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Abstract

This study augments a second-generation Schumpeterian growth model
to employ human capital explicitly. We clarify the general-equilibrium in-
teractions of subsidy policies to R&D and human capital accumulation in
a unified framework. Despite a standard intuition that subsidizing these
growth-enhancing activities is always mutually growth promoting, we find
asymmetric effects for subsidies on R&D and those on education. Our the-
oretical result of asymmetric policy effects provides an important empirical
caveat that empirical researchers may find false negative relationships be-
tween education subsidies and the output growth rate, if they merely rely on
the standard human capital model.
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1 Introduction
A growing consensus in the literature of endogenous growth theory is that Schum-
peterian growth theory (e.g. Dinopoulos and Thompson [1998], Peretto [1998],
and Howitt [1999]) is more consistent with empirical facts than earlier versions of
endogenous growth theory including semi-endogenous growth theory.1 Well af-
ter the first critique against the semi-endogenous growth theory by Jones [1995],
Ha and Howitt [2007] compare two growth models and show that the data is
more supportive of the Schumpeterian endogenous growth theory than the semi-
endogenous growth theory. Recent findings further reinforce the finding, showing
that a Schumpeterian prediction that per capita R&D input determines the out-
put growth rate can be seen in the U.S. (Zachariadis [2003]), in OECD countries
(Madsen [2008]), and in developing countries (Ang and Madsen [2011]).2

Despite this data-consistent feature of the theory, there is one missing point
in the Schumpeterian endogenous growth theory, which is that usually roles of
human capital are not explicitly taken into account in the models. This omission
exhibits a contrast with a traditional view that human capital accumulation is an
important engine of the growth (Uzawa [1965], Lucas [1988], and Rebelo [1991]).
Recently, Madsen [2010] examined an extended version of conventional growth
accounting with data the OECD countries, showing that output growth has been
predominantly driven by total factor productivity (TFP) growth. He then showed
that TFP, in turn, has been driven by R&D and by educational attainment, among
others. His estimates in the growth accounting exercises suggested permanent
growth effects of R&D and human capital.

In order to supplement the gap, this study augments a second-generation Schum-
peterian growth model to employ human capital explicitly. The main contribution
of the paper is to clarify the general-equilibrium interactions of subsidy policies to
these two engines of growth, R&D and human capital accumulation, in a unified
framework. We see how innovation and education activities interact, and discern
implications for subsidy policies. Despite a standard intuition that subsidizing
growth-enhancing activities is always mutually growth promoting, we show that
subsidies on the education sector and those on the innovation sector exhibit asym-
metric effects. Namely, a subsidy to education has a positive impact on inno-

1Semi-endogenous growth theory such as Jones [1995], Kortum [1997], Segerstrom [1998],
and Young [1998] predicts that “the long-run rate of TFP growth, and hence the long-run growth
rate of per capita income, depends on the rate of population growth, which ultimately limits the
growth rate of R&D labor, to the exclusion of all economic determinants.” (p. 734, Ha and Howitt
[2007])

2Madsen, Ang, and Banerjee [2010] also show that innovative activity was an important force
in shaping the Industrial Revolution and that the British growth experience after the Malthusian
trap is consistent with Schumpeterian growth theory.
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vation as well as on human capital accumulation, while a subsidy to innovation
may not affect, or even negatively affect, human capital accumulation.3 Our theo-
retical result of asymmetric policy effects provides an important empirical caveat
that empirical researchers may find false negative relationships between education
subsidies and the output growth rate, if they merely rely on the standard human
capital model.

There are also theoretical studies considering education and innovation at the
same time. Nelson and Phelps [1966] is the first paper showing that enhancement
of human capital accumulation promotes innovation. Redding [1996] and Ace-
moglu [1997] consider human capital accumulation and R&D in search-theoretic
models with linear preferences and binary decision making, and show that mul-
tiplicity of equilibria is a consequence of the complementarities between educa-
tion and innovation. Arnold [1998] constructs an endogenous growth model with
these two sources of R&D and human capital accumulation. However, the ef-
fects of any subsidy policy on economic growth would vanish in the long run,
since it is essentially based on a semi-endogenous growth model. Recenly, Zeng
[2003] constructs a similar model to our model and investigate the effects of sub-
sidy policies on output growth, but does not consider the asymmetric effects of
these policies on engines of economic growth. Connolly and Peretto [2003] also
construct an endogenous growth model close to ours to investigate interactions
of fertility choices and innovation. In their model, endogenous fertility choices
affect per capita output growth rate through the channel of labor inputs. More
recenly, Grossmann [2007] investigates the effects of public education and R&D
subsidy to innovation, and shows that R&D subsidy may reduce the R&D invest-
ment when there are congestion externalities on public education. Along the lines
of these studies, we construct a second-generation Schumpeterian growth model
with human capital accumulation, and clarify the general-equilibrium interactions
of subsidy policies between R&D and human capital accumulation.

This paper is organized as follows. Section 2 presents the baseline model

3As is well known, an important theoretical result of the Schumpeterian endogenous growth
theory is that subsidizing R&D activities can have positive long-run effects on the output growth
rate, not an implication of semi-endogenous growth theory. Direct empirical evidence supporting
the theoretical results are scarce. Using Japanese and the U.S. data sets, Sakakibara and Branstet-
ter [2001] showed that patent reform policies did not lead to increase in either R&D spending or
innovative output, but they did not work on subsidy policies. Zachariadis [2004] and Ulku [2007]
showed that in OECD countries there are positive relationship between R&D intensity and the
growth rate of output. However, their conclusions were not from natural experiments of exoge-
nous subsidy policy shocks. Similarly, standard human capital models also allow for policies that
enhance economic growth, but empirical evidence on effects of these policies on the output growth
rate is scarce. Instead, the effects of increases in minimum education due to school reforms in Eu-
ropean countries over 1960–1980 are well examined. See Machin, Pelkonen, and Salvanes [2008]
and references therein for this topic.
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where households have logarithmic preferences. Section 3 generalizes the base-
line model to allow for general constant intertemporal elasticity of substitution
(CIES) felicity function. We show that main results in the baseline case remain.
Section 4 extends the baseline model where only human capital is required for
intermediate goods production and vertical innovation needs final goods only. In
the extended model, these activities use both human capital and final goods. It is
shown that our main results remain. Finally, Section 5 concludes the paper.

2 The Baseline Model
The production structure of the baseline model is the same as that of Howitt [1999]
except that the raw labor input in the intermediate goods production is replaced by
human capital in our baseline model. We also employ an Uzawa-Lucas-Rebelo-
type process for human capital accumulation. Population of the economy is as-
sumed constant over time and normalized to one. The final goods output, which
is the numéraire in the model, is used for consumption (Ct) and investments for
vertical innovation (ZAt), horizontal innovation (ZNt), and human capital creation
(Zht).

2.1 Production
The final goods sector operates under perfect competition. The technology for
final goods production is given by

Yt = X1−α
∫ Nt

0
Aitxαitdi, (1)

where Yt is the final goods output, X is a fixed resource such as land, Nt mea-
sures the varieties of intermediate goods at time t, Ait is a productivity parameter
attached to the incumbent version of intermediate product i ∈ [0,Nt), xit is the
amount of intermediate product i used in the economy, and α ∈ (0, 1) is a param-
eter for production technology. Since we assume that the total endowment of the
fixed resource in the economy is equal to 1, we henceforth abbreviate variable X
from the production function. Under perfect competition, the first-order condition
for the final goods sector with respect to xit is given as

pit = αAitxα−1
it , (2)

where pit is the price of intermediate product i.
The intermediate goods sector operates under monopolistic competition. Here,

we assume that one unit of intermediate good is made from one unit of human
capital.
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Profits Π in creating intermediate product i are given by

Πit = pitxit − wtxit,

where wt is the real wage for human capital. With the demand function of xit

obtained from (2), the first-order condition with respect to xit gives the amount of
the ith intermediate good as

xit = α
2

1−αA
1

1−α
it w

−1
1−α
t . (3)

Then, profits of intermediate goods firms can be written as

Πit = α(1 − α)α
2α

1−αA
1

1−α
it w

α
α−1
t . (4)

2.2 Innovation
Here, we consider two types of innovation. The first is vertical innovation, which
improves productivity in each intermediate goods sector. The second is horizontal
innovation, which brings new varieties into the economy.

2.2.1 Vertical Innovation

The Poisson arrival rate of vertical innovation in each sector is defined as

φt = λA
ZAt

AtNt
≡ λAzAt, (5)

where λA > 0 is the productivity parameter of vertical innovation, and ZAt is the
amount of resource devoted to vertical innovation for each sector i. At captures
the leading-edge productivity parameter with At ≡ max{Ait | i ∈ [0,Nt]}. Hence,
zAt ≡ ZAt/ (AtNt) is the per-sector expenditures on vertical innovation adjusted by
productivity and complexity. The free-entry condition into vertical innovation is
given by

λAzAtVt = (1 − sR)
ZAt

Nt
, (6)

where Vt is the expected present value of a vertical innovation at time t from the
stream of future profits. Here, sR ∈ [0, 1) is the general subsidy rate to R&D,
which is an important policy parameter in this study.

Because at every time t, the innovation will be replaced by the next innovator
with the Poisson arrival rate φt, Vt is given as

Vt =

∫ ∞

t
exp

[
−

∫ τ

t
(rs + λAzAt)ds

]
πτtdτ, (7)
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where rs is the interest rate, and πτt is the profit of the incumbent on date τ for any
sector with vintage technology at time t, which can be expressed as

πτt = α(1 − α)α
2α

1−αA
1

1−α
t w

α
α−1
τ .

Further, we can define the quality-adjusted value of vertical innovation as vt ≡
Vt/At. Then, the free-entry condition (6) is rewritten as

vt =
1 − sR

λA
. (8)

Finally, the intensity of the quality improvement for each vertical innovation
is captured by a parameter σ > 0, with which the growth rate of the leading-edge
productivity is given as

gAt = σλAzAt, (9)

where gAt denotes the growth rate of the leading-edge productivity, gAt = Ȧt/At.
Hereafter, we denote the growth rate of a variable χt by gχt. Therefore, by differ-
entiating (8) with respect to t and using (7), (8), and (9), a little algebra provides
the expression of the interest rate as

rt = λA

[
(1 − sR)−1α(1 − α)α

2α
1−αω

α
α−1
t −

(
1 +

σα

1 − α

)
zAt

]
, (10)

where ωt denotes the quality-adjusted wage rate (ωt ≡ wt/At).

2.2.2 Horizontal Innovation

The variety of intermediate goods can be augmented by horizontal innovation.
The evolution of varieties is specified as

Ṅt = λN
ZβNtY

1−β
t

At
,

where λN > 0 and β ∈ (0, 1) are parameters of horizontal innovation. ZNt is
the amount of numéraire devoted to horizontal innovation. Knowledge spillover
effects captured by the term Yt is also included. Therefore, the growth rate of the
variety of intermediate goods is given as

gNt = λN
ZβNtY

1−β
t

AtNt
. (11)

Each horizontal innovation results in a new intermediate product whose pro-
ductivity is randomly drawn from the distribution of existing intermediate prod-
ucts. Further, from the definition of the value of the leading-edge intermediate
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good (At) given by (7), and from the definition of the profits of intermediate good
firm with quality Ait given by (4), the expected value of a horizontal innovation
is derived as E[(Ait/At)1/(1−α)]Vt. Hence, the free-entry condition in the horizontal
innovation sector read as

ṄtE

(Ait

At

) 1
1−α

 Vt = (1 − sR) ZNt. (12)

Then, plugging the definition of Ṅt into the above equation, we get

λN
ZβNtY

1−β
t

At
E

(Ait

At

) 1
1−α

 Vt = (1 − sR) ZNt. (13)

From the specification of vertical innovation, the distribution of the relative
productivity Ait/At converges to the time-invariant distribution function F(q) =
q1/σ, where 0 < q ≤ 1.4 Hence, in the long run, we obtain

E

(Ait

At

) 1
1−α

 = 1
Γ
,

where Γ ≡ 1 + σ/(1 − α) > σ. Throughout this paper, we assume that the relative
productivity Ait/At is drawn from the time-invariant distribution function. From
(8), (13), and the definition of Γ, we get

ZNt

Yt
=

(
λN

λA
Γ−1

) 1
1−β

≡ ζ. (14)

Note that ζ ∈ (0, 1) must hold because of a resource constraint, Yt > ZNt. To
guarantee that ζ ∈ (0, 1) holds, we impose the following assumption.

Assumption 1. We assume that λA ∈ (λ′A,∞), where

λ′A =
λN

Γ
.

Then, (11) is rewritten as
gNt = λNζ

βyt, (15)

where yt is the amount of output adjusted by the quality and variety (yt ≡ Yt/(AtNt)).

4See Howitt [1999] and Segerstrom [2000] for the proof.
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2.3 Household
For the baseline analysis, we assume that the felicity function of household is in
log. The maximization problem of a representative household is given by

max
∫ ∞

0
exp[−ρt] log Ctdt

where ρ > 0 is the subjective discount rate, and Ct is the per capita consumption.
The laws of motion for financial assets and human capital in per capita terms are
respectively given as

Ẇt = rtWt + wtutht −Ct − (1 − sh)Zht − Tt, (µt)

and

ḣt = λh

(
Zht

At

)γ
[(1 − ut)ht]1−γ , (νt) (16)

where Wt denotes the per capita asset, ht is the per capita amount of human capital,
ut ∈ [0, 1] is the ratio of human capital devoted to the intermediate goods sector,
Zht is the expenditure on human capital accumulation, γ ∈ [0, 1) is a parameter for
human capital accumulation process, and sh ∈ [0, 1) is the other important policy
parameter of the subsidy rate to expenditure on human capital accumulation. Co-
state variables of µ and ν are attached to the respective constraints. In (16), we
divide the amount of expenditure (Zht) by At following the idea that the higher
the leading-edge quality in the economy, the more difficult may be the acquisition
of new skills to handle the cutting-edge technology (Howitt [2005]). Finally, the
expenditure of the government is financed by lump sum tax (Tt), and the budget
of government is balanced at any time.

From the above specifications, the first-order conditions of the problem are
obtained as

C−1
t = µt (17)

µtwt = νtλh(1 − γ)(1 − ut)−γA
−γ
t h−γt Zγht (18)

µt(1 − sh) = νtλhγA
−γ
t h1−γ

t Zγ−1
ht (1 − ut)1−γ (19)

µtrt = ρµt − µ̇t (20)

and

µtwtut + νtλh(1 − γ)(1 − ut)1−γA−γt h−γt Zγht = ρνt − ν̇t. (21)

In addition, the usual transversality conditions (TVCs) are imposed on W and h.
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Combining (17) through (21), the first-order conditions are reduced to the fol-
lowing equations.

gct = rt − ρ − gAt − ght, (22)

gωt = (1 − γ)−1 (rt − gAt) − λhγ
γ(1 − γ)−γ(1 − sh)−γωγt , (23)

ght = λhγ
γ(1 − γ)−γ(1 − sh)−γ(1 − ut)ω

γ
t , (24)

and

zht =
γ(1 − ut)

(1 − γ)(1 − sh)
ωt. (25)

Here, zht denotes expenditure to education adjusted by the quality and human
capital (zht = Zht/(Atht)) and gct denotes the growth rate of consumption adjusted
by quality and human capital (ct = Ct/(Atht)). Finally, we define the growth rate
of human capital per variety as lt ≡ ht/Nt. Hence,

glt = ght − gNt. (26)

2.4 Equilibrium
The market clearing conditions for final good and human capital market at each
time t read, respectively, as

Yt = Ct + Zht + ZAt + ZNt, (27)

and ∫ Nt

0
xitdi = utht. (28)

Finally, from (1), (3), and the definition of yt, we have

yt = α
2α

1−αΓ−1ω
α
α−1
t . (29)

The equilibrium dynamics of the economy is defined as follows.

Definition 1 (Equilibrium Dynamics). An interior equilibrium dynamics is de-
fined as a sequence of prices, (wt, rt, pit), and allocation, (ZAt,ZNt,Zht, xt,Ct,Yt, ut),
that satisfies (i) profit maximization: (1), (2), (3), (10) and (14), (ii) utility max-
imization: (22), (24), (25), and the transversality conditions with u ∈ (0, 1),
gA∗ ∈ (0,∞) (iii) market clearing: (27) and (28), and (iv) dynamics: (9), (15), and
(23), given A0, N0, h0, and the distribution of Ai0/A0 which is given by F(q) = q1/σ,
where 0 < q ≤ 1.
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2.5 Steady State
2.5.1 The Existence and Uniqueness of the Steady State

Hereafter, we focus on the interior steady state of the equilibrium dynamics, where
gct = gωt = glt = 0 for all t. We add subscript ∗ to any variable whenever it is
constant in the steady state.

To begin with, it follows from (29) and from gω∗ = 0 that the steady-state
growth rate of y is equal to zero. Hence, the definition of y gives the economic
growth rate in the steady state as

gY∗ = gA∗ + gN∗. (30)

Since in the steady state it holds that glt = 0, (26) implies that gN∗ = gh∗. Hence,
(30) can be rewritten as the sum of the growth rate of leading-edge quality and
that of human capital

gY∗ = gA∗ + gh∗. (31)

Equation (31) provides a structural basis of growth regressions ever since the work
of Mankiw, Romer, and Weil [1992]: while the arguments in production functions
(technology, labor, physical capital, and human capital) are counted in an ad-hoc
manner in the growth empirics literature, our model provides market structures
in which all of these production components are contributing to the economic
growth.

Regarding the growth rate of human capital, firstly we have from (22) that

r∗ = ρ + gA∗ + gh∗. (32)

This relation is considered the steady-state version of the Euler equation.
From (23), we have

r∗ = ξ
(
ω∗

1 − sh

)
+ gA∗, (33)

where ξ (χ) = λhγ
γ(1−γ)1−γχγ. Note that ξ′ (χ) > 0 for all χ > 0 and limχ→∞ ξ(χ) =

∞.
Combining (32) and (33), we have

gh∗ = ξ

(
ω∗

1 − sh

)
− ρ ≡ gh

(
ω∗

1 − sh

)
. (34)

Since (34) is derived only from household’s optimal conditions, it can be referred
to as the supply-side growth rate of human capital accumulation.

Secondly, from (29) and (15), we have

gN∗ = λAζα
2α

1−αω
α
α−1
∗ ≡ gN (ω∗) , (35)
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where g′N (χ) < 0 for all χ > 0. Since the above equation is derived only from
firm’s optimal conditions, it can be referred to as the demand-side growth rate of
human capital accumulation.

Combining (34) and (35) determines the steady-state growth rate of human
capital gh∗ and the quality-adjusted wage rate ω∗:

gh

(
ω∗

1 − sh

)
= gN (ω∗) . (H)

Since the left-hand side of the above equation is increasing in ω and the right-hand
side is decreasing, it determines the unique steady-state value of ω.

Next, we calculate the steady-state values of u and gA∗. Combining (24) and
(34), we have

u∗ = γ + (1 − γ) ρ

ξ
(
ω∗

1−sh

) . (U)

Substituting (9), (10), and (35) into (32) yields

gA∗ =
σ

Γ

{
λA

[
α(1 − α)
1 − sR

− ζ
]
α

2α
1−αω

α
α−1
∗ − ρ

}
. (A)

We have then the following proposition.

Proposition 1 (Steady State). In the steady state of the equilibrium dynamics, ω∗,
u∗, gh∗, and gA∗ are given by (H), (U), and (A).

Finally, we give the following proposition showing the existence and unique-
ness of the steady state.

Proposition 2 (The Existence and Uniqueness of the Steady State). There exist
λA ∈ (0,∞) and ρ̄ ∈ (0,∞) such that, for any λA ∈ (λA,∞) and ρ ∈ (0, ρ̄), there is
the unique steady state of the interior equilibrium dynamics.

Proof. See Appendix A. �

In the remaining of this paper, we assume the interior steady state.

2.5.2 Subsidy policies in the baseline model

We provide subsidy policy implications for the baseline model as Theorem 1 and
Theorem 2. Despite a standard intuition that subsidizing these growth-enhancing
activities is always mutually growth promoting, we find asymmetric effects for
subsidies on R&D and those on education.
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Theorem 1. The subsidy to human capital accumulation has positive effects on
the growth rates of the leading-edge technology and human capital.

dgA∗

dsh
> 0 (36)

and
dgh∗

dsh
> 0. (37)

Hence, we have
dgY∗

dsh
> 0.

Proof. Differentiating both the sides of (H), we obtain

dω∗
dsh
= −

g′h

(
ω∗

1−sh

)
ω∗

(1 − sh)
(
g′h

(
ω∗

1−sh

)
− (1 − sh) g′N (ω∗)

) < 0.

Therefore, noting that the left-hand side of (H) is equal to gh and the right-hand
side is decreasing inω, we obtain (37). Similarly, since from (A), zA∗ is decreasing
in ω, it gives (36). The proof of the last statement in the theorem is straightfor-
ward. �

ωO

gh

g′h

ω′∗

gh

ω∗

gN (ω∗) gh

(
ω∗

1−s′h

)

gh

(
ω∗

1−sh

)

Figure 1: Effects of subsidy to human capital accumulation (s′h > sh)
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Intuitively, the reason for the indirect positive impact of subsidy to human cap-
ital accumulation process on the R&D sector is explained as follows. The subsidy
to human capital accumulation raises the growth rate of the supply-side human
capital through (34), which reduces the adjusted wage rate to maintain the equal-
ity of (H). When the adjusted wage rate of human capital declines, the adjusted
profit and the expected value of firms (7) increase, motivating the vertical and hor-
izontal innovations. Hence, boosting human capital accumulation augments the
growth rate of products quality, which in turn accelerates the growth of per capita
output. If we consider only the relationship between the growth rate of output
and R&D investment, as in standard Schumpeterian growth models, we miss the
growth-enhancing effects of the subsidy policies coming by way of human capital
accumulation process.

Figure 1 depicts the effect of subsidy to human capital accumulation on ω∗.
In the figure, the gN curve depicts the right-hand side of (H). Two gh curves
respectively plot the left-hand side of (H) corresponding to the subsidy rates of
human capital accumulation, sh and s′h. Since gh curve is increasing in sh, and
s′h is assumed to be greater than sh, the curve corresponding to s′h lies above that
corresponding to sh. Hence, the figure shows that the increase in the subsidy rate
on human capital raises the growth rate of human capital accumulation gh∗.

Theorem 2. The subsidy to R&D has a positive effect on the growth rate of the
leading-edge technology, but does not have any effect on the growth rate of human
capital.

dgA∗

dsR
> 0 and

dgh∗

dsR
= 0.

Therefore, we have
dgY∗

dsR
> 0.

Proof. The differentiation of (A) with respect to sR gives

dgA∗

dsR
= σΓλA(1 − sR)−2α(1 − α)α

2α
1−αω

α
α−1
∗ . (38)

Here, it should be noted that ω∗ is determined by (H), which is independent of sR.
Since the right-hand side of (38) is positive, we obtain the theorem. The proof of
the last statement in the theorem is straightforward. �

The reason that subsidy to R&D investment has no effect on human capital
accumulation is as follows. In the steady state, an increase in the subsidy rate
to R&D investment raises both the real interest and productivity growth rates by
the same amount, since we assume the logarithmic preferences. These increases
have two effects on human capital accumulation process. The first is the effect
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induced by the increase in the interest rate, shifting human capital resource to
production. The other is the effect induced by the increase in the productivity
growth rate, shifting human capital resource to education, since the increase of
productivity growth rate implies the increase of the wage rate in the future. Since
in the baseline case we assume the logarithmic preferences, these two effects offset
each other, leaving u∗ and ω∗ unchanged. Hence, subsidy to R&D investment has
no effect on the growth rate of human capital.

Before closing this section, we add the following proposition.

Proposition 3. The steady state of the equilibrium dynamics is locally saddle
stable.

Proof. See Appendix B. �

Not likely to previous studies such as Redding [1996] and Acemoglu [1997],
where multiple steady states result as a consequence of the complementarities
between human capital and R&D, our model has the unique and locally stable
steady growth path which allows for subsidy policies implications along the path.

3 CIES Preferences
In this section, we address CIES preferences instead of log felicity. We show
that the previous results of asymmetric policy effects remain for the generalized
case. Our theoretical result of asymmetric policy effects provides an important
empirical caveat. We specify that utility function is given as∫ ∞

0
exp[−ρt] η

η − 1

(
C

1− 1
η

t − 1
)

dt,

where η denotes the intertemporal elasticity of substitution. In the steady state,
the Euler equation is modified from (32) to

r∗ = ρ +
gA∗ + gh∗

η
. (39)

The above equation shows that, given the interest rate and the growth rate of hu-
man capital, a higher degree of intertemporal elasticity of substitution η yields a
higher technological progress.

Combining (33) and (39), we get

gh∗ = η

(
ξ

(
ω∗

1 − sh

)
− ρ

)
+ (η − 1)gA∗. (40)
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Equation (40) is the modified version of supply-side growth rate of human capital
accumulation. Notice that gh∗ in this case depends on gA∗, not likely to the case of
log felicity in (34).

Next, from (9), (10), and (39), we obtain the modified version of the growth
rate of technology as

gA∗ =
ησ/Γ

η − (η − 1)σ/Γ

[
λA

1 − sR
α(1 − α)α

2α
1−αω

α
α−1
∗ − ρ −

gh∗

η

]
. (41)

Substituting (35) into the above equation, we see that

gA∗ =
ησ/Γ

η − (η − 1)σ/Γ

{
λA

[
α(1 − α)
1 − sR

− ζ
η

]
α

2α
1−αω

α
α−1
∗ − ρ

}
. (A1)

From (24), (35), (40), and (41) we have

gh (ω∗, sh, sR) = gN∗ (ω∗) (H1)

and u∗ is determined as

u∗ =1 − (1 − γ)
[
η − (η − 1)

σ

Γ

]
+

1 − γ
ξ
(
ω∗

1−sh

) [
ηρ − (η − 1)

σ

Γ

λA

1 − sR
α(1 − α)α

2α
1−αω

α
α−1
∗

]
.

(U1)

Here,

gh (ω∗, sh, sR) ≡
[
η − (η − 1)

σ

Γ

]
ξ

(
ω∗

1 − sh

)
+ (η − 1)

σ

Γ

λA

1 − sR
α(1 − α)α

2α
1−αω

α
α−1
∗ − ηρ.

(42)

Therefore, we put the following proposition for the interior steady state of the
economy with CIES preferences.

Proposition 4. In the interior steady state with CIES preferences, ω∗, u∗, gh∗, and
gA∗ are given by (A1), (H1), (U1).

Note that the existence of the interior steady state is guaranteed from the con-
tinuity around η = 1 under the assumptions in Proposition 2. We then provide the
following proposition.5

5The proof of the proposition and theorems in this section is given in Appendix C.
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Proposition 5 (Uniqueness of the Steady State). If there is an interior steady state,
it is unique.

We provide subsidy policy implications for this generalized version of the
economy as Theorem 3 and Theorem 4. As in the log felicity case, we find asym-
metric effects for subsidies on R&D and those on education. In this case, however,
subsidy to R&D investment can affect human capital accumulation process in ad-
dition to R&D sector. The novelty here is that the indirect effect of subsidy to
R&D can slow down human capital accumulation, depending on the magnitude
of η.

Theorem 3 (Effects of Subsidy to Human Capital Accumulation). In the interior
steady state, we have

dgA∗

dsh
> 0,

dgh∗

dsh
> 0, and

dgY∗

dsh
> 0.

Theorem 4 (Effects of Subsidy to R&D Investment). In the interior steady state,
we have

dgA∗

dsR
> 0 and

dgh∗

dsR
≶ 0 for η ≶ 1.

And
dgY∗

dsR
> 0.

Theorem 3 is a simple replication of Theorem 1. We obtain Theorem 4 since
in this case the two opposite effects of subsidy to R&D investment on the human
capital accumulation process do not offset each other. An increase of subsidy to
R&D investment raises the real interest rate, r∗, through (10). The increase in r∗
raises the productivity growth rate, gA∗, by the smaller (larger) amount than the
increase of r∗ through (39) if η is smaller (larger) than one, given the growth rate
of human capital, gh∗ fixed. This implies that, given ω∗, the growth rate of the
marginal return to raise human capital investment, which is given by the right-
hand side of (33), falls behind (goes beyond) the growth rate of the marginal
return to raise savings, which is given by the left-hand side of (33), causing the
decrease (increase) of gh∗. The figures 2 and 3 indicate the effects of subsidy to
R&D investment in the cases η < 1 and η > 1, respectively.

Our theoretical result of asymmetric policy effects provides an important em-
pirical caveat. For a thought experiment, now suppose that there is an economy
where the government has launched unexpected subsidies both on the education
sector and on the innovation sector. Assume that deep parameters in the economy
are given such that a subsidy to the innovation sector negatively affects human cap-
ital accumulation, and assume also that the subsidy to the R&D sector is so great,

15
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Figure 2: Effects of subsidy to R&D investment in the case η < 1 (s′R > sR)
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Figure 3: Effects of subsidy to R&D investment in the case η > 1 (s′R > sR)
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compared to that for education sector, that the net effect of these two subsidies is
negative on the growth rate of human capital. On one hand, when researchers fo-
cus on conventional Schumpeterian growth models, they will find that the positive
policy shock on the R&D sector promotes the output growth rate as it is expected,
while the effect is under-estimated because of the omission of the channel of hu-
man capital accumulation. This is a typical omission variable problem. On the
other hand, when researchers focus on conventional human capital models, em-
pirical researchers find false negative relationships between education subsidies
and the output growth rate: after a positive policy shock on the education sector,
the growth rate in human capital is decreased while the growth rate in the output
is increased. Hence, we provide a caveat for future empirical research examining
the relationship between subsidy policies and economic growth.

4 Extension

4.1 Vertical Innovation with Final Good and Human Capital
Inputs

In the baseline model, we examined the case where vertical innovation required
final good input only. Following Eicher and Turnovsky [1999], here we extend
the baseline model to incorporate human capital as inputs for vertical innovation.
We show that our previous results do not depend on the assumption that vertical
innovation needs final good input only.

Instead of (5), this section defines the arrival rate of vertical innovation as

φt = λA

(
ZAt

AtNt

)θ (HAt

Nt

)1−θ

.

Here, ZAt and HAt denote the inputs of final good and human capital to develop
the leading-edge technology at time t, respectively. In this case, equations (H) and
(A) are respectively replaced by

gh

(
ω∗

1 − sh

)
= Λ (ω∗) ζα

2α
1−αω

α
α−1
∗ . (H2)

and

gA∗ =
σ

Γ

{
Λ (ω∗)

[
α(1 − α)
1 − sR

− ζ
]
α

2α
1−αω

α
α−1
∗ − ρ

}
, (A2)

where

Λ (ω) = λA

(
θ

1 − θ

)1−θ
ωθ−1. (43)
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Equation (H2) uniquely determines the steady state values of ω∗ and gh∗, since
Λ (ω) is decreasing in ω.

Since (H2) is independent of sR, gh∗ is not affected by the change of sR. Also,
we see that a rise in sh reduces ω∗ through (H2), increasing the growth rate of the
leading-edge productivity gA∗ through (A2). Hence, our extension here does not
change previous results in the baseline model.

4.2 Production of the Intermediate Goods with Final Good and
Human Capital Inputs

The other extension from the baseline model is about production of the interme-
diate goods that now require final good input in addition to human capital inputs.
We specify the production function of the intermediate goods as

xit =

(
ZIit

At

)δ
H1−δ

Iit .

Here, ZIit and HIit denote the firm i’s final good and human capital inputs at time
t, respectively. In this case, (H) and (A) can be respectively rewritten as

gh

(
ω∗

1 − sh

)
= λζα

2α
1−α δ

αδ
1−α (1 − δ)

α(1−δ)
1−α ω

α(1−δ)
α−1
∗ (H3)

and

gA∗ =
σ

Γ

{
λ

[
α(1 − α)
1 − sR

− ζ
]
α

2α
1−α δ

αδ
1−α (1 − δ)

α(1−δ)
1−α ω

α(1−δ)
α−1
∗ − ρ

}
. (A3)

Similarly to the first extension, (H3) uniquely determines ω∗ and is not affected
by the change of the R&D subsidy rate sR. We can see that the increase in sR does
not affect gh∗, while the increase in sh raises gA∗. Hence, previous results in the
baseline model remain.

5 Conclusion
In this paper, we augmented Schumpeterian endogenous growth model to discern
general-equilibrium effects of subsidy policies to R&D and human capital accu-
mulation. We addressed a variant of Schumpeterian endogenous growth model af-
ter recent empirical findings of Zachariadis [2003], Ha and Howitt [2007]), Mad-
sen [2008]), and Ang and Madsen [2011]. New findings in Madsen [2010] of
permanent growth effects of human capital have provided direct motivations for
this study, since in the Schumpeterian endogenous growth theory usually roles of
human capital are not explicitly taken into account in the models.
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We showed that, despite a standard intuition that subsidizing these growth-
enhancing activities is always mutually growth promoting, asymmetric effects
for subsidies on R&D and those on education result. Our theoretical result of
asymmetric policy effects provides an important empirical caveat that empirical
researchers may find false negative relationships between education subsidies and
the output growth rate. Namely, when the indirect negative effect of R&D subsi-
dies on human capital accumulation dominates the direct positive effect of educa-
tion subsidies on human capital accumulation, empirical researchers may see that
after a positive policy shock on the education sector, the growth rate in human cap-
ital is decreased while the growth rate in the output is increased. We suggest that
empirical researchers should employ a model where technology improvements by
R&D and human capital accumulation are considered in a unified framework in
order not to miss the general equilibrium effects from one sector to the other.

Appendix

A Proof of Proposition 2
We show that the steady growth path uniquely exists. We first give the following
lemma.

Lemma 1. The values of ω∗, u∗, and gh∗ given by (H) and (U) are uniquely deter-
mined as ω∗ ∈ (0,∞), u∗ ∈ (0, 1), and gh∗ ∈ (0,∞).

Proof. gh∗ > 0 is straightforward from (H), since gN (ω) > 0 for all ω > 0.
The existence of ω∗ is also confirmed by (H) as we have that

lim
ω→0
gh

(
ω

1 − sh

)
< lim
ω→0
gN (ω) and lim

ω→∞
gh

(
ω

1 − sh

)
> lim
ω→∞
gN (ω) .

The uniqueness of ω∗ follows from the fact that the left-hand side of (H) is strictly
increasing and that the right-hand side of the same equation is strictly decreasing.

Finally, we prove u∗ ∈ (0, 1). It is obvious from (U) that u∗ > 0. In order to
show that u∗ < 1, here we define ω such that

gh

(
ω

1 − sh

)
= 0,

or equivalently
ω ≡ (1 − sh) ξ−1 (ρ) > 0.
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Since gh is increasing in ω, (H) shows that ω∗ > ω. At the same time, since (U)
implies that u∗ is decreasing in ω∗, we have

1 = γ + (1 − γ) ρ

ξ
(
ω

1−sh

) > γ + (1 − γ) ρ

ξ
(
ω∗

1−sh

) = u∗.

�

Next, we prove Proposition 2.

Proof of Proposition 2. By Lemma 1, we see that ω∗, u∗, and gh∗ uniquely exist
with ω∗ ∈ (0,∞), u∗ ∈ (0, 1), and gh∗ ∈ (0,∞).

In order to show the existence of gA∗ in the range of (0,∞), take λ′′A which
satisfies the condition that

α(1 − α)
1 − sR

= ζ,

from which we can explicitly obtain λ′′A as

λ′′A =

[
1 − sR

α(1 − α)

]1−β

λNΓ.

Let λA be max
[
λ′A, λ

′′
A

]
and take any λA ∈ (λA,∞). Then, for a sufficiently small

value of ρ > 0, we obtain gA∗ > 0 from (A). Define that ρ̄ = supgA∗>0 ρ. Then,
since ω∗ is increasing in ρ from (34) and (H), (A) shows that gA∗ takes a positive
value for any ρ ∈ (0, ρ̄), which completes the proof. �

B Local Stability of the Steady State
Local saddle-stability of the steady growth path is proved as follows.

From (3) and the definitions of ωt and lt, (28) is rewritten as

ut = α
2

1−αΓ−1ω
−1

1−α
t l−1

t . (44)

From (14), (27), and (29), we get

zAt = (1 − ζ)α 2α
1−αΓ−1ω

−α
α−1
t − (ct + zht)lt. (45)

Given the value of ω∗ and u∗ determined by (H) and by (U), (44) gives the steady-
state value of l∗ as

l∗ = α
2

1−αΓω
1
α−1
∗ u−1

∗ . (46)
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With the steady-state values of ω∗, u∗, and l∗, substituting (25) into (45) we have

c∗ = (1 − ζ)α 2α
1−αΓω

α
α−1
∗ l−1

∗ +
γ(1 − u∗)

(1 − γ)(1 − sh)
ω∗ − zA∗l−1

∗ . (47)

The system of equations for the equilibrium dynamics of the model consisting
of (22), (23), and (26). Together with supplemental conditions of (9), (10), (15),
(24), (25), (29), (44), and (45), we linearize the system around the steady state as

ċ
c
ω̇
ω
l̇
l

 ≈ J

 c − c∗
ω − ω∗
l − l∗

 ,

where J is the Jacobi matrix of

J =


∂r
∂c − σλA

∂zA
∂c

∂r
∂ω
− σλA

∂zA
∂ω
− ∂gh
∂ω

∂r
∂l − σλA

∂zA
∂l −

∂gh
∂l

∂r
∂c − σλA

∂zA
∂c

∂r
∂ω
− σλA

∂zA
∂ω
− γ(1 − γ)Ψωγ−1

∗
∂r
∂l − σλA

∂zA
∂l

0 ∂gh
∂ω
− λNζ

β ∂y

∂ω

∂gh
∂l

 ,

with Ψ ≡ λhγ
γ(1 − γ)−γ(1 − sh)−γ > 0. After elementary row operations, J can be

reduced to

J′ =


∂r
∂c − σλA

∂zA
∂c

∂r
∂ω
− σλA

∂zA
∂ω
− ∂gh
∂ω

∂r
∂l − σλA

∂zA
∂l −

∂gh
∂l

0 ∂gh
∂ω
− γ(1 − γ)Ψωγ−1

∗
∂gh
∂l

0 γ(1 − γ)Ψωγ−1
∗ − λNζ

β ∂y

∂ω
0

 .

In order to show the local saddle-stability of the equilibrium dynamics, it is
sufficient to prove that the determinant of J′ is negative and the trace is positive.
The determinant of det J′ is obtained as

det J′ = −
(
∂r
∂c
− λAσ

∂zA

∂c

) [
γ(1 − γ)Ψωγ−1

∗ − λNζ
β ∂y

∂ω

]
∂gh

∂l
,

where

∂r
∂c
= λA

(
1 + σ +

ασ

1 − α

)
l∗ > 0

∂zA

∂c
= −l∗ < 0

∂y

∂ω
=
α

α − 1
α

2α
1−αΓω

1
α−1
∗ < 0,

and
∂gh

∂l
= α

2
1−αΨΓω

γ− 1
1−α

∗ l−2
∗ > 0.
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The signs of partial derivatives in the above expressions hold that the determinant
is negative.

The trace of J′, in turn, can be obtained as

traceJ′ =
∂r
∂c
− λAσ

∂zA

∂c
+
∂gh

∂ω
− γ(1 − γ)Ψωγ−1

∗ ,

where

∂gh

∂ω
− γ(1 − γ)Ψωγ−1

∗ = γΨωγ−1
∗ − (γ − 1

1 − α)α
2

1−αΨΓω
γ− 1

1−α−1
∗ l−1

∗ − γ(1 − γ)Ψωγ−1
∗

= γ2Ψωγ−1
∗ − (γ − 1

1 − α )α
2

1−αΨΓω
γ− 1

1−α−1
∗ l−1

∗ .

It is easy to show that this expression is always positive, since α ∈ (0, 1) and since
γ ∈ (0, 1). Hence, the trace of J′ is positive. These results show that the steady
state of the equilibrium dynamics is locally saddle stable. �

C Proof of Proposition and Theorems in the Case of
CIES Preferences

To begin with, using (35) and (42), we introduce an excess supply function for
human capital accumulation as

E (ω, sh, sR) ≡ gh (ω, sh, sR) − gN(ω)

=

[
η − (η − 1)

σ

Γ

]
ξ

(
ω

1 − sh

)
+

[
(η − 1)

σ

Γ

α(1 − α)
1 − sR

− ζ
]
λAα

2α
1−αω

α
α−1 − ηρ. (48)

In the steady state, it should be satisfied that

E (ω∗, sh, sR) = 0. (49)

We then have the following lemma.

Lemma 2. If η ∈ (0, ζ (1 − sR) / [α(1 − α)]), we have

lim
ω→0

E (ω, sh, sR) = −∞ and lim
ω→∞

E (ω, sh, sR) = +∞,

and
∂E
∂ω

(ω, sh, sR) > 0 for all ω ∈ (0,∞).
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Proof. Since it holds that ζ (1 − sR) / [α(1 − α)] < (1 − sR) ζΓ/ [σα(1 − α)] + 1
and that η < ζ (1 − sR) / [α(1 − α)], the second term of (48) diverges to −∞ as
ω → 0 and converges to 0 as ω → ∞. Therefore, since the first term of (48) is
positive, (48) converges to 0 as ω→ 0 and diverges to +∞ as ω→ ∞.

The last argument is true since

∂E
∂ω

(ω, sh, sR) =
[
η − (η − 1)

σ

Γ

]
ξ′

(
ω

1 − sh

)
1

1 − sh

+

[
ζ (1 − sR)
α(1 − α)

− (η − 1)
σ

Γ

]
λA

1 − sR
α

2
1−αω

1
α−1 > 0.

�

Proof of Proposition 5. It is straightforward from Lemma 2. �

Proof of Theorem 3. By applying the implicit function theorem to (49), we have

dω∗
dsh
= −

∂E
∂sh

(ω∗, sh, sR)
∂E
∂ω

(ω∗, sh, sR)
, (50)

where
∂E
∂sh

(ω∗, sh, sR) =
[
η − (η − 1)

σ

Γ

]
ξ′

(
ω∗

1 − sh

)
ω∗

(1 − sh)2 > 0.

Notice that (50) is positive by Lemma 2. Therefore, it follows from (H1) that

dgh∗

dsh
= g′N (ω∗)

dω∗
dsh
> 0.

Differentiating (A1) with respect to sh, we have

dgA∗

dsh
= − ησ/Γ

η − (η − 1)σ/Γ

[
α(1 − α)
1 − sR

− ζ
η

]
λAα

2α
1−α
α

1 − αω
1
α−1

dω∗
dsh
> 0. (51)

This holds, since gA∗ > 0 by assumptions which requires a parametric restriction
from (A1) that

α(1 − α)
1 − sR

<
ζ

η
.

We naturally obtain dgY∗/dsR > 0. �

Proof of Theorem 4. From (49), we have

dω∗
dsR
= −

∂E
∂sR

(ω∗, sh, sR)
∂E
∂ω

(ω∗, sh, sR)
, (52)
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where
∂E
∂sR

(ω∗, sh, sR) = (η − 1)
σ

Γ

α(1 − α)
(1 − sR)2λAα

2α
1−αω

α
α−1
∗ .

We show the case of η < 1 because of the space constraint. It is easy to verify
the case of η > 1. Since the numerator of (50) is negative and the denominator is
positive by Lemma 2, we have dω∗/dsR > 0. Hence, from (H1) we have

dgh∗

dsR
= g′N (ω∗)

dω∗
dsR
< 0. (53)

We also obtain from (40) that

dgA∗

dsR
=

dgh∗
dsR
− ηξ′

(
ω∗

1−sh

)
1

1−sh

dω∗
dsR

η − 1
. (54)

Since dgh∗/dsR < 0 and dω∗/dsR > 0, the above equation is found to be positive.
Finally, with dω∗/dsR > 0, from (31), (53), and (54), we have

dgY∗

dsR
=
η

η − 1

(
g′N (ω∗) − ξ′

(
ω∗

1 − sR

)
1

1 − sR

)
dω∗
dsR
> 0.

�
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