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Abstract

This paper analyses the incentives to adopt cost-reducing technology by �rms in a horizon-
tally di¤erentiated industry. In our model there are several suppliers of a new technology. The
extent of the cost reduction depends on the quality of the new technology. A �rm has to buy the
technology in a �scoring auction�. This means that both the price and the quality (which a¤ects
marginal cost of production) of this new technology are no longer given but depend on the
equilibrium outcome in the �scoring auction�. We show that the nature of competition (Cournot
or Bertrand) has no e¤ect on the equilibrium decision of the �rms to adopt the new technology
when the quality of the new technology o¤ered by the suppliers lies in the interior of the feasible
range of qualities. In this case, both �rms adopt new technology. However, when there is a
corner solution, then it is possible to have equilibria where only one �rm (or no �rm) adopts the
new technology. With corner solution the nature of competition (Cournot or Bertrand) makes
a di¤erence to the equilibrium outcomes.
Journal of Economic Literature No. L13, L11, D43, D44

1 Introduction

Consider a di¤erentiated product duopoly. The �rms have the option of investing in a new
technology which is cost-reducing. This may be a new machine which brings down marginal cost of
production (increases e¢ ciency) or a new software which improves product design and e¤ectively
reduces costs. The extent of the reduction in marginal cost depends on the quality of the new
technology. The following questions arise:

1. Will the �rms adopt this cost-reducing new technology?

2. Does the nature of competition (Cournot or Bertrand) matter?

In the industrial organisation literature the above questions have been addressed in various
ways. However, our approach will be di¤erent. In order to �nd answers to the above questions we
consider the following two-stage game.

�I am indebted to Masaki Aoyagi, Vijay Kaul, Noriaki Matshushima, Toshihiro Matsumura, Achintya Ray and
Makoto Yano for very helpful comments. Comments from the participants at the Aomori Kyoto International Work-
shop and seminar participants at Tokyo University were also very helpful. The paper was written when I was a
�Visiting Research Scholar� at the Institute of Social and Economic Research, Osaka University in 2013-14. ISER
provided me with excellent research facilites and stimulating intellectual ambience and I am very grateful for that.
The usual disclaimer applies.

1



1. In the �rst stage �rms simultaneously and independently decide whether or not to adopt the
new technology. There are several suppliers of this new technology. The quality of the new
technology lies in the interval [0; �x]. Higher is the quality of the new technology, the lower will
be the marginal cost of production. The extent of reduction in marginal cost depends on the
e¤ectiveness of the new technology in reducing marginal cost. If a �rm decides to adopt the
new technology, it has to purchase it in a scoring auction. This means that both the cost
of buying this new technology and the quality of the technology (which a¤ects the marginal
cost of production) are no longer given but they depend on the equilibrium outcome in the
scoring auction.

2. In the second stage the �rms engage either in Cournot competition or in Bertrand competition
in a di¤erentiated product market. The mode of product market competition, Cournot or
Bertrand, in the second stage is exogenously determined. The outcome of the scoring auction
is revealed to both the �rms before they engage in the second stage duopoly competition.
This means that when a �rm engages in second stage competition (Cournot or Bertrand) it
knows the quality choice (and hence the marginal cost) of its rival.

We �nd that the equilibrium outcome crucially depends on whether or not the quality of the
new technology o¤ered by the suppliers lies in the interior of [0; �x].

In sharp contrast to the related results in the literature we show that both �rms choose to
adopt the new technology in the �rst stage when the quality of the new technology o¤ered by the
suppliers lies in the interior of [0; �x]. This is true regardless of the value of di¤erentiation parameter
and regardless of the nature of second stage competition (Cournot or Bertrand). However, when
there is a corner solution (where all the suppliers o¤er quality �x) then it is possible to have an
equilibrium where only one �rm (or no �rm) adopts the new technology. With corner solution in
quality, in some cases the nature of competition (Cournot or Bertrand) makes a di¤erence to the
equilibrium outcomes. We show that this depends on the degree of product di¤erentiation and
the expected cost of acquiring the new technology. It may be noted that with corner solution, our
results are somewhat closer to the existing ones in the literature.

The novelty of our paper is that we use �scoring auction�as a mechanism to buy new technology.
In all papers in the related literature �rms adopt the new technology either by incurring a �xed
cost (as in Bester and Petrakis (1993), Pal (2010) and Elberfeld and Nti (2004)) or by participating
in a �standard auction�(as in Das-Verma (2003) and Moldovanu and Sela (2003)).

Why Scoring auction? In the traditional theory of standard procurement auctions, the buyer
(auctioneer) cares only about the price of the object, but not the other attributes.1 However, in
many procurement situations, the buyer cares about attributes other than price when evaluating
the o¤ers submitted by suppliers. Non-monetary attributes that buyers care about include quality,
time to completion etc. For example, in the contract for the construction of a new aircraft, the
speci�cation of its characteristics is probably as important as its price (see Branco, 1997). Under
these circumstances, auctions are usually multidimensional: bidders submit bids with the relevant
characteristics of the project (among which is price), then the procurement agency gives a score
to each bid and makes its decisions based on these scores. The essential element of such multi-
dimensional auctions is a scoring rule. For example, the Department of Defence in USA often
relies on competitive source selection to procure weapon systems (see Che, 1993). Each individual

1 It may be noted that the standard benchmark model of auctions is really a price-only auctions. See Krishna
(2010) for all the major results in the standard model.
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component of a bid of the weapon system is evaluated and assigned a score, these scores are summed
to yield a total score, and the �rm achieving the highest score wins the contract.

In our set-up any �rm which is planning to buy the new technology cares both about the price of
the new technology and the quality that is o¤ered. The reason is simple: both the price and quality
of the new technology a¤ects the pro�t of the �rm. The price of the new technology is like a �xed
cost and the quality of the new technology directly a¤ects the marginal cost of production. For
example, if the �rms are airline companies then they may invest in new aircraft with fuel e¢ cient
engines. The more fuel e¢ cient the engines of the new aircraft are, the more will be the savings
in fuel costs (which e¤ectively means that marginal cost of operating a �ight comes down). Such
airline companies evaluate o¤ers from suppliers of new aircraft based on not only the prices of the
aircraft but also on the quality of new fuel e¢ cient engines. In a country like India where fuel
costs are very high, airlines greatly value the fuel cost savings. Airline companies in India typically
purchase new aircraft after evaluating competing o¤ers (that include price as well as various quality
parameters) from big aircraft suppliers like Boeing and Airbus.2

We now proceed to provide a brief discussion of the related papers in the literature and show
how our exercise di¤ers from these papers.

The related literature Our two stage game is somewhat close to the approach in Bester and
Petrakis (1993) and Pal (2010). In these two papers the basic model is as follows. First, one �rm (or
both �rms) decides (decide) whether or not to adopt a cost-reducing technology, by incurring some
given cost. If a �rm adopts a cost-reducing technology, the reduction in marginal cost is discrete
and known. Next, the �rms engage either in Cournot competition or in Bertrand competition.3

Bester and Petrakis (1993) show that Cournot competition provides a stronger incentive to innovate
than Bertrand competition if the degree of product di¤erentiation is low, and a weaker incentive
if this degree is high. Pal (2010) shows that, if the given �xed cost of the technology is high,
Bertrand competition provides a stronger incentive to adopt technology than Cournot competition
unless the given cost-reducing e¤ect of the technology is very low. On the contrary, if the cost
of the technology is low, Cournot competition fares better than Bertrand competition in terms of
technology adoption by �rms.

Note that in the above papers �rms have to incur some given �xed cost to adopt the new
technology and the reduction in marginal cost is also given. That is, both the price of the new
technology and the associated reduction in marginal cost are known to the �rms in the beginning.
In contrast, in our model, neither the price of the new technology nor the reduction in marginal
cost are known to the �rms at the start. Firms come to know of these only after the outcome of
the scoring auction has been revealed.

Another set of papers (for example, Elberfeld and Nti, 2004) deal with the case where the
reduction in marginal cost is itself uncertain. Here a �rm may either undertake an up-front in-

2For example in 2011, after evaluating competing o¤ers, IndiGo (a low-cost Indian airline) ordered 180 Airbus
A320s from Airbus for a valuation of $15.6 billion. Earlier India�s national carrier, Air India, had placed an order for
111 Boeing and Airbus aircraft for $11 billion in 2005. As Airbus o¤ers more fuel-e¢ cient aircraft, in Indian aviation
market the demand for its aircarfts is increasing. Boeing�s market share has slumped in the Indian market and Airbus
now controls about 73% of the Indian pie. See Keller (2011) and Singhal (2011) for the information regarding the
order for Airbus aircrafts placed by some of the Indian airline companies.

3Boone (2001) analyses the e¤ects of intensity of product market competition on R&D incentives in a model
capturing the strategic interactions between �rms with di¤erent cost levels. Bonano and Haworth (1998) analyses
the relationship between intensity of competition and the pro�tability of innovative activity. In a context where
there is con�ict between static and dynamic e¢ ciency, Delbono and Denicolo (1990) compare the equilibrium R&D
investment under Bertrand and Cournot competition in a symmetric and homogeneous oligopoly.
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vestment to adopt the new technology with low marginal cost, or it may continue to use the old
technology with high marginal cost. The cost of adoption of such a new technology is given. After
technological commitments have been made, uncertainty in marginal cost is resolved, and the �rms
play a Cournot oligopoly game.4 It is shown that if in equilibrium both technologies are employed,
more uncertainty about the new technology increases (decreases) the number of innovating �rms
and decreases (increases) the product price if the up-front investment is large (small). In Elberfeld
and Nti (2004) the second stage competition is Cournot only and consequently, the issues regarding
di¤erences due to nature of competition (Cournot or Bertrand) do not arise.

Note that in Elberfeld and Nti (2004) the cost of the new technology is given but the reduction
in marginal cost (due to adoption of new technology) is uncertain. In contrast, in our model, before
the outcome of the scoring auction is known, both the cost of the new technology and the quality
of the new technology (and consequently the reduction in marginal cost) are uncertain.

There is yet another set of papers in the literature in which there is �rst an auction for a
patent and then the equilibrium outcome of this auction in�uences the future interaction (oligopoly
game) among agents. For example, in Das-Verma (2003) and Moldovanu and Sela (2003) a cost-
reducing process innovation protected by a patent is sold to one of several �rms. The �rms bid
non-cooperatively for this process innovation. Following the auction, in the second stage of the
game, the �rms compete against each other in an imperfectly competitive product market. The
process innovation won from the �rst stage auction lowers the winning bidder�s cost in the product
market. The value of the patent for a �rm is the di¤erence between the pro�t it makes in case
it acquires the patent, and the pro�t in case it does not.5 Das-Verma (2003) examines whether
a �rst-price, sealed-bid auction is e¢ cient in allocating a process innovation amongst oligopolists
engaged in either Cournot or Bertrand competition and shows that for Cournot, there exists a
symmetric, unique equilibrium in strictly increasing strategies (that are allocatively e¢ cient). For
Bertrand, such an e¢ cient equilibrium may not exist. The paper by Moldovanu and Sela (2003)
considers several �rms engaged in price competition under conditions of asymmetric information
about production costs. Incomplete information about production costs yields an auction model
with both private and common value components. The main result in this paper is that standard
auction mechanisms lead to ine¢ cient allocations.

Like Das-Verma (2003) and Moldovanu and Sela (2003) we have an auction prior to product
market competition. But ours is a scoring auction whereas these papers use a standard auction.
In these papers there is a reduction only in the winning bidder�s cost in the product market. In
our set-up any �rm can choose to reduce its marginal cost by purchasing the new technology in
a scoring auction. The new technology is not protected by any patent. Hence, in our model it is
possible to have a scenario where both �rms reduce marginal costs by adopting the new technology.
Moreover, unlike Das-Verma (2003) and Moldovanu and Sela (2003), in our model the reduction in
marginal cost does not depend on �rms�types but on the quality of the new technology.

Plan of the paper In section 2 we provide the model of our exercise. Section 3 gives the
equilibrium analysis of scoring auction. In section 4 we discuss the second-stage equilibrium in the
product market. Section 5 provides our major results. We analyse whether in equilibrium, the
�rms choose the new technology or not. We do so both for the case where the quality of the new
technology o¤ered by the suppliers lies in the interior of [0; �x] and for the case when there is a

4 In a di¤erent approach, Jensen (1992) examines the welfare e¤ects of adopting an innovation when there is
uncertainty about whether it will succeed or fail.

5Note that we will not be dealing with patent races. There is a huge literature on patent races (starting with the
classic papers by Dasgupta and Stiglitz, 1980 and Loury, 1979).
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corner solution (where the suppliers o¤er quality �x). Section 6 provides some concluding remarks.
Lastly, the appendix provides the proofs of most of our propositions.

We now proceed to provide the model of our exercise.

2 The Model

We consider the following two-stage game.

Stage 1 : Firm 1 and �rm 2 simultaneously and independently decide whether or not to adopt
the new technology. There are n suppliers of the new technology. A �rm has to buy the technology
in a �scoring auction�.

Stage 2 : Firms 1 and 2 engage either in Cournot competition or in Bertrand competition in
a di¤erentiated product market.

First stage scoring auction A �rm i which decides to adopt the new technology solicits bids
from n suppliers. Each bid is two-dimensional. It speci�es an o¤er of promised quality, x and
price, �, at which a �xed quantity of products with the o¤ered level of quality x is delivered. The
quantity is normalised to one. For simplicity quality is modelled as a one-dimensional attribute.
The quality of the technology is x and x 2 [0; �x] :

The cost of supplying the new technology is given by  (x; �i) = x�i where �i is the type of the
supplier i.

Prior to bidding each supplier i learns its cost parameter �i as private information. The buyer
and other suppliers (i.e. other than supplier i) do not observe �i but only knows the distribution
function of the cost parameter. It is assumed that �i is identically and independently distributed
over

�
�; ��
�
where 0 < � < ��. The distribution function of �i is given by F (:) and the density

function by f (:).
Let S (x; �) = s (x)�� denote a scoring rule for an o¤er (x; �), where s (:) is strictly increasing

in x. The rule is assumed to be publicly known to the suppliers of the new technology at the
start of bidding. In our model s (x) is equal to the second-stage gross pro�t of the �rm seeking the
new technology. This pro�t depends on (i) the nature of the second stage competition (Cournot
or Bertrand) and on (ii) whether the �rm and its rival have chosen the new technology or not.
Also, in our model � is the amount paid by the technology seeking �rm to the supplier winning the
contract. That is, � is like a �xed cost of purchasing the technology. Consequently, the second-stage
net pro�t of the �rm is s (x)� �.

The �rm awards the contract to a supplier whose o¤er achieves the highest score. This is similar
to a standard auction. In this paper we will model only �rst-score auction. In a �rst-score auction
the winning supplier�s o¤er is �nalised as the contract.6

Second-stage duopoly competition For the second-stage competition we consider a represen-
tative consumer�s utility function based on Dixit (1979). Scores of papers in the literature have
used this. A small sample of such papers is as follows: Singh and Vives (1984), Hackner ( 2000),
Bester and Petrakis (1993), Zanchettin (2006) and Pal (2010).

6This auction rule is a two-dimensional analogue of the �rst-price auction. In a second-score auction the winning
supplier is required to match the highest rejected score. In meeting this score, the supplier is free to choose any
quality-price combination. See Che (1993) for the details.
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On the demand side of the market, the representative consumer�s utility function of two di¤er-
entiated products, q1 and q2, and a numeraire good, q0 is given by

U = a (q1 + q2)�
1

2

�
q21 + q

2
2 + 2
q1q2

�
+ q0:

The parameter 
 measures the degree of product di¤erentiation. We consider the case of
substitute goods: 0 < 
 < 1. Lower value of 
 denotes higher degree of product di¤erentiation,
i.e., lower degree of substitutability between products. Note that when 
 is close to unity then the
products are nearly homogeneous (perfect substitutes) and when 
 is close to zero the products are
nearly independent

The utility function generates the system of linear demand functions

qi =
1

1� 
2 [a (1� 
)� pi + 
pj ] ; i; j = 1; 2; i 6= j:

The inverse demand functions are

pi = a� qi � 
qj ; i; j = 1; 2; i 6= j:

Initially (before the adoption of new technology) the marginal cost of production of �rms 1 and
2 is c.

We assume the following: (i) a > 2c (ii) 
 2
�
0; 

�
where 
 = �a+

p
9a2+8c2�16ac
2(a�c) . This ensures

that both �rms produce strictly positive output in equilibrium in Cournot competition as well as
in Bertrand competition for all possible cases.

If �rm 1 adopts the new technology of quality x its marginal cost reduces to c (1� k� (x))
where k � 1, � (0) = 0, �0 (x) > 0 for all x > 0 and k� (x) � 1 for all x. If �rm 2 adopts the
new technology of quality x its marginal cost reduces to c (1� � (x)). Note that � (x) denotes the
e¤ectiveness of the new technology in reducing marginal cost. Since k � 1 �rm 1 is more competent
at reducing marginal cost. Note that x = 0 is equivalent to not adopting the new technology.

Before giving our main results we need to provide some preliminaries on order statistics.

2.1 Order Statistics : some notations and preliminaries

Let y1; y2::yn denote a random sample of size n drawn from F (:): Then t1 � t2::: � tn where tis
are yis arranged in increasing magnitudes, are de�ned to be the order statistics corresponding to
the random sample y1; y2::::yn:

We would be interested in t1 (lowest order statistic) and t2 (second lowest order statistic). The
corresponding distribution functions and density functions are F1(:); F2(:) and f1(:); f2(:):
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Note that

F1(t) = 1� (1� F (t))n

and F2(t) = 1� (1� F (t))n � nF (t) (1� F (t))n�1

f1(t) = n (1� F (t))n�1 f(t)
and f2(t) = n(n� 1)F (t) (1� F (t))n�2 f(t)

3 Equilibrium in scoring auction

Each auction rule can be viewed as a Bayesian game where each supplier picks a quality-price
combination (x; �) as a function of its cost parameter. We now provide the �rst result (from Che,
1993).

Lemma 1 A unique symmetric equilibrium of a �rst-score auction is one in which each supplier
with type � o¤ers

xs (�) = arg max
x2[0;�x]

s (x)� x�

�s (�) = xs (�) � +

Z ��

�
xs (t)

�
1� F (t)
1� F (�)

�n�1
dt

remark 1 Note that since S (xs (�) ; �s (�)) = s (xs (�))� �s (�) is strictly decreasing in � the �rm
with lowest type (�) wins the contract in equilibrium7.

We will assume that xs (�) > 0 for all � 2
�
�; ��
�
. This ensures that even the least e¢ cient

supplier
�
whose type is ��

�
of the new technology quotes positive quality index in equilibrium.

The expected payo¤ to �rm i which chooses the new technology is the expected value of
(s (x)� �), where s (x) is the second-stage pro�t. Now using lemma 1 we get

Exp. (s (x)� �) =
Z ��

�
(s (xs (�))� �s (�)) f1 (�) d�

=

Z ��

�

 
s (xs (�))� xs (�) � �

Z ��

�
xs (t)

�
1� F (t)
1� F (�)

�n�1
dt

!
f1 (�) d�

We now provide our next result which also follows from Che (1993). In the appendix we provide
a much simpler proof.

Lemma 2 The expected payo¤ to �rm i in a �rst-score auction is as follows:

Z ��

�

 
s (xs (�))� xs (�) � �

Z ��

�
xs (t)

�
1� F (t)
1� F (�)

�n�1
dt

!
f1 (�) d�

=

Z ��

�
[s (xs (�))� xs (�) �] f2 (�) d�

We will need lemma 2 to prove some of our main results.
7See Che (1993) for the formal demonstration.
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4 Equilibrium in the second stage

The mode of product market competition, Cournot or Bertrand, in the second stage is exogenously
determined. The outcome of the scoring auction (held in the �rst stage) is revealed to both the
�rms before they engage in the second stage duopoly competition. This means that when a �rm
engages in second stage competition (Cournot or Bertrand) it knows the quality choice (and hence
the marginal cost) of its rival.

At the end of �rst-stage there are three possible cases : (i) no �rm has adopted the technology
(ii) only one �rm, either �rm 1 or �rm 2, has adopted the technology (iii) both of them have
adopted the technology.

We use the following notations for equilibrium outcomes (�C�stands for �choose the new tech-
nology�and �D�stands for �don�t choose�):

1. (C;C): �rm 1 and �rm 2 both adopt the new technology

2. (C;D): �rm 1 adopts the new technology but �rm 2 does not

3. (D;C): �rm 2 adopts the new technology but �rm 1 does not

4. (D;D): both �rms do not adopt the new technology

4.1 Cournot competition

We �rst analyse the case when there is quantity competition in the second stage. Let xi and �i
respectively be the equilibrium quality obtained and the payment made by �rm i in the �rst-stage
if it adopts the technology.

Cournot quantities and pro�ts are denoted by qi and �i respectively.

Note that

xDC1 = xDD1 = 0 and

�DC1 = �DD1 = 0:

Similarly

xCD2 = xDD2 = 0 and

�CD2 = �DD2 = 0:

The equilibrium outcomes in stage 2 in the case of quantity competition in the product market,
given the technology adoption decisions of �rms, are as follows.
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1. When no �rm adopts the new technology:

qDDi =
(a� c) (2� 
)
(4� 
2)

�DDi =
�
qDDi

�2
2. When both �rms adopt the new technology:

qCC1 =
(a� c) (2� 
) + c

�
2k�

�
xCC1

�
� 
�

�
xCC2

��
(4� 
2)

�CC1 =
�
qCC1

�2 � �CC1
qCC2 =

(a� c) (2� 
) + c
�
2�
�
xCC2

�
� 
k�

�
xCC1

��
(4� 
2)

�CC2 =
�
qCC2

�2 � �CC2
3. When �rm 1 adopts the new technology but �rm 2 does not:

qCD1 =
(a� c) (2� 
) + 2ck�

�
xCD1

�
(4� 
2)

�CD1 =
�
qCD1

�2 � �CD1
qCD2 =

(a� c) (2� 
)� ck�
�
xCD1

�



(4� 
2)
�CD2 =

�
qCD2

�2
4. When �rm 2 adopts the new technology but �rm 1 does not:

qDC1 =
(a� c) (2� 
)� c�

�
xDC2

�



(4� 
2)
�DC1 =

�
qDC1

�2
qDC2 =

(a� c) (2� 
) + 2c�
�
xDC2

�
(4� 
2)

�DC2 =
�
qDC2

�2 � �DC2
4.2 Bertrand competition

We now analyse the case when there is price competition in the second stage. Let yi and �i
respectively be the equilibrium quality obtained and the payment made by �rm i in the �rst-stage
if it adopts the technology. Bertrand prices, quantities and pro�ts are denoted by pi, bi and Bi
respectively.
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Note that

yDC1 = yDD1 = 0 and

�DC1 = �DD1 = 0:

Similarly

yCD2 = yDD2 = 0 and

�CD2 = �DD2 = 0:

When �rms compete in terms of price in the product market in stage 2, given the technology
adoption decisions of �rms of stage 1, the equilibrium outcomes are as follows.

1. When no �rm adopts the new technology:

pDDi =
a
�
2� 
 � 
2

�
+ c (2 + 
)

(4� 
2)

bDDi =
(a� c)

�
2� 
 � 
2

�
(1� 
2) (4� 
2)

BDDi =
�
1� 
2

� �
bDDi

�2
2. When both �rms adopt the new technology:

pCC1 =

�
a
�
2� 
 � 
2

�
+ c (2 + 
)

�c
�
2k�

�
yCC1

�
+ 
�

�
yCC2

�� �
(4� 
2)

bCC1 =

�
(a� c)

�
2� 
 � 
2

�
+c
�
2k�

�
yCC1

�
� 
�

�
yCC2

�
� 
2k�

�
yCC1

�� �
(1� 
2) (4� 
2)

BCC1 =
�
1� 
2

� �
bCC1

�2 � �CC1
pCC2 =

�
a
�
2� 
 � 
2

�
+ c (2 + 
)

�c
�
2�
�
yCC2

�
+ 
k�

�
yCC1

�� �
(4� 
2)

bCC2 =

�
(a� c)

�
2� 
 � 
2

�
+c
�
2�
�
yCC2

�
� 
2�

�
yCC2

�
� 
k�

�
yCC1

�� �
(1� 
2) (4� 
2)

BCC2 =
�
1� 
2

� �
bCC2

�2 � �CC2
3. When �rm 1 adopts the new technology but �rm 2 does not:
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pCD1 =
a
�
2� 
 � 
2

�
+ c (2 + 
)� 2ck�

�
yCD1

�
(4� 
2)

bCD1 =
(a� c)

�
2� 
 � 
2

�
+ ck�

�
yCD1

� �
2� 
2

�
(1� 
2) (4� 
2)

BCD1 =
�
1� 
2

� �
bCD1

�2 � �CD1
pCD2 =

a
�
2� 
 � 
2

�
+ c (2 + 
)� c
k�

�
yCD1

�
(4� 
2)

bCD2 =
(a� c)

�
2� 
 � 
2

�
� c
k�

�
yCD1

�
(1� 
2) (4� 
2)

BCD2 =
�
1� 
2

� �
bCD2

�2

4. When �rm 2 adopts the new technology but �rm 1 does not:

pDC1 =
a
�
2� 
 � 
2

�
+ c (2 + 
)� c
�

�
yDC2

�
(4� 
2)

bDC1 =
(a� c)

�
2� 
 � 
2

�
� c
�

�
yDC2

�
(1� 
2) (4� 
2)

BDC1 =
�
1� 
2

� �
bDC1

�2
pDC2 =

a
�
2� 
 � 
2

�
+ c (2 + 
)� 2c�

�
yDC2

�
(4� 
2)

bDC2 =
(a� c)

�
2� 
 � 
2

�
+ c�

�
yDC2

� �
2� 
2

�
(1� 
2) (4� 
2)

BDC2 =
�
1� 
2

� �
bDC2

�2 � �DC2
5 Equilibrium in the �rst-stage

In the �rst stage when �rm i decides to choose the new technology or not, its choice is dictated by
the expected value of its net payo¤ in the second stage. For example, if �rm 1 goes for the new
technology and 2 also does so, then expected net payo¤ to 1 isZ ��

�
�CC1 (�) f1 (�) d� =

Z ��

�

��
qCC1 (�)

�2 � �CC1 (�)
�
f1 (�) d�

Using lemma 2 we know thatZ ��

�
�CC1 (�) f1 (�) d� =

Z ��

�

��
qCC1 (�)

�2 � �CC1 (�)
�
f1 (�) d�

=

Z ��

�

��
qCC1 (xs (�))

�2 � xs (�) �� f2 (�) d�
11



Let

�̂CC1 =

Z ��

�

��
qCC1 (xs (�))

�2 � xs (�) �� f2 (�) d�
�̂CD1 =

Z ��

�

��
qCD1 (xs (�))

�2 � xs (�) �� f2 (�) d�
and so on.

Then in the �rst stage the choices before the two �rms can be summarised as follows. The �rst
payo¤ matrix deals with the case of quantity competition and the second one deals with the case
of price competition.

1

������������

2
C D

C �̂CC1 ; �̂CC2 �̂CD1 ; �̂CD2
D �̂DC1 ; �̂DC2 �̂DD1 ; �̂DD2

Cournot

������������

1

������������

2
C D

C B̂CC1 ; B̂CC2 B̂CD1 ; B̂CD2
D B̂DC1 ; B̂DC2 B̂DD1 ; B̂DD2

Bertrand

������������
5.1 Equilibrium when quality of the new technology lies in the interior

We now proceed to provide our �rst set of major results when the quality of the new technology
o¤ered by the suppliers lies in the interior of [0; �x].

Proposition 1 If �00 (x) < � 2ck(�0(x))2

(a�c)(2�
) for all x 2 (0; �x) and xs (�) 2 (0; �x) for all � 2
�
�; ��
�
then

the following is true.

�̂CC1 > �̂DC1 ; �̂CC2 > �̂CD2 ; �̂CD1 > �̂DD1 and �̂DC2 > �̂DD2 :

B̂CC1 > B̂DC1 ; B̂CC2 > B̂CD2 ; B̂CD1 > B̂DD1 and B̂DC2 > B̂DD2 :

Proof Given in the appendix.�

Proposition 2 If �00 (x) < � 2ck(�0(x))2

(a�c)(2�
) for all x 2 (0; �x) and xs (�) 2 (0; �x) for all � 2
�
�; ��
�
then

there is a unique subgame perfect equilibrium, where it is a strictly dominant strategy for both �rms
to adopt the new technology in the �rst stage regardless of the nature of second stage competition
(Cournot or Bertrand).

12



Proof The proof is straightforward and follows directly from proposition 1 and the payo¤matrix
provided in section 5.�

Comment We now provide a simple intuition behind our result. Given the rival�s decision, if
�rm i does not choose the new technology its marginal cost remains at c. Note that non-adoption
of the new technology is equivalent to choosing x = 0. If x = 0 the second stage net pro�t to �rm
i is s (0) (since the �rm has not chosen the new technology it does not have to pay for it). If the
�rm chooses the new technology it organises a scoring auction. From lemma 1 we know that a
supplier of type � will quote quality xs (�) = argmaxx2[0;�x] (s (x)� x�) in the scoring auction. By
hypothesis of proposition 2, xs (�) 2 (0; �x) for all � 2

�
�; ��
�
. This means s (xs (�))� xs (�) � > s (0)

which implies that the expected value of s (xs (�)) � xs (�) � is strictly greater than the expected
value of s (0). From lemma 2 we know that the expected payo¤ to �rm i is the expected value of
s (xs (�))� xs (�) �. Consequently, �rm i always gains by choosing the new technology.

We now compare and contrast our result to the related results in the literature. Bester and
Petrakis (1993) investigate how the incentives for cost reduction in a di¤erentiated industry depend
upon the degree of product di¤erentiation. This paper shows that Cournot competition provides
a stronger incentive to innovate than Bertrand competition if the degree of product di¤erentiation
is low, and a weaker incentive if this degree is high. Pal (2010) shows that, if the given �xed cost
of the technology is high, Bertrand competition provides a stronger incentive to adopt technology
than Cournot competition unless the given cost-reducing e¤ect of the technology is very low. On
the contrary, if the cost of the technology is low, Cournot competition fares better than Bertrand
competition in terms of technology adoption by �rms.8

In sharp contrast to the related results in the literature we show that the nature of competition
(Cournot or Bertrand) has no e¤ect on the equilibrium decision of the �rms to adopt the new
technology when the quality of the new technology o¤ered by the suppliers lies in the interior of
[0; �x]. In our model both �rms chooses to adopt the new technology in the �rst stage regardless of the
value of 
 in the relevant range and regardless of the nature of second stage competition (Cournot
or Bertrand).

5.2 Equilibrium when quality of the new technology is �x

The previous section dealt with the case where the quality of the new technology o¤ered by the
suppliers lies in the interior of [0; �x]. Now we attempt to analyse the case when there is a corner
solution (where the suppliers o¤er quality �x). We show that it is possible to have an equilibrium
outcome like where either (i) none of the �rms adopts the new technology or (ii) where only one of
the �rms adopts the new technology. We now provide our next result.

Lemma 3 If �00 (x) � 0 for all x 2 (0; �x) then xs (�) = �x for all � 2
�
�; ��
�
. This is true regardless

of the nature of second stage competition (Cournot or Bertrand).

8 In Elberfeld and Nti (2004) the second stage competition is Cournot only and consequently, the issues regarding
di¤erences due to nature of competition (Cournot or Bertrand) does not arise. In Das-Verma (2003) and Moldovanu
and Sela (2003) there is a reduction only in the winning bidder�s cost in the product market. In our set-up any �rm
can choose to reduce its marginal cost by purchasing the new technology in a scoring auction. The new technology is
not protected by any patent. Hence, in our model it is possible to have a scenario where both �rms reduce marginal
costs by adopting the new technology.

13



Proof Given in the appendix.�

In this case (when �00 (x) � 0), any supplier of the new technology, regardless of its type, o¤er
�x in equilibrium. In the scoring auction equilibrium we have the following:

xs (�) = �x for all � 2
�
�; ��
�
:

�s (�) = �x

"
� +

Z ��

�

�
1� F (t)
1� F (�)

�n�1
dt

#

This means

xCC1 = xCD1 = xCC2 = xDC2 = �x

yCC1 = yCD1 = yCC2 = yDC2 = �x

And as before

xDC1 = xDD1 = xCD2 = xDD2 = 0

�DC1 = �DD1 = �CD2 = �DD2 = 0

yDC1 = yDD1 = yCD2 = yDD2 = 0

�DC1 = �DD1 = �CD2 = �DD2 = 0

Let

z =

Z ��

�
�f2 (�) d�

That is, z is the expected value of the second lowest type.

Now note the following:

�̂CC1 =

Z ��

�

��
qCC1 (xs (�))

�2 � xs (�) �� f2 (�) d�
=

1

(4� 
2)

Z ��

�

h
((a� c) (2� 
) + c� (�x) f2k � 
g)2 � �x�

i
f2 (�) d�

=
((a� c) (2� 
) + c� (�x) f2k � 
g)2

(4� 
2) � �xz:

Similarly we can compute �̂DC1 , �̂CC2 , �̂CD2 , �̂CD1 , �̂DD1 , �̂DC2 and �̂DD2 . Also we can compute
B̂CC1 , B̂DC1 , B̂CC2 , B̂CD2 , B̂CD1 , B̂DD1 , B̂DC2 and B̂DD2 .

We now come to our next result.
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Lemma 4 (i) 9 unique k 2 (1;1) s.t.

(a� c) (2� 
) (k � 1) + c� (�x)
�
k2 � k
 � 1

�
= 0:

(ii) 9 unique � 2 (1;1) s.t.

2 (a� c)
�
2� 
 � 
2

�
(�� 1) + c� (�x)

��
2� 
2

� �
�2 � 1

�
� 2�


�
= 0:

Proof Given in the appendix.�

remark 2 For the rest of the paper we will assume that �00 (x) � 0 for all x 2 (0; �x). From lemma
3 we know that this means any supplier of the new technology, regardless of its type, o¤ers �x in
equilibrium. This implies that when a �rm chooses to adopt the new technology, it knows with
certainty both the quality (�x) of the new technology and also the associated decrease in marginal
cost of production. This aspect is very di¤erent from our previous case where the quality o¤ered by
the suppliers lies in the interior of [0; �x]. However, as in the previous case, before the outcome of
the scoring auction is known, the �rms do not know with certainty the cost of the new technology.

Now note that following results.

Lemma 5 (i) If k 2 (1; k) then

�̂CD1 � �̂DD1 > �̂DC2 � �̂DD2 > �̂CC1 � �̂DC1 > �̂CC2 � �̂CD2 :

(ii) If k 2 (k;1) then

�̂CD1 � �̂DD1 > �̂CC1 � �̂DC1 > �̂DC2 � �̂DD2 > �̂CC2 � �̂CD2 :

(iii) If k 2 (1; �) then

B̂CD1 � B̂DD1 > B̂DC2 � B̂DD2 > B̂CC1 � B̂DC1 > B̂CC2 � B̂CD2 :

(iv) If k 2 (�;1) then

B̂CD1 � B̂DD1 > B̂CC1 � B̂DC1 > B̂DC2 � B̂DD2 > B̂CC2 � B̂CD2 :

Proof Given in the appendix.�

Now note that

�̂CC2 � �̂CD2 � 0() 4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (1� k
)] � �xz

B̂CC2 � B̂CD2 � 0()
c� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ c� (�x)

�
2� 
2 � 2k


��
� �xz

�̂CD1 � �̂DD1 � 0() 4ck� (�x)

(4� 
2)2
[(a� c) (2� 
) + ck� (�x)] � �xz

B̂CD1 � B̂DD1 � 0()
ck� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ ck� (�x)

�
2� 
2

��
� �xz

The next two results provide conditions under which either (C;C) is the equilibrium outcome
or (D;D) is the equilibrium outcome.
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Proposition 3 (i) If

4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (1� k
)] � �xz

then both �rms adopting the new technology is the unique subgame perfect equilibrium when �rms
engage in quantity competition in the second stage. That is, the equilibrium outcome in the �rst
stage is (C;C).

(ii) If

c� (�x)
�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ c� (�x)

�
2� 
2 � 2k


��
� �xz

then both �rms adopting the new technology is the unique subgame perfect equilibrium when �rms
engage in price competition in the second stage. That is, the equilibrium outcome in the �rst stage
is (C;C).

Proof Given in the appendix.�

Comment From Proposition 3 it follows that for any given 
 2
�
0; 

�
and c, when a is large

enough then (C;C) is always the unique equilibrium outcome for both quantity and price compe-
tition. The intuition behind this is simple. a can be thought of as proxy for market size. When
market size is large enough any �rm has an incentive to lower marginal cost and, thereby increasing
it�s market share as tapping the large market fetches more gains as compared to the additional cost
of purchasing the new technology.

We now show that is also possible to have equilibria where no �rm chooses to adopt the new
technology.

Proposition 4 (i) If
4ck� (�x)

(4� 
2)2
[(a� c) (2� 
) + ck� (�x)] � �xz

then both �rms not adopting the new technology is the unique subgame perfect equilibrium when
�rms engage in quantity competition in the second stage. That is, the equilibrium outcome in the
�rst stage is (D;D).

(ii) If
ck� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ ck� (�x)

�
2� 
2

��
� �xz

then both �rms not adopting the new technology is the unique subgame perfect equilibrium when
�rms engage in price competition in the second stage. That is, the equilibrium outcome in the �rst
stage is (D;D).

Proof Given in the appendix.�
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Comment Proposition 4 shows that for any given 
 2
�
0; 

�
and any a, if c is small enough

then (D;D) is always the unique equilibrium outcome for both quantity and price competition.
The intuition behind this is simple. When c is very small, then even without adopting the new
technology, a �rm�s costs are low and hence the incentive to lower it further is not there as it has
to incur an additional �xed cost (of purchasing it).

We now show that in both quantity and price competition, it is also possible to have equilibria
where one �rm chooses to adopt the new technology whereas the other �rm does not.

5.2.1 Quantity competition

We �rst deal with Cournot competition. First, consider the following four terms:
�
�̂CD1 � �̂DD1

�
,�

�̂DC2 � �̂DD2
�
,
�
�̂CC1 � �̂DC1

�
, and

�
�̂CC2 � �̂CD2

�
. Lemma 5 show that regardless of the value of k,

the term
�
�̂CD1 � �̂DD1

�
is strictly higher than the others and the term

�
�̂CC2 � �̂CD2

�
is the strictly

lower than the others. The relative position of
�
�̂DC2 � �̂DD2

�
and

�
�̂CC1 � �̂DC1

�
depends on whether

k is higher than k or not.

We now provide the main results with quantity competition and corner solution in quality. First
note that when k 2 (1; k) then �̂CD1 � �̂DD1 > �̂DC2 � �̂DD2 > �̂CC1 � �̂DC1 > �̂CC2 � �̂CD2 .

Proposition 5 Suppose k 2 (1; k) and there is quantity competition in the second stage.
(i) If either

�̂CD1 � �̂DD1 > 0 > �̂DC2 � �̂DD2 > �̂CC1 � �̂DC1 > �̂CC2 � �̂CD2
or

�̂CD1 � �̂DD1 > �̂DC2 � �̂DD2 > �̂CC1 � �̂DC1 > 0 > �̂CC2 � �̂CD2
then there is a unique subgame perfect equilibrium where �rm 1 chooses to adopt but �rm 2 does
not. That is, the equilibrium outcome in the �rst stage is (C;D).

(ii) If
�̂CD1 � �̂DD1 > �̂DC2 � �̂DD2 > 0 > �̂CC1 � �̂DC1 > �̂CC2 � �̂CD2

then there are two subgame perfect equilibria where one �rm chooses to adopt but the other does
not. That is, the equilibrium outcome in the �rst stage is either (C;D) or (D;C).

Proof The proof follows directly from the payo¤ matrix provided in section 5.�

Note that lemma 5 also shows that when k 2 (k;1) then �̂CD1 � �̂DD1 > �̂CC1 � �̂DC1 >
�̂DC2 � �̂DD2 > �̂CC2 � �̂CD2 .

Proposition 6 Suppose k 2 (k;1) and there is quantity competition in the second stage.
(i) If either

�̂CD1 � �̂DD1 > 0 > �̂CC1 � �̂DC1 > �̂DC2 � �̂DD2 > �̂CC2 � �̂CD2
or

�̂CD1 � �̂DD1 > �̂CC1 � �̂DC1 > 0 > �̂DC2 � �̂DD2 > �̂CC2 � �̂CD2
or

�̂CD1 � �̂DD1 > �̂CC1 � �̂DC1 > �̂DC2 � �̂DD2 > 0 > �̂CC2 � �̂CD2
then there is a unique subgame perfect equilibrium where �rm 1 chooses to adopt but �rm 2 does
not. That is, the equilibrium outcome in the �rst stage is (C;D).
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Proof The proof follows directly from the payo¤ matrix provided in section 5.�

5.2.2 Bertrand Competition

We next consider price competition. The results are very similar. The proofs of propositions 7 and
8 follow directly from the payo¤ matrix provided in section 5.

As before consider the following four terms:
�
B̂CD1 � B̂DD1

�
,
�
B̂DC2 � B̂DD2

�
,
�
B̂CC1 � B̂DC1

�
,

and
�
B̂CC2 � B̂CD2

�
. Lemma 5 show that regardless of the value of k, the term

�
B̂CD1 � B̂DD1

�
is

strictly higher than the others and the term
�
B̂CC2 � B̂CD2

�
is the strictly lower than the others.

The relative position of
�
B̂DC2 � B̂DD2

�
and

�
B̂CC1 � B̂DC1

�
depends on whether k is higher than

�; or not.

When k 2 (1; �; ) then B̂CD1 � B̂DD1 > B̂DC2 � B̂DD2 > B̂CC1 � B̂DC1 > B̂CC2 � B̂CD2 .

Proposition 7 Suppose k 2 (1; �) and there is price competition in the second stage.
(i) If either

B̂CD1 � B̂DD1 > 0 > B̂DC2 � B̂DD2 > B̂CC1 � B̂DC1 > B̂CC2 � B̂CD2

or
B̂CD1 � B̂DD1 > B̂DC2 � B̂DD2 > B̂CC1 � B̂DC1 > 0 > B̂CC2 � B̂CD2

then there is a unique subgame perfect equilibrium where �rm 1 chooses to adopt but �rm 2 does
not. That is, the equilibrium outcome in the �rst stage is (C;D).

(ii) If
B̂CD1 � B̂DD1 > B̂DC2 � B̂DD2 > 0 > B̂CC1 � B̂DC1 > B̂CC2 � B̂CD2

then there are two subgame perfect equilibria where one �rm chooses to adopt but the other does
not. That is, the equilibrium outcome in the �rst stage is either (C;D) or (D;C).

Lemma 5 also shows that when k 2 (�;1) then B̂CD1 � B̂DD1 > B̂CC1 � B̂DC1 > B̂DC2 � B̂DD2 >
B̂CC2 � B̂CD2 .

Proposition 8 Suppose k 2 (�;1) and there is price competition in the second stage.
(i) If either

B̂CD1 � B̂DD1 > 0 > B̂CC1 � B̂DC1 > B̂DC2 � B̂DD2 > B̂CC2 � B̂CD2

or
B̂CD1 � B̂DD1 > B̂CC1 � B̂DC1 > 0 > B̂DC2 � B̂DD2 > B̂CC2 � B̂CD2

or
B̂CD1 � B̂DD1 > B̂CC1 � B̂DC1 > B̂DC2 � B̂DD2 > 0 > B̂CC2 � B̂CD2

then there is a unique subgame perfect equilibrium where �rm 1 chooses to adopt but �rm 2 does
not. That is, the equilibrium outcome in the �rst stage is (C;D).
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Comment Note that k represents �rm 1�s relative competence vis-a-vis �rm 2. Since k � 1 �rm
1 is more competent than �rm 2. Hence, when k is high enough (i.e. either k > k in quantity
competition or k > � in price competition), then it is never an equilibrium outcome where �rm
1 does not adopt the new technology but �rm 2 does. This arises because �rm 1 is far more
adept than �rm 2 at reducing marginal cost. When k is low enough (i.e. k 2 (1; k) in quantity
competition or k 2 (1; �) in price competition) and if it�s the case that the outcome (D;D) does
not arise in equilibrium, then for all feasible parameter values there is always an equilibrium where
�rm 1 adopts the new technology in equilibrium.

5.2.3 Cournot vs Bertrand

We proceed to explore the question as to whether the nature of competition (Cournot or Bertrand)
make a di¤erence. We show that the nature of competition sometimes make a di¤erence in the case
when there is a corner solution (where the suppliers o¤er quality �x).

In Cournot competition, a reduction in �rm i�s unit cost increases its output, qi, and decreases
it rivals output, qj . Total supply, qi + qj , is increased. This particular e¤ect is strategically
advantageous for �rm i. On the other hand, in Bertrand competition, a reduction in �rm i�s unit
cost decreases price of both �rms. This is strategically disadvantageous for �rm i because its
output is positively related to the other �rm�s price. This implies that in contrast with Cournot
competition, Bertrand competition creates a negative strategic incentive to adopt a new technology.
However, it may be noted that the gains from a cost reduction not only depend on the strategic
e¤ect but also on how much total production costs are decreased. Therefore, if price competition
results in a higher output than quantity competition, it may be the case that Bertrand competition
induces a greater overall incentive to adopt a new technology than Cournot competition.9

We now come to our next result.

Lemma 6 If 2a�2c
2a�2c+ck�(�x) < 
, then for 
 2

�
0; 2a�2c
2a�2c+ck�(�x)

�
�̂CD1 � �̂DD1 > B̂CD1 � B̂DD1

and for 
 2
�

2a�2c
2a�2c+ck�(�x) ; 


�
�̂CD1 � �̂DD1 < B̂CD1 � B̂DD1

Proof Given in the appendix.�
Now from lemma 6 we know that the following scenarios are possible: (i) 
 2

�
0; 2a�2c
2a�2c+ck�(�x)

�
and �̂CD1 ��̂DD1 > 0 > B̂CD1 �B̂DD1 and (ii) 
 2

�
2a�2c

2a�2c+ck�(�x) ; 

�
and �̂CD1 ��̂DD1 < 0 < B̂CD1 �B̂DD1 .

This brings us to our next main result. The proof follows directly from the payo¤ matrix
provided in section 5.

Proposition 9 (i) If 
 2
�
0; 2a�2c
2a�2c+ck�(�x)

�
and �̂CD1 � �̂DD1 > 0 > B̂CD1 � B̂DD1 then (D;D) is the

unique equilibrium outcome under Bertrand competition. However, (D;D) is never an equilibrium

under Cournot competition. (ii) If 
 2
�

2a�2c
2a�2c+ck�(�x) ; 


�
and �̂CD1 � �̂DD1 < 0 < B̂CD1 � B̂DD1 then

(D;D) is the unique equilibrium outcome under Cournot competition. However, (D;D) is never
an equilibrium under Bertrand competition.

9We follow section 4 of Bester and Petrakis (1993) for the discussion in this paragraph.
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Comment Proposition 9 shows that when the degree of substitutability (
) is low then (D;D) is
the only equilibrium under Bertrand competition whereas it is never an equilibrium under Cournot
competition. Also, when the degree of substitutability (
) is high then (D;D) is the only equilibrium
under Cournot competition whereas it is never an equilibrium under Bertrand. This conclusion is
somewhat similar to Bester and Petrakis (1993) where it is shown that Cournot competition provides
a stronger incentive to innovate than Bertrand competition if the degree of substitutability (
) is
low, and a weaker incentive if this degree is high.

The intuition behind this result is related to the di¤erences in the strategic e¤ects under Cournot
and Bertrand competition.10 Note that when 
 = 0, price and quantity decisions result in the same
outcome. For low values of 
 the type of market competition has only a small impact on �rm
i�s output. This implies that the gain from reducing total cost does not di¤er very much in the
two categories of equilibrium (Bertrand or Cournot) when 
 is low. Consequently, the strategic
e¤ect dominates and new technology adoption becomes relatively more attractive under Cournot
competition.

The following may now be noted.

Lemma 7 The following inequality holds true for any k � 1 and for any 
 2
�
0; 

�
.

�̂CC2 � �̂CD2 > B̂CC2 � B̂CD2

Proof Given in the appendix.�

From lemma 7 it is clear that the following is a possibility.

�̂CC2 � �̂CD2 > 0 > B̂CC2 � B̂CD2

The above is equivalent to

4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (1� k
)]

> �xz >
c� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ c� (�x)

�
2� 
2 � 2k


��
We now come to our last main result. The proof follows directly from the payo¤matrix provided

in section 5.

Proposition 10 If

4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (1� k
)]

> �xz >
c� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ c� (�x)

�
2� 
2 � 2k


��
then under Cournot competition (C;C) is the unique equilibrium outcome. Under Bertrand com-
petition at most one �rm chooses to adopt the new technology in equilibrium.
10We follow section 5 of Bester and Petrakis (1993) for this intuition.
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Comment From lemma 5 we know that the term
�
�̂CC2 � �̂CD2

�
is the lowest among the four

terms:
�
�̂CD1 � �̂DD1

�
,
�
�̂DC2 � �̂DD2

�
,
�
�̂CC1 � �̂DC1

�
and

�
�̂CC2 � �̂CD2

�
. As noted before, we have

�̂CC2 � �̂CD2 > 0, �xz <
4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (1� k
)]

Since �xz is the expected cost of acquiring the new technology it means that when
�
�̂CC2 � �̂CD2

�
> 0

then the cost of the new technology is relatively low. In proposition 10 we get that under Cournot
competition (C;C) is the unique equilibrium outcome. But under Bertrand competition at most
one �rm chooses to adopt the new technology in equilibrium. That is, the incentive to invest in
a new technology is higher under Cournot when its cost (�xz) is relatively low. This is somewhat
similar to Pal (2010).

A simple intuition behind our result is as follows.11 Following technology adoption, Bertrand
competition not only leads to lower prices (strategic e¤ect), but also results in a lower market share
of the non-adopting �rm (selection e¤ect) than Cournot competition. We have noted earlier that
the strategic e¤ect provides more incentive to adopt technology under Cournot competition than
under Bertrand competition. However, the selection e¤ect works in the opposite direction.

Note that when only one �rm adopts the cost-reducing technology, the selection e¤ect domi-
nates the strategic e¤ect and as a result new technology adoption is more attractive under Bertrand
competition than under Cournot competition. On the other hand, if both �rms adopt the tech-
nology, the selection e¤ect disappears and the gain from technology adoption are higher under
Cournot competition than under Bertrand competition. A �rm�s gain from technology adoption
is clearly higher when only that particular �rm adopts the technology. Therefore, when the cost
of the technology is relatively low, in equilibrium, both �rms adopt the technology under Cournot
competition whereas it�s not so under Bertrand competition.

6 Conclusion

This paper analyses the incentives to adopt cost-reducing technology by �rms in a horizontally
di¤erentiated industry under two alternative categories of product market competition, Cournot
and Bertrand. Our approach is di¤erent from the related papers in the literature. We consider a
two-stage game. In the �rst stage �rms simultaneously and independently decide whether or not to
adopt the new technology. In the second stage the �rms engage either in Cournot competition or in
Bertrand competition in a di¤erentiated product market. In our model there are several suppliers
of a new technology. The quality of the new technology lies in the interval [0; �x]. Higher is the
quality, the lower will be the marginal cost. The extent of the cost reduction depends on the quality
of the new technology. A �rm has to buy the technology in a �scoring auction�. This means that
both the cost of buying this new technology and the quality of the technology (which a¤ects the
marginal cost of production) are no longer given but they depend on the equilibrium outcome in
the scoring auction.

In contrast to results in the literature we show the following:

1. The nature of competition (Cournot or Bertrand) has no e¤ect on the equilibrium decision
of the �rms to adopt the new technology when the quality of the new technology o¤ered by
the suppliers lies in the interior of [0; �x]. In this case, both �rms adopt new technology in
equilibrium.

11We follow Pal (2010) to provide our intuition.
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2. However, when the quality of the new technology o¤ered by the suppliers is �x for all types
(corner solution), then it is possible to have an equilibrium where only one �rm (or no �rm)
adopts the new technology.

3. When there is corner solution in quality, in some cases the nature of competition (Cournot
or Bertrand) makes a di¤erence in the equilibrium outcomes. This depends on the degree of
product di¤erentiation and the expected cost of acquiring the new technology.
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Appendix

Proof of Lemma 2 We have to show thatZ ��

�

 
s (xs (�))� xs (�) � �

Z ��

�
xs (t)

�
1� F (t)
1� F (�)

�n�1!
f1 (�) d�

=

Z ��

�
[s (xs (�))� xs (�) �] f2 (�) d�:

Note that Z ��

�

Z ��

�

"
xs (t)

�
1� F (t)
1� F (�)

�n�1
dt

#
f1 (�) d�

= n

Z ��

�

Z ��

�

"
xs (t)

�
1� F (t)
1� F (�)

�n�1
dt

#
(1� F (�))n�1 f (�) d�

= n

Z ��

�

"Z ��

�
xs (t) (1� F (t))n�1 dt

#
f (�) d� ���� (1)

Changing the order of integration we can write (1) as

n

Z ��

�

"Z ��

�
xs (t) (1� F (t))n�1 dt

#
f (�) d�

= n

Z ��

�

�Z t

�
f (�) d�

�
xs (t) (1� F (t))n�1 dt

= n

Z ��

�
F (t)xs (t) (1� F (t))n�1 dt

= n

Z ��

�
xs (�)F (�) (1� F (�))n�1 d� ���� (2)

Using (2) we now getZ ��

�

 
s (xs (�))� xs (�) � �

Z ��

�
xs (t)

�
1� F (t)
1� F (�)

�n�1!
f1 (�) d�

= n

Z ��

�

h
fs (xs (�))� xs (�) �g (1� F (�))n�1 f (�)� xs (�)F (�) (1� F (�))n�1

i
d�

= n

Z ��

�
[fs (xs (�))� xs (�) �g f (�)� xs (�)F (�)] (1� F (�))n�1 d� ���� (3)

Let
K (�) = s (xs (�))� xs (�) �:���� (4)
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Then using the envelope theorem we get that

K 0 (�) = �xs (�)���� (4a)
From (3) we can now write

n

Z ��

�
[fs (xs (�))� xs (�) �g f (�)� xs (�)F (�)] (1� F (�))n�1 d�

= n

Z ��

�

�
K (�) f (�) +K 0 (�)F (�)

�
(1� F (�))n�1 d� = n

Z ��

�
(1� F (�))n�1 d (K (�)F (�))

= n
h
(1� F (�))n�1K (�)F (�)

i��
�
� n

Z ��

�
K (�)F (�) d (1� F (�))n�1

= n

Z ��

�
K (�)F (�) (n� 1) (1� F (�))n�2 f (�) d� =

Z ��

�
K (�) f2 (�) d�

=

Z ��

�
[s (xs (�))� xs (�) �] f2 (�) d� (using 4):���� (5)

Hence, from (3) and (5) we get thatZ ��

�

 
s (xs (�))� xs (�) � �

Z ��

�
xs (t)

�
1� F (t)
1� F (�)

�n�1!
f1 (�) d�

=

Z ��

�
[s (xs (�))� xs (�) �] f2 (�) d�:

This completes proof of lemma 2.�

Proof of Proposition 1 We will �rst show that �̂CC1 > �̂DC1 . The rest of the inequalities can
be proved using exactly similar logic.

Step 1 We will show that xCC2 (�) < xDC2 (�) for all � 2
�
�; ��
�
.

From lemma 1 we know that for any � 2
�
�; ��
�
, xCC2 (�) solves

xCC2 (�) = arg max
x2[0;�x]

s (x)� x�

= arg max
x2[0;�x]

�
qCC2

�2 � x�
= arg max

x2[0;�x]

 
(a� c) (2� 
) + c

�
2� (x)� 
k�

�
xCC1

��
(4� 
2)

!2
� x� ���� (6)

We have (6) since, as noted earlier, in this particular case s (x) is the gross second stage pro�t when
both �rms choose the new technology. Since xs (�) 2 (0; �x) for all � 2

�
�; ��
�
, xCC2 (�) is the solution

in x of the following (1OC and 2OC):

@

@x

24 (a� c) (2� 
) + c �2� (x)� 
k� �xCC1 ��
(4� 
2)

!2
� x�

35 = 0���� (7a)

@2

@x2

24 (a� c) (2� 
) + c �2� (x)� 
k� �xCC1 ��
(4� 
2)

!2
� x�

35 < 0���� (7b)
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(7a) and (7b) imply that xCC2 (�) is the solution in x of the following:

4c�0 (x)

(4� 
2)2
�
(a� c) (2� 
) + 2c� (x)� c
k�

�
xCC1

��
� � = 0���� (8a)
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h
�00 (x)
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(a� c) (2� 
) + 2c� (x)� c
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�
xCC1

�	
+ 2c

�
�0 (x)

�2i
< 0���� (8b)

Since k � 1 and �00 (x) < � 2ck(�0(x))2

(a�c)(2�
) for all x 2 (0; �x), (8b) will always be satis�ed.
Similarly, xDC2 (�) is the solution in x of the following:

4c�0 (x)

(4� 
2)2
[(a� c) (2� 
) + 2c� (x)]� � = 0���� (9a)
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Again, since k � 1 and �00 (x) < � 2ck(�0(x))2

(a�c)(2�
) for all x 2 (0; �x), (9b) will always be satis�ed.
Note that since xs (�) 2 (0; �x) for all � 2

�
�; ��
�
, we must have xCC1 (�) > 0. This means that

LHS of (8a) is strictly lower than the LHS of (9a). Moreover, from (8b) and (9b) we get that the
both the LHS of (8a) and (9a) are strictly decreasing in x. Hence, we get that xCC2 (�) < xDC2 (�)
for all � 2

�
�; ��
�
.

Step 2 Using a logic similar to the one used in (8a) and (8b) we get that xCC1 (�) is the
solution in x of the following:
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As before, (10b) will always be satis�ed. We know that �̂CC1 =
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��
qCC1 (xs (�))

�2 � xs (�) �� f2 (�) d�.
Note that when �rm 1 computes its expected payo¤

�
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From (11) and (12) we get
�̂CC1 � �̂DC1
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Using (10a) we get can write the above as
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Hence, we get that 
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Step 3 Now let
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From step 1 we know that x̂DC2 > x̂CC2 and this implies that �
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�
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�
. From the

assumptions of our model we have a > 2c, 
 2 (0; 1) and k� (:) � 1. Using these facts in (15) we
get that
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Note that
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Using (20) in (14) we get that 
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Using (21) and (13) we get that �̂CC1 � �̂DC1 > 0. �

Proof of Lemma 3 We will prove it for the case where both �rms choose the new technology.
the other cases can be proved similarly. From lemma 1 we know that for any � 2

�
�; ��
�
, xCC1 (�)

solves

xCC1 (�) = arg max
x2[0;�x]

s (x)� x�

= arg max
x2[0;�x]

�
qCC1

�2 � x�
= arg max

x2[0;�x]

 
(a� c) (2� 
) + c

�
2k� (x)� 
�

�
xCC2

��
(4� 
2)

!2
� x� ����(22)

Now note that

@

@x

h�
qCC1

�2 � x�i =
4ck�0 (x)

(4� 
2)2
�
(a� c) (2� 
) + 2ck� (x)� c
�

�
xCC2

��
� � ���� (23a)

@2

@x2

h�
qCC1

�2 � x�i =
4ck

(4� 
2)2

�
�00 (x)

�
(a� c) (2� 
)

+2ck� (x)� c
�
�
xCC2

� �+ 2ck ��0 (x)�2��� (23b)
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We have assumed that xs (�) > 0 for all � 2
�
�; ��
�
. This means @

@x

h�
qCC1

�2 � x�i > 0 at x = 0.
Since a > 2c, 
 2 (0; 1) and k� (x) � 1 for all x 2 [0; �x] (by assumption), from (23b) we get that if

�00 (x) � 0 then @
@x

h�
qCC1

�2 � x�i > 0 for all x 2 [0; �x]. This means that @
@x

h�
qCC1

�2 � x�i > 0 for
all x 2 (0; �x). This implies xCC1 (�) = �x for all � 2

�
�; ��
�
.�

Proof of Lemma 4 Let

h (k) = (a� c) (2� 
) (k � 1) + c� (�x)
�
k2 � k
 � 1

�
���� (24)

Then
h0 (k) = (a� c) (2� 
) + c� (�x) (2k � 
)���� (25)

Since k � 1 and 
 2 (0; 1) we have

h (1) < 0 and h0 (k) > 0 for all k � 1 ���� (26)

(26) implies 9 unique k 2 (1;1) s.t. h (k) = 0. This proves lemma 4 (i). Part (ii) of lemma 4 can
be proved using similar logic.�

Proof of Lemma 5 We know that �̂CC1 =
R ��
�

��
qCC1 (xs (�))

�2 � xs (�) �� f2 (�) d� and �̂DC1 =�
qDC1

�2
. From lemma 3 we get that when �00 (x) � 0 for all x 2 (0; �x), xCC1 (�) = xCC2 (�) =

xDC2 (�) = �x. Note that z =
R ��
� f2 (�) :

�̂CC1 =

Z ��

�

��
qCC1 (�)

�2 � xCC1 (�) �
�
f2 (�) d�

=

Z ��

�

"�
(a� c) (2� 
) + c (2k� (�x)� 
� (�x))

(4� 
2)

�2
� �x�

#
f2 (�) d�

=

�
(a� c) (2� 
) + c (2k� (�x)� 
� (�x))

(4� 
2)

�2
� z�x���� (27)

�̂DC1 =
�
qDC1

�2
=

�
(a� c) (2� 
)� c� (�x) 


(4� 
2)

�2
���� (28)

Using (27) and (28) we get that

�̂CC1 � �̂DC1 =

�
(a� c) (2� 
) + c (2� (�x)� 
� (�x))

(4� 
2)

�2
� z�x

�
�
(a� c) (2� 
)� c� (�x) 


(4� 
2)

�2
=

4ck� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (k � 
)]� z�x���� (29)
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Using similar methods we can compute �̂CC2 � �̂CD2 , �̂CD1 � �̂DD1 and �̂DC2 � �̂DD2 . We list all of
them below.

�̂CC1 � �̂DC1 =
4ck� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (k � 
)]� z�x���� (30a)

�̂CC2 � �̂CD2 =
4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (1� k
)]� z�x���� (30b)

�̂CD1 � �̂DD1 =
4ck� (�x)

(4� 
2)2
[(a� c) (2� 
) + ck� (�x)]� z�x���� (30c)

�̂DC2 � �̂DD2 =
4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x)]� z�x���� (30d)

Note that 
 2 (0; 1). Then, for all k > 1 by inspecting (30a) to (30d) we get that �̂CD1 � �̂DD1 is
strictly greater than �̂CC1 � �̂DC1 , �̂CC2 � �̂CD2 and �̂DC2 � �̂DD2 . Similarly �̂CC2 � �̂CD2 is strictly lower
than �̂CC1 � �̂DC1 , �̂CD1 � �̂DD1 and �̂DC2 � �̂DD2 . Now we will compare �̂CC1 � �̂DC1 and �̂DC2 � �̂DD2 .
Note that �

�̂CC1 � �̂DC1
�
�
�
�̂DC2 � �̂DD2

�
=

4c� (�x)

(4� 
2)2
�
(a� c) (2� 
) (k � 1) + c� (�x)

�
k2 � k
 � 1

��
���� (31)

Using (24) we can write�
�̂CC1 � �̂DC1

�
�
�
�̂DC2 � �̂DD2

�
=

4c� (�x)

(4� 
2)2
h (k)���� (32)

From (26) and from the proof of lemma 4 we know that h (1) < 0, h (k) = 0 and h0 (k) > 0 for all
k � 1. This means for all k 2 (1; k) we have

�
�̂CC1 � �̂DC1

�
<
�
�̂DC2 � �̂DD2

�
and for all k 2 (k;1)

we have
�
�̂CC1 � �̂DC1

�
>
�
�̂DC2 � �̂DD2

�
. Combining this with our previous discussion we get that

if k 2 (1; k) then

�̂CD1 � �̂DD1 > �̂DC2 � �̂DD2 > �̂CC1 � �̂DC1 > �̂CC2 � �̂CD2 :

And, if k 2 (k;1) then

�̂CD1 � �̂DD1 > �̂CC1 � �̂DC1 > �̂DC2 � �̂DD2 > �̂CC2 � �̂CD2 :

This proves parts (i) and (ii) of lemma 5.

Routine computations show that

B̂CC1 � B̂DC1 =
ck� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ ck� (�x)

�
2� 
2

�
� 2c
� (�x)

�
� z�x���� (33a)

B̂CC2 � B̂CD2 =
c� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ c� (�x)

�
2� 
2

�
� 2ck
� (�x)

�
� z�x���� (33b)

B̂CD1 � B̂DD1 =
ck� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ ck� (�x)

�
2� 
2

��
� z�x�� (33c)

B̂DC2 � B̂DD2 =
c� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ c� (�x)

�
2� 
2

��
� z�x�� (33d)
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Note that 
 2 (0; 1). Then, for all k > 1 by inspecting (30a) to (30d) we get that B̂CD1 � B̂DD1 is
strictly greater than B̂CC1 � B̂DC1 , B̂CC2 � B̂CD2 and B̂DC2 � B̂DD2 . Similarly B̂CC2 � B̂CD2 is strictly
lower than B̂CC1 � B̂DC1 , B̂CD1 � B̂DD1 and B̂DC2 � B̂DD2 . Using a logic exactly similar to one used

before we can show that for all k 2 (1; �) we have
�
B̂CC1 � B̂DC1

�
<
�
B̂DC2 � B̂DD2

�
and for all

k 2 (�;1) we have
�
B̂CC1 � B̂DC1

�
>
�
B̂DC2 � B̂DD2

�
. Combining this with our previous discussion

we get that if k 2 (1; �) then

B̂CD1 � B̂DD1 > B̂DC2 � B̂DD2 > B̂CC1 � B̂DC1 > B̂CC2 � B̂CD2 :

And, if k 2 (�;1) then

B̂CD1 � B̂DD1 > B̂CC1 � B̂DC1 > B̂DC2 � B̂DD2 > B̂CC2 � B̂CD2 :

This proves parts (iii) and (iv) of lemma 5.�

Proof of Proposition 3 We know that (see the discussion before the statement of proposition
3)

�̂CC2 � �̂CD2 � 0() 4c� (�x)

(4� 
2)2
[(a� c) (2� 
) + c� (�x) (1� k
)] � �xz

B̂CC2 � B̂CD2 � 0()
c� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ c� (�x)

�
2� 
2 � 2k


��
� �xz

Using the above fact and using lemma 5 we get for all k 2 (1;1)

�̂CD1 � �̂DD1 ; �̂DC2 � �̂DD2 ; �̂CC1 � �̂DC1 ; �̂CC2 � �̂CD2 > 0���� (34a)
B̂CD1 � B̂DD1 ; B̂DC2 � B̂DD2 ; B̂CC1 � B̂DC1 ; B̂CC2 � B̂CD2 > 0���� (34b)

Therefore, from (34a) (or 34b) and the payo¤matrix in section 5 we get that both �rms adopting the
new technology is the unique subgame perfect equilibrium when �rms engage in quantity (or price)
competition in the second stage. That is, the equilibrium outcome in the �rst stage is (C;C).�

Proof of Proposition 4 We know that (see the discussion before the statement of proposition
3)

�̂CD1 � �̂DD1 � 0() 4ck� (�x)

(4� 
2)2
[(a� c) (2� 
) + ck� (�x)] � �xz

B̂CD1 � B̂DD1 � 0()
ck� (�x)

�
2� 
2

�
(1� 
2) (4� 
2)2

�
2 (a� c)

�
2� 
 � 
2

�
+ ck� (�x)

�
2� 
2

��
� �xz

Using the above fact and using lemma 5 we get for all k 2 (1;1)

�̂CD1 � �̂DD1 ; �̂DC2 � �̂DD2 ; �̂CC1 � �̂DC1 ; �̂CC2 � �̂CD2 < 0���� (35a)
B̂CD1 � B̂DD1 ; B̂DC2 � B̂DD2 ; B̂CC1 � B̂DC1 ; B̂CC2 � B̂CD2 < 0���� (35b)

Therefore, from (35a) (or 35b) and the payo¤ matrix in section 5 we get that both �rms not
adopting the new technology is the unique subgame perfect equilibrium when �rms engage in
quantity (or price) competition in the second stage. That is, the equilibrium outcome in the �rst
stage is (D;D).�
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Proof of lemma 6 Note that�
�̂CD1 � �̂DD1

�
�
�
B̂CD1 � B̂DD1

�
=

ck� (�x) 
3

(1� 
2) (4� 
2)2
[2 (a� c) (1� 
)� ck
� (�x)]���� (36)

Let
l (
) = 2 (a� c) (1� 
)� ck
� (�x)���� (37)

Note that

l (0) = 2 (a� c) > 0, l (1) = �ck� (�x) < 0 and l0 (
) < 0 for all 
 2 (0; 1)���� (38)

From (37) and (38) we clearly get that

l (
) > 0 if 
 2
�
0;

2a� 2c
2a� 2c+ ck� (�x)

�
and

l (
) < 0 if 
 2
�

2a� 2c
2a� 2c+ ck� (�x) ; 1

�
���� (39)

From (36) we know that

�
�̂CD1 � �̂DD1

�
�
�
B̂CD1 � B̂DD1

�
=

ck� (�x) 
3

(1� 
2) (4� 
2)2
l (
)���� (40)

using (39) and (40) we get that

�
�̂CD1 � �̂DD1

�
�
�
B̂CD1 � B̂DD1

�
> 0 if 
 2

�
0;

2a� 2c
2a� 2c+ ck� (�x)

�
and

�
�̂CD1 � �̂DD1

�
�
�
B̂CD1 � B̂DD1

�
< 0 if 
 2

�
2a� 2c

2a� 2c+ ck� (�x) ; 1
�
���� (41)

It maybe recalled that 
 2
�
0; 

�
where 
 = �a+

p
9a2+8c2�16ac
2(a�c) . We cannot compare 2a�2c

2a�2c+ck�(�x) and
�a+

p
9a2+8c2�16ac
2(a�c) . So, using (41) we can state that if 2a�2c

2a�2c+ck�(�x) < 
, then for 
 2
�
0; 2a�2c
2a�2c+ck�(�x)

�
we get �̂CD1 ��̂DD1 > B̂CD1 �B̂DD1 and for 
 2

�
2a�2c

2a�2c+ck�(�x) ; 

�
we get �̂CD1 ��̂DD1 < B̂CD1 �B̂DD1 .�

Proof of Lemma 7 Note that�
�̂CC2 � �̂CD2

�
�
�
B̂CC2 � B̂CD2

�
=

c
3� (�x)

(1� 
2) (4� 
2)2
[2 (a� c) (1� 
) + c� (�x) (2k � 
)]���� (42)

Since a > 2c, 
 2
�
0; 

�
where 
 < 1 and k � 1 the RHS of (42) is strictly positive. Hence,�

�̂CC2 � �̂CD2
�
>
�
B̂CC2 � B̂CD2

�
for all k � 1 and for all 
 2

�
0; 

�
.�
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