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Abstract

In this paper we consider the exogenous indifference classes model of

Barberá and Ehlers (2011) and Sato (2009) and analyze further the relationship be-

tween the structure of indifference classes across agents and dictatorship results. The

key to our approach is the pairwise partition graph. We provide necessary conditions

on these graphs for strategy-proofness and unanimity (or efficiency) to imply dictator-

ship. These conditions are not sufficient; we also provide separate stronger conditions

that are sufficient. A full characterization is obtained in the case of two agents for

domains where strategy-proofness and efficiency imply dictatorship.
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1 Introduction

The seminal work of Gibbard (1977) and Satterthwaite (1975) showed that all deterministic

strategy-proof SCFs with a range of at least three alternatives and defined over the complete

domain, is dictatorial. A large body of literature has since focused on relaxing the underlying

assumptions of this result. A natural way to do this is to impose domain restrictions. Indeed,

many real life problems have inherent domain restrictions. This paper is a contribution to

this stand of literature.

It is well known that the structure of strategy-proof SCFs becomes more complex when

indifference is permitted in individual preferences. 1 In this paper, we investigate a model

of domain restrictions involving indifference, the exogenous indifference class model first

introduced in Barberá and Ehlers (2011). In this model, the indifference classes of agents’

preferences is exogenously given. In particular, every individual has an exogenous partition

of the set of alternatives. An individual is always indifferent between alternatives a and b iff

both a and b belong to the same element of her partition set. But an individual’s ranking of

the different elements of her partition set, is complete.

This framework includes several well-studied models as special cases. For instance, the

case of private goods and selfish preferences is one where an individual is indifferent between

all alternatives that give her the same commodity bundle. It includes the one-sided matching

model studied in Svensson (1999),Pápai (2000). It also includes the Gibbard-Satterthwaite

framework where the elements of the partition are all singletons. Further examples are

provided in Sato (2009).

The goal of Barberá and Ehlers (2011) was to study the Arrovain aggregation issue in

the exogenous indifference class model. Sato (2009) examined the same model from the

perspective of strategic voting. This is an interesting model in this respect as well because

it covers both the complete domain over which strategy-proofness implies dictatorship (the

Gibbard-Sattherwaite Theorem) as well as the private good allocation model for which it is

well-known that a rich class of strategy-proof social choice functions exist (Pápai (2000)).

Sato showed that the number of common indifference classes is critical to the existence of

strategy-proof and non-dictatorial SCFs. He assumed that common indifference classes are

singletons and obtained two results. First, an onto and strategy-proof social choice function

is dictatorial whenever there are at least three common indifference classes. Second, the

same result holds when the number of common indifference classes is two, provided that

unanimity is strengthened to efficiency.

In this paper, we further examine the relationship between dictatorship results in this

model and the structure of indifference classes across agents. Our results are formulated in

terms of the pairwise partition graph induced by the indifference classes. Fix a pair of agents

i and j and their indifference classes. The partition graph for this pair is a bipartite graph

1See for instance, the literature of strategy-proofness in classical exchange economies originating from

Hurwicz (1972) and Satterthwaite and Sonnenschein (1981).

2



whose vertices are i and j’s indifference classes. There are no edges between the vertices

representing the indifference classes of a given agent; vertices for i and j’ have an edge if

the indifference classes representing these vertices have no common alternative. We show

that a necessary condition for strategy-proofness and unanimity to imply dictatorship in the

domain induced by a partition is that each associated pairwise partition graph is connected

with the degree of every vertex being at least two. This requirement can be weakened to

the graphs being connected (with possibly isolated vertices), if unanimity is replaced by

efficiency.

We are unfortunately, unable to show that these necessary conditions are sufficient for

dictatorship. However we are able to identify a number of stronger conditions that are

sufficient. The first of these is the existence of at least two common indifference classes with

no restrictions on their size - a result which clearly generalizes that of Sato. In addition we

have three sufficient conditions for the case of two voters. One applies to the case where

there is exactly one common indifference class while another shows that strategy-proofness

and unanimity imply dictatorship when the partition graph is a cycle. Finally, we show that

with the stronger assumption of efficiency, strategy-proofness implies dictatorship when the

partition graph is connected with possibly isolated vertices. The last condition implies that

we have a necessary and sufficient condition for dictatorship for the case of efficiency when

there are exactly two voters.

We now proceed to details.

2 The Model

Let A = {a, b, c, . . .} denote a finite set of alternatives with |A| = m. Let I = {1, ..., n},

n ≥ 2 be a finite set of agents. We impose restrictions on the domain of preferences following

Barberá and Ehlers (2011). Each agent i has a partition Si of A that is exogenously specified

and independent of preferences. A typical element of Si is sj
i where j = 1, . . . J . An ordering

R(Si) over A respects Si if (i) a pair of alternatives belonging to the same element of Si are

indifferent to each other and (ii) otherwise one is strictly preferred to the other. Let I(Si)

and P (Si) denote the symmetric and assymetric components of R(Si) respectively. Let R(Si)

be the set of all orderings respecting Si. Let S = (S1, . . . , Sn) be an n-tuple of partitions,

one for each agent. The admissible preference domain is R(S) =
∏

i∈N R(Si).

Observation 1 For a given partition Si, R(Si) consists of all possible strict orderings over

the elements of Si. If all agents have the same partition, the model reduces to the standard

voting model where the elements of the partition can be thought of as an alternative. The

essence of the problem is that partitions across agents can differ. Suitable choices of Si’s

yield the usual private goods allocation model with selfish preferences, the universal domain

with strict orderings as well as several interesting intermediate cases as shown in Sato (2009).
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Example 1 Let A = {a, b, c, d, e} and I = {1, 2}. Let S1 = {ab, c, de} and S2 = {ab, cd, e}.

Note that Table 1 and Table 2 below represent R(S1) and R(S2) respectively.

R1
1 R2

1 R3
1 R4

1 R5
1 R6

1

ab ab c c de de

c de ab de ab c

de c de ab c ab

Table 1: R(S1)

R1
2 R2

2 R3
2 R4

2 R5
2 R6

2

ab ab cd cd e e

cd e ab e ab cd

e cd e ab cd ab

Table 2: R(S2)

Whenever S or Si is fixed, R(S), R(S), R(Si), and R(Si) will be simply written as R, R,

Ri, and Ri respectively. Fix a partition Si. An indifference class of agent i is an element of

Si. For any Ri ∈ Ri and k ∈ {1, . . . , J}, the kth ranked indifference class in Ri is denoted

by rk(Ri) (in other words, there are k − 1 elements of Si ranked strictly higher than rk(Ri)).

For any D ⊆ A and Ri ∈ Ri, M(Ri, B) is the set of maximal elements in B according to Ri

i.e. M(Ri, B) = {a ∈ B : aRib for all b ∈ B}.

Let V (S) =
⋂n

i=1 Si denote the set of common indifference classes for the partition n-tuple

S. Also let v(S) = |V (S)| denote the number of common indifference classes. Note that in

Example 1, V (S) = {ab} and v(S) = 1. Moreover, in the private goods allocation model

with selfish preferences v(S) = 0 while in the standard voting model v(S) = m.

Definition 1 A social choice function (SCF) is a mapping f : R → A.

Each agent’s preference ordering is private information, i.e. known only to herself. These

preferences must therefore be elicited by the mechanism designer. If a SCF is strategy-proof,

then no agent can benefit by misrepresenting her preferences irrespective of her beliefs about

the preference announcement of other agent.

Definition 2 A SCF f : R → A is manipulable by agent i at a profile R ∈ R via R′

i if

f(R′

i, R−i)Pif(R).

A SCF f is strategy-proof if it is not manipulable by any agent at any profile.

The following additional properties of SCFs are standard.

Definition 3 A SCF f is unanimous if for all R ∈ R

f(R) ∈
⋂n

i=1 r1(Ri) whenever
⋂n

i=1 r1(Ri) 6= ∅.

A unanimous SCF always respects consensus whenever it exists, i.e. if all agents agree

on some set of alternatives as their best, then the SCF must pick an element from this set.

A stronger condition than unanimity is efficiency.

4



Definition 4 A SCF f is efficient if for all R ∈ R, for all a, b ∈ A

[

aRib for all i ∈ I

aPib for some j ∈ I

]

⇒ [f(R) 6= b]

If agents preferences are strict but sufficiently “rich”, strategy-proofness and unanimity

implies efficiency. In our setting where indifference is permitted, this proposition typically

does not hold. We therefore consider the consequences of unanimity and efficiency separately.

Definition 5 A SCF f is dictatorial if there exists an agent i such that f(R) ∈ r1(Ri) for

all R ∈ R.

An important feature of our model is that a SCF is not fully specified even when an

agent is a dictator since this agent will typically have more than one best alternative at any

profile.

An important subclass of dictatorial SCFs are serial dictatorships which we define below.

Definition 6 A priority σ is a one-to-one map σ : I → I. Let R be a profile and define

the sets Tσ(1)(R), Tσ(2)(R), . . . , Tσ(n)(R) inductively as follows:

Tσ(1)(R) = M(Rσ(1), A)

Tσ(2)(R) = M(Rσ(2), Tσ(1)(R))

...

Tσ(n)(R) = M(Rσ(n), Tσ(n−1)(R))

A serial dictatorship with respect to σ satisfies fσ(R) ∈ Tσ(n)(R) for all R.

A priority is a linear arrangement of agents where σ(1) is the first agent, σ(2) the second

and so on with σ(n) being the last. A serial dictatorship (with respect to σ) works as follows:

at any profile R, agent σ(1) picks her maximal elements in A, σ(2) picks her maximal elements

in σ(1)’s maximal elements and so on. Note that a serial dictatorship is not fully specified

because Tσ(n)(R) may contain more than one alternative.

3 Results

Our goal is to investigate the structure of indifference classes across agents for which una-

nimity (or efficiency) and strategy-proofness imply dictatorship. Our first step is to provide

necessary conditions for dictatorship. Subsequently, we provide various sufficient conditions.
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3.1 Necessary Conditions for Dictatorship

These condition will be formulated in terms of graphs arising from the set S. We briefly

review some basic graph-theoretic concepts.

A Graph G is a pair of finite sets V and E where V is the set of vertices or nodes and

E is the set of edges. An edge is a non-ordered pair of vertices. If e = {u, v} is an edge,

i.e. e ∈ E, then u and v are adjacent vertices and u and e are incident as are v and e. The

degree of a vertex v, degG(v) is the number of edges incident with v. An isolated vertex is

a vertex with degree zero. A path uv is a finite sequence of distinct vertices (v1, v2, . . . , vk)

where v1 = u, vk = v and {vi, vi+1} ∈ E for all i ∈ {1, . . . , k − 1}. If the path uv exist, then

u and v are connected. A graph is connected if all pairs of distinct vertices are connected.

A graph is discrete if E = {∅}. A graph is a connected graph with isolated vertices if (i) it is

not discrete and (ii) the sub-graph consisting of non-isolated vertices is connected. A graph

is bipartite if the vertices of G can be partitioned in to two subsets V1 and V2 in such a way

that no two vertices in the same subset have an edge.

Let i, j be agents and Si and Sj be partitions for i and j respectively. The graph G(Si, Sj)

is constructed as follows:

(i) The set V = V1 ∪ V2 where V1 = Si and V2 = Sj.

(ii) There are no edges between vertices in V1 or between vertices in V2.

(iii) There is an edge between sl
i and sk

j iff sl
i ∩ sk

j 6= ∅ for all sl
i ∈ Si and sk

j ∈ Sj.

The graph G(Si, Sj) is bipartite. We refer to it as the Partition Graph for i and j. We

provide several examples of such graphs below.

Example 2 Let I = {j, i}, A = {a, b, c, d, e, f, g, h}, S̄j = {ab, cd, ef, gh} and S̄i =

{ac, bd, eg, fh}. The induced partition Graph is shown in Figure 1 and it is not connected.

There is no path between gh to fh. Also every vertex of it has degree 2.

ab

cd

ef

gh

ac

bd

eg

fh

Figure 1: Disconnected graph

ab

c

d

e

a

be

cd

Figure 2: A graph with a degree one ver-

tex
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Example 3 Let I = {j, i}, A = {a, b, c, d, e}, Ŝj = {ab, c, d, e} and Ŝi = {a, be, cd}. Figure

2 shows the induced partition graph which is connected. Note that degree of the vertex ab

is 1.

Example 4 Let I = {j, i}, A = {a, b, c, d, e}, S̃j = {ab, c, d, e} and S̃i = {a, be, cd}. The

induced partition graph is shown in Figure 3 which is not connected. Note that degree of

the vertex abc is 0.

abc

d

e

a

bd

ce

Figure 3: A graph with an isolated vertex

abcd

ef

gh

ag

bh

ce

df

Figure 4: A non-connected graph with

isolated vertices

Example 5 Let I = {j, i}, A = {a, b, c, d, e, f, g, h}, So
j = {abcd, ef, gh} and So

i =

{ag, bh, ce, df}. The induced partition graph is shown in Figure 4 and it is not connected.

Moreover it is not a connected graph with isolated vertices.

Example 6 (The Allocation Problem with Selfish Preferences) There are three objects,

say houses a, b and c which have to be allocated among three agents. An allocation is

an ordered triple such as abc where the first, second and third components refer to the

houses allocated to agents 1, 2 and 3 respectively. The set of allocations is the set A =

{abc, acb, bac, bca, cab, cba}. Consider the standard model of selfish preferences. The induced

partition S∗ = (S∗

1 , S∗

2 , S∗

3) is as follows:

• S∗

1 = {{abc, acb}, {bac, bca}, {cab, cba}}.

• S∗

2 = {{abc, cba}, {bac, cab}, {bca, acb}}.

• S∗

3 = {{abc, bac}, {cba, bca}, {cab, acb}}.

The Partition Graph G(S∗

1 , S∗

2) is shown in Figure 5. Note that there are no common

indifference classes. Clearly G(S∗

1 , S∗

2) is not connected, for instance there is no path between

{cab, cba} and {bca, acb}.

Example 7 Let I = {j, i}, A = {a, b, c, d, e, f, g, h, i}, S ′

j = {abc, def, ghi} and S ′

i =

{adg, beh, cfi}. The induced partition graph in Figure 6, is a discrete graph.
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{abc, acb}

{bac, bca}

{cab, cba}

{abc, cba}

{bac, cab}

{bca, acb}

Figure 5: G(S∗

1 , S∗

2)

abc

def

ghi

adg

beh

cfi

Figure 6: Discrete graph

Observation 2 Suppose I = {i, j} and S is such that G(Si, Sj) is discrete (Example 7).

Then every unanimous SCF is dictatorial. Therefore the discrete partition graph case is

trivial when there are two agents and can be excluded from consideration. In our necessary

conditions (Theorem 1 below), we assume that the partition graph is not discrete for all

pairs of agents. Note that if there are three or more agents, the pairwise discreteness of all

partition graphs does not imply that every unanimous SCF is dictatorial. We are unable to

provide an answer for the case where partition graphs are pairwise discrete (or even some of

them are pairwise discrete) but unanimity does not imply dictatorship.

Theorem 1 Let S = (S1, . . . , Sn) be such that G(Si, Sj) is not discrete for all i, j ∈ I.

A. Suppose [f : R → A is strategy-proof and unanimous ⇒ f is dictarorial ]. Then

G(Si, Sj) is connected and the degree of every vertex is at least 2 for all i, j ∈ I.

B. Suppose [f : R → A is strategy-proof and efficient ⇒ f is dictarorial ]. Then G(Si, Sj)

is a connected graph with isolated vertices for all i, j ∈ I.

Proof : We first prove Part A. Pick an arbitrary pair i, j ∈ I. We consider three cases

regarding G(Si, Sj): (I) it is not connected but has no isolated vertices (such as Example 2)

(II) it is connected and has a vertex with degree 1 (Example 3) and (III) it has an isolated

vertex (Example 4). These cases cover all possible cases in the statement of A and we show

that in each case it is possible to construct a unanimous, strategy-proof and non-dictatorial

SCF f : R → A.

Case I: The vertices of G(Si, Sj) can be partitioned into subsets V ′ and V ′′ with |V ′|,

|V ′′| ≥ 2 and {u, v} /∈ E for all u ∈ V ′ and v ∈ V ′′ (In Figure 2, V ′ is the set {ab, cd, eg, fh}

and V ′′ is the set {ac, bd, ef, gh}). We fix two priority functions σ1 and σ2 as follows:

σ1(1) = i, σ1(2) = j, σ2(1) = j, σ2(2) = i and σ1(k) = σ2(k) for all k 6= 1, 2. Let D be the

set of preference profiles such that r1(Ri), r1(Rj) ∈ V ′. The SCF will be a serial dictatorship

with priority σ1 in the domain D and σ2 elsewhere, i.e.

f(R) =

{

a serial dictatorship with respect to the priority function σ1 if R ∈ D

a serial dictatorship with respect to the priority function σ2 if R /∈ D

We first check the strategy-proofness of f . Observe that an agent k 6= i, j cannot ma-

nipulate because of the nature of serial dictatorships and the fact that they cannot affect
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their priority. Consider a profile R ∈ D. The outcome is a Rj-maximal element outcome

in the first-ranked indifference class of i in Ri, say s1
i . Since i is a dictator, she does not

manipulate. Clearly j cannot manipulate via an ordering R′

j such that (Ri, R′

j, . . .) ∈ D

because i will remain the dictator. Suppose j attempts to manipulate via an ordering R′

j

such that (Ri, R′

j, . . .) /∈ D. He is now dictator and the outcome belongs to r1(R
′

j). However,

r1(R
′

j) ∩ s1
i 6= ∅ by properties of the sets V ′ and V ′′; the outcome is therefore belongs to s1

i .

Hence j cannot manipulate. The only remaining case to consider is a possible manipulation

by i from a profile not belonging to D to a profile in D. The argument to show that i cannot

gain is identical to the case where j attempts to manipulate from D to a profile outside it.

Unanimity is satisfied because f is a serial dictatorship at every profile. There are profiles

in D and outside it where i and j’s best ranked alternatives have an empty interesection.

Therefore, neither i nor j are dictators. If l 6= i, j is a dictator, then G(Si, Sl) and G(Sj, Gl)

are discrete, contradicting our assumption- i.e. f is non-dictatorial.

Case II: Let u be a vertex with degree 1. Assume w.l.o.g that u ∈ Sj and u = sk
j . By

assumption, there exists a (unique) vertex sm
i ∈ Si such that {sm

i , sk
j } ∈ E (For instance in

Example 3, sk
j and sm

i are ab and cd respectively). Let D be the set of preference profiles

such that r1(Ri) = sm
i . We fix a priority function σ such that σ(1) = j and σ(2) = i. Let

R ∈ D and define the sets T ∗

σ(1)(R), T ∗

σ(2)(R), . . . , T ∗

σ(n)(R) inductively as follows:

T ∗

σ(1)(R) = M(Rσ(1), sk
j ∪ sm

i )

T ∗

σ(2)(R) = M(Rσ(2), T ∗

σ(1))

...

T ∗

σ(n)(R) = M(Rσ(n), T ∗

σ(n−1)(R))

We define a SCF fσ
1 : D → A as follows: fσ

1 (R) ∈ T ∗

σ(n)(R) for all R ∈ D.

Let σ̄ be a priority function such that σ̄(1) = i, σ̄(2) = j and σ̄(k) = σ(k) for all k 6= 1, 2.

We define the following SCF f : R → A:

f(R) =

{

fσ
1 (R) if R ∈ D

a serial dictatorship with respect to the priority function σ̄ if R /∈ D

In order to check the strategy-proofness of f , it suffices to check that i and j cannot

manipulate. Consider R ∈ D - the outcome is a Rj-maximal element in sk
j ∪ sm

i . Agent j

cannot manipulate since (Ri, R′

j . . .) ∈ D for all R′

j. If the outcome belongs to sm
i then clearly

i cannot manipulate. Otherwise, the outcome belongs to sk
j . Since sk

j is a vertex with degree

one, it has a non-empty intersection with every indifference class other than sm
i . Hence the

outcome belongs to r2(Ri). By construction, i cannot obtain an alternative in r1(Ri) = sm
i .

If R /∈ D, agent i is dictator and cannot manipulate. Note that j cannot manipulate at

R /∈ D because (R′

j, Ri, . . .) /∈ D for all R′

j.
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Unanimity and non-dictatorship of f is easily verified.

Case III: Let u be a vertex with degree 0. Assume w.l.o.g that u ∈ Sj and u = sk
j . Since

G(Si, Sj) is not discrete, there exists an edge {sm
i , sl

j} where sk
j 6= sl

j (In Figure 3, the node

sk
j and the edge {sm

i , sl
j} are abc and {d, a} respectively). Let D be the set of preference

profiles where r1(Ri) = sm
i , r1(Rj) = sl

j and r2(Rj) = sk
j . We fix a priority function σ such

that σ(1) = j and σ(2) = i. Let R ∈ D and define the sets T ∗

σ(1)(R), T ∗

σ(2)(R), . . . , T ∗

σ(n)(R)

inductively as follows:

T ∗

σ(1)(R) = sk
j

T ∗

σ(2)(R) = r2(Rσ(2)) ∩ sk
j

T ∗

σ(3)(R) = M(Rσ(3), T ∗

σ(2)(R))

...

T ∗

σ(n)(R) = M(Rσ(n), T ∗

σ(n−1)(R))

We define a SCF fσ
1 : D → A as follows: fσ

1 (R) ∈ T ∗

σ(n)(R) for all R ∈ D.

Let σ̄ be a priority function such that σ̄(1) = i, σ̄(2) = j and σ̄(k) = σ(k) for all k 6= 1, 2.

We define the following SCF f : R → A:

f(R) =

{

fσ
1 (R) if R ∈ D

a serial dictatorship with respect to the priority function σ̄ if R /∈ D

We check the strategy-proofness of f . Again, it suffices to check that i and j cannot ma-

nipulate. If R ∈ D, the outcome belongs to r2(Rj) i.e. sk
j . Agent j cannot manipulate for

the following reason: for any R′

j if (i) (Ri, R′

j . . .) ∈ D, then the outcome belongs to sk
j (ii)

(Ri, R′

j . . .) /∈ D then the outcome does not belong to r1(Rj) because j is the dictator “after” i.

Consider a possible manipulation by i from R. Since sk
j is an isolated vertex, sk

j ∩r2(Ri) 6= ∅.

Hence i obtains a second-ranked alternative in Ri. For any R′

i (i) if (Rj, R′

i . . .) ∈ D the

outcome belongs to r2(R
′

i) and r1(Ri) ∩ r2(R
′

i) = ∅ and (ii) if (Rj, R′

i . . .) /∈ D the outcome

belongs to r1(R
′

i) and r1(Ri) ∩ r1(R
′

i) = ∅. If R /∈ D, then i is a dictator and cannot ma-

nipulate. For j, the only case to consider is the one where the manipulation R′

j is such that

(R′

j, Ri, . . .) ∈ D. In this case, the outcome is in sk
j . At R the outcome is a Rj- maximal

element in sm
i . Since sk

j is an isolated vertex, it has elements in common with sm
i . Hence

the outcome at R is weakly preferred to alternatives in sk
j accrding to Rj. Thus, j cannot

manipulate.

It is again straightforward to show that f is unanimous and non-dictatorial.

We now prove Part B. Pick an arbitrary pair i, j ∈ I. Suppose G(Si, Sj) is not a connected

graph with isolated vertices i.e. the sub-graph of G(Si, Sj) consisting of non-isolated vertices

is not connected. The vertices of G(Si, Sj) can be partitioned into subsets V ′ and V ′′ with
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• |V ′|, |V ′′| ≥ 2.

• {u, v} /∈ E for all u ∈ V ′ and v ∈ V ′′.

• The sub-graphs with vertices V ′ and V ′′ are not discrete.

For instance in Figure 4, V ′ is the set {abcd, ef, ag, bh} and V ′′ is the set {gh, ce, df}.

We now construct the same SCF as in Case I of Part A. This SCF is efficient, strategy-proof

and non-dictatorial as required. �

Observation 3 The SCFs constructed in Cases II and III of Part A are not efficient. For

instance in Example 3 of Case II, the outcome at (R1, R2) (shown in Table 3) is b and in

Example 4 of Case III, the outcome at (R̄1, R̄2) (shown in Table 4) is c.

R1 R2

e cd

ab be

d a

c

Table 3: (R1, R2)

R̄1 R̄2

d a

abc ce

e bd

Table 4: (R̄1, R̄2)

Unfortunately the necessary condition in Part A of Theorem 1 is not sufficient. This is

shown by the Example 8. In the next section, we will show that the condition in Part B is

sufficient when there are two agents (Part D of Theorem 2).

ab

c

e

df

a

be

cd

f

Figure 7: G(S1, S2)

Example 8 Let I = {1, 2} and A = {a, b, c, d, e, f}. Figure 7 shows the induced partition

graph where S1 = {ab, c, e, df} and S2 = {a, be, cd, f}. Observe that this graph is connected

and each vertex has degree atleast 2.

The SCF is described as follows:
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f(R) =























































M(R1, r1(R2)) if r1(R2) 6= a

M(R1, {a, d}) if r1(R2) = a and r2(R2) = cd

M(R1, {a, f}) if r1(R2) = a and r2(R2) = f

a if r1(R2) = a, r2(R2) = be,

and ab is preferred to df according to R1

b if r1(R2) = a, r2(R2) = be,

and df is preferred to ab according to R1

The SCF is a serial dictatorship where 2 picks first and 1 second, for all profiles except

those where the first-ranked alternative of 2 is a. In the latter case, the outcome specified

depends on 2’s second-ranked alternatives and 1’s preferences. In all cases, 2 gets at least a

second-ranked alternative. The only profiles that are candidates for manipulation by 2 are

those where her first-ranked alternative is a but the outcome is not. However, in these cases,

df is preferred to ab for 1 and 2 cannot obtain a by misrepresentation. The outcome at all

profiles is determined by maximizing 1’s preferences over a set determined by 2’s ordering;

hence 1 cannot manipulate.

It is straightforward to verify that the SCF is non-dictatorial and satisfies unanimity.

3.2 Sufficient Conditions for Dictatorship

In this section we provide various sufficient conditions for dictatorship. We introduce some

definitions.

Definition 7 The partition S satisfies Condition α, if (i) v(S) ≥ 2 and (ii) there exists an

agent i for whom Si has at least three elements.

Definition 8 Let I = {i, j}. The partition S satisfies Condition β if (i) v(S) = 1 and (ii)

there exist sk
i , sr

i ∈ Si, sk′

i , sr′

i ∈ Sj such that sk
i ⊂ sk′

j , sr′

j ⊂ sr
i and sk′

j ∩ sr
i = ∅ (the subset

relations are strict).

a

bc

de

f

a

bc

d

ef

Figure 8: Partition graph for Condition α

a

bc

d

ef

a

b

de

cf

Figure 9: Partition graph for Condition β
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Observation 4 Figure 8 shows an example of a partition graph for two players i and

j where S satisfies Condition α (for instance, Si = {a, bc, de, f}, Sj = {a, bc, d, ef} and

V (S) = {a, bc}). Observe that the vertices representing the elements of V (S) have an edge

with all vertices of the other agent (other than itself). This fact together with the assumption

that V (S) ≥ 2 ensures that the partition graph for any pair of agents is connected and the

degree of every vertex is at least two.

Figure 9 illustrates Condition β (for instance, Si = {a, bc, d, ef}, Sj = {a, b, de, cf},

V (S) = a and sk
i , sr

i , sk′

i , sr′

i are d, bc, de, b respectively). Note that the vertex representing

the common element of the partition has an edge with all vertices of the other agent (other

than itself). In addition, sk
i has an edge with all vertices of other agent except sk′

j . Similarly,

sr′

j has an edge with all vertices of other agent except sr
i . This ensures that the graph is

connected and the degree of every vertex other than sk′

j and sr
i is at least two. The assumption

that sk′

j ∩ sr
i = ∅ guarantees that the degree of these vertices is also at least two.

Theorem 2 Let S = (S1, . . . , Sn) be a partition, n ≥ 2.

A. If S satisfies Condition α, then a strategy-proof and unanimous SCF is dictatorial.

B. If S satisfies Condition β, then a strategy-proof and unanimous SCF is dictatorial.

C. If I = {i, j} and G(Si, Sj) is a cycle graph 2, then a strategy-proof and unanimous SCF

is dictatorial.

D. If I = {i, j} and G(Si, Sj) is a connected graph with isolated vertices, then a strategy-

proof and efficient SCF is dictatorial.

Proof of Part A: Let V (S) = {s1, s2, ..., sJ} where J ≥ 2 and let f : R → A be unanimous

and strategy-proof SCF. We prove the Theorem via the following claims.

Claim 1 Let R, R′ ∈ R be such that

(i) f(R) ∈ sj where sj ∈ V (S) and

(ii) {a ∈ A|f(R)Ria} ⊆ {a ∈ A|f(R)R′

ia} for all i.

Then f(R′) ∈ sj.

Proof : Pick an arbitrary agent i. We will show that f(R′

i, R−i) ∈ sj. Suppose not, i.e.

f(R′

1, R−1) /∈ sj. Clearly either f(R)Pif(R′

i, R−i) or f(R′

i, R−i)Pif(R) holds. The latter

case immediately contradicts the strategy-proofness of f . If the former case holds, then

condition (ii) above implies f(R)P ′

i f(R′

i, R−i). However, i will manipulate at (R′

i, R−i) via

Ri contradicting strategy-proofness again.

2 A cycle graph is a connected graph with the degree of every vertex being 2.
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The Claim is established by repeated application of the same argument for different

agents. �

Sato (2009) proves counterparts of Claim 1 when the common indifference classes are

singletons.

Claim 2 There exists an agent k ∈ I for whom the follwing holds: for all R ∈ R, f(R) ∈

r1(Rk) whenever r1(Rk) ∈ V (S).

Proof : By assumption there exists sj, sk ∈ V (S). Let R1 denote the profile where sj and

sk are the top and bottom indifference classes respectively for all agents. By unanimity,

f(R1) ∈ sj.

Construct new profiles by progressively making sk and sj the best and second-best in-

difference classes respectively in each agent’s preferenes. After changing the prefereces of all

agents, the outcome must belong to sk, by unanimity. Therefore, there must exist an agent i

such that (i) before agent i changes his preference, the outcome belongs to sj and (ii) when

i lifts sk to the top of his preference, the outcome is no longer in sj. If the outcome does

not belong to either sj or sk, agent i will manipulate by reverting to the ordering where sj

is first and sk is last and thereby obtaining an outcome in sj. Therefore the outcome when

i changes her ordering, must belong to sk. Let R2 denote the profile where which agents 1

through i have sk first and sj second. By the earlier argument f(R2) ∈ sk.

Next interchange sj and sk at R2
i . Let R3 denote the resulting preference profile. By

stragegy-proofness, f(R3) ∈ sj.

At R2 and R3, lower sj to the bottom for 1, 2, ..., i − 1 and to the second last position for

i+1, ..., n. Let R2′

and R3′

denote the resulting profiles respectively. By Claim 1, f(R2′

) ∈ sk.

In order for i not to manipulate at R3′

, we must have f(R3′

) ∈ {sk
⋃

sj}. But if f(R3′

) ∈ sk,

then Claim 1, implies f(R3) ∈ sk, which is a contradiction. Therefore f(R3′

) ∈ sj.

Let d ∈ A\{sj
⋃

sk} and let sd
i denote the indifference class of agent i to which d belongs.

Let R4 be the profile shown in Table 3.

Agent 1 . . . i-1 i i+1 . . . n

Best . . . . . sj . . . . .

. . . . . sd
i . . . . .

. . . . . sk . . . . .

sd
1 . . . sd

i−1 . sd
i+1 . . . sd

n

sk . . . sk . sj . . . sj

Worst sj . . . sj . sk . . . sk

Table 5: R4
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Since f(R3′

) ∈ sj, Claim 1 implies that f(R4) ∈ sj. Let R5 be the profile obtained by

switching sj and sk at R4 for agents i+1 through n. By strategy-proofness f(R5) ∈ {sj
⋃

sk}.

Suppose f(R5) ∈ sk. Let R6 be the profile in Table 4. Since f(R5) ∈ sk, Claim 1 implies

f(R6) ∈ sk. But this contradicts unanimity at R6. Hence f(R5) ∈ sj. Since sj is bottom

ranked for all agents other than i and top ranked for i, it follows that the outcome belongs

to sj whenever agent i ranks sj first.

Agent 1 . . . i-1 i i+1 . . . n

Best sd
1 . . . sd

i−1 sd
i sd

i+1 . . . sd
n

. . . . . sj . . . . .

. . . . . sk . . . . .

. . . . . . . . . . .

sk . . . sk . sk . . . sk

Worst sj . . . sj . sj . . . sj

Table 6: R6

Consider sk ∈ V (S) with sk distinct from sj. The earlier arguments can be replicated to

show that there exists an agent i′ such that the outcome belongs to sk whenever i′ ranks sk

first. If i and i′ are distinct, the single-valuedness of f is contradicted at any profile where

sj and sk are ranked first by i and i′ respectively. This establishes the Claim. �

We now complete the proof by showing that agent i identified in Claim 2 is a dictator.

Suppose this is false, i.e. there exists profile R̄ and f(R) /∈ r1(R̄i). In order not to

contradict Claim 2 immediately, r1(R̄i) /∈ V (S). Let sj be the top-ranked indifference

class in V (S) in R̄i. By assumption there exists sk ∈ V (S) distinct from sj. Construct

profile R7 as follows: (i) preferences of all agents other than i are the same as in R̄ and

(ii) r1(R
7
i ) = r1(R̄i) and r2(R

7
i ) = sk. By strategy-proofness f(R7) /∈ r1(R

7
i ). However, i

can obtain an alternative in sk by raising sk to the top of her ordering (Claim 2). Hence

f(R7) ∈ sk. Consider profiles R8 and R9 described in Tables 5 and 6 below.

By Claim 1 f(R8) ∈ sk. In addition strategy-proofness and Claim 2 imply f(R9) ∈ sj.

Pick an arbitrary alternative d in r1(R̄i) and let sd
l denote the indifference class to which

d belongs for all agents l 6= i. Observe that sd
l is strictly preferred to sj for all l in R9.

15



Agent 1 . . . i-1 i i+1 . . . n

Best sk . . . sk r1(R̄i) sk . . . sk

. . . . . sk . . . . .

. . . . . . . . . . .

Worst sj . . . sj . sj . . . sj

Table 7: R8

Agent 1 . . . i-1 i i+1 . . . n

Best sk . . . sk r1(R̄i) sk . . . sk

. . . . . sj . . . . .

. . . . . . . . . . .

Worst sj . . . sj . sj . . . sj

Table 8: R9

Construct profile R10 by raising sd
l to the top of R9

l for all l 6= i while keeping i’s preferences

fixed at R9
i . By Claim 1, f(R10) ∈ sj. However unanimity requires f(R10) ∈ ∩

l
r1(R

10
l ) where

d ∈ ∩
l
r1(R

10
l ) 6= ∅. We have a contradiction. �

Proof of Part B: Let S satisfy Condition β and suppose f is a strategy-proof and unanimous

SCF defined for I = {i, j}. In order to simplify the notation, we will denote the commom

indifference class by s, the sets sk
i and sr

i by y and X respectively and sk′

i , sr′

i by Y and x

respectively. Condition β requires y ⊂ Y , x ⊂ X and X ∩ Y = ∅.

The proof uses the following claim.

Claim 3 For all profiles R such that r1(Ri) = s and r1(Rj) = Y , f(R) ∈ s ∪ Y .

Proof : Suppose not, i.e. there exists R′ with r1(R
′

i) = s, r1(R
′

j) = Y and f(R′) /∈ {s ∪

Y }. Let R′′

i and R′′

j be such that r1(R
′′

i ) = s, r2(R
′′

i ) = y, r1(R
′′

j ) = Y and r2(R
′′

j ) = s.

Strategy-proofness and unanimity imply f(R′

i, R′′

j ) ∈ s and f(R′′

i , R′′

j ) ∈ s. However the

same arguments also imply f(R′′

i , R′

j) ∈ y and f(R′′

i , R′′

j ) ∈ Y . This leads to a contradiction

since f is a function. 3
�

Let R̄ be such that r1(R̄i) = s, r1(R̄j) = Y . By Claim 3, f(R̄i, R̄j) ∈ s ∪ Y . We complete

the proof by considering the following two cases.

Case 1: f(R̄) ∈ s. Using the following sequence of claims we show that i is the dictator.

3These arguments closely follow counterparts in Sen (2001).
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Claim 4 For all profiles R such that r1(Ri) = s, f(R) ∈ s.

Proof : Let R∗ be such that R∗

i = R̄i, r1(R
∗

j ) = Y and s is bottom-ranked according to

R∗

j . If we can show f(R∗) ∈ s, then we are done. By Claim 3, f(R∗) ∈ s ∪ Y . Note that

f(R∗) /∈ Y , otherwise j will manipulate at R̄ via R∗

j . Therefore, f(R∗) ∈ s. �

Claim 5 For all profiles R such that r1(Ri) = y, f(R) ∈ y.

Proof : Consider the profiles R1, R2, R3 and R4 shown in Tables 9, 10, 11 and 12 respectively.

The ranking of indifference classes other than the top three is the same across the four profiles,

for both agents.

Agent i j

Best y x

s Y

X s

. .

. .

Worst . .

Table 9: R1

Agent i j

Best y x

X Y

s s

. .

. .

Worst . .

Table 10: R2

Agent i j

Best y x

X s

s Y

. .

. .

Worst . .

Table 11: R3

Agent i j

Best y x

s s

X Y

. .

. .

Worst . .

Table 12: R4

We begin by showing f(R1) ∈ y. If f(R1) ∈ A \ {s ∪ y}, i will manipulate via an ordering

where s is top-ranked, thereby obtaining an alternative in s (Claim 4). If f(R1) ∈ s, j will

manipulate via an ordering where Y is at the top obtaining an alternative in Y by unanimity.

Therefore f(R1) ∈ y.

Strategy-proofness implies f(R2) ∈ y. Our next step is to show f(R3) ∈ y. If f(R3) ∈

A\{y∪X}, i will manipulate via an ordering where X is top-ranked, obtaining an alternative

in X by unanimity. If f(R3) ∈ X \ x, the outcome is ranked below Y by j (since X ∩ Y = ∅)

and she will manipulate via an ordering where Y is topranked, obtaining an alternative in

Y by unanimity. If f(R3) ∈ x, j will manipulate at R2 via R3
j . Therefore f(R3) ∈ y. Again

strategy-proofness implies f(R4) ∈ y.

Finally, let R5 be a profile such that R5
i = R4

i and Y is bottom-ranked according to R5
j .

We complete the proof by showing that f(R5) ∈ y. If f(R5) ∈ A \ {s ∪ y}, then i will

manipulate via an ordering where s is top-ranked, obtaining an alternative in s by Claim 4.

If f(R5) ∈ s, j will manipulate at R4 via R5
j . Therefore f(R5) ∈ y. �

Claim 6 For all profiles R such that r1(Ri) = X, f(R) ∈ X.

Proof : Suppose the Claim is false, i.e. there exists a profile R̃ with r1(R̃i) = X but

f(R̃) /∈ X. Let R′′

i be such that r1(R
′′

i ) = X and r2(
′′

i ) = y. By strategy-proofness and Claim
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5, f(R′′

i , R̃j) ∈ y. Let R′′

j be such that top and bottom ranked indifference classes are Y and s

respectively. Since y ⊂ Y , strategy-proofness implies that f(R′′

i , R′′

j ) ∈ Y . Since X ∩ Y = ∅,

f(R′′

i , R′′

j ) /∈ X. Let R′′′

i be such that r1(R
′′′

i ) = X and r2(R
′′

i ) = s. By strategy-proofness

and Claim 4, f(R′′′

i , R′′

j ) ∈ s. If f(R′′′

i , R′′

j ) ∈ s, then j will manipulate via an ordering whose

top-ranked indifference class has a non-empty interesection with X. This proves the Claim.

�

Claim 7 For all profiles R, f(R) ∈ r1(Ri).

Proof : Suppose the Claim is false, i.e. there exists a profile R but f(R) /∈ r1(Ri) and

r1(Ri) 6= X, y, s. Let r1(Ri) = Z. The following cases arise.

Case 1: Z ∩ Y = ∅. The arguments in Claim 6 with Z substituted for X can be replicated

to establish f(R) ∈ Z.

Case 2: Z ∩Y 6= ∅. At Rj, lift Y to the top keeping the relative ranking of other indifference

classes same and let R′

j be the resulting ordering. By unanimity, f(Ri, R′

j) ∈ Z ∩ Y . Let

R′

i be such that r1(R
′

i) = Z and r2(R
′

i) = s. By unanimity once again, f(R′

i, R′

j) ∈ Z ∩ Y .

We will now move Y downwards by progressive local switches in order to return to Rj while

arguing that the outcome remains in Z, thereby contradicting our initial assumption.

Suppose such a local switch does not involve s and Y is above s in j’s ranking. The

outcome at such a profile cannot an alternative not in Z ∪s; in that case, i would manipulate

by raising s to the top and getting s (Claim 4). Nor can the outcome belong to s because j

would manipulate via R′

j obtaining an alternative in Y . Consequently, the outcome at such

a profile must belong to Z.

Now suppose that we reach a profile where Y and s are contiguous in j’s ordering and

Y is above s. Let this ordering for j be denoted by R̂j. By the arguments of the previous

paragraph, f(R′

i, R̂j) ∈ Z. If f(R′

i, R̂j) /∈ Y , then the outcome must in fact, be above Y in

R̂j. By switching Y and s in R̂j, the outcome must remain in Z (by the earlier) arguments.

Continuing with the switches as required, we can conclude that f(R′

i, Rj) and f(R) both

belong to Z contradicting our assumption.

Suppose therefore that f(R′

i, R̂j) ∈ Y , i.e. f(R′

i, R̂j) ∈ Y ∩ Z. Let R̂i be an ordering

where Z and X are ranked first and second respectively. By strategy-proofness, f(R̂) ∈ Z.

Now switch Y and s in R̂j. The outcome at this profile must belong to Y ∪ s. Since

X ∩ (Y ∪ s) = ∅, the outcome does not belong to X. If the outcome is ranked below X in

R̂i, i will manipulate by raising X to the top (Claim 6). Therefore the outcome belongs to

Z. Now reverting back to R′

i, we observe that the outcome remains in Z. Continuing with

the switches in j’s ordering, we conclude that f(R′

i, Rj) and f(R) both belong to Z, once

again contradicting our assumption. �

We have established that i is a dictator completing Case 1.

Case 2: Suppose f(R̄) ∈ Y . We will show that j is the dictator.
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Claim 8 For all profiles R, such that r1(Rj) = s, f(R) ∈ s .

Proof : Consider the profiles R6, R7, R8 and R9 shown in Tables 13, 14, 15 and 16 respec-

tively. The ranking of indifference classes other than the top three is the same across the

four profiles, for both agents.

Agent i j

Best s Y

X s

y x

. .

. .

Worst . .

Table 13: R6

Agent i j

Best X Y

s s

y x

. .

. .

Worst . .

Table 14: R7

Agent i j

Best X s

s Y

y x

. .

. .

Worst . .

Table 15: R8

Agent i j

Best X s

s x

y Y

. .

. .

Worst . .

Table 16: R9

By Claim 3, f(R6
i , R̄j) ∈ s ∪ Y . If f(R6

i , R̄j) ∈ s, then i will manipulate at R̄ via R6
i .

Therefore f(R6
i , R̄j) ∈ Y . Strategy-proofness implies f(R6) ∈ Y . Strategy-proofness and

X ∩ Y = ∅ implies f(R7) /∈ {s ∪ X}; otherwise i will manipulate at R6 via R7
i . Unanimity

implies that f(R7) ∈ y. Since y ⊂ Y , f(R7) ∈ Y . Note that strategy-proofness implies

f(R8) ∈ s ∪ Y , because R8 is obtained by switch s and Y for j at R7. However, f(R8) ∈ Y

would lead to manipulation by i via an ordering where s is top-ranked. Hence f(R8) ∈ s.

By strategy-proofness, f(R9) ∈ s. Let R10 be such that R10
j = R9

j , r1(R
10
i ) = X and s is at

the bottom according to R10
i . Note that f(R10) ∈ x ∪ s, otherwise j will manipulate via an

ordering where x is top-ranked, obtaining an alternative in x by unanimity. But f(R10) /∈ x,

otherwise i would manipulate at R9 via R10
i . Therefore, f(R10) ∈ s. This establishes the

fact that f(R) ∈ s for all R such that r1(Rj) = s. �

Claims 5, 6 and 7 can now be replicated with agent i replaced by j to show that j is the

dictator. �

Proof of Part C: Let G(Si, Sj) be a cycle graph and suppose f satisfies strategy-proofness

and unanimity on this domain. In order to simplify the notation, we will denote the elements

of Si and Sj (i.e the vertices of G(Si, Sj)) by X, Y, Z, P, Q, T, . . . etc.

We identify two properties of G(Si, Sj) that will be required for the argument.

Claim 9 1. |Si| = |Sj| ≥ 3. 2. If (X, P ) is an edge where X ∈ Si and P ∈ Sj, there exist

Y ∈ Si, Q ∈ Sj such that (i) Y ∩ Q = ∅ (ii) Y ∩ P 6= ∅ and (iii) X ∩ Q 6= ∅.

Proof : 1. |Si| = |Sj| is a standard property of bipartite cycle graphs (see page 24 of

West (2001)). The only case to rule out is |Si| = |Sj| = 2. Suppose this is true. Let

Si = {X, Y } and Sj = {P, Q}. Since the degree of each vertex is 2, it must be the case that
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(X, P ), (X, Q), (Y, P ) and (Y, Q) are all edges, i.e. X ∩ P, X ∩ Q, Y ∩ P and Y ∩ Q are all

empty. This implies (X ∪Y )∩ (P ∪Q) = ∅ which is impossible because X ∪Y = P ∪Q = A.

2. Let (X, P ) be an edge with X ∈ Si and P ∈ Sj. There must exist Q ∈ Sj such that

X ∩ Q 6= ∅, i.e. (X, Q) is not an edge. Since Q has degree 2, there exist vertices Y, Z ∈ Si

such that (Y, Q) and (Z, Q) are edges. Suppose Y ∩ P and Z ∩ P are both empty. Then P

is degree at least three which is impossible. Hence either Y or Z (or both) has a non-empty

intersection with P . �

Claim 10 For all profiles R such that r1(Ri) ∩ r1(Rj) = ∅, f(R) ∈ r1(Ri) ∪ r1(Rj).

Proof : Pick R such that r1(Ri) = X and r1(Rj) = P and X ∩ P = ∅. Assume for

contradiction that f(R) /∈ X ∪ P . From Claim 9 (Part 2), there exists Y ∈ Si, Q ∈ Sj such

that X ∩ Q 6= ∅, Y ∩ P 6= ∅ and Y ∩ Q = ∅.

Raise Y to the second-ranked position in R1 keeping the ranking of other indifference

classes the same and let R′

i be the resulting ordering. Similarly, raise Q to the second-ranked

position keeping the relative ranking of other indifference classes the same and let R′

j be the

resulting ordering. Standard strategy-proofness and unanimity arguments can be applied to

show that either f(R′

i, R′

j) ∈ X ∩Q or f(R′

i, R′

j) ∈ Y ∩P . We complete the proof of the claim

by showing that f(Ri, Rj) ∈ X if f(R′

i, R′

j) ∈ X ∩ Q (an analogous argument establishes

f(Ri, Rj) ∈ P if f(R′

i, R′

j) ∈ Y ∩ P ).

Strategy-proofness and unanimity imply f(R̄1, R̄2) ∈ X where r1(R̄1) = X, r1(R̄2) = P

and r2(R̄2) = Q. If r2(R2) = r2(R̄2) = Q, we are done. So, let r2(R2) = T 6= Q. We consider

two cases.

Case 1: T ∩ X = ∅. Let R′′ be a profile such that r1(R
′′

i ) = X, r1(R
′′

j ) = P , r2(R
′′

j ) = Q

and r3(R
′′

j ) = T . Note that f(R′′) ∈ X. Since degree of T is 2, there exists Z ∈ Si such that

Z ∩ T = ∅. Applying Claim 9 (Part 1), Z ∩ P 6= ∅. .

Suppose Z ∩ Q = ∅. Raise Z to the second position in R′′

i keeping the ranking of other

indifference classes the same and let R′′′

i be the resulting ordering. By strategy-proofness,

f(R′′′

i , R′′

j ) ∈ X. At R′′

j switch Q and T and let R′′′

j be the resulting ordering. By strategy-

proofness and unanimity, f(R′′′

i , R′′′

j ) ∈ X. If r3(Rj) = Q, strategy-proofness and unanimity

imply f(R′′′

i , Rj) ∈ X; moreover f(R) ∈ X. Let r3(Rj) = P ′ 6= Q. By the fact that the

degree of P is 2, there exists X ′ ∈ Si such that X ′ ∩ P ′ = ∅ and X ′ ∩ P 6= ∅. Let R̃i be

an ordering such that r1(R̃i) = X and r2(R̃i) = X ′. By strategy-proofness, f(R̃i, R′′′

j ) ∈ X.

Let R̃j be such that r1(R̃j) = P , r2(R̃j) = T and r3(R̃j) = P ′. By strategy-proofness,

f(R̃i, R̃j) ∈ X. Again by strategy-proofness, f(R̃i, Rj) ∈ X and f(Ri, Rj) ∈ X.

Suppose Z ∩ Q 6= ∅. Since the degree of Z is two, there exists Q′ ∈ Sj such that

Z ∩ Q′ = ∅. Let R̂j be such that r1(R̂j) = P , r2(R̂j) = Q, r3(R̂j) = T and r4(R̂j) = Q′.

Note that f(R′′′

i , R̂j) ∈ X. Let R∗

j be such that r1(R
∗

j ) = X, r2(R
∗

j ) = T , r3(R
∗

j ) = Q′

and r4(R
∗

j ) = Q. By strategy-proofness and unanimity, f(R′′′

i , R∗

j ) ∈ X. Applying these

arguments repeatedly, we conclude that f(R) ∈ X.
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Case 2: T ∩ X 6= ∅. Since the degree of P is 2, there exists Y ′ ∈ S1 such that Y ′ ∩ T = ∅

and Y ′ ∩ P 6= ∅. At R′′

i lift Y ′ to the second ranked position keeping the relative ranking of

other indifference classes same and let R∗

i be the resulting ordering. By strategy-proofness

and unanimity, we can infer that f(R∗

i , R′′

j ) ∈ X and f(R∗

i , R′′′

j ) ∈ X. Applying these

arguments repeatedly, f(R) ∈ X follows. �

The proof is completed by showing that the agent from whose first-ranked indifference

class the outcome is picked in Claim 10 is in fact, a dictator. This can be done by replicating

the arguments in Claim B in Sen (2001). The only requirement for the argument is for the

graph G(Si, Sj) to be connected. �

Proof of Part D: Let G(Si, Sj) be a connected graph with isolated vertices and suppose f

satisfies strategy-proofness and efficiency on this domain.

Claim 11 For all R such that r(Ri) ∩ r(Rj) = ∅, either f(R) ∈ r1(Ri) or f(R) ∈ r1(Rj).

Proof : Pick R such that r(R1) ∩ r(R2) = ∅ and denote r1(Ri) and r1(Rj) by X and P

respectively. Suppose f(R) /∈ X ∪ P . There exists Q ∈ Sj such that X ∩ Q 6= ∅ and Y ∈ Si

such that Y ∩ P 6= ∅.

Let R′

i and R′

j be such that r1(R
′

i) = X, r2(R
′

i) = Y , r1(R
′

j) = P and r2(R
′

j) = Q. By

strategy-proofness and efficiency, f(R′

i, Rj) /∈ Y ∩ P . By strategy-proofness, f(R′

i, R′

j) ∈ P .

Similarly, strategy-proofness and efficiency imply that f(Ri, R′

j) ∈ X ∩ Q. Once again

applying strategy-proofness we get f(R′

i, R′

j) ∈ X - a contradiction. �

Suppose X ∈ Si is an isolated vertex in G(Si, Sj). If r1(Ri) = X at R, we have r1(Ri) ∩

r1(Rj) 6= ∅. The same conclusion holds if X is isolated and belongs to Sj.

Finally, since non-isolated vertices are connected in G(Si, Sj), the arguments in Claim B

in Sen (2001) can be used in conjunction with Claim 11 to demonstrate the existence of a

dictator. �

We make several observations about our result.

Observation 5 Part A of Theorem 2 generalizes Sato (2009) in two ways. It requires only

two rather three common indifference classes. Moreover, these common idifference classes

need not be singletons. Our argument follows the general structure of Sato’s arguments

(with appropriate refinements) which in turn follows that of Reny (2001) and several other

papers.

Observation 6 Parts B, C and D are two-person results. The generalization to an arbitrary

number of agents is not straightforward. The main difficulty is that the standard “cloning”

arguments for the situation where all agents have a common domain, cannot be used. It

is not clear whether the pairwise conditions used in Parts B, C and D are sufficient for

dictatorship generally.
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Observation 7 Part B of Theorem 1 together with Part D of Theorem 2 provide a necessary

and sufficient condition for strategy-proofness and efficiency to imply dictatorship, in the case

of two agents.

4 Conclusion

The paper investigates the effect of the partition structure on dictatorship results in the

exogenous indifference classes model. The focus of the analysis is the pairwise partition

function graph. We provide necessary conditions and stronger sufficient conditions on these

graphs for strategy-proofness and unanimity (or efficiency) to imply dictatorship.

Several natural questions remain open. Some of our results apply only to the two-voter

case and a gap exists between our necessary and sufficient conditions. These questions appear

to be difficult but we hope to make progress in answering them in the future.
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