 0 for all (p; q) 2 R2++. Note that from

propositions 1 and 2 we get that for both �rst-score and second-score auctions Sq+Spc0 = 0.
Di¤erentiating this equation w.r.t � we get that for both auctions

Sqpp
0 (�) + Sqqq

0 (�) + c0 [Sppp
0 (�) + Spqq

0 (�)] + Spc
00q0 (�) = 0���� (37)
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Since �Sq
Sp
= c0, by substituting for c0 and rearranging terms in (37) we get

p0 (�)

�
�Sq
Sp
Spp + Sqp

�
+
q0 (�)

Sp

�
SpSqq � SqSpq + (Sp)2 c00

�
= 0

Since �Sq
Sp
Spp + Sqp = 0 the above implies that

q0 (�)

Sp

�
SpSqq � SqSpq + (Sp)2 c00

�
= 0���� (37a)

From assumption 4 we know SpSqq�SqSpq+(Sp)2 c00 > � (Sq)
2

Sp
Spp+SqSqp = Sq

h
�Sq
Sp
Spp + Sqp

i
=

0 since �Sq
Sp
Spp + Sqp = 0. This means SpSqq � SqSpq + (Sp)2 c00 > 0. Since Sp < 0 from

(37a) we get that for both auctions q0 (�) = 0 for all �. That is, dq
I(�)
d�

= dqII(�)
d�

= 0. This
means that for all �, qI (�) = qI

�
��
�
and qII (�) = qII

�
��
�
. From lemma 1 we know that

qI
�
��
�
= qII

�
��
�
and this implies that for all �, qI (�) = qII (�). This completes our proof of

proposition 3.�

Proof of Proposition 5 (i) and (ii) Since by assumption Spp and Sqp are continuous
8 (p; q) 2 R2++, then A (p; q) = �

Sq
Sp
Spp + Sqp 6= 0 8 (p; q) 2 R2++ implies either (a) 8 (p; q) 2

R2++, A (p; q) = �
Sq
Sp
Spp + Sqp > 0 or (b) 8 (p; q) 2 R2++, A (p; q) = �

Sq
Sp
Spp + Sqp < 0.

Now suppose B (p; q) = �Sq
Sp
Spq + Spc

00 + Sqq < 0. Note that pI (�) = �
�
qI (�)

�
and

pII (�) = �
�
qII (�)

�
. Also note from (28) when �Sq

Sp
Spp + Sqp > 0 we have that �0 (:) > 0

and qI (�) > qII (�) (shown in proposition 3). Since qI (�) > qII (�) and �0 (:) > 0 we get
�
�
qI (�)

�
> �

�
qII (�)

�
=) pI (�) > pII (�). Again, when �Sq

Sp
Spp + Sqp < 0 we have that

�0 (:) < 0 and qI (�) < qII (�). Since qI (�) < qII (�) and �0 (:) < 0 we get �
�
qI (�)

�
>

�
�
qII (�)

�
=) pI (�) > pII (�).

Now suppose B (p; q) = �Sq
Sp
Spq+Spc

00+Sqq > 0. This implies A (p; q) = �Sq
Sp
Spp+Sqp < 0

(see lemma 2). From (28) and proposition 3 we know that when �Sq
Sp
Spp + Sqp < 0 we have

�0 (:) � 0 and qI (�) < qII (�). Since qI (�) < qII (�) and �0 (:) � 0 we get �
�
qI (�)

�
<

�
�
qII (�)

�
=) pI (�) < pII (�).

Now since pI (�) = �
�
qI (�)

�
and pII (�) = �

�
qII (�)

�
for � 2

�
�; ��
�
, we get that for all

� 2
�
�; ��
�
,

dpI (�)

d�
= �0

�
qI (�)

� dqI (�)
d�

= �
"
�Sq
Sp
Spq + Spc

00 + Sqq

�Sq
Sp
Spp + Sqp

#
dqI (�)

d�
��� (38)

and
dpII (�)

d�
= �0

�
qII (�)

� dqII (�)
d�

= �
"
�Sq
Sp
Spq + Spc

00 + Sqq

�Sq
Sp
Spp + Sqp

#
dqII (�)

d�
��� (38a) .

Note that from proposition 3 we get that dqI(�)
d�
, dq

II(�)
d�

have the same sign as A (p; q) =

�Sq
Sp
Spp + Sqp. This means

dpI(�)
d�
, dp

II(�)
d� has the same sign as �

�
�Sq
Sp
Spq + Spc

00 + Sqq

�
.
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This means B (p; q) = �Sq
Sp
Spq + Spc

00 + Sqq < 0 implies dpI(�)
d�
, dpII(�)

d�
> 0. Similarly

B (p; q) = �Sq
Sp
Spq + Spc

00 + Sqq > 0 implies
dpI(�)
d�
, dp

II(�)
d�

< 0.

(iii) Now suppose B (p; q) = �Sq
Sp
Spq + Spc

00 + Sqq = 0. Using (38) and (38a) we get that
dpI(�)
d�

= dpII(�)
d�

= 0. This means that for all �, pI (�) = pI
�
��
�
and pII (�) = pII

�
��
�
. From

lemma 1 we know that pI
�
��
�
= pII

�
��
�
and this implies that for all �, pI (�) = pII (�). This

completes our proof of proposition 3.�

Proof of Proposition 6 (i) Note that from proposition 2 it is clear that qII (�) does not
depend on n. This means qII (n; �) = qII (m; �).
(ii) Using (29) and the de�nition of 
 (�) we know that

�
�
qI (n; �)

�
� c

�
qI (n; �)

�
= � + 
 (�) = � +

Z ��

�

�
1� F (t)
1� F (�)

�n�1
dt���� (39)

Since
�
1�F (t)
1�F (�)

�
< 1 for all t 2

�
�; ��
�
,
�
1�F (t)
1�F (�)

�n�1
strictly decreases with an increase in n.

That is, � + 
 (�) strictly decreases with an increase in n.
Now suppose 8 (p; q) 2 R2++, A (p; q) = �

Sq
Sp
Spp+ Sqp > 0. This implies �0 (q)� c0 (q) > 0

(from (30). If possible let qI (n; �) � qI (m; �). But this means �
�
qI (n; �)

�
� c

�
qI (n; �)

�
�

�
�
qI (m; �)

�
� c

�
qI (m; �)

�
. But � +

R ��
�

�
1�F (t)
1�F (�)

�n�1
dt < � +

R ��
�

�
1�F (t)
1�F (�)

�m�1
dt. But this

is a contradiction as we must have �
�
qI (n; �)

�
� c

�
qI (n; �)

�
= � +

R ��
�

�
1�F (t)
1�F (�)

�n�1
dt and

�
�
qI (m; �)

�
� c

�
qI (m; �)

�
= � +

R ��
�

�
1�F (t)
1�F (�)

�m�1
dt (from (39). This means if n > m then

qI (n; �) < qI (m; �).
(iii) Now suppose 8 (p; q) 2 R2++, A (p; q) = �

Sq
Sp
Spp + Sqp < 0. Using an exactly similar

logic as above we can show that if n > m then qI (n; �) > qI (m; �).�

Proof of Proposition 7 (i) Note that from proposition 2 it is clear that pII (�) does not
depend on n. This means pII (n; �) = pII (m; �).
(ii) Note that pI (n; �) = �

�
qI (n; �)

�
.

Suppose B (p; q) = �Sq
Sp
Spq+Spc

00+Sqq = 0, 8 (p; q) 2 R2++. This means �0 (:) = 0 (using
28). This in turn implies �

�
qI (n; �)

�
= �

�
qI (m; �)

�
. But this means pI (n; �) = pI (m; �).

(iii) Now suppose B (p; q) = �Sq
Sp
Spq + Spc

00 + Sqq > 0, 8 (p; q) 2 R2++. Using lemma 2
this implies A (p; q) = �Sq

Sp
Spp + Sqp < 0. This means �0 (:) > 0 (using 28). Since A (p; q) =

�Sq
Sp
Spp + Sqp < 0 we get that if n > m we have qI (n; �) > qI (m; �) (proposition 5). This in

turn implies �
�
qI (n; �)

�
> �

�
qI (m; �)

�
. This means pI (n; �) > pI (m; �).

(iv) First, suppose 8 (p; q) 2 R2++, B (p; q) = �Sq
Sp
Spq + Spc

00 + Sqq < 0 and A (p; q) =

�Sq
Sp
Spp + Sqp > 0. This means �0 (:) > 0 (using 28). Since �Sq

Sp
Spp + Sqp > 0 we get that

if n > m we have qI (n; �) < qI (m; �) (proposition 5). This in turn implies �
�
qI (n; �)

�
<

�
�
qI

�
(m; �) . This means pI (n; �) < pI (m; �) .

31



Now suppose 8 (p; q) 2 R2++, B (p; q) = �
Sq
Sp
Spq+Spc

00+Sqq < 0 and A (p; q) = �Sq
Sp
Spp+

Sqp < 0. This means �0 (:) < 0 (using 28). Since �Sq
Sp
Spp + Sqp < 0 we get that if n > m we

have qI (n; �) > qI (m; �) (proposition 5). This in turn implies �
�
qI (n; �)

�
< �

�
qI (m; �)

�
.

This means pI (n; �) < pI (m; �).�

Proof of Proposition 8 (i) From propositions 5 and 6 we get that or all n > m qII (n; �) =
qII (m; �) and pII (n; �) = pII (m; �). This implies

SII (n; �) = S
�
pII (n; �) ; qII (n; �)

�
= S

�
pII (m; �) ; qII (m; �)

�
= SII (m; �) :

(ii) Given any �, using (4b) and (4c) we have

pI (n; �) = c
�
qI (n; �)

�
+ � +

R ��
�
(1� F (t))n�1 dt
(1� F (�))n�1

Di¤erentiating the above w.r.t n we get

@

@n
pI (n; �) = c0

�
qI (n; �)

� @
@n
qI (n; �) +

@

@n

 R ��
�
(1� F (t))n�1 dt
(1� F (�))n�1

!
���� (40)

Note that

@

@n
SI (n; �) =

@

@n
S
�
pI (n; �) ; qI (n; �)

�
= Sp (:)

@

@n
pI (n; �) + Sq (:)

@

@n
qI (n; �)

Using (40) the above can be written as

@

@n
SI (n; �) = Sp (:)

"
c0
�
qI (n; �)

� @
@n
qI (n; �) +

@

@n

 Z ��

�

�
1� F (t)
1� F (�)

�n�1
dt

!#

+Sq (:)
@

@n
qI (n; �)���� (40a)

Note that in equilibrium c0
�
qI (n; �)

�
= �Sq(pI(n;�);qI(n;�))

Sp(pI(n;�);qI(n;�))
(see 25). Using this in (40a)

together with the fact that Sp < 0 and @
@n

�R ��
�

�
1�F (t)
1�F (�)

�n�1
dt

�
< 0 we get

@

@n
SI (n; �) = Sp (:)

@

@n

 Z ��

�

�
1� F (t)
1� F (�)

�n�1
dt

!
> 0.

This completes proof of proposition 7.�

Proof of lemma 3 In a �rst-score auction the expected score is as follows:

�I =

Z ��

�

S
�
pI (�) ; qI (�)

�
f1 (�) d� =

Z ��

�
S
�
pI (�) ; qI (�)

�
dF1 (�) d�

=
�
S
�
pI (�) ; qI (�)

�
F1 (�)

���
�
�
Z ��

F1 (�) dS
�
pI (�) ; qI (�)

�
d� ��� (43)
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Note that from (25) we have

�
Sq
�
pI (�) ; qI (�)

�
Sp (pI (�) ; qI (�))

= c0
�
qI (�)

�
:���� (44)

Also, from (6) we have

8� 2
�
�; ��
�
;
dpI (�)

d�
� c0

�
qI (�)

� dqI (�)
d�

= 1 + 
0 (�)���� (45)

Now we have

dS
�
pI (�) ; qI (�)

�
= Sp

�
pI (�) ; qI (�)

� dpI (�)
d�

+ Sq
��
pI (�) ; qI (�)

�� dqI (�)
d�

= Sp
�
pI (�) ; qI (�)

� �dpI (�)
d�

� c0
�
qI (�)

� dqI (�)
d�

�
(using 44)

= Sp
�
pI (�) ; qI (�)

�
[1 + 
0 (�)] (using 45)

Using the above in (43) we get

�I = S
�
pI
�
��
�
; qI
�
��
��
�
Z ��

�

F1 (�) (1 + 

0 (�))Sp

�
pI (�) ; qI (�)

�
d�.

By a similar logic we can show that

�II = S
�
pII
�
��
�
; qII

�
��
��
�
Z ��

�

F2 (�)Sp
�
pII (�) ; qII (�)

�
d�.

This completes our proof for lemma 3.�

Proof of lemma 4 In the proof of lemma 1 we have shown that

lim
��!��


 (�) = 0���� (46)

Now Z ��

�

F1 (�) (1 + 

0 (�)) d� =

Z ��

�

F1 (�) d� +

Z ��

�

F1 (�) d
 (�)���� (47)

Note that Z ��

�

F1 (�) d
 (�) = [F1 (�) 
 (�)]
��
� �

Z ��

�


 (�) dF1 (�)���� (48)

Using (46) we know that [F1 (�) 
 (�)]
��
� = 0. Since

dF1 (�) = f1 (�) d� = n (1� F (�))n�1 f (�) d� and 
 (�) =
1

(1� F (�))n�1
Z ��

�

(1� F (t))n�1 dt
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from (48) we getZ ��

�

F1 (�) d
 (�) = �
Z ��

�

1

(1� F (�))n�1

 Z ��

�

(1� F (t))n�1 dt
!
n (1� F (�))n�1 f (�) d�

= �
Z ��

�

"Z ��

�

(1� F (t))n�1 dt
#
nf (�) d� ��� (49)

Changing the order of integration in (49) we haveZ ��

�

F1 (�) d
 (�) = �n
Z ��

�

�Z t

�

f (�) d�

�
(1� F (t))n�1 dt

= �n
Z ��

�

F (t) (1� F (t))n�1 dt

= �n
Z ��

�

F (�) (1� F (�))n�1 d� ���� (50)

Hence using (50) in (47) we haveZ ��

�

F1 (�) (1 + 

0 (�)) d� =

Z ��

�

F1 (�) d� � n
Z ��

�

F (�) (1� F (�))n�1 d� ���� (51)

Now note that
F2 (�) = F1 (�)� nF (�) (1� F (�))n�1 ����(52)

Therefore, from (51) and (52) we getZ ��

�

F1 (�) (1 + 

0 (�)) d� =

Z ��

�

F2 (�) d�

This completes our proof for lemma 3.�

Proof of lemma 5 Since by assumption Spp and Sqp are continuous 8 (p; q) 2 R2++, then
�Sq
Sp
Spp+Sqp 6= 0 8 (p; q) 2 R2++ implies either (a) 8 (p; q) 2 R2++ A (p; q) = �

Sq
Sp
Spp+Sqp > 0

or (b) 8 (p; q) 2 R2++ A (p; q) = �
Sq
Sp
Spp + Sqp < 0.

Note that

d

dq
[�Sp (� (q) ; q)] = �Spp�0 (q)� Spq

= �Spp

"
�
"
�Sq
Sp
Spq + Spc

00 + Sqq

�Sq
Sp
Spp + Sqp

##
� Spq (using 28)

=
SppSpc

00 + SppSqq � (Sqp)2

�Sq
Sp
Spp + Sqp

=
H (p; q)

A (p; q)
���� (53)
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First, suppose H (p; q) = SppSpc
00 + SppSqq � (Sqp)2 < 0. If A (p; q) > 0 then qI (�) >

qII (�) (from proposition 3). From (53) we have d
dq
[�Sp (� (q) ; q)] < 0. This implies

�Sp
�
�
�
qI (�)

�
; qI (�)

�
< �Sp

�
�
�
qII (�)

�
; qII (�)

�
. If A (p; q) < 0 then qI (�) < qII (�) (from

proposition 3). From (53) we have d
dq
[�Sp (� (q) ; q)] > 0. This implies�Sp

�
�
�
qI (�)

�
; qI (�)

�
<

�Sp
�
�
�
qII (�)

�
; qII (�)

�
. This again means �Sp

�
pI (�) ; qI (�)

�
< �Sp

�
pII (�) ; qII (�)

�
.

Now suppose H (p; q) = SppSpc
00 + SppSqq � (Sqp)2 � 0. If A (p; q) > 0 then qI (�) >

qII (�) (from proposition 3). From (53) we have d
dq
[�Sp (� (q) ; q)] � 0. This implies

�Sp
�
�
�
qI (�)

�
; qI (�)

�
� �Sp

�
�
�
qII (�)

�
; qII (�)

�
. This again means �Sp

�
pI (�) ; qI (�)

�
�

�Sp
�
pII (�) ; qII (�)

�
. If A (p; q) < 0 then qI (�) < qII (�) (from proposition 3). From (53) we

have d
dq
[�Sp (� (q) ; q)] � 0. This implies�Sp

�
�
�
qI (�)

�
; qI (�)

�
� �Sp

�
�
�
qII (�)

�
; qII (�)

�
.

This again means �Sp
�
pI (�) ; qI (�)

�
� �Sp

�
pII (�) ; qII (�)

�
.

Now note that using (53) we get

d

d�
[�Sp (� (q (�)) ; q (�))]

= �Spp�0 (q (�))
dq (�)

d�
� Spq

dq (�)

d�

=
dq(�)
d�

�Sq
Sp
Spp + Sqp

�
SppSpc

00 + SppSqq � (Sqp)2
�

=
H (p; q)

A (p; q)

dq (�)

d�
���� (54)

From proposition 3 we know that dq
I(�)
d�

and dqII(�)
d�

have the same sign as A (p; q). This means
that for both auction formats

dq(�)
d�

A (p; q)
> 0���� (55) .

Now since pI (�) = �
�
qI (�)

�
and pII (�) = �

�
qII (�)

�
for � 2

�
�; ��
�
we get that

�Sp
�
�
�
qI (�)

�
; qI (�)

�
= �Sp

�
pI (�) ; qI (�)

�
and� Sp

�
�
�
qII (�)

�
; qII (�)

�
= �Sp

�
pII (�) ; qII (�)

�
:

Hence, from (54) and (55) we get that if H (p; q) = SppSpc00 + SppSqq � (Sqp)2 < 0 then
d
d�

�
�Sp

�
pI (�) ; qI (�)

��
, d
d�

�
�Sp

�
pII (�) ; qII (�)

��
< 0. And if H (p; q) = SppSpc00+SppSqq�

(Sqp)
2 � 0 then d

d�

�
�Sp

�
pI (�) ; qI (�)

��
, d
d�

�
�Sp

�
pII (�) ; qII (�)

��
� 0.�

Proof of Proposition 10 Note that if Spc00 + Sqq = 0 and Sqp = 0 then B (p; q) =
�Sq
Sp
Spq + Spc

00 + Sqq = 0. From proposition 4 we know that B (p; q) = 0 implies that for all

�, pI (�) = pII (�). From lemma 1 we get that this implies pI (�) = pII (�) = pI
�
��
�
= pII

�
��
�
.

Since Spq = 0 we must have Sp
�
pI (�) ; qI (�)

�
= Sp

�
pI
�
��
�
; qI
�
��
��
and Sp

�
pII (�) ; qII (�)

�
=

Sp
�
pII
�
��
�
; qII

�
��
��
for all �. That is, for all �, Sp

�
pI (�) ; qI (�)

�
= Sp

�
pII (�) ; qII (�)

�
=

Sp
�
pI
�
��
�
; qI
�
��
��
.
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Using lemma 3 we know that

�I = S
�
pI
�
��
�
; qI
�
��
��
�
Z ��

�

F1 (�) (1 + 

0 (�))Sp

�
pI (�) ; qI (�)

�
d�

= S
�
pI
�
��
�
; qI
�
��
��
� Sp

�
pI
�
��
�
; qI
�
��
�� Z ��

�

F1 (�) (1 + 

0 (�)) d� ���� (56)

And

�II = S
�
pII
�
��
�
; qII

�
��
��
�
Z ��

�

F2 (�)Sp
�
pII (�) ; qII (�)

�
d�

= S
�
pII
�
��
�
; qII

�
��
��
� Sp

�
pII
�
��
�
; qII

�
��
�� Z ��

�

F2 (�) d� ���� (57)

From lemma 1 we know that pI
�
��
�
= pII

�
��
�
and qI

�
��
�
= qII

�
��
�
. From lemma 4 we

have
R ��
�
F2 (�) d� =

R ��
�
F1 (�) (1 + 


0 (�)) d�. Combining these with (56) and (57) we get that
�I = �II .�

Proof of Proposition 11 Note that
d

d�
SII (�) =

d

d�
S
�
pII (�) ; qII (�)

�
= Sp

�
pII (�) ; qII (�)

� dpII (�)
d�

+ Sq
�
pII (�) ; qII (�)

� dqII (�)
d�

= Sp
�
pII (�) ; qII (�)

� �dpII (�)
d�

� c0
�
qI (�)

� dqII (�)
d�

�
(using 25)

= Sp
�
pI (�) ; qI (�)

�
(by using 20b)���� (58)

Also note that from (58) we get

d2

d�2
SII (�) =

d

d�
Sp
�
pI (�) ; qI (�)

�
���� (59)

Since SppSpc00 + SppSqq � (Sqp)2 < 0 we have d
d�
Sp
�
pII (�) ; qII (�)

�
> 0 (using lemma 5).

Then, we have from (59)

d2

d�2
SII (�) > 0 for all � 2

�
�; ��
�
���� (60)

The above means that SII (�) is a strictly convex function. Using Jensen�s inequality we
know that

�II =

Z ��

�

SII (�) f2 (�) d� > S
II

 Z ��

�

�f2 (�) d�

!
���� (61)

Now note that since d
d�
SI (�) < 0 (proposition 7) we get that

�I =

Z ��

�

SI (�) f1 (�) d� < S
I (�)

Z ��

�

f1 (�) d� = S
I (�)���� (62)

Since SII
�R ��

�
�f2 (�) d�

�
> SI (�) using (61) and (62) we get that �I < �II .�
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Proof of Proposition 12 Note that �̂ = F�1
�
1
n

�
. We have the following:

�II =

Z ��

�

SII (�) f2 (�) d�

=

Z �̂

�

SII (�) f2 (�) d� +

Z ��

�̂

SII (�) f2 (�) d� ���� (63)

Similarly

�I =

Z ��

�

SI (�) f1 (�) d�

=

Z �̂

�

SI (�) f1 (�) d� +

Z ��

�̂

SI (�) f1 (�) d� ���� (64)

From proposition 5 we know that SII (�) > SI (�) and both SII (�) and SI (�) are strictly
decreasing in �. This meansZ �̂

�

SII (�) f2 (�) d� > SII
�
�̂
�Z �̂

�

f2 (�) d�

= SII
�
�̂
�
F2

�
�̂
�
���� (65)

and Z ��

�̂

SII (�) f2 (�) d� �
Z ��

�̂

SI (�) f1 (�) d�

>

Z ��

�̂

SI (�) [f2 (�)� f1 (�)] d� �� (66)

Since f2 (�)� f1 (�) > 0 for all � 2
�
�̂; ��
�
from (66) we get that

Z ��

�̂

SII (�) f2 (�) d� �
Z ��

�̂

SI (�) f1 (�) d�

> SI
�
��
� Z ��

�̂

[f2 (�)� f1 (�)] d�

= SI
�
��
� h
F1

�
�̂
�
� F2

�
�̂
�i
�� (67)

Since SI (�) is strictly decreasing in � we also have

Z �̂

�

SI (�) f1 (�) d� < SI (�)

Z �̂

�

f1 (�) d�

= SI (�)F1

�
�̂
�
���� (68)
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From (63)-(68) we get that

�II � �I

> SII
�
�̂
�
F2

�
�̂
�
� SI (�)F1

�
�̂
�
+ SI

�
��
� h
F1

�
�̂
�
� F2

�
�̂
�i
���� (69)

(78) implies that if

SII
�
�̂
�
�

SI (�)F1

�
�̂
�
� SI

�
��
� h
F1

�
�̂
�
� F2

�
�̂
�i

F2

�
�̂
�

then �II � �I > 0:���� (70)

From section 5.1 we know that

F1(x) = 1� (1� F (x))n and F2(x) = 1� (1� F (x))n � nF (x) (1� F (x))n�1 ��� (71)

Since F
�
�̂
�
= 1

n
we can compute F1

�
�̂
�
and F2

�
�̂
�
from (71).

Then we get

SII
�
�̂
�

�
SI (�)F1

�
�̂
�
� SI

�
��
� h
F1

�
�̂
�
� F2

�
�̂
�i

F2

�
�̂
�

()

SII
�
�̂
�

�
�
1�

�
n�1
n

�n�
SI (�)�

�
n�1
n

�n�1
SI
�
��
�

1�
�
n�1
n

�n � �n�1
n

�n�1 ���� (72)

Hence, using (70) and (72) we have that if

SII
�
�̂
�
�

�
1�

�
n�1
n

�n�
SI (�)�

�
n�1
n

�n�1
SI
�
��
�

1�
�
n�1
n

�n � �n�1
n

�n�1
then �II � �I > 0:

This completes proof of proposition 11.�
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