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Abstrat

Two sellers engage in prie ompetition to attrat buyers loated on a net-

work. The value of the good of either seller to any buyer depends on the number

of neighbors on the network who onsume the same good. For a generi spei-

�ation of onsumption externalities, we show that an equilibrium prie equals

the marginal ost if and only if the buyer network is omplete or yli. When

the externalities are approximately linear in the size of onsumption, we iden-

tify the lass of networks in whih one of the sellers monopolizes the market,

or the two sellers segment the market.

Key words: graphs, networks, externalities, Bertrand, divide and onquer, dis-

riminatory priing, monopolization, segmentation, two-sided market.

Journal of Eonomi Literature Classi�ation Numbers: C72, D82.

1 Introdution

Goods have network externalities when their value to eah onsumer depends on

the onsumption deisions of other onsumers. The externalities may derive from

physial onnetion to onsumers adopting the same good as in the ase of teleom-

muniation devies, from provision of omplementary goods as in the ase of oper-

ating systems and softwares for omputers, or from pure psyhologial fators as in

the ase of a onsumption bandwagon. Despite their importane in reality, we only

have limited understanding of network externalities partiularly when those goods

�
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are supplied ompetitively. The objetive of this paper is to study prie ompeti-

tion in the presene of onsumption externalities represented by a buyer network.

Spei�ally, we formulate a model of prie ompetition under loal network external-

ities by supposing that two sellers ompete for a network of buyers who experiene

positive externalities when their neighbors in the network onsume the same good.

A more detailed desription of our model is as follows: Two sellers eah sell

goods that are inompatible with eah other. Consumers of either good experiene

larger positive externalities when more of his neighbors in the network onsume the

same good. In stage 1, the two sellers post pries simultaneously. The pries an

be perfetly disriminatory and an be negative. Upon publily observing the prie

vetors posted by both sellers, the buyers in stage 2 simultaneously deide whih

good to buy or not to buy either. The sellers have no ost of serving the market,

and their payo�s simply equal the sum of pries o�ered to the buyers who hoose

to buy their goods.

In this framework, we �nd that the equilibrium outome of prie ompetition

subtly depends on the network struture. Our �rst observation onerns the validity

of marginal ost priing. When no network externalities are present, it is lear that

the unique subgame perfet equilibrium of this game has both sellers o�er zero

to all buyers. We �rst show that suh marginal-ost priing is onsistent with an

equilibrium in an arbitrary network when the externalities are linear in the number

of neighbors onsuming the same good. We note however that while linearity is an

important lass, it is not a generi property in the spae of all externalities. Under a

generi spei�ation of externalities, we show the following: (1) Unless the network

is omplete or yli, there exists no equilibrium in whih either seller monopolizes

the market by o�ering the same prie to all buyers;

1

(2) Unless the network is

omplete or yli, there exists no (monopolization or segmentation) equilibrium in

whih both sellers o�er zero (= marginal ost) to every buyer; (3) If the network

is omplete or yli, there exists an equilibrium in whih both sellers o�er zero to

every buyer and one of them monopolizes the market. We �nd it surprising that the

non-existene results apply even to networks that are symmetri with respet to all

buyers. It is also interesting to note that no unintuitive onlusion results as long as

we on�ne ourselves to omplete networks, whih orrespond to global externalities.

Given these results, we proeed to the haraterization of an equilibrium when the

1

A graph is omplete if any pair of buyers are neighbors. The linear externalities in partiular

imply that the value of the good is zero to a buyer when none of his neighbors onsumes it.
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externalities are non-linear.

Positive identi�ation of an equilibrium is possible when the externalities are

approximately linear and when the network satis�es ertain properties as follows.

First, we onsider bipartite networks. A network is bipartite if the set of buyers is

divided into two subsets and if all neighbors of any buyer in one subset belong to the

other subset. This lass of networks is important sine it is a graph-theoreti rep-

resentation of a two-sided market that has reeived muh attention in the literature

as disussed in the next setion. We show that in a bipartite network, there exists

an equilibrium in whih one of the sellers monopolizes the market (i.e., buyers on

both sides) by harging positive pries to all buyers on one side while subsidizing all

buyers on the other side. Furthermore, the equilibrium prie to eah buyer (either

positive or negative) is shown to be approximately proportional to the number of

links he has to the other side of the market. We relate these �ndings to the identi�-

ation of the buyers that need to be proteted from the induement from the other

seller, and those that an be squeezed for pro�ts.

Next, we onsider the possibility of a segmentation equilibrium. We say that

a network is biloular if the set of buyers is divided into two subsets and if every

buyer in eah subset has at least as many neighbors in the same subset as in the

other subset, and some buyer in eah subset has stritly more neighbors in the same

subset than in the other subset. When the externalities are approximately linear,

we show that market segmentation in a biloular network takes plae in equilibrium

with eah seller making positive pro�ts.

The paper is organized as follows: After disussing the related literature in the

next setion, we formulate a model of prie ompetition in Setion 3. Setion 4

onsiders the subgame played by the buyers that follows the publi observation of

pries posted by both sellers. The subgame following eah prie pro�le is one of

strategi omplementarities, and hene has maximal and minimal Nash equilibria.

We use the iterated elimination of dominated ations to haraterize those equilibria

and also to identify the existene of pro�table deviations by a seller in the subsequent

analysis. We turn to the analysis of a subgame perfet equilibrium in Setion 5

and identify lower bounds on the sellers' equilibrium payo�s. Setion 6 examines

the validity of uniform priing and marginal ost priing in equilibrium. With the

de�nition of approximate linearity, we study in Setion 7 the possibility of market

monopolization in a bipartite network, whih orresponds to a two-sided market.

Equilibrium market segmentation in biloular networks is studied in Setion 8. We
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onlude with a disussion in Setion 9. The Appendix ontains most of the proofs.

2 Related Literature

Sine the pioneering work of Dybvig and Spatt (1983), problems related to the

monopoly provision of a good with network externalities are studied by Cabral et

al. (1999), Park (2004), Sekiguhi (2009), Ohs and Park (2010), Aoyagi (2013),

Parakhonyak and Vikander (2013), among others. In light of the multipliity of

equilibria under externalities, these papers study suh issues as implementing eÆ-

ient or revenue maximizing equilibria under omplete and inomplete information,

intertemporal patterns of adoption deisions, as well as the validity of introdutory

priing.

2

One key ingredient of the present paper is that of divide-and-onquer, whih

has been studied by Segal (2003), Winter (2004) and Bernstein and Winter (2012)

among others in ontrating problems under externalities. In these problems, a

single prinipal o�ers a ontrat to the set of agents whose partiipation deisions

reate externalities to other agents. The divide-and-onquer strategy of the prinipal

spei�es the sequential order in whih the prinipal approahes those agents. The

ontrat o�ered to the �rst agent makes it a dominant strategy to aept it even if

all other agents rejet, the ontrat o�ered to the seond agent makes it a dominant

strategy to aept it even if all but the �rst agent rejet, and so on.

3

Our analysis of

an equilibrium involves the same argument: Given some prie pro�le, we examine

if it is pro�table for either seller to deviate by o�ering an alternative prie vetor.

We onsider prie vetors that amount to approahing the buyers one by one in

some order and swithing them provided that it sueeds in swithing all their

predeessors. We relate the proess to the iterative elimination of stritly dominated

strategies, and use it derive a lower bound on equilibrium payo�s.

Modeling loal externalities as a graph-theoreti network, Candogan et al. (2012)

and Bloh and Qu�erou (2013) both study the problem of optimal monopoly priing.

Candogan et al. (2012) formulate a model in whih the good is divisible and the

2

See Rohlfs (1974) for an early treatment of network externalities.

3

A similar idea an be found in the study of an optimal marketing strategies under externalities

in Hartline et al. (2008). A marketing strategy determines the order in whih the monopolist

approahes the set of buyers with private valuations as well as a sequene of ontingent pries

o�ered to them. See also Aoyagi (2010) for the analysis of an optimal marketing strategy against

informationally interdependent buyers.
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externalities between any pair of onsumers may be direted. Bloh and Qu�erou

(2013) onstrut a model in whih the good is indivisible and the externalities are

undireted, but eah onsumer has private information about his valuation of the

good. It is interesting to note that in both these models, the optimal prie is

independent of the network on�guration in the ase of undireted externalities as

in the present paper, and is uniform aross the buyers if they have (ex ante) the

same valuation.

Competition between suppliers of goods with network externalities was �rst for-

mulated by Katz and Shapiro (1985). Subsequent work on the subjet inludes

Sundararajan (2003), Gabszewiz and Wauthy (2004), Hagiu (2006), Ambrus and

Argenziano (2009), Bernaji and Dutta (2009), Blume et al. (2009), Fjeldstad et

al. (2010), Cabral (2011), Jullien (2011), and Bloh and Qu�erou (2013). Among

them, Blume et al. (2009) and Bloh and Qu�erou (2013) study prie ompetition

under loal network externalities when market segmentation amongst the sellers is

exogenously given.

Ambrus and Argenziano (2009) and Jullien (2011) present models that are most

losely related to the present paper. These models are ouhed in terms of two-

sided markets, where the sellers are providers of platforms who o�er a marketplae

for agents on two sides suh as sellers and buyers of some good. In suh models,

the utility of an agent on one side is an inreasing funtion of the number of par-

tiipants from the other side.

4

Ambrus and Argenziano (2009) analyze Bertrand

ompetition between platforms in a two-sided market. Jullien (2011) applies the

divide-and-onquer argument to his analysis of multi-sided markets, and derives a

bound on the platforms' payo�s when they engage in Stakelberg prie ompetition.

Both Ambrus and Argenziano (2009) and Jullien (2011) formulate externalities dif-

ferently from the present paper, and also make some assumptions on the ability of

the agents to oordinate their ations. For example, the assumption of orrelated

rationalizability by Ambrus and Argenziano (2009) implies that the agents oor-

dinate on the pareto-eÆient alternative whenever there is one. In ontrast, our

interest is in the maximal sope of an equilibrium when there is no restrition on

the buyers' strategies. Spei�ally, our argument is based on the bang-bang prop-

erty of a subgame perfet equilibrium by allowing full oordination by the buyers

on an extreme equilibrium following any deviation by either seller.

Banerji and Dutta (2009) use the graph-theoreti de�nition of network exter-

4

See Armstrong (1998), and La�ont et al. (1998a,b).
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nalities as in the present paper, and identify onditions under whih prie ompe-

tition leads to monopolization and market segmentation. They assume that the

sellers annot prie disriminate the buyers, and also plae restritions on the buy-

ers' strategies. These di�erenes in assumptions make it diÆult to ompare their

�ndings with ours.

3 Model

Two sellers A and B ompete for the set I = f1; : : : ; Ng of N � 3 buyers. Con-

sumption of either seller's good generates externalities to the buyers aording to

a buyer network. Formally, a buyer network is represented by a simple undireted

graph G whose nodes orrespond to the buyers, and onsumption externalities exist

between buyers i and j if they are adjaent in the sense that there is a link between

i and j. When buyer j is adjaent to buyer i, we also say that j is i's neighbor.

The buyer network G is onneted in the sense that for any pair of buyers i and

j, there exists a path from i to j. That is, there exist buyers i

1

; i

2

; : : : ; i

m

, suh

that i

1

is adjaent to i, i

2

is adjaent to i

1

, . . . , and i

m

is adjaent to j. For any

buyer i in network G, denote by N

i

(G) (or simply N

i

) the set of i's neighbors in G.

The degree d

i

(G) = jN

i

(G)j of buyer i in network G is the number of i's neighbors.

De�ne also M to be the number of links in G. Sine eah link ounts twie when

aggregating the number of degrees in G, we have M =

1

2

P

i2I

d

i

.

For r = 2; : : : ; N � 1, the network G is r-regular if all buyers have the same

degree r, and regular if it is r-regular for some r. G is yli if it is onneted and

2-regular, and omplete if it is (N � 1)-regular, or equivalently, every pair of buyers

are adjaent to eah other.

The value of either seller's good to any buyer i is determined by the number of

neighbors of i who onsume the same good. We denote by v

n

the value of either good

to any onsumer when n of his neighbors onsume the same good. In partiular, v

0

denotes the stand-alone value, or the value to any buyer of either good when none

of his neighbors onsumes the same good. Impliit in this assumption is that the

two goods A and B are inompatible with eah other sine the value of either good

to any buyer is assumed the same whether his neighbor onsumes the other good

or nothing. The value does not depend on the identity of a buyer or the identity of

the seller who supplies the good. The onsumption externalities are non-negative in

the sense that 0 � v

0

� v

1

� � � � � v

N�1

.
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The good an be produed at no ost for both sellers. The sellers an perfetly

prie disriminate the buyers, and we let p

i

and q

i

denote the pries o�ered to buyer

i by seller A and seller B, respetively. They simultaneously quote prie vetors

p = (p

i

)

i2I

2 R

N

and q = (q

i

)

i2I

2 R

N

. The buyers publily observe (p; q), and

then simultaneously deide whether to buy either good, or buy neither.

Publi observability of the entire prie vetors and the possibility of perfet

prie disrimination are the two key assumptions of our model. We note in passing

that these assumptions may be more in line with the reality for intermediate goods

markets with a limited number of buyers than for large onsumption goods markets.

5

Buyer i's ation x

i

is an element of the set S

i

= fA;B; ;g, where ; represents no

purhase. Eah seller's strategy is an element of R

N

, whereas buyer i's strategy �

i

is a mapping from the set R

2N

of prie vetors (p; q) to S

i

. For eah ation pro�le

x = (x

i

)

i2I

2 S =

Q

i2I

S

i

of buyers, let

I

A

(x) = fi 2 I : x

i

= Ag; and I

B

(x) = fi 2 I : x

i

= Bg

denote the set of buyers hoosing A and the set of buyers hoosing B, respetively.

Given the prie pro�le (p; q), buyer i's payo� under the ation pro�le x is given by

u

i

(x) =

8

>

>

>

<

>

>

>

:

v

jN

i

\I

A

(x)j

� p

i

if x

i

= A,

v

jN

i

\I

B

(x)j

� q

i

if x

i

= B,

0 if x

i

= ;,

(1)

If we denote by � = (�

i

)

i2I

the buyers' strategy pro�le, the payo�s �

A

(p; q; �) and

�

B

(p; q; �) of sellers A and B, respetively, under the strategy pro�le (p; q; �) are

given by

�

A

(p; q; �) =

X

i2I

A

(�(p;q))

p

i

;

�

B

(p; q; �) =

X

i2I

B

(�(p;q))

q

i

;

and buyer i's payo� �

i

(p; q; �) under the strategy pro�le (p; q; �) is given by

�

i

(p; q; �) = u

i

(�(p; q)):

A prie vetor (p

�

; q

�

) and a strategy pro�le � = (�

i

)

i2I

together onstitute a

subgame perfet equilibrium (SPE) if given any prie vetor (p; q) 2 R

2N

, the ation

5

For example, prie disrimination in large markets may be better modeled as one full prie and

one disount prie as in Candogan et al. (2012).
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vetor (�

i

(p; q))

i2I

is a Nash equilibrium of the subgame following (p; q), and given

�, eah omponent of the prie vetor (p

�

; q

�

) is optimal against the other:

�

i

(p; q; �(p; q)) � �

i

(p; q; x

i

; �

�i

(p; q)) for every x

i

, i and (p; q),

�

A

(p

�

; q

�

; �(p

�

; q

�

)) � �

A

(p; q

�

; �(p; q

�

)) for every p,

�

B

(p

�

; q

�

; �(p

�

; q

�

)) � �

B

(p

�

; q; �(p

�

; q)) for every q.

4 Nash Equilibrium in the Buyers' Game

In this setion, we �x the prie vetor (p; q), and onsider an equilibrium of the

buyers' subgame following (p; q) in whih the set of ations of eah buyer i equals

S

i

= fA;B; ;g, and his payo� funtion u

i

is de�ned by (1). The simultaneous-move

game (I; S =

Q

i2I

S

i

; (u

i

)

i2I

) among the buyers is a supermodular game when the

set S

i

of ations of eah buyer is endowed with the ordering A � ; � B. It follows

that the game has pure Nash equilibria that are maximal and minimal with respet

to the partial ordering �

S

on S indued by �.

6

We refer to the maximal equilibrium

as the A-maximal equilibrium and denote it by x

A

, and the minimal equilibrium as

the B-maximal equilibrium and denote it by x

B

. By de�nition, for any NE y and

buyer i, y

i

= A implies x

A

i

= A, and y

i

= B implies x

B

i

= B.

It is known that any NE must survive the iterative elimination of stritly dom-

inated ations, and that in a �nite supermodular game, any strategy pro�le x that

survives this proess lies between x

A

and x

B

: x

A

<

S

x <

S

x

B

.

7

In what follows, we

apply the iterative elimination proess to the buyers' game and use it to haraterize

the maximal and minimal NE. The notation appearing in this proess will be used

in the subsequent analysis.

De�ne T

0

= ; and S

0

= S, and suppose that for k = 1; 2; : : :, the set T

k�1

� I

and the ation pro�le x

�

T

k�1

of buyers in T

k�1

have been spei�ed. Intuitively, T

k�1

is the set of buyers i for whom x

�

i

has been identi�ed as a dominant ation after

k� 1 rounds of elimination of stritly dominated ations. Formally, for any produt

subset S

0

=

Q

i

S

0

i

� S of ation pro�les suh that S

0

i

6= ;, buyer i's ation x

i

2 S

0

i

is

(stritly) dominated in S

0

(by another pure ation) if there exists x

0

i

2 S

0

i

suh that

u

i

(x

i

; x

�i

) < u

i

(x

0

i

; x

�i

) for every x

�i

2 S

0

�i

.

x 2 S

0

i

is dominant in S

0

if any other ation x

0

i

2 S

0

i

is dominated in S

0

(by x).

6

See Topkis (1998).

7

See Milgrom and Roberts (1990).
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For k = 1; 2; : : :, let

Y

k

=

n

i 2 I n T

k�1

: x

i

= A is dominated in S

k�1

o

;

Z

k

=

n

i 2 I n T

k�1

: x

i

= B is dominated in S

k�1

o

;

W

k

=

n

i 2 I n T

k�1

: x

i

= ; is dominated in S

k�1

o

;

(2)

and

S

k

=

�

x 2 S

k�1

:x

j

6= A if j 2 Y

k

, x

j

6= B if j 2 Z

k

and x

j

6= ; if j 2W

k

	

:

(3)

Further, let

P

k

= Y

k

\W

k

=

�

i 2 I n T

k�1

: x

i

= B is dominant in S

k�1

	

;

Q

k

= Z

k

\W

k

=

�

i 2 I n T

k�1

: x

i

= A is dominant in S

k�1

	

;

R

k

= Y

k

\ Z

k

=

�

i 2 I n T

k�1

: x

i

= ; is dominant in S

k�1

	

:

(4)

De�ne now

T

k

= T

k�1

[ (P

k

[Q

k

[R

k

) ; (5)

and

x

�

i

=

8

>

>

>

<

>

>

>

:

B if i 2 P

k

,

A if i 2 Q

k

,

; if i 2 R

k

.

(6)

Sine eah buyer has at most two dominated ations, the above proess stops in or

before 2N rounds. Let then K be the minimal number suh that

P

k+1

= Q

k+1

= R

k+1

= ; for k � K.

In other words, no buyer has a dominant ation in S

k

for k � K. The sets S

k

,

T

k

, Y

k

, Z

k

, W

k

, P

k

, Q

k

, and R

k

as well as the number K all depend on the prie

pro�le (p; q). In this sense, we write Q

k+1

(p; q) and so on when we want to make

this dependene expliit.

If x 2 S is any NE, every buyer in T

K

must be hoosing his iteratively dominant

ation in x so that

x

T

K

= x

�

T

K

:

It follows that any two NE may be di�erent from eah other only in the ations

hosen by buyers in I n T

K

. The following proposition states that the A-maximal

9



and B-maximal NE an be onstruted by having the maximal number of buyers

among them hoose A and B, respetively. Spei�ally, let J

A

� I n T

K

be the

maximal set that satis�es

u

i

�

x

�

T

K

; x

J

A

= (A; : : : ; A); x

InT

K

nJ

A

= (;; : : : ; ;)

�

� 0:

Note that the maximality is well-de�ned sine if the inequality holds for J and

J

0

� I n T

K

, then it also holds for J [ J

0

. The buyers in J

A

an eah realize a

non-negative payo� by olletively hoosing A.

8

Likewise, let J

B

� I n T

K

be the

maximal set that satis�es

u

i

�

x

�

T

K

; x

J

B

= (B; : : : ; B); x

InT

K

nJ

B

= (;; : : : ; ;)

�

� 0:

Proposition 1 De�ne x

A

and x

B

by

x

A

= (x

�

T

K

; x

J

A

= (A; : : : ; A); x

InT

K

nJ

A

= (;; : : : ; ;)); and

x

B

= (x

�

T

K

; x

J

B

= (B; : : : ; B); x

InT

K

nJ

B

= (;; : : : ; ;)):

Then x

A

and x

B

are the A-maximal and B-maximal NE, respetively.

Proof. We show that x

A

is an A-maximal NE. The symmetri argument shows that

x

B

is a B-maximal NE. In partiular, when T

K

= I, every buyer has an iteratively

dominant ation, and x

A

= x

B

is the unique NE.

� x

A

is a NE.

In x

A

, any buyer i 2 T

K

is hoosing his iteratively dominant ation and hene

has no inentive to deviate. Take i 2 I n T

K

. If i 2 J

A

, then sine x

i

= A yields by

de�nition a non-negative payo� to buyer i, he annot pro�tably deviate to x

i

= ;. If

i an pro�tably deviate to x

i

= B, then then x

i

= B would be his dominant ation

in S

K

sine no other buyer in I nT

K

hooses B in x

A

. This would be a ontradition

to P

K+1

= ;. If i =2 J

A

, then x

i

= A is not a pro�table deviation for buyer i sine if

it were, then we would have a ontradition to the maximality of J

A

. x

i

= B is not

a pro�table deviation either sine if it were, then we would have a ontradition to

P

K+1

= ; by the same logi as above.

� x

A

is A-maximal.

8

Set J

A

an alternatively obtained by eliminating x

i

= A if it is iteratively dominated by x

i

= ;

in S

K

.

10



Take any NE x. As noted in the text, x

T

K

= x

�

T

K

= x

A

T

K

. If x

i

= A for

i 2 I n T

K

n J

A

, then x annot be a NE sine x

i

= ; would be a pro�table deviation

for him by the de�nition of J

A

. It follows that no NE x an have more buyers hoose

A than x

A

.

The dominane argument an be desribed more expliitly in terms of v

d

and

(p; q) as follows. Note that the minimal number of i's neighbors who may hoose A

in S

k�1

is given by

�

k

i

=

�

�

�

N

i

\

n

j : S

k�1

j

= fAg

o

�

�

�

;

and that the maximal number of i's neighbors who may hoose B in S

k�1

is given

by

�

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

:

It follows that x

i

= A is dominant in S

k�1

(i.e., i 2 Q

k

(p; q)) if and only if

v

�

k

i

� p

i

> max

n

v

�

k

i

� q

i

; 0

o

;

or equivalently,

p

i

< max

n

v

�

k

i

� v

�

k

i

+ q

�

i

; v

�

k

i

o

: (7)

This is the key inequality that will be used extensively in what follows.

5 Subgame Perfet Equilibrium

We now turn to the original two-stage game inluding the sellers. The proposition

below makes a simple observation that if a prie vetor (p

�

; q

�

) is sustained in some

SPE, then it must be sustained in an SPE in whih the buyers hoose an extreme

response to either seller's deviation: If seller A deviates from p

�

, then all buyers

oordinate on the B-maximal NE that least favors seller A, and vie versa. The

proposition hene presents a bang-bang property of an SPE.

Proposition 2 For any network G, (p

�

; q

�

) is an SPE prie vetor if and only if

there exists buyers' strategy pro�le � suh that (p

�

; q

�

; �) is an SPE and

�(p; q) =

8

<

:

�

B

(p; q) if p 6= p

�

and q = q

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

11



Consider next seller A's best response p to B's prie q when the buyers play the

B-maximal strategy �

B

. Sine �

B

(p; q) is a B-maximal NE for any (p; q), seller A

an attrat buyer i if and only if x

i

= A is an iteratively dominant ation for buyer

i: i 2 [

K

k=1

Q

k

, where Q

k

is as de�ned in (4). Hene,

�

A

(p; q; �

B

) =

K

X

k=1

X

i2Q

k

p

i

:

The following lemma shows that if seller A's prie vetor p is a best response to

(q; �

B

), then no two buyers in Q

k

= Q

k

(p; q) are adjaent, where Q

k

is as de�ned

in (4) and equals the set of buyers for whom A is dominant in round k � 1 of the

iteration proess. In other words, the optimal way to attrat adjaent buyers i and

j is to approah them sequentially. Intuitively, this is beause making hoie A

dominant for both buyers simultaneously requires o�ering lower pries to both of

them than making x

i

= A dominant for buyer i �rst, then making x

j

= A dominant

for buyer j next onditional on i hoosing x

i

= A.

Lemma 3 Let (Q

k

)

k=1;:::;K

be as de�ned in (4) under the prie vetor (p; q). If p

is a best response to (q; �

B

), then for every k = 1; : : : ;K,

i; j 2 Q

k

) i and j are not adjaent.

We now derive a key result that establishes a lower bound for eah seller's equi-

librium payo� given the prie vetor of the other seller. Although the disussion is

based on the iterated dominane argument of Setion 4, we �nd it useful to present

it in terms of the sequene of buyers rather than the sequene of sets of buyers. We

return to the omparison of the two proesses later in the setion. As mentioned in

the Introdution, the argument is one of divide and onquer, where seller A, say, ap-

proahes eah buyer sequentially aording to some ordered list, and presents them

with a prie whih makes the hoie A a dominant ation when all his predeessors

in the list hoose A.

Formally, �x the prie q

�

of seller B, and suppose that the buyers play the B-

maximal NE faing (p; q

�

) for any p: Buyer i hooses x

i

= A only when it is an

iteratively dominant ation. Suppose further that seller A approahes the buyers

in the order i

1

; : : : ; i

N

: Seller A �rst makes a prie o�er to buyer i

1

that makes A

12



dominant for him. In fat, x

i

1

= A is dominant for buyer i

1

if p

i

1

is suh that

v

0

� p

i

1

> max

n

v

d

i

1

� q

�

i

1

; 0

o

;

or equivalently,

p

i

1

< min

n

v

0

� v

d

i

1

+ q

�

i

1

; v

0

o

:

Let H

1

= fi

1

g. Seller A next makes a prie o�er to buyer i

2

that makes x

i

2

= A

dominant given the hoie of buyer i

1

. This an be aomplished by p

i

2

suh that

p

i

2

< min

n

v

s

i

2

� v

d

i

2

�s

i

2

+ q

�

i

2

; v

s

i

2

o

;

where s

i

2

= jN

i

2

\H

1

j so that s

i

2

= 1 if buyer i

2

is adjaent to i

1

, and = 0 otherwise.

Now let H

2

= fi

1

; i

2

g. Proeeding iteratively, we see that seller A an have buyer

i

k

hoose x

i

k

= A as his iteratively dominant ation by o�ering p

i

k

suh that

p

i

k

< min

n

v

s

i

k

� v

d

i

k

�s

i

k

+ q

�

i

k

; v

s

i

k

o

; (8)

where s

i

k

= jN

i

k

\H

k�1

j is the number of neighbors of i

k

in the set H

k�1

=

fi

1

; : : : ; i

k�1

g. Intuitively, s

i

k

is the externalities of good A to buyer i

k

when those

buyers in H

k�1

hoose A. On the other hand, d

i

k

� s

i

k

gives an upper bound on

the externalities of good B to i

k

when only those buyers in I nH

k�1

may hoose B.

Note that for any list i

1

; : : : ; i

N

of buyers,

N

X

k=1

s

i

k

=M;

where M is the total number of links in G. De�ne S by

S =

n

s = (s

i

)

i2I

: s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k � 2

for some ordering (i

1

; : : : ; i

N

) of buyers

o

:

(9)

Note that if s orresponds to the list i

1

; : : : ; i

N

, then d�s = (d

i

�s

i

)

i2I

orresponds

to the reversed list i

N

; : : : ; i

1

. Hene, if s 2 S, then d� s 2 S as well.

Some omments are in order on the above proess of divide and onquer. First,

in relation to the iterated dominane argument of Setion 4, buyer i

1

belongs to

Q

1

(p; q

�

) de�ned in (4) sine he has a dominant ation in S

0

= S. Buyer i

2

belongs

to Q

2

if he is adjaent to i

1

sine then x

i

2

= A is dominant only after x

i

1

= B and

x

i

1

= ; are eliminated from S

0

. Otherwise, x

i

2

= A is dominant in S

0

itself so that

13



i

2

2 Q

1

as well. In general, buyer i

k

belongs to one of Q

1

; Q

2

; : : : ; Q

k

depending on

the status of his neighbors. In other words,

H

k

� [

k

`=1

Q

`

(p; q

�

):

Next, against some prie vetor q

�

of seller B, seller Amay ahieve a higher payo� by

o�ering pries that attrat only a subset of buyers than o�ering pries that attrat

all of them. The above proess to the ontrary assumes that seller A attrats all

buyers by o�ering p. In other words, we use the existene of suh a prie vetor p to

establish a neessary ondition for an equilibrium: (p

�

; q

�

; �) is an equilibrium only

if �

A

(p; q

�

; �) > �

A

(p

�

; q

�

; �) for any p that attrats all buyers.

To summarize the disussion so far, even if the buyers play the B-maximal

equilibrium �

B

(p; q

�

) that least favors seller A, he an attrat all buyers by o�ering

the pries satisfying (8). We hene have the following lemma that gives a lower

bound for eah seller's equilibrium payo�.

Lemma 4 If (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

;

�

B

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ p

�

i

; v

s

i

o

:

(10)

While the above lemma gives a lower-bound, note also that (8) implies the

following inequality on seller A's payo� from any given divide-and-onquer priing

strategy p:

N

X

i=1

p

i

<

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

: (11)

We use (11) as a way to explain intuition for some of the results in what follows.

Figures 1 and 2 illustrate the disussion for the line network of three buyers. In

Figure 1, seller A approahes the buyers in the order (i

1

; i

2

; i

3

) = (1; 3; 2) while seller

B o�ers q

�

= (q

�

1

; q

�

2

; q

�

3

): Seller A an make x

1

= A dominant ations for buyer 1

if his payo� from hoosing A is stritly higher than that from hoosing either ; or

B under the assumption that his neighbor (i.e., buyer 2) hooses B. This leads

to the omparison between v

0

� p

1

and max

�

v

1

� q

�

1

; 0

	

. The same argument

applies to buyer 2. When p satis�es the stated inequalities, hene, Q

1

= f1; 3g sine
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v

0

� p

1

> max fv

1

� q

�

1

; 0g

1

2

3

v

0

� p

3

> max fv

1

� q

�

3

; 0g

, p

1

< min fv

0

� v

1

+ q

�

1

; v

0

g

, p

3

< min fv

0

� v

1

+ q

�

3

; v

0

g

v

2

� p

2

> max fv

0

� q

�

2

; 0g

1

2

3

, p

2

< min fv

2

� v

0

+ q

�

2

; v

2

g

)

Figure 1: Divide-and-onquer by seller A with (i

1

; i

2

; i

3

) = (1; 3; 2).

v

1

� p

1

> max fv

0

� q

�

1

; 0g

1

2

3 v

1

� p

3

> max fv

0

� q

�

3

; 0g

, p

1

< minfv

1

� v

0

+ q

�

1

; v

1

g

, p

3

< minfv

1

� v

0

+ q

�

3

; v

1

g

v

0

� p

2

> max fv

2

� q

�

2

; 0g

1

2

3

, p

2

< min fv

0

� v

2

+ q

�

2

; v

0

g

)

Figure 2: Divide-and-onquer by seller A with (i

1

; i

2

; i

3

) = (2; 1; 3).

x

i

= B and x

i

= ; are eliminated in the �rst round in the iterated elimination

proess for both i = 1 and i = 3. For buyer 2, on the other hand, x

2

= A is

a dominant ation for him if his payo� from hoosing A is stritly higher than

that from hoosing either ; or B under the assumption that his neighbors (i.e.,

buyers 1 and 3) hoose A. This leads to the omparison between v

2

� p

2

and

max

�

v

0

� q

�

2

; 0

	

. Under the stated inequalities, hene, Q

2

= f2g. Hene, even if

the buyers play the B-maximal equilibrium �

B

(p; q

�

), seller A's divide-and-onquer

strategy with (i

1

; i

2

; i

3

) = (1; 3; 2) is a pro�table deviation if

min fv

0

� v

1

+ q

�

1

; v

0

g+min fv

0

� v

1

+ q

�

3

; v

0

g

+min fv

2

� v

0

+ q

�

2

; v

2

g > �

A

(p

�

; q

�

; �):

(12)
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Likewise, his divide-and-onquer strategy with (i

1

; i

2

; i

3

) = (2; 1; 3) illustrated in

Figure 2 is a pro�table deviation if

min fv

0

� v

2

+ q

�

2

; v

0

g+min fv

1

� v

0

+ q

�

1

; v

1

g

+min fv

1

� v

0

+ q

�

3

; v

1

g > �

A

(p

�

; q

�

; �);

(13)

and that with (i

1

; i

2

; i

3

) = (1; 2; 3) is a pro�table deviation if

min fv

0

� v

1

+ q

�

1

; v

0

g+min fv

1

� v

1

+ q

�

2

; v

1

g

+min fv

1

� v

0

+ q

�

3

; v

1

g > �

A

(p

�

; q

�

; �):

(14)

It follows that (p

�

; q

�

) annot be an equilibrium prie vetor if any one of the in-

equalities (12), (13) and (14) holds. This will be examined for the prie vetor

(p

�

; q

�

) = (0; 0) in the next setion.

6 Uniform and Marginal-Cost Priing

When there are no onsumption externalities 0 < v

0

= � � � = v

N�1

, it is lear that

a subgame perfet equilibrium prie (p

�

; q

�

) is unique and equal to the marginal

ost: (p

�

; q

�

) = (0; 0). In this setion, we will examine if and how this result an be

extended when there are externalities.

Let D = D(G) be the highest degree in G:

D(G) = max

i2I

d

i

(G):

For the network G, hene, the relevant levels of externalities are (v

0

; : : : ; v

D

). We

say that the externalities (v

0

; : : : ; v

D

) are linear if there exists h > 0 suh that

v

k

= kh for every k = 0; 1; : : : ;D.

Note that linearity implies the zero stand-alone value v

0

and hene pure network

externalities or pure intermediation. Linearity is a working assumption in many

models of network externalities in the literature.

9

Proposition 5 Let G be an arbitrary buyer network. Under the linear externalities

(v

0

; : : : ; v

D

), (p

�

; q

�

) = (0; 0) is an SPE prie vetor.

9

See, for example, Caillaud and Jullien (2003) and Ambrush and Argenziano (2009). On the

other hand, linearity violates the weak externalities de�ned in Jullien (2011, Assumption 1).
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To see the intuition behind Proposition 5, note that no divide-and-onquer strat-

egy is pro�table under linearity: When seller B monopolizes the market with q

�

i

= 0

for every i and the buyers play the B-maximal equilibrium following seller A's devi-

ation from 0, (11) shows that his payo� from a divide-and-onquer priing strategy

satis�es

N

X

i=1

p

i

<

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; 0

o

�

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

= 0;

where the equality is an immediate onsequene of linearity sine

P

N

i=1

s

i

=

P

N

i=1

(d

i

�

s

i

) =M as noted earlier.

We next onsider the onsequene of introduing some generi property of ex-

ternalities. As will be seen, whether or not the marginal ost priing an be an

equilibrium depends ruially on the on�guration of the buyer network in this

ase. Spei�ally, for S de�ned in (9), suppose that the externalities (v

0

; : : : ; v

D

)

satisfy the following ondition:

s 2 S and d� s is not a permutation of s )

N

X

i=1

v

s

i

6=

N

X

i=1

v

d

i

�s

i

. (15)

Reall that s is the sequene of externalities of one good, say A, when the buyers

swith to A one by one in some order. d � s, on the other hand, is the sequene

of externalities of good A when they swith to A one by one in the reverse order.

(15) implies that the sum of externalities over buyers is di�erent between the two

proedures. The set of (v

0

; : : : ; v

D

) satisfying (15) is generi in the set

�

(v

0

; : : : ; v

D

) : 0 � v

0

� � � � � v

D

	

of all externalities.

Lemma 4 in the preeding setion shows that a seller's equilibrium payo� is

losely linked to the value of

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

It turns out that whether this quantity is positive or not under (15) depends ruially

on the network on�guration as seen in the following lemma.
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Lemma 6 Suppose that the externalities v = (v

0

; : : : ; v

D

) satisfy (15). If the buyer

network G is neither yli nor omplete, then

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0: (16)

The proof of Lemma 6 involves showing that by hoosing the order (i

1

; : : : ; i

N

)

appropriately, we an always make s and d�s not permutations of eah other unless

the network is yli or omplete. In fat, this is aomplished by hoosing only

the �rst three buyers (i

1

; i

2

; i

3

) appropriately. The following lemma, whih readily

follows from Lemmas 4 and 6, provides some key observations on equilibrium priing.

Lemma 7 Suppose that (p

�

; q

�

; �) is an SPE for the buyer network G whih is

neither omplete nor yli, and that the externalities v = (v

0

; : : : ; v

D

) satisfy (15).

Then

a) �

A

(p

�

; q

�

; �) = 0 ) min

i

q

�

i

< 0.

b) �

A

(p

�

; q

�

; �) �

P

i

q

�

i

) max

i

q

�

i

> v

0

.

) I

B

(�(p

�

; q

�

)) = I ) max

i

q

�

i

> v

0

, min

i

(v

d

i

� q

�

i

) � v

0

, and v

D

> 2v

0

.

Note that (a) and (b) of Lemma 7 hold true whether monopolization or seg-

mentation takes plae in equilibrium, while () applies only to a monopolization

equilibrium. An immediate onsequene of this lemma is the impossibility of uni-

form priing under monopolization: Suppose that monopolization by seller B takes

plae in equilibrium: I

B

(�(p

�

; q

�

)) = I. Then seller B must subsidize at least one

buyer by (a), and the prie for some buyer is stritly above the stand-alone value

by ():

min

i

q

�

i

< 0 � v

0

< max

i

q

�

i

< v

D

� v

0

: (17)

Proposition 8 Suppose that the buyer network G is neither omplete nor yli

and that the externalities v = (v

0

; : : : ; v

D

) satisfy (15). Then there exists no SPE in

whih one of the sellers monopolizes the market by harging the same prie to every

buyer.
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It is interesting to note that Candogan et al. (2012) and Bloh and Qu�erou (2013)

both �nd that uniform priing is optimal for a monopolist when the externalities are

undireted as in the present paper. When the sellers fae ompetition, however, it

is no longer an equilibrium by Proposition 8. We also note that there are networks

whih are not yli or omplete, but are symmetri with respet to every buyer. For

example, onsider the buyer network in Figure 3. Under a generi spei�ation of

externalities, these ex ante symmetri buyers fae prie disrimination in equilibrium

if one of the sellers monopolizes the market.

For monopolization to take plae in equilibrium, we also see from (17) that the

largest externalities in a network annot be too small ompared with the stand-alone

value: v

D

> 2v

0

. This is a non-trivial restrition for networks in whih every buyer

has a small degree as in line networks.

1

2

3

4

5

6

7

8

Figure 3: 4-regular network with eight buyers

We are now ready to state our main result on marginal ost priing. Suppose that

both sellers o�er zero to all the buyers. In this ase, both sellers' payo�s equal zero

regardless of whether or not they apture a positive segment of the market. Hene,

this prie pro�le annot be an equilibrium by Lemma 7(a) unless the network is

omplete or yli. The following proposition proves the reverse impliation that

when the network is either omplete or yli, there indeed exists an SPE in whih

both sellers o�er zero.

Proposition 9 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (15). (p

�

; q

�

) = (0; 0) is an SPE prie vetor if and only if G is either yli

or omplete.
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The intuition between the possibility of an equilibrium in a yli or omplete

network is as follows. Suppose that sellerB monopolizes the market with q

�

= 0, and

that the buyers play the B-maximal equilibrium following (p; q

�

). First, in a yli

network, any buyer i seller A attempts to attrat in the �rst round of the domination

proess must be o�ered the prie suh that p

i

< v

0

� v

2

< 0 sine joining A implies

i has no neighbor while remaining at B implies he has two neighbors. On the other

hand, seller A an make positive pro�ts only when he attrats a buyer whose both

neighbors have already been attrated to A. In this ase, A an o�er the prie suh

that p

i

< v

2

� v

0

. Whether or not seller A an make positive pro�ts, hene, omes

down to the simple omparison between the number of buyers whose both neighbors

have already swithed to A, and the number of buyers who swith in the �rst round.

Simple inspetion shows that the former annot be greater than the latter. The

argument for a omplete network is based on a di�erent logi. In a omplete network,

if seller A employs divide-and-onquer, the order in whih he approahes the buyers

is immaterial. If seller A attrats buyers 1; : : : ; N in this order, then he needs to

o�er the pries suh that p

1

< v

0

� v

N�1

, p

2

< v

1

� v

N�2

; : : : ; p

N

< v

N�1

� v

0

. It

is then lear that these pries sum up to less than zero.

For illustration of the impossibility of marginal ost priing, return to the ex-

ample of the three-buyer line network depited in Figures 1 and 2. Suppose that

q

�

= 0. In this ase, we have

(12) , 2v

1

� v

2

� v

0

< 0;

(13) , 2v

1

� v

2

� v

0

> 0:

Hene, if

2v

1

6= v

2

+ v

0

; (18)

seller A an pro�tably divide and onquer the buyers against q

�

= 0. Note that

(18) orresponds to (16) in Lemma 6: It fails under the linear externalities v

0

= 0,

v

1

= h and v

2

= 2h, but is true under generi spei�ations of v

0

, v

1

and v

2

.

7 Monopolization on a Bipartite Network

The results in the preeding setion suggest that some form of disriminatory priing

is inevitable in equilibrium. A natural question then is on the form of equilibrium

prie disrimination. Interesting related questions are (1) whih buyers are the

\weak link" in the network that need to be proteted, and (2) whih buyers an
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be squeezed for more pro�ts. Sine it appears diÆult to provide general answers

to these questions, we will restrit attention to ertain lasses of networks for the

identi�ation of an equilibrium. In this setion, we identify a lass of networks in

whih monopolization takes plae in equilibrium.

Our analysis in what follows assumes that the externalities are approximately

linear in the following sense: For h > 0, the externalities (v

0

; : : : ; v

D

) are "-lose to

linear if

jv

k

� khj < " for k = 0; 1; : : : ;D.

Sine the ondition holds for any " > 0 when the externalities are exatly linear,

the onlusions under approximate linearity are valid under exat linearity. In on-

juntion with Proposition 5, then, this implies the multipliity of equilibria in these

markets.

The buyer network is bipartite if the buyer set I is partitioned into two disjoint

subsets I

1

and I

2

suh that every neighbor of i 2 I

1

belongs to I

2

and every neighbor

of i 2 I

2

belongs to I

1

. Line and star networks are simple examples of a bipartite

network. For example, the line network in Figures 1 and 2 is bipartite with the

partition I

1

= f1; 3g and I

2

= f2g. A yle network with an even number of buyers

is also bipartite. A bipartite network is omplete if every buyer in I

1

is linked to

every buyer in I

2

. Reall that d

i

denotes the degree of buyer i. By renaming the

partition elements if neessary, we may suppose without loss of generality that I

1

and I

2

satisfy

X

i2I

1

�

v

d

i

� v

0

�

�

X

i2I

2

�

v

d

i

� v

0

�

: (19)

Bipartite networks are partiularly important sine they represent two-sided

markets that attrat muh attention in the literature. For example, we an think

of I

1

as the set of sellers and I

2

as the set of buyers of a ertain good. In this ase,

the sellers A and B are interpreted as the platforms that o�er marketplae to these

sellers and buyers, and their pries are interpreted as partiipation fees required

for registration into their platforms. A omplete bipartite network orresponds to a

two-sided market in whih eah agent �nds more value in a given platform whenever

more agents on the other side partiipate in the same platform. Our onlusion on

a bipartite network translates to that on a two-sided market where two platforms

ompete.

Proposition 10 Suppose that the buyer network G is bipartite with the buyer par-

tition (I

1

; I

2

). For any h > 0, there exists �" > 0 suh that if the externalities are
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"-lose to h-linear for " < �", then there exists an SPE (p

�

; q

�

; �) in whih one seller

aptures all the buyers. The SPE pries (p

�

; q

�

) are suh that

p

�

i

= q

�

i

=

8

<

:

v

d

i

� v

0

for i 2 I

1

, and

v

0

� v

d

i

for i 2 I

2

.

The onstrution of the equilibrium in Proposition 10 involves the play of the

extreme equilibrium in the buyers' subgame that least favors the deviating seller

as in Proposition 2. Aording to Proposition 10, every buyer on one side of the

market is taxed whereas those on the other side are subsidized in equilibrium. Suh

a priing strategy is in line with a frequent observation in two-sided markets that

one side reeives a heavy disount. For example, Kaiser and Wright (2006) identify

a magazine market in Germany as a two-sided market with readers on one side

and advertisers on the other, and �nd that magazines subsidize their readers while

making all pro�ts from their advertisers. Caillaud and Jullien (2003) are the �rst

to o�er a theoretial justi�ation of the tax-subsidy priing sheme in a two-sided

market by applying the divide-and-onquer argument to prie ompetition in the

market with a single agent on eah side.

10

Another ritial observation of Proposition 10 is that the equilibrium priing

is degree-proportional : The transfer from or to eah buyer i is (approximately)

proportional to his degree sine v

d

i

� v

0

� hd

i

under approximate linearity. Figure

4 illustrates Proposition 10 in a star network with �ve buyers when the externalities

satisfy approximate linearity and

v

4

� v

0

� 4(v

1

� v

0

); (20)

so that I

1

= f1g and I

2

= f2; 3; 4; 5g. Buyer 1 at the hub is taxed whereas all

the buyers in the periphery are subsidized. We an interpret the subsidies to the

peripheral buyers as a protetion against the induement from the other seller. In

fat, when (20) holds, it is relatively more diÆult for the other seller, say seller A,

to indue the hub buyer to swith: When for example all buyers fae q

i

= 0, seller A

must pay buyer 1 more than v

4

� v

0

to indue him by making x

1

= A dominant (in

S

0

), whereas he needs to pay just above 4(v

1

�v

0

) to indue all peripheral buyers by

making x

i

= A dominant (in S

0

). When the inequality (20) is reversed, then buyer

10

Alternative explanation of the tax-subsidy sheme in two-sided markets is provided by Bolt

and Tieman (2008), and Parker and Van Alstyne (2005) among others.
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1 now reeives a subsidy v

4

� v

0

, whereas the peripheral buyers are harged v

1

� v

0

.

In this ase, hene, the hub buyer needs to be proteted as it is relatively easier for

the other seller to indue him to swith. As seen in this example, the spei�ation

of externalities determines whih buyer(s) should be proteted with subsidies.

2

3

4

5

1

p

1

= q

1

= v

4

� v

0

p

2

= q

2

= v

0

� v

1

p

3

= q

3

= v

0

� v

1

p

4

= q

4

= v

0

� v

1

p

5

= q

5

= v

0

� v

1

Figure 4: Monopolization through disriminatory priing on a star network when

v

4

� v

0

� 4(v

1

� v

0

).

When a bipartite network is omplete as in the star network above, further

haraterization of the equilibrium priing in Proposition 10 is possible. We say

that the marginal externalities are inreasing if

v

1

� v

0

� v

2

� v

1

� � � � � v

D

� v

D�1

;

and dereasing if

v

D

� v

D�1

� � � � � v

2

� v

1

� v

1

� v

0

:

Under inreasing marginal externalities, any buyer in a omplete bipartite network

is subsidized in equilibrium if and only if his side of the market is larger than the

other side. The opposite holds under dereasing marginal externalities.

Corollary 11 Suppose that the network is omplete bipartite with partition (I

1

; I

2

)

suh that n

1

= jI

1

j � jI

2

j = n

2

. For any h > 0, there exists �" > 0 suh that if the

externalities are "-lose to h-linear for " < �", then then there exists an SPE (p; q; �)

suh that

p

i

= q

i

=

8

<

:

v

n

2

� v

0

for i 2 I

1

,

v

0

� v

n

1

for i 2 I

2

,
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when the marginal externalities are inreasing, and

p

i

= q

i

=

8

<

:

v

0

� v

n

2

for i 2 I

1

,

v

n

1

� v

0

for i 2 I

2

,

if the marginal externalities are dereasing.

8 Segmentation on a Biloular Network

Maintaining the assumption of approximately linear externalities as in the previous

setion, we now examine the possibility of an equilibrium in whih market segmen-

tation takes plae. For this, we onsider a lass of buyer networks that have roughly

the opposite property to the bipartite networks in the previous setion: In this lass

of networks, the buyer set is again partitioned into two disjoint subsets, but eah

buyer has at least as many neighbors in the same subset than in the other subset.

Formally, the buyer network is biloular if there exists a two-way partition (I

1

; I

2

)

of the set I of buyers suh that for m, n = 1, 2, and m 6= n,

jN

i

\ I

n

j � jN

i

\ I

m

j for every i 2 I

n

, and

jN

i

\ I

n

j > jN

i

\ I

m

j for some i 2 I

n

.

Intuitively, in a biloular network with partition (I

1

; I

2

), we an lassify buyers in I

1

or I

2

into ore and peripheral buyers: The ore buyers are those who have stritly

more neighbors in the same set than in the other set, while the peripheral buyers

have as many neighbors in the same set as in the other set. One interpretation of a

biloular network is that eah one of I

1

and I

2

is a group of traders who trade within

their own group more often than outside it. The sellers an then be interpreted as

o�ering platforms to those traders.

11

A line of four or more buyers is biloular if I

1

onsists of buyers on the left, I

2

onsists of buyers on the right, and jI

1

j, jI

2

j � 2.

12

The buyers on the two ends

an be taken as ore buyers in this ase. The regular network in Figure 3 is also

biloular when we take I

1

= f1; 2; 3; 4g and I

2

= f5; 6; 7; 8g. Buyer 2 and 3 are ore

buyers for I

1

and buyers 6 and 7 are ore buyers for I

2

.

Proposition 12 Suppose that G is biloular. For any h > 0, there exists �" > 0

suh that if the externalities are "-lose to h-linear for " < �", there exists an SPE in

11

This interpretation is suggested by Hitoshi Matsushima.

12

Hene, a biloular network an be bipartite and vie versa.
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2

3

4

1

(p

1

; q

1

) = (Æ;�Æ)

(p

4

; q

4

) = (�Æ; Æ)

(p

2

; q

2

) = (0; 0) (p

3

; q

3

) = (0; 0)

Figure 5: Segmentation on a line network (Æ = jv

2

+ v

1

� 2v

0

j > 0): A aptures

I

1

= f1; 2g and B aptures I

2

= f3; 4g.

whih buyers in I

1

hoose seller A and buyers in I

2

hoose seller B. In this SPE,

p

i

1

= �q

i

1

= Æ for a single ore buyer i

1

2 I

1

, p

i

2

= �q

i

2

= �Æ for a single ore

buyer i

2

2 I

2

, and p

i

= q

i

= 0 for all other buyers i, where

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

Note that Æ is stritly positive under generi externalities (Lemma 6), small

under approximate linearity, and equal to zero under exat linearity. Eah seller's

equilibrium payo� equals Æ, while the sum of their pries over all buyers equals

zero. Figure 5 illustrates the equilibrium for a line network of four buyers. As

in Proposition 2, any deviation by either seller results in the play of the extreme

equilibrium that least favors the deviating seller. Eah ore buyer who is harged

Æ will not swith to the other seller sine externalities are stritly higher when he

onsumes the same good as the majority of his neighbors. Intuitively, seller A annot

bene�t from any divide-and-onquer strategy sine it yields at most

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

�

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

+

N

X

i=1

q

�

i

=

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

;

whih is less than or equal to his urrent payo� Æ.

13

9 Disussion

In this paper, we formulate a model of prie ompetition between two sellers when

eah one of their goods exhibits loal network externalities as represented by a graph-

theoreti network of buyers. We show that whether a given prie pro�le is onsistent

13

The proof also shows that attrating a proper subset of buyers is not pro�table.
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with a subgame perfet equilibrium of the two-stage game depends ruially on the

exat spei�ations of network struture and externalities. In the non-generi ase

of linear externalities, the marginal ost priing of both sellers quoting zero to every

buyer is onsistent with an SPE for any network. Under the generi spei�ation

of externalities, however, it is onsistent with an SPE if and only if the network

is either yli or omplete. That is, in any other networks, some form of prie

disrimination is inevitable even if every buyer has exatly symmetri loations in

those networks. Given these results, we proeed to the identi�ation of an SPE when

the externalities are approximately linear. In a bipartite network whih orresponds

to a two-sided market, we show that there exists an SPE in whih one of the sellers

monopolizes the market by harging a positive prie to every buyer on one side,

and a negative prie to every buyer on the other side. The equilibrium pries are

approximately proportional to the size of the other side of the market for eah buyer.

In a biloular network in whih eah buyer has more neighbors on his side than on

the other side, on the other hand, we show that there exists an equilibrium in whih

the two sellers segment the market and earn positive pro�ts.

As is well reognized, the essential feature of the market for goods with network

externalities is the multipliity of equilibria. In our ontext, this orresponds to the

multipliity of equilibria in the buyers' subgame. Note, however, that our impos-

sibility result on marginal-ost priing holds true regardless of whih one of these

multiple equilibria may be hosen. On the other hand, our onstrution of an equi-

librium is based on the assumption that following any deviation by either seller, the

buyers oordinate on the extreme equilibrium that least favors the deviator. This

is a signi�ant departure from the literature whih restrits the ation pro�le in the

buyers' subgame in one way or the other. While our assumption supports the broad-

est spetrum of equilibrium in the prie ompetition game, it is not onsistent with,

for example, the assumption that the buyers hoose the Pareto eÆient alternative

whenever there is one. We think that our exerise is useful as a benhmark given

that there is no general onsensus on what type of oordination is likely ahieved.

One related issue onerns what happens when one of the sellers, say seller A, is

foal as assumed in Jullien (2011). In our terminology, this translates to assuming

that the buyers play the A-maximal NE following any prie pro�le. In this ase,

any monopolization equilibrium identi�ed in this paper is valid with seller A ating

as a monopolist. On the other hand, market segmentation is diÆult to sustain in

equilibrium. Hene, if and how the buyers oordinate their ations have a signi�ant
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impat on the sope of the equilibrium outome.

In the present model, the goods of the two sellers are assumed symmetri and

inompatible with eah other. A natural extension would involve introduing asym-

metry or a positive degree of ompatibility between them. Tehnially, introdution

of ompatibility implies the failure of supermodularity in the buyers' subgame. En-

dogenous determination of ompatibility levels by the sellers is one topi that has

reeived muh attention in the literature. For example, Baake and Boom (2001)

�nd in their model of global network externalities that the sellers always hoose to

o�er ompatibility in equilibrium. Whether or not the same onlusion holds under

loal network externalities remains to be seen.

As disussed earlier, the informational assumptions of our model are rather ex-

treme. For example, we assume that eah buyer observes the prie o�ers to all

other buyers, and that the sellers have perfet knowledge about the buyer network.

Relaxing eah one of these assumptions yields an interesting model to explore.

14

Appendix

Proof of Lemma 3. For simpliity, let k = K, where K is suh that no buyer has

a dominant ation in S

k+1

for k � K. Suppose to the ontrary that 1, 2 2 Q

K

(p; q)

and that 1 and 2 are adjaent. Then it must be the ase that

v

�

K

1

� p

1

> max fv

�

K

1

� q

1

; 0g and v

�

K

2

� p

2

> max fv

�

K

2

� q

2

; 0g; (21)

where for i = 1 and 2, reall that

�

K

i

=

�

�

�

N

i

\

n

j : fAg = S

K�1

j

(p; q)

o

�

�

�

=

�

�

�

N

i

\

�

[

K�1

`=1

Q

`

(p; q)

�

�

�

�

is the number of i's neighbors for whom x

j

= A is iteratively dominant in round

K � 1 or earlier, and

�

K

i

=

�

�

�

N

i

\

n

j 2 I : B 2 S

K�1

j

(p; q)

o

�

�

�

is the number of i's neighbors for whom x

j

= B is not dominated in round K � 1

or earlier. (21) an be rewritten as

p

1

< min

n

v

�

K

1

� v

�

K

1

+ q

1

; 0

o

and p

2

< min

n

v

�

K

2

� v

�

K

2

+ q

2

; 0

o

:

14

Pasini et al. (2008) study prie dispersion in a model of a two-sided market where sellers only

know the degree distribution of the buyers.
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On the other hand, let p

0

be suh that p

0

i

= p

i

for i 6= 2, and

p

2

< v

�

K

2

�max fv

�

K

2

� q

2

; 0g < p

0

2

< v

�

K

2

+1

�max fv

�

K

2

�1

� q

2

; 0g:

Consider nowQ

0

k

= Q

k

(p

0

; q), the set of buyers for whom x

i

= A is a dominant ation

in round k under (p

0

; q). We then have Q

k

(p

0

; q) = Q

k

(p; q) for k = 1; : : : ;K�1 and

Q

K

(p

0

; q) = Q

K

(p; q) n f2g. Sine 1 2 N

2

, this implies that in round K + 1,

�

�

N

2

\

�

j : fAg = S

K

j

(p

0

; q)

	

�

�

= �

K

2

+ 1

and

�

�

N

2

\

�

i 2 I : B 2 S

K

j

(p

0

; q)

	

�

�

= �

K

2

� 1:

Furthermore, by our hoie of p

0

2

,

v

�

K

2

+1

� p

0

2

> max fv

�

K

2

�1

� q

2

; 0g;

whih shows that x

2

= A is dominant for buyer 2 in round K + 1 under (p

0

; q):

Q

K+1

(p

0

; q) = f2g. Sine p

0

2

> p

2

, �

A

(p

0

; q; �

B

) > �

A

(p; q; �

B

), and hene p is not a

best response to (q; �

B

). �

Proof of Lemma 4. Fix any relabeling of buyers i

1

; : : : ; i

N

. Let s = (s

i

)

i2I

be

de�ned by

s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k = 2; : : : ; N .

Let " > 0 be given, and de�ne the prie vetor p = (p

i

)

i2I

by

p

i

= min fv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g � ": (22)

As explained in the text, by o�ering p, seller A makes x

i

1

= A a dominant ation

for buyer i

1

, and in any subsequent step, x

i

k

= A an iteratively dominant ation for

buyer i

k

under (p; q

�

). Hene, seller A's payo� under (p; q

�

; �) satis�es

�

A

(p; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g �N":

Sine " > 0 and s 2 S are arbitrary, if (10) does not hold, then we would have a

ontradition

�

A

(p; q

�

; �) > �

A

(p

�

; q

�

; �):

The symmetri argument proves the inequality for seller B's payo�. �
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Proof of Proposition 5. We �rst show that (p

�

; q

�

) = (0; 0) is an SPE prie. Let

�

A

and �

B

be the A-maximal and B-maximal equilibria as de�ned earlier, and let

� be the buyers' strategy pro�le suh that

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (0; 0),

�

B

(p; q) if p 6= 0 and q = 0,

�

A

(p; q) if p = 0 and q 6= 0.

Now onsider a deviation from p

�

= 0 to p 6= 0 by seller A. Let Q

k

= Q

k

(p; q

�

)

(k = 1; : : : ;K) be the set of buyers for whom x

i

= A is dominant in round k of the

iteration proess under (p; q

�

) as de�ned in (4). By the de�nition of �

B

, a buyer

hooses seller A if and only if it is iteratively dominant for him:

I

A

(�

B

(p; q

�

)) = [

K

k=1

Q

k

:

Hene, seller A's payo� under (p; q

�

; �) an be written as:

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

: (23)

Now reall that

�

k

i

=

�

�

�

N

i

\

n

j : fAg = S

k�1

j

o

�

�

�

=

�

�

�

N

i

\

�

[

k�1

`=1

Q

`

�

�

�

�

and �

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

denote the number of neighbors of buyer i for whom x

i

= A is dominant in round

k � 1 or earlier, and x

i

= B is undominated in S

k�1

, respetively. Sine q

�

i

= 0,

x

i

= ; is dominated by x

i

= B in S

0

. If follows that

N

i

\ fi : B 2 S

k�1

g = N

i

n

�

[

k�1

`=1

Q

`

�

( �

k

i

= d

i

� �

k

i

:

If i 2 Q

k

, hene, we should have by (7),

v

�

k

i

� p

i

> max

n

v

�

k

i

� q

�

i

; 0

o

= v

d

i

��

k

i

, p

i

< v

�

k

i

� v

d

i

��

k

i

= h

�

2�

k

i

� d

i

�

:

(24)
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Note now that

K

X

k=1

X

i2Q

k

�

k

i

=

K

X

k=1

�

#links between Q

k

and [

k�1

`=1

Q

`

�

� #links within [

K

k=1

Q

k

�

1

2

K

X

k=1

X

i2Q

k

d

i

:

(25)

Substituting (24) and (25) into (23), we obtain

�

A

(p; q

�

; �

B

) < h

K

X

k=1

X

i2Q

k

�

2�

k

i

� d

i

�

� 0:

Therefore, p is not a pro�table deviation. The symmetri argument shows that seller

B has no pro�table deviation q. �

Proof of Lemma 6. Suppose that s and d�s are not permutations of eah other.

Then (15) implies that either

P

N

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0 or < 0. If the latter holds,

then let i

0

k

= i

N�k+1

for k = 1; : : : ; N and de�ne t = (t

i

)

i2I

by setting t

i

0

k

equal to

the number of neighbors of i

0

k

in fi

0

1

; : : : ; i

0

k�1

g:

t

i

0

1

= 0 and t

i

0

k

= jN

i

0

k

\ fi

0

1

; : : : ; i

0

k�1

gj for k = 2; : : : ; N . (26)

Then we an verify that

N

X

i=1

�

v

t

i

� v

d

i

�t

i

�

= �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0:

Therefore, in order to prove (16), it suÆes to show that d� s is not a permutation

of s for some s. We will onsider the following two ases separately.

1) G is not regular.

Take a pair of buyers i and j suh that i is adjaent to j, d

i

= D and d

j

< D,

where D � 2 is the highest degree in G. Take another buyer k that is adjaent

to i but not to j. To see that there exists suh a buyer, suppose to the ontrary

that every buyer 6= j that is adjaent to i is also adjaent to j. Then j has at
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least D neighbors, a ontradition. Let i

1

= k, i

2

= i and i

3

= j, and de�ne

i

4

; : : : ; i

N

=2 fi; j; kg arbitrarily. Then

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (d

k

;D � 1; d

j

� 1) :

(27)

If s is not a permutation of d � s, then we are done. Suppose then that s is a

permutation of d� s, and de�ne i

0

1

= k, i

0

2

= j, i

0

3

= i, and i

0

`

= i

`

for ` � 4, and let

t = (t

i

)

i2I

be de�ned by (26) for these i

0

1

; : : : ; i

0

N

. Then

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (d

k

; d

j

;D � 2) :

(28)

Sine i

0

`

= i

`

for ` � 4, we have

�

�

�

n

` � 4 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

�

�

�

n

` � 4 : s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

:

(29)

a) d

j

= 1.

In this ase, (27) and (28 ) imply that

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

= 1:

Hene, sine d� s is a permutation of s, we must have

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj :

It then follows from (29) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

: (30)

However,

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

� 1 < 2 =

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

: (31)

(30) and (31) together show that d� t annot be a permutation of t.

b) d

j

� 2.

In this ase, we have D � 3 sine D > d

j

� 2, and also

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

= 0 < 1 =

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

:
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Hene, sine d� s is a permutation of s,

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj+ 1:

It then follows from (29) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

+ 1: (32)

However, (27) and (28 ) imply that

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

� 2 (33)

(32) and (33) together imply that d� t is not a permutation of t.

2) G is r-regular with 2 < r < N � 1.

Sine G is onneted and not omplete, we an take a pair of buyers i

1

and i

2

suh that i

1

and i

2

are adjaent, and take another buyer i

3

who is adjaent to i

2

but not to i

1

. To see that this is possible, suppose to the ontrary that for any

pair of adjaent buyers i and j, any buyer k 6= i adjaent to j is also adjaent to

i. We then show that G must be omplete. Take any pair of buyers i and j. Sine

G is onneted, there is a path k

1

= i ! k

2

! � � � ! k

m�1

! k

m

= j. Sine k

2

is

adjaent to i = k

1

and k

3

is adjaent to k

2

, k

3

is adjaent to i as well by the above.

Now sine k

4

is adjaent to k

3

, it is also adjaent to i. Proeeding the same way, we

onlude that j = k

m

is adjaent to i = k

1

, implying that G is omplete.

We now label buyers other than fi

1

; i

2

; i

3

g as i

4

; : : : ; i

N

in an arbitrary manner.

For our hoie of i

1

, i

2

and i

3

, we have

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (r; r � 1; r � 1) :

If d � s is a not permutation of s, then we are done. Suppose then that d � s is a

permutation of s. We then must have

�

�

�

f` : s

i

`

= 0g

�

�

�

=

�

�

�

f` : d

i

`

� s

i

`

= 0g

�

�

�

: (34)

Let i

0

1

= i

1

, i

0

2

= i

3

, i

0

3

= i

2

and i

0

`

= i

`

for ` � 4, and let t = (t

i

)

i2I

be de�ned by

(26) for these i

0

1

; : : : ; i

0

N

. Note that

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (r; r; r � 2) :
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Sine r > 2, if (34) holds, then the same argument as in the non-regular ase shows

that

�

�

�

n

` : t

i

0

`

= 0

o

�

�

�

6=

�

�

�

n

` : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

implying that d� t is not a permutation of t. �

Proof of Lemma 7. We �rst show that if (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) >

N

X

i=1

min fq

�

i

; v

0

g and �

B

(p

�

; q

�

; �) >

N

X

i=1

min fp

�

i

; v

0

g: (35)

By Lemma 4, for any s 2 S, seller A's payo� under (p

�

; q

�

) satis�es

�

A

(p

�

; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g:

Rearranging, we get for any s 2 S,

�

A

(p

�

; q

�

; �) �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

+

X

i

minfq

�

i

; v

d

i

�s

i

g

�

N

X

i=1

(v

s

i

� v

d

i

�s

i

) +

N

X

i=1

minfq

�

i

; v

0

g:

When G is neither yli or omplete, there exists by Lemma 6 an s 2 S suh that

the �rst term on the right-hand side is > 0. Hene, the �rst inequality in (35) must

hold. The proof for the seond inequality is similar.

a) If min

i

q

�

i

� 0, then �

A

(p

�

; q

�

; �) = 0 �

P

i

min fq

�

i

; v

0

g, ontraditing (35).

b) If max

i

q

�

i

� v

0

, then �

A

(p

�

; q

�

; �) �

P

i

q

�

i

=

P

i

minfq

�

i

; v

0

g, ontraditing

(35).

) The inequality max

i

q

�

i

> v

0

follows from (b) above sine I

B

(p

�

; q

�

; �) = I implies

�

A

(p

�

; q

�

; �) = 0 and 0 � �

B

(p

�

; q

�

; �) =

P

i

q

�

i

. If v

d

i

� q

�

i

< v

0

for some i,

then any p suh that p

i

= v

0

� " and p

�i

= 0 for 0 < " < q

�

i

� v

d

i

+ v

0

would

indue buyer i to swith to A and hene is a pro�table deviation for seller A.

To see that v

D

> 2v

0

, note �rst that min

i

(v

d

i

� q

�

i

) � v

0

in partiular implies

that max

i

q

�

i

� v

D

� v

0

. Hene, if v

D

� 2v

0

, we have a ontradition to the �rst

statement sine max

i

q

�

i

� v

D

� v

0

� v

0

. �
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Proof of Proposition 8. Suppose that G is neither yli or omplete, and sup-

pose that seller B attrats all the buyers in an SPE (p

�

; q

�

; �) suh that q

�

1

= � � � =

q

�

N

. Then sine �

A

(p

�

; q

�

; �) = 0, Lemma 7(1) implies that q

�

1

= � � � = q

�

N

=

min

i

q

�

i

< 0. Then, however, �

B

(p

�

; q

�

; �) < 0, a ontradition. �

Proof of Proposition 9 It suÆes to show that in eah lass of networks, (p

�

; q

�

; �)

is an SPE when (p

�

; q

�

) = (0; 0) and the buyers' strategy pro�le � is suh that

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (p

�

; q

�

),

�

A

(p; q) if p = p

�

and q 6= q

�

,

�

B

(p; q) if p 6= p

�

and q = q

�

.

In other words, all buyers hoose B under (p

�

; q

�

) = (0; 0), and when one of the

�rms deviates to a non-zero prie vetor, the buyers oordinate on the extreme NE

whih least favors the deviating seller. In what follows, we show that seller A has no

pro�table deviation. A symmetri argument shows that seller B has no pro�table

deviation.

1) G is a yle.

Suppose that seller A deviates to p 6= p

�

. Let Q

k

= Q

k

(p; q

�

) be the set of buyers

for whom x

i

= A is dominant in round k under (p; q

�

) as de�ned in (4). By the

de�nition of �

B

, buyer i hooses A if and only if x

i

= A is iteratively dominant:

I

A

(�

B

(p; q

�

)) = [

K

k=1

Q

k

:

Sine G is yli, d

i

= jN

i

j = 2, where N

i

is the set of neighbors of i. Reall that

�

k

i

=

�

�

�

N

i

\

n

j : fAg = S

k�1

j

o

�

�

�

=

�

�

�

N

i

\

�

[

k�1

`=1

Q

`

�

�

�

�

and �

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

denote the number of neighbors of i for whom x

i

= A is dominant in round k � 1

or earlier, and x

i

= B is undominated in S

k�1

, respetively. Sine q

�

i

= 0, x

i

= ; is

dominated by x

i

= B in S

0

for any buyer i. It follows that B 2 S

k�1

if and only if

fAg ( S

k�1

i

, and hene that

N

i

\ fi : B 2 S

k�1

g = N

i

\

�

[

k�1

`=1

Q

`

�

( �

k

i

= 2� �

k

i

:

Suppose now that i 2 Q

k

. Then we have by (7),

v

�

k

i

� p

i

> v

2��

k

i

, p

i

< v

�

k

i

� v

2��

k

i

:
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In partiular, i 2 Q

1

in round 1 if p

i

< v

0

� v

2

, and i 2 Q

k

in round k > 1 either if

(i) p

i

< 0 and exatly one of his two neighbors has already hosen A (�

k

i

= 1), or

(ii) p

i

< v

2

� v

0

and both his neighbors have already hosen A (�

k

i

= 2). Note in

partiular that if buyer i �nds x

i

= A dominant when neither of his neighbors have

already hosen A, then i 2 Q

1

.

Seller A's payo� under (p; q

�

; �) hene satis�es

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

< jQ

1

j(v

0

� v

2

) + (v

2

� v

0

)

K

X

k=2

�

�

�

fi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2g

�

�

�

:

Sine no buyer �nds A dominant in round k � 2 if neither of his neighbors has

already hosen A, the number of omponents (i.e, onneted lusters of buyers) in

[

k�1

`=1

Q

`

is less than or equal to that in Q

1

for any k. It follows that

K

X

k=2

jfi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2gj � jQ

1

j:

We an therefore onlude that �

A

(p; q

�

; �) � 0 and hene that p is not a pro�table

deviation.

2) G is omplete.

De�ne Q

k

= Q

k

(p; q

�

) (k = 1; : : : ;K) as above. Denote by �

k

the number �

k

of

buyers who have hosen A in rounds 1; : : : ; k � 1:

�

k

=

k�1

X

`=1

jQ

`

j :

Sine G is omplete, for any buyer i, the number �

k

i

of i's neighbors who have hosen

A equals �

k

. Furthermore, by Proposition 3, we only need onsider p suh that eah

Q

k

ontains a single buyer. (If Q

k

ontains two or more buyers, then sine G is

omplete, those buyers are adjaent.) Hene, without loss of generality, Q

k

= fkg

for eah k = 1; : : : ; N . For k = 1; : : : ;K, we also have

p

k

< v

�

k

� v

N�1��

k

:

Seller A's payo� under (p; q

�

; �) hene satis�es

�

A

(p; q

�

; �) =

N

X

k=1

N

X

k=1

p

k

<

K

X

k=1

�

v

�

k

� v

N�1��

k

�

: (36)
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It is then straightforward to verify that the right-hand side equals zero. Hene,

seller A has no pro�table deviation. �

Proof of Proposition 10. We will onstrut an SPE (p

�

; q

�

; �) in whih (p

�

; q

�

)

is as given in the proposition, and

�(p; q) =

8

<

:

�

B

(p; q) if q = q

�

,

�

A

(p; q) otherwise.

Sine �(p

�

; q

�

) is B-maximal and p

�

= q

�

, no buyer hooses A. Furthermore, no

buyer hooses ; sine x = (B; : : : ; B) yields non-negative payo�s to all buyers. It

follows that seller B monopolizes the market following (p

�

; q

�

).

Consider any deviation p 6= p

�

by seller A. Sine it indues the B-maximal NE

�

B

(p; q

�

), the set of buyers who hoose A equals I

A

(�(p; q

�

)) = [

K

k=1

Q

k

, where

Q

k

= Q

k

(p; q

�

) is the set of buyers i for whom x

i

= A is dominant in round k under

(p; q

�

) as de�ned in (4). For any J � I, de�ne

N

J

= [

j2J

N

j

to be the olletion of neighbors of buyers in J . Let also Q

0

= ; and N

;

= ;.

Step 1. If i 2 Q

k

for some k � 2, then N

i

\ Z

k�1

6= ;.

If N

i

\Z

k�1

= ;, then for any j 2 N

i

suh that B 2 S

k�2

j

, x

j

= B is undominated

in S

k�2

by the de�nition of Z

k�1

. It follows that N

i

\Q

k�1

= ;,

�

k�1

i

=

�

�

�

N

i

\ [

k�2

`=0

Q

`

�

�

�

=

�

�

�

N

i

\ [

k�1

`=0

Q

`

�

�

�

= �

k

i

;

and

�

k�1

i

=

�

�

�

N

i

\

n

j : B 2 S

k�2

j

o

�

�

�

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

= �

k

i

:

Hene, x

i

= A annot beome dominant in S

k�1

when it is not dominant in S

k�2

.

In other words, i =2 Q

k

.

Step 2. Suppose that i 2 Q

k

for some k � 2.

a) If i 2 I

1

, then N

i

\Q

k�1

6= ;.

Take any j 2 N

i

\ Z

k�1

, whih is 6= ; by Step 1.

For any j 2 I

2

, x

j

= ; is dominated by x

j

= B in S

0

sine q

�

j

> 0. Hene,

S

`

j

� fA;Bg for ` � 1. The fat that j 2 Z

k�1

then implies that x

j

= A is

dominant in S

k�2

: j 2 Q

k�1

.
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b) If i 2 I

2

, then there exists N

i

\

�

Q

k�1

[

�

N

Q

k�2

n [

k�2

`=1

Q

`

��

6= ;.

Take any j 2 N

i

\ Z

k�1

. Sine x

j

= B is dominated in S

k�2

, we have

v

�

k�1

j

� q

�

j

< max

n

v

�

k�1

j

� p

j

; 0

o

:

If v

�

k�1

j

� p

j

> 0, then x

j

= A is dominant in S

k�2

so that j 2 Q

k�1

. If

v

�

k�1

j

� p

j

� 0, then v

�

k�1

j

� q

�

j

< 0 implies that �

k�1

j

< d

j

sine q

�

j

= v

d

j

� v

0

.

On the other hand, sine B 2 S

k�2

j

, x

j

= B is undominated in S

k�3

. Hene, we

have j =2 [

k�2

`=1

Q

`

, and also

v

�

k�2

j

� q

�

j

� max

n

v

�

k�2

j

� p

j

; 0

o

� 0;

whih shows that �

k�2

j

= d

j

. It follows that for some neighbor m 2 I

2

of j,

B 2 S

k�3

m

but B =2 S

k�2

m

. Sine x

m

= B an be dominated only by x

m

= A for

m 2 I

2

, this implies that m 2 Q

k�2

. Therefore, j 2 N

Q

k�2

n

�

[

k�2

`=1

Q

`

�

.

Step 3. If i 2 I

1

, then �

k

i

= d

i

� �

k

i

.

If i 2 I

1

, N

i

� I

2

. Sine q

�

j

< 0 for any j 2 I

2

, x

j

= ; is dominated by x

j

= B

in S

0

for any suh j. It follows that B 2 S

k�1

j

if and only if B 2 S

k�2

j

and x

j

= B

is not dominated by x

j

= A in S

k�2

. Hene, we have by indution,

N

i

\

n

j : B 2 S

k�1

j

o

= N

i

\

n

j : B 2 S

k�2

j

and j =2 Q

k�1

o

= N

i

\

n

j : B 2 S

k�3

j

and j =2 Q

k�2

[Q

k�1

o

= � � �

= N

i

n [

k�1

`=1

Q

`

:

This shows that �

k

i

= d

i

� �

k

i

.

Step 4. If �

k

i

� 1 for some i 2 I

2

\Q

k

and k � 1, then �

A

(p; q

�

) < 0.

Sine �

1

i

= 0 and �

1

i

= d

i

, v

ap

1

i

� v

�

1

i

+ q

�

i

= 0 for i 2 I

1

\Q

1

. Hene, i 2 I

1

\Q

1

implies that p

i

< 0 by (7). On the other hand, sine �

k

i

= d

i

� �

k

i

by Step 3 and

�

k

i

� 1 for k � 2 by Step 2(a), we have �

k

i

< d

i

for i 2 I

1

\ Q

k

for k � 2. Hene,

under approximate linearity,

v

ap

k

i

� v

�

k

i

+ q

�

i

= v

ap

k

i

� v

�

k

i

+ v

d

i

� v

0

� v

�

k

i

+ d

i

� �

k

i

> v

�

k

i

:

37



By (7), then i 2 I

1

\Q

k

for k � 2 implies that p

i

< v

�

k

i

. It follows that seller A's

payo� �

A

under (p; q

�

) satis�es

�

A

(p; q

�

)

<

K

X

k=1

X

i2Q

k

p

i

=

K

X

k=2

X

i2I

1

\Q

k

v

�

k

i

+

K

X

k=1

X

i2I

2

\Q

k

�

v

�

k

i

� v

�

k

i

+ v

0

� v

d

i

�

=

X

i2I

2

\Q

1

v

0

+

K

X

k=2

X

i2Q

k

v

�

k

i

�

K

X

k=1

X

i2I

2

\Q

k

�

v

d

i

� v

0

�

�

K

X

k=1

X

i2I

2

\Q

k

v

�

k

i

:

(37)

We will show that �

A

(p; q

�

) � �h when the externalities are h-linear and �

k

i

� 1 for

some i 2 I

2

\ Q

k

and k � 1. This will prove the statement when the externalities

are "-lose to h-linear for " > 0 suÆiently small sine �

A

(p; q

�

) is ontinuous in ".

Under h-linearity, we an rewrite (37) as:

�

A

(p; q

�

) < h

K

X

k=2

X

i2Q

k

�

k

i

� h

K

X

k=1

X

i2I

2

\Q

k

d

i

� h

K

X

k=1

X

i2I

2

\Q

k

�

k

i

:

Note now that

X

i2Q

k

�

k

i

=

X

i2Q

k

�

�

�

N

i

\

�

[

k�1

`=1

Q

`

�

�

�

�

= #links between Q

k

and [

k�1

`=1

Q

`

,

and hene that

K

X

k=2

X

i2Q

k

�

k

i

= #links within [

K

`=1

Q

`

= #links from I

2

\

�

[

K

`=1

Q

`

�

to I

1

\

�

[

K

`=1

Q

`

�

� #links from I

2

\

�

[

K

`=1

Q

`

�

to I

1

=

K

X

k=1

X

i2I

2

\Q

k

d

i

:

It follows that if �

k

i

� 1 for some i 2 I

2

\Q

k

and k � 1,

�

A

(p; q

�

) < �h

K

X

k=1

X

i2I

2

\Q

k

�

k

i

� �h:
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Step 5. IfN

i

n[

k�1

`=0

Q

`

6= ; and i 2 Q

k

for some k � 1 and i 2 I

2

, then �

A

(p; q

�

) < 0.

If B 2 S

k�1

j

for some j 2 N

i

n [

k�1

`=0

Q

`

6= ;, then

�

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

� 1:

Suppose then that B =2 S

k�1

j

for every j 2 N

i

n [

k�1

`=0

Q

`

6= ;, and take any suh

j. Sine q

�

j

= v

d

j

� v

0

, B =2 S

k�1

j

implies that there exists m 2 N

j

� I

2

suh that

B =2 S

k�2

m

. Sine x

m

= ; is dominated by x

m

= B for any suh m, B =2 S

k�2

m

implies

S

k�2

m

= fAg, or equivalently, m 2 [

k�2

`=0

Q

`

. It follows that N

j

\ [

k�2

`=0

Q

`

6= ;. Take

the smallest k

�

� k� 2 suh that N

j

\Q

k

�

6= ; and i

�

2 N

j

\Q

k

�

. Then B 2 S

k

�

�1

j

and hene �

k

�

i

�

� 1.

Step 6. If Q

k

\ I

1

6= ; for some k � 2, then �

A

(p; q

�

) < 0.

Let i 2 Q

k

\ I

1

. We an take j 2 N

i

\Q

k�1

6= ; by Step 2(a). Sine i =2 [

k�2

`=0

Q

`

,

we have N

j

n [

k�2

`=0

Q

`

6= ;. It then follows from Step 3 that �

A

(p; q

�

) < 0.

Step 7. If Q

k

\ I

2

6= ; for some k � 3, then �

A

(p; q

�

) < 0.

Let i 2 Q

k

\ I

2

. We an take j 2 N

i

\

�

Q

k�1

[

�

N

Q

k�2

n [

k�2

`=1

Q

`

��

6= ; by Step

2(b). If j 2 Q

k�1

, then �

A

(p; q

�

) < 0 by Step 6 sine j 2 I

1

. If j 2 N

Q

k�2

n[

k�2

`=1

Q

`

,

then there exists m 2 I

2

suh that m 2 N

j

\Q

k�2

. Sine j 2 N

m

n[

k�2

`=1

Q

`

, we have

�

A

(p; q

�

) < 0 by Step 5.

Step 8. If Q

1

� I

1

, Q

2

� I

2

, and Q

k

= ; for k � 3, then �

A

(p; q

�

) � 0.

First, if N

i

n Q

1

6= ; for some i 2 Q

2

, then �

A

(p; q

�

) < 0 by Step 5. Suppose

then that N

i

� Q

1

for every i 2 Q

2

. In this ase, �

2

i

= d

i

and �

2

i

= 0 for every

i 2 Q

2

, and hene

�

A

(p; q

�

) <

X

i2Q

1

max

n

v

0

� v

d

i

+ q

�

i

; 0

o

+

X

i2Q

2

max

n

v

d

i

� v

0

+ q

�

i

; 0

o

= 0:

Proof of Proposition 12. Let

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

When the externalities are "-lose to h-linear,

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

=

N

X

i=1

n

(v

s

i

� s

i

h)�

�

v

d

i

�s

i

� (d

i

� s

i

)h

�

� h ((d

i

� s

i

)� s

i

)

o

< 2N";
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and hene

Æ < 2N": (38)

Let (I

1

; I

2

) be the partition of the buyer set I, and let i

A

2 I

1

and i

B

2 I

2

be the

ore buyers of the respetive sets:

jN

i

A

\ I

1

j > jN

i

A

\ I

2

j and jN

i

B

\ I

2

j > jN

i

B

\ I

1

j.

We speify (p

�

; q

�

; �) as follows:

(p

�

i

; q

�

i

) =

8

>

>

>

<

>

>

>

:

(Æ;�Æ) if i = i

A

,

(�Æ; Æ) if i = i

B

,

(0; 0) otherwise,

and

�(p; q) =

8

>

>

>

>

>

<

>

>

>

>

>

:

(A; : : : ; A

| {z }

I

1

; B; : : : ; B

| {z }

I

2

) if (p; q) = (p

�

; q

�

),

�

B

(p; q) if p 6= p

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

Note that �

A

(p

�

; q

�

; �) = �

B

(p

�

; q

�

; �) = Æ.

We �rst show that the buyers' ation pro�le following (p

�

; q

�

) is a NE. If i 2

I

1

n fi

A

g, then x

i

= A is a best response sine

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� v

jN

i

\I

2

j

= v

jN

i

\I

2

j

� q

i

:

If i = i

A

, then jN

i

\ I

1

j > jN

i

\ I

2

j so that

v

jN

i

\I

1

j

� v

jN

i

\I

2

j

=

�

v

jN

i

\I

1

j

� hjN

i

\ I

1

j

�

�

�

v

jN

i

\I

2

j

� hjN

i

\ I

2

j

�

+ h fjN

i

\ I

1

j � jN

i

\ I

2

jg

� h� 2":

Hene, if we take

�" =

h

2(2N + 1)

; (39)

then for any " < �", (38) implies that

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� Æ > v

jN

i

\I

2

j

+ Æ = v

jN

i

\I

2

j

� q

i

:

The symmetri argument shows that x

i

= B is a best response for eah i 2 I

2

following (p

�

; q

�

).
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We will next show that seller A has no pro�table deviation. Let p be any

deviation by seller A, and Q

k

= Q

k

(p; q

�

) be the set of buyers i for whom x

i

= A

is a dominant ation in round k under (p; q

�

) as de�ned in (4). Sine the buyers

play the B-maximal NE �

B

(p; q

�

), buyer i hoose A if and only if i 2 [

K

k=1

Q

k

. By

Lemma 3, we may assume that no buyers in Q

k

are adjaent.

Suppose that i 2 Q

k

. For any neighbor j 2 N

i

of i, we have

j =2 [

k�1

`=1

Q

`

) B 2 S

k�1

j

: (40)

We an see that (40) holds as follows: First, take j 6= i

B

. Sine then q

�

j

� 0,

x

j

= B is not dominated by x

j

= ;. Hene, if x

j

= A is not dominant in S

`�1

for

` = 1; : : : ; k (i.e., j =2 [

k�1

`=1

Q

`

), then B 2 S

k�1

j

. On the other hand, if j = i

B

, then

q

�

j

= Æ < 2N" < h = v

1

under approximate linearity. Furthermore, i 2 Q

k

implies

that fAg 6= S

k�1

i

. Sine i 6= i

B

, we have B 2 S

k�1

i

by the preeding argument. It

follows that x

j

= B is not dominated by x

j

= ; in S

`�1

for ` = 1; : : : ; k sine

v

�

`

j

� q

�

i

� v

1

� Æ > 0;

where �

k

j

=

�

�

N

j

\

�

m : B 2 S

k�1

m

	

�

�

� 1. Hene, if x

j

= A is not dominant in S

`�1

for ` = 1; : : : ; k (i.e., j =2 [

k�1

`=1

Q

`

), then B 2 S

k�1

j

.

Realling that

�

k

i

=

�

�

�

N

i

\

�

[

k�1

�=1

Q

�

�

�

�

�

equals the number of i's neighbors for whom A is dominant prior to round k, we

onlude from (40) that �

k

i

= d

i

� �

k

i

. Hene, (7) shows that if i 2 Q

k

, then p

i

satis�es

p

i

< min fv

�

k

i

� v

d

i

��

k

i

+ q

�

i

; v

�

k

i

g � v

�

k

i

� v

d

i

��

k

i

+ q

�

i

;

whih in turn implies that seller A's payo� �

A

under (p; q

�

) satis�es

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

<

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

�

+ Æ:

(41)

We will show that �

A

(p; q

�

) � 0 for any p by onsidering the following two ases

separately.
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Suppose �rst that [

K

k=1

Q

k

( I. Sine the right-hand side of (41) is ontinuous

in ", if we show that it is less then �h under exat linearity, then �

A

(p; q

�

) < 0

holds under approximate linearity. Under exat linearity, (41) beomes

�

A

(p; q

�

; �) <

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

�

+ Æ

= h

K

X

k=1

X

i2Q

k

�

2�

k

i

� d

i

�

:

Note that

K

X

k=1

X

i2Q

k

�

k

i

= #links within [

K

k=1

Q

k

;

and that

K

X

k=1

X

i2Q

k

d

i

= 2� (#links within [

K

k=1

Q

k

)

+ #links from [

K

k=1

Q

k

to I n [

K

k=1

Q

k

:

It follows that

�

A

(p; q

�

; �) < (�h)�#links from [

K

k=1

Q

k

to I n [

K

k=1

Q

k

� �h;

where the inequality follows from the fat that [

K

k=1

Q

k

( I.

Suppose next that [

K

k=1

Q

k

= I. In this ase,

P

K

k=1

P

i2Q

k

q

�

i

= 0 by de�nition.

Hene,

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

� Æ = �

A

(p

�

; q

�

; �);

where the inequality follows from the de�nition of Æ. �
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