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Abstract

Two sellers engage in price competition to attract buyers located on a net-
work. The value of the good of either seller to any buyer depends on the number
of neighbors on the network who consume the same good. For a generic speci-
fication of consumption externalities, we show that an equilibrium price equals
the marginal cost if and only if the buyer network is complete or cyclic. When
the externalities are approximately linear in the size of consumption, we iden-
tify the class of networks in which one of the sellers monopolizes the market,
or the two sellers segment the market.
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1 Introduction

Goods have network externalities when their value to each consumer depends on
the consumption decisions of other consumers. The externalities may derive from
physical connection to consumers adopting the same good as in the case of telecom-
munication devices, from provision of complementary goods as in the case of oper-
ating systems and softwares for computers, or from pure psychological factors as in
the case of a consumption bandwagon. Despite their importance in reality, we only

have limited understanding of network externalities particularly when those goods
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are supplied competitively. The objective of this paper is to study price competi-
tion in the presence of consumption externalities represented by a buyer network.
Specifically, we formulate a model of price competition under local network external-
ities by supposing that two sellers compete for a network of buyers who experience
positive externalities when their neighbors in the network consume the same good.

A more detailed description of our model is as follows: Two sellers each sell
goods that are incompatible with each other. Consumers of either good experience
larger positive externalities when more of his neighbors in the network consume the
same good. In stage 1, the two sellers post prices simultaneously. The prices can
be perfectly discriminatory and can be negative. Upon publicly observing the price
vectors posted by both sellers, the buyers in stage 2 simultaneously decide which
good to buy or not to buy either. The sellers have no cost of serving the market,
and their payoffs simply equal the sum of prices offered to the buyers who choose
to buy their goods.

In this framework, we find that the equilibrium outcome of price competition
subtly depends on the network structure. Our first observation concerns the validity
of marginal cost pricing. When no network externalities are present, it is clear that
the unique subgame perfect equilibrium of this game has both sellers offer zero
to all buyers. We first show that such marginal-cost pricing is consistent with an
equilibrium in an arbitrary network when the externalities are linear in the number
of neighbors consuming the same good. We note however that while linearity is an
important class, it is not a generic property in the space of all externalities. Under a
generic specification of externalities, we show the following: (1) Unless the network
is complete or cyclic, there exists no equilibrium in which either seller monopolizes
the market by offering the same price to all buyers;! (2) Unless the network is
complete or cyclic, there exists no (monopolization or segmentation) equilibrium in
which both sellers offer zero (= marginal cost) to every buyer; (3) If the network
is complete or cyclic, there exists an equilibrium in which both sellers offer zero to
every buyer and one of them monopolizes the market. We find it surprising that the
non-existence results apply even to networks that are symmetric with respect to all
buyers. Tt is also interesting to note that no unintuitive conclusion results as long as
we confine ourselves to complete networks, which correspond to global externalities.

Given these results, we proceed to the characterization of an equilibrium when the

'A graph is complete if any pair of buyers are neighbors. The linear externalities in particular
imply that the value of the good is zero to a buyer when none of his neighbors consumes it.



externalities are non-linear.

Positive identification of an equilibrium is possible when the externalities are
approximately linear and when the network satisfies certain properties as follows.
First, we consider bipartite networks. A network is bipartite if the set of buyers is
divided into two subsets and if all neighbors of any buyer in one subset belong to the
other subset. This class of networks is important since it is a graph-theoretic rep-
resentation of a two-sided market that has received much attention in the literature
as discussed in the next section. We show that in a bipartite network, there exists
an equilibrium in which one of the sellers monopolizes the market (i.e., buyers on
both sides) by charging positive prices to all buyers on one side while subsidizing all
buyers on the other side. Furthermore, the equilibrium price to each buyer (either
positive or negative) is shown to be approximately proportional to the number of
links he has to the other side of the market. We relate these findings to the identifi-
cation of the buyers that need to be protected from the inducement from the other
seller, and those that can be squeezed for profits.

Next, we consider the possibility of a segmentation equilibrium. We say that
a network is bilocular if the set of buyers is divided into two subsets and if every
buyer in each subset has at least as many neighbors in the same subset as in the
other subset, and some buyer in each subset has strictly more neighbors in the same
subset than in the other subset. When the externalities are approximately linear,
we show that market segmentation in a bilocular network takes place in equilibrium
with each seller making positive profits.

The paper is organized as follows: After discussing the related literature in the
next section, we formulate a model of price competition in Section 3. Section 4
considers the subgame played by the buyers that follows the public observation of
prices posted by both sellers. The subgame following each price profile is one of
strategic complementarities, and hence has maximal and minimal Nash equilibria.
We use the iterated elimination of dominated actions to characterize those equilibria
and also to identify the existence of profitable deviations by a seller in the subsequent
analysis. We turn to the analysis of a subgame perfect equilibrium in Section 5
and identify lower bounds on the sellers’ equilibrium payoffs. Section 6 examines
the validity of uniform pricing and marginal cost pricing in equilibrium. With the
definition of approximate linearity, we study in Section 7 the possibility of market
monopolization in a bipartite network, which corresponds to a two-sided market.

Equilibrium market segmentation in bilocular networks is studied in Section 8. We



conclude with a discussion in Section 9. The Appendix contains most of the proofs.

2 Related Literature

Since the pioneering work of Dybvig and Spatt (1983), problems related to the
monopoly provision of a good with network externalities are studied by Cabral et
al. (1999), Park (2004), Sekiguchi (2009), Ochs and Park (2010), Aoyagi (2013),
Parakhonyak and Vikander (2013), among others. In light of the multiplicity of
equilibria under externalities, these papers study such issues as implementing effi-
cient or revenue maximizing equilibria under complete and incomplete information,
intertemporal patterns of adoption decisions, as well as the validity of introductory
pricing.?

One key ingredient of the present paper is that of divide-and-conquer, which
has been studied by Segal (2003), Winter (2004) and Bernstein and Winter (2012)
among others in contracting problems under externalities. In these problems, a
single principal offers a contract to the set of agents whose participation decisions
create externalities to other agents. The divide-and-conquer strategy of the principal
specifies the sequential order in which the principal approaches those agents. The
contract offered to the first agent makes it a dominant strategy to accept it even if
all other agents reject, the contract offered to the second agent makes it a dominant
strategy to accept it even if all but the first agent reject, and so on.> Our analysis of
an equilibrium involves the same argument: Given some price profile, we examine
if it is profitable for either seller to deviate by offering an alternative price vector.
We consider price vectors that amount to approaching the buyers one by one in
some order and switching them provided that it succeeds in switching all their
predecessors. We relate the process to the iterative elimination of strictly dominated
strategies, and use it derive a lower bound on equilibrium payoffs.

Modeling local externalities as a graph-theoretic network, Candogan et al. (2012)
and Bloch and Quérou (2013) both study the problem of optimal monopoly pricing.
Candogan et al. (2012) formulate a model in which the good is divisible and the

2See Rohlfs (1974) for an early treatment of network externalities.
A similar idea can be found in the study of an optimal marketing strategies under externalities

in Hartline et al. (2008). A marketing strategy determines the order in which the monopolist
approaches the set of buyers with private valuations as well as a sequence of contingent prices
offered to them. See also Aoyagi (2010) for the analysis of an optimal marketing strategy against
informationally interdependent buyers.



externalities between any pair of consumers may be directed. Bloch and Quérou
(2013) construct a model in which the good is indivisible and the externalities are
undirected, but each consumer has private information about his valuation of the
good. It is interesting to note that in both these models, the optimal price is
independent of the network configuration in the case of undirected externalities as
in the present paper, and is uniform across the buyers if they have (ex ante) the
same valuation.

Competition between suppliers of goods with network externalities was first for-
mulated by Katz and Shapiro (1985). Subsequent work on the subject includes
Sundararajan (2003), Gabszewicz and Wauthy (2004), Hagiu (2006), Ambrus and
Argenziano (2009), Bernaji and Dutta (2009), Blume et al. (2009), Fjeldstad et
al. (2010), Cabral (2011), Jullien (2011), and Bloch and Quérou (2013). Among
them, Blume et al. (2009) and Bloch and Quérou (2013) study price competition
under local network externalities when market segmentation amongst the sellers is
exogenously given.

Ambrus and Argenziano (2009) and Jullien (2011) present models that are most
closely related to the present paper. These models are couched in terms of two-
sided markets, where the sellers are providers of platforms who offer a marketplace
for agents on two sides such as sellers and buyers of some good. In such models,
the utility of an agent on one side is an increasing function of the number of par-
ticipants from the other side.* Ambrus and Argenziano (2009) analyze Bertrand
competition between platforms in a two-sided market. Jullien (2011) applies the
divide-and-conquer argument to his analysis of multi-sided markets, and derives a
bound on the platforms’ payoffs when they engage in Stackelberg price competition.
Both Ambrus and Argenziano (2009) and Jullien (2011) formulate externalities dif-
ferently from the present paper, and also make some assumptions on the ability of
the agents to coordinate their actions. For example, the assumption of correlated
rationalizability by Ambrus and Argenziano (2009) implies that the agents coor-
dinate on the pareto-efficient alternative whenever there is one. In contrast, our
interest is in the maximal scope of an equilibrium when there is no restriction on
the buyers’ strategies. Specifically, our argument is based on the bang-bang prop-
erty of a subgame perfect equilibrium by allowing full coordination by the buyers
on an extreme equilibrium following any deviation by either seller.

Banerji and Dutta (2009) use the graph-theoretic definition of network exter-

*See Armstrong (1998), and Laffont et al. (1998a,b).



nalities as in the present paper, and identify conditions under which price compe-
tition leads to monopolization and market segmentation. They assume that the
sellers cannot price discriminate the buyers, and also place restrictions on the buy-
ers’ strategies. These differences in assumptions make it difficult to compare their

findings with ours.

3 Model

Two sellers A and B compete for the set I = {1,...,N} of N > 3 buyers. Con-
sumption of either seller’s good generates externalities to the buyers according to
a buyer network. Formally, a buyer network is represented by a simple undirected
graph G whose nodes correspond to the buyers, and consumption externalities exist
between buyers ¢ and j if they are adjacent in the sense that there is a link between
1 and 7. When buyer j is adjacent to buyer i, we also say that j is ¢’s neighbor.

The buyer network G is connected in the sense that for any pair of buyers ¢ and
7, there exists a path from 7 to j. That is, there exist buyers i1,49,...,%,, such
that 41 is adjacent to 4, 79 is adjacent to 41, ..., and %,, is adjacent to 7. For any
buyer 7 in network G, denote by N;(G) (or simply N;) the set of i’s neighbors in G.
The degree d;(G) = |N;(G)| of buyer i in network G is the number of i’s neighbors.
Define also M to be the number of links in G. Since each link counts twice when
aggregating the number of degrees in G, we have M = % Yicr di-

For r = 2,..., N — 1, the network G is r-reqular if all buyers have the same
degree r, and regular if it is r-regular for some r. G is cyclic if it is connected and
2-regular, and complete if it is (N — 1)-regular, or equivalently, every pair of buyers
are adjacent to each other.

The value of either seller’s good to any buyer ¢ is determined by the number of
neighbors of 4 who consume the same good. We denote by v™ the value of either good
to any consumer when n of his neighbors consume the same good. In particular, v°
denotes the stand-alone value, or the value to any buyer of either good when none
of his neighbors consumes the same good. Implicit in this assumption is that the
two goods A and B are incompatible with each other since the value of either good
to any buyer is assumed the same whether his neighbor consumes the other good
or nothing. The value does not depend on the identity of a buyer or the identity of
the seller who supplies the good. The consumption externalities are non-negative in
the sense that 0 < 0 <! <... <oN—1,



The good can be produced at no cost for both sellers. The sellers can perfectly
price discriminate the buyers, and we let p; and ¢; denote the prices offered to buyer
1 by seller A and seller B, respectively. They simultaneously quote price vectors
p = (pi)icr € RY and ¢ = (¢i)icr € RY. The buyers publicly observe (p,q), and
then simultaneously decide whether to buy either good, or buy neither.

Public observability of the entire price vectors and the possibility of perfect
price discrimination are the two key assumptions of our model. We note in passing
that these assumptions may be more in line with the reality for intermediate goods
markets with a limited number of buyers than for large consumption goods markets.”

Buyer #’s action z; is an element of the set S; = {4, B, ()}, where ) represents no
purchase. Each seller’s strategy is an element of R", whereas buyer i’s strategy o;
is a mapping from the set R%Y of price vectors (p,q) to S;. For each action profile
z = (z;)icr € S = [[;c; Si of buyers, let

In(z)={i€el:x;=A}, and Ig(zx)={i€l: z;=DB}

denote the set of buyers choosing A and the set of buyers choosing B, respectively.

Given the price profile (p, q), buyer i’s payoff under the action profile z is given by

’U‘NimIA(I)‘ — Pi if Iy — A,
ui(z) = S wNiNE@l — g, if z; = B, (1)
0 if z; =0,

If we denote by o = (0;);cs the buyers’ strategy profile, the payoffs 74 (p,q,0) and
wg(p,q,0) of sellers A and B, respectively, under the strategy profile (p,q, o) are
given by

WA(p7Q7O') = Z pi,

i€ls(o(p,q))

ﬂ-B(p7Q7o-) = Z qi,

i€lp(a(p,0))
and buyer 7’s payoff m;(p, ¢, o) under the strategy profile (p, ¢, o) is given by
7Ti(pa q, U) = Ui(O'(p, Q))

A price vector (p*,¢*) and a strategy profile 0 = (0;)jer together constitute a

subgame perfect equilibrium (SPE) if given any price vector (p, q) € R?N | the action

For example, price discrimination in large markets may be better modeled as one full price and
one discount price as in Candogan et al. (2012).



vector (0;(p, q))ier is a Nash equilibrium of the subgame following (p, ¢), and given

o, each component of the price vector (p*,¢*) is optimal against the other:

i (p,q,0(p,q)) > ™ (p,q, zi,0-i(p,q)) for every z;, i and (p,q),

*

A (p* ", 0(p*,q%)) > ma (p,q",0(p,q")) for every p,
w8 (p*,q", 0(p*,q")) > 7 (p*,q,0(p", q)) for every q.
4 Nash Equilibrium in the Buyers’ Game

In this section, we fix the price vector (p,q), and consider an equilibrium of the
buyers’ subgame following (p, ¢) in which the set of actions of each buyer i equals
S; = {A, B, (0}, and his payoff function u; is defined by (1). The simultaneous-move
game (I, S = [[;c; Si, (ui)ier) among the buyers is a supermodular game when the
set S; of actions of each buyer is endowed with the ordering A = () = B. Tt follows
that the game has pure Nash equilibria that are maximal and minimal with respect
to the partial ordering >g on S induced by =. We refer to the maximal equilibrium
as the A-mazimal equilibrium and denote it by 2, and the minimal equilibrium as
the B-mazimal equilibrium and denote it by z®. By definition, for any NE y and
buyer i, y; = A implies xf‘ = A, and y; = B implies 7P = B.

It is known that any NE must survive the iterative elimination of strictly dom-
inated actions, and that in a finite supermodular game, any strategy profile = that
survives this process lies between z4 and 28: 24 =g 2z =g 2B.7 In what follows, we
apply the iterative elimination process to the buyers’ game and use it to characterize
the maximal and minimal NE. The notation appearing in this process will be used
in the subsequent analysis.

Define Ty = () and Sy = S, and suppose that for k = 1,2,..., the set T),_; C I
and the action profile z7, ~of buyers in Tj;,_; have been specified. Intuitively, Tj_;
is the set of buyers ¢ for whom z; has been identified as a dominant action after
k — 1 rounds of elimination of strictly dominated actions. Formally, for any product
subset S’ =[], S; C S of action profiles such that S} # (), buyer ’s action z; € S, is
(strictly) dominated in S’ (by another pure action) if there exists z; € S! such that

ui(wi, ;) < ui(z, x_;) for every z_; € S’ .

z € 8] is dominant in S’ if any other action 2 € S’ is dominated in S’ (by z).

See Topkis (1998).
"See Milgrom and Roberts (1990).



For k=1,2,..., let

Y, = {z € I\ T : ; = A is dominated in S’H} :

7, = {z € I\ T, : ; = B is dominated in S’H} : 2)
Wi =141 €I\ Tk_1: z; =0 is dominated in Sk_l},
and
St={re S ;£ AifjeYy, v;#Bifje 7 5
and Tj # 0 if j € Wk}
Further, let
P.=Y, "W, = {z €I\Ty 1: z; = B is dominant in Skfl},
QrL=2.N"W, = {7, €I\Ty 1: z; = A is dominant in Skil} , (4)
Rp=YyNZ, = {i€I\Ty_1: z;=0isdominant in S*~1}.
Define now
Ty =Tk—1U (P UQr U Ry), (5)
and
B ific B,
;=< A ifi€Qy, (6)
0 ifse Ry.

Since each buyer has at most two dominated actions, the above process stops in or
before 2N rounds. Let then K be the minimal number such that

Pk+1:Qk+1:Rk+1:®fOI'kZK.

In other words, no buyer has a dominant action in S¥ for k¥ > K. The sets S*,
Ty, Yi, Zy Wi, Pi, Qp, and Ry as well as the number K all depend on the price
profile (p,q). In this sense, we write Qx11(p,q) and so on when we want to make
this dependence explicit.

If x € S is any NE, every buyer in T must be choosing his iteratively dominant
action in z so that

TT = :1:’:}1{.

It follows that any two NE may be different from each other only in the actions

chosen by buyers in I \ Tx. The following proposition states that the A-maximal



and B-maximal NE can be constructed by having the maximal number of buyers
among them choose A and B, respectively. Specifically, let J4 C I\ Tx be the

maximal set that satisfies

Uu; (:L“}K,:L“JA =(A,.. ., A), rn1ie\ g, = ((D,...,@)) > 0.

Note that the maximality is well-defined since if the inequality holds for J and
J' C I\ Tk, then it also holds for J U J'. The buyers in J4 can each realize a
non-negative payoff by collectively choosing A.® Likewise, let Jg C I\ Tk be the

maximal set that satisfies
Uu; (:E}K,xJB = (B,...,B),znr\15 = @, ... ,(Z))) > 0.
Proposition 1 Define 4 and zP by

xA = («T;"K,Z’JA = (Aa 7A)7xI\TK\JA = (®7 70)))7 and

$B = (l’;ﬂK,l’!]B = (B, 7B)7xI\TK\JB = (@, ,@))

Then z? and =P are the A-mazimal and B-mazimal NE, respectively.

Proof. We show that z* is an A-maximal NE. The symmetric argument shows that
2B is a B-maximal NE. In particular, when T = I, every buyer has an iteratively

dominant action, and z* = 2 is the unique NE.

— g4 is a NE.

In z4

, any buyer ¢ € Tk is choosing his iteratively dominant action and hence
has no incentive to deviate. Take i € I \ Tx. If i € Jy, then since z; = A yields by
definition a non-negative payoff to buyer 7, he cannot profitably deviate to z; = 0. If
1 can profitably deviate to z; = B, then then x; = B would be his dominant action
in Sk since no other buyer in I'\ Tx chooses B in 2. This would be a contradiction
to P11 =0. If i ¢ J4, then 2; = A is not a profitable deviation for buyer 7 since if
it were, then we would have a contradiction to the maximality of J4. x; = B is not
a profitable deviation either since if it were, then we would have a contradiction to

Pr 11 = 0 by the same logic as above.

— 24 is A-maximal.

8Set J4 can alternatively obtained by eliminating x; = A if it is iteratively dominated by z; =

in Sgk.
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Take any NE z. As noted in the text, zr, = 2, = x%K. If 2z, = A for

i € I\ Tk \ Ja, then z cannot be a NE since z; = () would be a profitable deviation
for him by the definition of J4. It follows that no NE x can have more buyers choose
Athan z4. m

The dominance argument can be described more explicitly in terms of v¢ and
(p,q) as follows. Note that the minimal number of 7’s neighbors who may choose A
in S*¥~1 is given by

’

of = ‘Ni N {j : S;-c*l = {A}}

and that the maximal number of i’s neighbors who may choose B in S¥~! is given
by
gr = ‘Niﬂ{j: Be S]’?—l}‘.

It follows that z; = A is dominant in S*=' (i.e., i € Qi(p,q)) if and only if
v — p; > max {’U’Blk —q;, 0},

or equivalently,
p; < max {vaf—vﬂf-l-q;a Uaf}- (7)

This is the key inequality that will be used extensively in what follows.

5 Subgame Perfect Equilibrium

We now turn to the original two-stage game including the sellers. The proposition
below makes a simple observation that if a price vector (p*, ¢*) is sustained in some
SPE, then it must be sustained in an SPE in which the buyers choose an extreme
response to either seller’s deviation: If seller A deviates from p*, then all buyers
coordinate on the B-maximal NE that least favors seller A, and vice versa. The

proposition hence presents a bang-bang property of an SPE.

Proposition 2 For any network G, (p*,q*) is an SPE price vector if and only if
there exists buyers’ strategy profile o such that (p*,q*,0) is an SPE and

o(p.q) = oB(p,q) ifp#p* and q=q*,
’ o(p,q) ifp=0p* and q # q".

11



Consider next seller A’s best response p to B’s price ¢ when the buyers play the
B-maximal strategy . Since o®(p,q) is a B-maximal NE for any (p, q), seller A
can attract buyer ¢ if and only if x; = A is an iteratively dominant action for buyer
it i € UK Qg, where @y is as defined in (4). Hence,

K
Tapg,0")=> > pie

k=1 i€Qy

The following lemma, shows that if seller A’s price vector p is a best response to

(g,07)
in (4) and equals the set of buyers for whom A is dominant in round k£ — 1 of the

, then no two buyers in Qr = Qk(p,q) are adjacent, where Q. is as defined

iteration process. In other words, the optimal way to attract adjacent buyers 7 and
j is to approach them sequentially. Intuitively, this is because making choice A
dominant for both buyers simultaneously requires offering lower prices to both of
them than making z; = A dominant for buyer ¢ first, then making z; = A dominant

for buyer j next conditional on ¢ choosing z; = A.

Lemma 3 Let (Qy)r=1,.. x be as defined in (4) under the price vector (p,q). If p

is a best response to (q,0®), then for every k =1,... K,

i, €EQr = 1 and j are not adjacent.

We now derive a key result that establishes a lower bound for each seller’s equi-
librium payoff given the price vector of the other seller. Although the discussion is
based on the iterated dominance argument of Section 4, we find it useful to present
it in terms of the sequence of buyers rather than the sequence of sets of buyers. We
return to the comparison of the two processes later in the section. As mentioned in
the Introduction, the argument is one of divide and conquer, where seller A, say, ap-
proaches each buyer sequentially according to some ordered list, and presents them
with a price which makes the choice A a dominant action when all his predecessors
in the list choose A.

Formally, fix the price ¢* of seller B, and suppose that the buyers play the B-
maximal NE facing (p,¢*) for any p: Buyer i chooses z; = A only when it is an
iteratively dominant action. Suppose further that seller A approaches the buyers

in the order i1,...,in: Seller A first makes a price offer to buyer i1 that makes A

12



dominant for him. In fact, z;, = A is dominant for buyer 4, if p;, is such that
v° — pj, > max {vdil - q;, 0} ,

or equivalently,
pi, < min {vo — vt 4 g7, vo} :

Let Hy = {i1}. Seller A next makes a price offer to buyer is that makes z;, = A

dominant given the choice of buyer 4;. This can be accomplished by p;, such that
Pip < min {“Siz — vh2 5 4 g vm},

where s;, = |N;, N Hy| so that s;, = 1 if buyer i5 is adjacent to i1, and = 0 otherwise.
Now let Hy = {i1,i2}. Proceeding iteratively, we see that seller A can have buyer

i, choose z;, = A as his iteratively dominant action by offering p;, such that

pij, < min {vsik — v% i + g vsik}, (8)
where s;, = |N;, N Hy_;| is the number of neighbors of i; in the set Hy_; =
{i1,...,ik—1}. Intuitively, s;, is the externalities of good A to buyer i;, when those

buyers in Hj_; choose A. On the other hand, d;, — s;, gives an upper bound on
the externalities of good B to i, when only those buyers in I\ Hj_; may choose B.
Note that for any list 41,...,7x5 of buyers,

N

Zsik:M,

k=1

where M is the total number of links in GG. Define S by

S = {S = (8i)icr 18, =0 and s;, = |le N {il, N ,ik,1}| for k> 2

for some ordering (iy,...,iy) of buyers}.
Note that if s corresponds to the list i1,...,iy, then d—s = (d; — s;);er corresponds
to the reversed list iy,...,7;. Hence, if s € S, then d — s € S as well.

Some comments are in order on the above process of divide and conquer. First,
in relation to the iterated dominance argument of Section 4, buyer ¢; belongs to
Q1(p, q*) defined in (4) since he has a dominant action in S® = S. Buyer iy belongs
to Q2 if he is adjacent to 4; since then z;, = A is dominant only after z;, = B and

z;, = ) are eliminated from S°. Otherwise, z;, = A is dominant in S itself so that

13



19 € @1 as well. In general, buyer i; belongs to one of @1, Qq, ..., Q) depending on

the status of his neighbors. In other words,

Hy C Uf_y Qolp, q%).

Next, against some price vector ¢* of seller B, seller A may achieve a higher payoff by
offering prices that attract only a subset of buyers than offering prices that attract
all of them. The above process to the contrary assumes that seller A attracts all
buyers by offering p. In other words, we use the existence of such a price vector p to
establish a necessary condition for an equilibrium: (p*, ¢*, o) is an equilibrium only
if ma(p,q*,0) > ma(p*,q*,0) for any p that attracts all buyers.

To summarize the discussion so far, even if the buyers play the B-maximal
equilibrium o (p, ¢*) that least favors seller A, he can attract all buyers by offering
the prices satisfying (8). We hence have the following lemma that gives a lower

bound for each seller’s equilibrium payoff.

Lemma 4 If (p*,q*,0) is an SPE, then

N
7TA(p*aq*aO') > ma:;( min {/Usi _ /Udifsi +q,;k, ’Usi}’
sE
=1
N (10)
ﬂ-B(p » 4 ’U) > max Z min {’Usl vdl Si +p;‘, ,USz}
€
i=1

While the above lemma gives a lower-bound, note also that (8) implies the
following inequality on seller A’s payoff from any given divide-and-conquer pricing

strategy p:
N N

S pi< Y min ot — o gr 0} (11)
=1 =1

We use (11) as a way to explain intuition for some of the results in what follows.
Figures 1 and 2 illustrate the discussion for the line network of three buyers. In
Figure 1, seller A approaches the buyers in the order (i1,142,13) = (1,3, 2) while seller
B offers ¢* = (¢7,45,q3): Seller A can make z; = A dominant actions for buyer 1
if his payoff from choosing A is strictly higher than that from choosing either () or
B under the assumption that his neighbor (i.e., buyer 2) chooses B. This leads
to the comparison between v — p; and max {vl —qi, 0}. The same argument

applies to buyer 2. When p satisfies the stated inequalities, hence, ()1 = {1, 3} since

14



I @ 4% —p; >max{v! —qf, 0} 1l
< p1 < min {00 — o' 4 ¢f, v°}

2 @ = 2 @ v’ —py>max{® g 0}

< py < min {v? — 00 + g3, v%}

3 @ v°—p3 > max{v' — g, 0} 3 A

< p3 < min {o° — v! + g3, 0}

Figure 1: Divide-and-conquer by seller A with (i1,19,43) = (1,3,2).

1 @ I @ o' —p; > max{° — ¢t 0}
< p1 < min{v! — 20+ ¢, v!}

2 @ v°—py > max{v?—gj, 0} = 2 N
& po < min {00 — 0% + ¢, v°}

3 @ 3 @ vl —py>max{v’ - g5, 0}

< p3 < min{v! — 00 + g3, 0!}

Figure 2: Divide-and-conquer by seller A with (i1,19,43) = (2,1, 3).

z; = B and x; = () are eliminated in the first round in the iterated elimination
process for both ¢ = 1 and 7 = 3. For buyer 2, on the other hand, zo = A is
a dominant action for him if his payoff from choosing A is strictly higher than
that from choosing either () or B under the assumption that his neighbors (i.e.,
buyers 1 and 3) choose A. This leads to the comparison between v? — py and
max {vo — g5, 0}. Under the stated inequalities, hence, Q2 = {2}. Hence, even if
B

(

the buyers play the B-maximal equilibrium o7 (p, ¢*), seller A’s divide-and-conquer

strategy with (i1,142,13) = (1, 3,2) is a profitable deviation if

min {v° —v' +¢f, v} + min {v° — ' + ¢§, 2%} (19)
+ min{v2 — o'+ q§, 02} > ma(p*,q*,0).
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Likewise, his divide-and-conquer strategy with (i1,49,43) = (2,1, 3) illustrated in

Figure 2 is a profitable deviation if

min {0° — v* + ¢5, v°} + min {v' —° + ¢}, v'}

(13)
+min{o! =0’ + g3, o'} > A", ", 0),
and that with (i1,i9,43) = (1,2, 3) is a profitable deviation if
min {0° — o' +¢f, v°} + min {o' — o' + g3, v'} (14)

+ min{v1 ¥+ q§, Ul} > WA(p*aq*aU)-

It follows that (p*,¢*) cannot be an equilibrium price vector if any one of the in-
equalities (12), (13) and (14) holds. This will be examined for the price vector
(p*,¢*) = (0,0) in the next section.

6 Uniform and Marginal-Cost Pricing

When there are no consumption externalities 0 < v = -.- = vV =1 it is clear that

a subgame perfect equilibrium price (p*,¢*) is unique and equal to the marginal
cost: (p*,¢*) = (0,0). In this section, we will examine if and how this result can be
extended when there are externalities.

Let D = D(G) be the highest degree in G:

D(G) = max d,;(G).

el
For the network G, hence, the relevant levels of externalities are (v°,...,v"). We
say that the externalities (v°,...,v") are linear if there exists h > 0 such that

v* = kh for every k =0,1,...,D.

Note that linearity implies the zero stand-alone value v” and hence pure network
externalities or pure intermediation. Linearity is a working assumption in many

models of network externalities in the literature.”

Proposition 5 Let G be an arbitrary buyer network. Under the linear externalities
(0°,...,vP), (p*,q¢*) = (0,0) is an SPE price vector.

“See, for example, Caillaud and Jullien (2003) and Ambrush and Argenziano (2009). On the
other hand, linearity violates the weak externalities defined in Jullien (2011, Assumption 1).
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To see the intuition behind Proposition 5, note that no divide-and-conquer strat-
egy is profitable under linearity: When seller B monopolizes the market with ¢; = 0
for every 7 and the buyers play the B-maximal equilibrium following seller A’s devi-
ation from 0, (11) shows that his payoff from a divide-and-conquer pricing strategy

satisfies

N N
S < 3 min (i o0} < 3 (o ) <o,
=1 =1

=1

where the equality is an immediate consequence of linearity since ZZ]\L L 8= ZZ]\L 1 (di—
s;) = M as noted earlier.

We next consider the consequence of introducing some generic property of ex-
ternalities. As will be seen, whether or not the marginal cost pricing can be an

equilibrium depends crucially on the configuration of the buyer network in this

case. Specifically, for S defined in (9), suppose that the externalities (v°,...,v")
satisfy the following condition:
N N
s € S and d — s is not a permutation of s = Z v’ # Z pdi=si, (15)
i=1 i=1

Recall that s is the sequence of externalities of one good, say A, when the buyers
switch to A one by one in some order. d — s, on the other hand, is the sequence
of externalities of good A when they switch to A one by one in the reverse order.
(15) implies that the sum of externalities over buyers is different between the two
D

)

procedures. The set of (v°,...,v") satisfying (15) is generic in the set

{@%...,0"):0<? <o <P

of all externalities.
Lemma 4 in the preceding section shows that a seller’s equilibrium payoff is
closely linked to the value of
N

max (vsi — vdi*si> .
SES “
=1

It turns out that whether this quantity is positive or not under (15) depends crucially

on the network configuration as seen in the following lemma.
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Lemma 6 Suppose that the externalities v = (v°,...,v"P) satisfy (15). If the buyer

network G is neither cyclic nor complete, then

max (vsi - vdi_si> > 0. (16)
sES
=1
The proof of Lemma 6 involves showing that by choosing the order (i1,...,ix)

appropriately, we can always make s and d — s not permutations of each other unless
the network is cyclic or complete. In fact, this is accomplished by choosing only
the first three buyers (iy,142,13) appropriately. The following lemma, which readily

follows from Lemmas 4 and 6, provides some key observations on equilibrium pricing.

Lemma 7 Suppose that (p*,q*,0) is an SPE for the buyer network G which is
neither complete nor cyclic, and that the externalities v = (v°,...,vP) satisfy (15).

Then
a) Ta(p*,q*,0) =0 = min; ¢f <0.
b) WA(p*,q*,O') S ZZ q:( = max; q,;k > ’UO.

c) Ig(o(p*,q*)) = I = max; ¢ > v°, min; (v% — ¢¥) > 00, and vP > 2°.

Note that (a) and (b) of Lemma 7 hold true whether monopolization or seg-
mentation takes place in equilibrium, while (c¢) applies only to a monopolization
equilibrium. An immediate consequence of this lemma is the impossibility of uni-
form pricing under monopolization: Suppose that monopolization by seller B takes
place in equilibrium: Ig(o(p*,q*)) = I. Then seller B must subsidize at least one
buyer by (a), and the price for some buyer is strictly above the stand-alone value
by (c):

miin g <0<’ < max qf <P =, (17)

Proposition 8 Suppose that the buyer network G is neither complete nor cyclic
and that the externalities v = (v°, ..., vP) satisfy (15). Then there exists no SPE in
which one of the sellers monopolizes the market by charging the same price to every

buyer.
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It is interesting to note that Candogan et al. (2012) and Bloch and Quérou (2013)
both find that uniform pricing is optimal for a monopolist when the externalities are
undirected as in the present paper. When the sellers face competition, however, it
is no longer an equilibrium by Proposition 8. We also note that there are networks
which are not cyclic or complete, but are symmetric with respect to every buyer. For
example, consider the buyer network in Figure 3. Under a generic specification of
externalities, these ex ante symmetric buyers face price discrimination in equilibrium
if one of the sellers monopolizes the market.

For monopolization to take place in equilibrium, we also see from (17) that the
largest externalities in a network cannot be too small compared with the stand-alone
value: vP > 20°. This is a non-trivial restriction for networks in which every buyer

has a small degree as in line networks.

5
Figure 3: 4-regular network with eight buyers

We are now ready to state our main result on marginal cost pricing. Suppose that
both sellers offer zero to all the buyers. In this case, both sellers’ payoffs equal zero
regardless of whether or not they capture a positive segment of the market. Hence,
this price profile cannot be an equilibrium by Lemma 7(a) unless the network is
complete or cyclic. The following proposition proves the reverse implication that
when the network is either complete or cyclic, there indeed exists an SPE in which

both sellers offer zero.
Proposition 9 Let a buyer network G be given and the externalities v = (v°,...,vP)

satisfy (15). (p*,q*) = (0,0) is an SPE price vector if and only if G is either cyclic

or complete.

19



The intuition between the possibility of an equilibrium in a cyclic or complete
network is as follows. Suppose that seller B monopolizes the market with ¢* = 0, and
that the buyers play the B-maximal equilibrium following (p, ¢*). First, in a cyclic
network, any buyer ¢ seller A attempts to attract in the first round of the domination
process must be offered the price such that p; < v% — v? < 0 since joining A implies
17 has no neighbor while remaining at B implies he has two neighbors. On the other
hand, seller A can make positive profits only when he attracts a buyer whose both
neighbors have already been attracted to A. In this case, A can offer the price such
that p; < v — v°. Whether or not seller A can make positive profits, hence, comes
down to the simple comparison between the number of buyers whose both neighbors
have already switched to A, and the number of buyers who switch in the first round.
Simple inspection shows that the former cannot be greater than the latter. The
argument for a complete network is based on a different logic. In a complete network,
if seller A employs divide-and-conquer, the order in which he approaches the buyers
is immaterial. If seller A attracts buyers 1,..., N in this order, then he needs to

N=l o <ol —oN=2 . py <oV =90 Tt

offer the prices such that p; < v% — v
is then clear that these prices sum up to less than zero.

For illustration of the impossibility of marginal cost pricing, return to the ex-
ample of the three-buyer line network depicted in Figures 1 and 2. Suppose that

q* = 0. In this case, we have

(12) & 20! -2 -0 <0,
(13) & 20! —0?2 -0 >0.

Hence, if
20' # v? + 0, (18)

seller A can profitably divide and conquer the buyers against ¢* = 0. Note that
(18) corresponds to (16) in Lemma 6: It fails under the linear externalities v* = 0,

v! = h and v? = 2h, but is true under generic specifications of v°, v! and v?.

7 Monopolization on a Bipartite Network

The results in the preceding section suggest that some form of discriminatory pricing
is inevitable in equilibrium. A natural question then is on the form of equilibrium
price discrimination. Interesting related questions are (1) which buyers are the

“weak link” in the network that need to be protected, and (2) which buyers can
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be squeezed for more profits. Since it appears difficult to provide general answers
to these questions, we will restrict attention to certain classes of networks for the
identification of an equilibrium. In this section, we identify a class of networks in
which monopolization takes place in equilibrium.

Our analysis in what follows assumes that the externalities are approximately
linear in the following sense: For h > 0, the externalities (v°,...,v") are e-close to
linear if

|F — kh| < e for k=0,1,...,D.

Since the condition holds for any € > 0 when the externalities are exactly linear,
the conclusions under approximate linearity are valid under exact linearity. In con-
junction with Proposition 5, then, this implies the multiplicity of equilibria in these
markets.

The buyer network is bipartite if the buyer set I is partitioned into two disjoint
subsets I; and Is such that every neighbor of 7 € I belongs to I and every neighbor
of i € I belongs to I1. Line and star networks are simple examples of a bipartite
network. For example, the line network in Figures 1 and 2 is bipartite with the
partition Iy = {1,3} and Iy = {2}. A cycle network with an even number of buyers
is also bipartite. A bipartite network is complete if every buyer in I; is linked to
every buyer in I». Recall that d; denotes the degree of buyer i. By renaming the

partition elements if necessary, we may suppose without loss of generality that Iy

Z (vdi — v0> > Z (vdi — ’l)0> . (19)

i€l 1€1

and I satisfy

Bipartite networks are particularly important since they represent two-sided
markets that attract much attention in the literature. For example, we can think
of I as the set of sellers and I as the set of buyers of a certain good. In this case,
the sellers A and B are interpreted as the platforms that offer marketplace to these
sellers and buyers, and their prices are interpreted as participation fees required
for registration into their platforms. A complete bipartite network corresponds to a
two-sided market in which each agent finds more value in a given platform whenever
more agents on the other side participate in the same platform. Our conclusion on
a bipartite network translates to that on a two-sided market where two platforms

compete.

Proposition 10 Suppose that the buyer network G is bipartite with the buyer par-
tition (I1,Is). For any h > 0, there exists € > 0 such that if the externalities are
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e-close to h-linear for ¢ < &, then there exists an SPE (p*,q*,0) in which one seller

captures all the buyers. The SPE prices (p*,q*) are such that

v —  forie I, and

*
p; =4q; =
0 — v fori € Io.

The construction of the equilibrium in Proposition 10 involves the play of the
extreme equilibrium in the buyers’ subgame that least favors the deviating seller
as in Proposition 2. According to Proposition 10, every buyer on one side of the
market is taxed whereas those on the other side are subsidized in equilibrium. Such
a pricing strategy is in line with a frequent observation in two-sided markets that
one side receives a heavy discount. For example, Kaiser and Wright (2006) identify
a magazine market in Germany as a two-sided market with readers on one side
and advertisers on the other, and find that magazines subsidize their readers while
making all profits from their advertisers. Caillaud and Jullien (2003) are the first
to offer a theoretical justification of the tax-subsidy pricing scheme in a two-sided
market by applying the divide-and-conquer argument to price competition in the
market with a single agent on each side.!”

Another critical observation of Proposition 10 is that the equilibrium pricing
is degree-proportional: The transfer from or to each buyer i is (approximately)

4 _ 9 ~ hd; under approximate linearity. Figure

proportional to his degree since v
4 illustrates Proposition 10 in a star network with five buyers when the externalities

satisfy approximate linearity and
vt — 00 > 4(v' —0?), (20)

so that I; = {1} and I, = {2,3,4,5}. Buyer 1 at the hub is taxed whereas all
the buyers in the periphery are subsidized. We can interpret the subsidies to the
peripheral buyers as a protection against the inducement from the other seller. In
fact, when (20) holds, it is relatively more difficult for the other seller, say seller A,
to induce the hub buyer to switch: When for example all buyers face ¢; = 0, seller A
must pay buyer 1 more than v* —v° to induce him by making #; = A dominant (in
S9), whereas he needs to pay just above 4(v! —v") to induce all peripheral buyers by
making 7; = A dominant (in S°). When the inequality (20) is reversed, then buyer

10 Alternative explanation of the tax-subsidy scheme in two-sided markets is provided by Bolt
and Tieman (2008), and Parker and Van Alstyne (2005) among others.
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1 now receives a subsidy v* — v°, whereas the peripheral buyers are charged v' —v°.

In this case, hence, the hub buyer needs to be protected as it is relatively easier for
the other seller to induce him to switch. As seen in this example, the specification

of externalities determines which buyer(s) should be protected with subsidies.

2
®n=q¢p=2"-1
PlZQ1=U4—UO
3@ ® Q5
pgzquvo—vl 1 P5ZQ5ZUO—U1
.p4=q4:vo—vl

4

Figure 4: Monopolization through discriminatory pricing on a star network when
vt — 0 > 4wt —00).

When a bipartite network is complete as in the star network above, further
characterization of the equilibrium pricing in Proposition 10 is possible. We say

that the marginal externalities are increasing if

om0 <2 —pl << D gDl

bl

and decreasing if
oD D << ol <l =0,

Under increasing marginal externalities, any buyer in a complete bipartite network
is subsidized in equilibrium if and only if his side of the market is larger than the

other side. The opposite holds under decreasing marginal externalities.

Corollary 11 Suppose that the network is complete bipartite with partition (I, I5)
such that ny = |I1| < |Is| = ne. For any h > 0, there exists & > 0 such that if the
externalities are e-close to h-linear for e < &, then then there exists an SPE (p,q, o)

such that

v — o forie I,
bi =4 = )
0 —o™  fori € I,
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when the marginal externalities are increasing, and

o0 — ™ foriel,
bi =4 = )
v™ — oY fori€ I,

if the marginal externalities are decreasing.

8 Segmentation on a Bilocular Network

Maintaining the assumption of approximately linear externalities as in the previous
section, we now examine the possibility of an equilibrium in which market segmen-
tation takes place. For this, we consider a class of buyer networks that have roughly
the opposite property to the bipartite networks in the previous section: In this class
of networks, the buyer set is again partitioned into two disjoint subsets, but each
buyer has at least as many neighbors in the same subset than in the other subset.
Formally, the buyer network is bilocular if there exists a two-way partition (I, I5)

of the set I of buyers such that for m, n = 1, 2, and m # n,

|N; N I,| > |N; N I,| for every i € I,,, and
|N; N I,| > |N; N I,| for some i € I,.

Intuitively, in a bilocular network with partition (I1, I3), we can classify buyers in Iy
or Iy into core and peripheral buyers: The core buyers are those who have strictly
more neighbors in the same set than in the other set, while the peripheral buyers
have as many neighbors in the same set as in the other set. One interpretation of a
bilocular network is that each one of I7 and I5 is a group of traders who trade within
their own group more often than outside it. The sellers can then be interpreted as
offering platforms to those traders.!!

A line of four or more buyers is bilocular if I; consists of buyers on the left, I
consists of buyers on the right, and |I;|, |Iz| > 2.'> The buyers on the two ends
can be taken as core buyers in this case. The regular network in Figure 3 is also
bilocular when we take I} = {1,2,3,4} and I, = {5,6,7,8}. Buyer 2 and 3 are core

buyers for I; and buyers 6 and 7 are core buyers for Is.

Proposition 12 Suppose that G is bilocular. For any h > 0, there exists € > 0

such that if the externalities are e-close to h-linear for e < £, there exists an SPE in

"This interpretation is suggested by Hitoshi Matsushima.
2Hence, a bilocular network can be bipartite and vice versa.
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1 2 3 4

[ | | @ o
(p1,q1) = (6, —0) (p2,02) = (0,0)  (p3,q3) = (0,0)  (p4,q4) = (—0,9)

Figure 5: Segmentation on a line network (6 = |02 + ! — 20°| > 0): A captures
I = {1,2} and B captures Iy = {3,4}.

which buyers in Iy choose seller A and buyers in Iy choose seller B. In this SPE,
Di, = —¢qi;, = 0 for a single core buyer vy € Iy, p;, = —q;, = —0 for a single core

buyer is € Is, and p; = q; = 0 for all other buyers i, where

J = max (vsi - vdi_si) .
seS Py

Note that ¢ is strictly positive under generic externalities (Lemma 6), small
under approximate linearity, and equal to zero under exact linearity. Each seller’s
equilibrium payoff equals §, while the sum of their prices over all buyers equals
zero. Figure 5 illustrates the equilibrium for a line network of four buyers. As
in Proposition 2, any deviation by either seller results in the play of the extreme
equilibrium that least favors the deviating seller. Each core buyer who is charged
0 will not switch to the other seller since externalities are strictly higher when he
consumes the same good as the majority of his neighbors. Intuitively, seller A cannot

benefit from any divide-and-conquer strategy since it yields at most

N N N
> min {o# ot gt o} <3 (00 )
1=1

i—=1 i=1
N
_ S; d;—s;
Y (o o),
i=1

which is less than or equal to his current payoff .3

9 Discussion

In this paper, we formulate a model of price competition between two sellers when
each one of their goods exhibits local network externalities as represented by a graph-

theoretic network of buyers. We show that whether a given price profile is consistent

13The proof also shows that attracting a proper subset of buyers is not profitable.

25



with a subgame perfect equilibrium of the two-stage game depends crucially on the
exact specifications of network structure and externalities. In the non-generic case
of linear externalities, the marginal cost pricing of both sellers quoting zero to every
buyer is consistent with an SPE for any network. Under the generic specification
of externalities, however, it is consistent with an SPE if and only if the network
is either cyclic or complete. That is, in any other networks, some form of price
discrimination is inevitable even if every buyer has exactly symmetric locations in
those networks. Given these results, we proceed to the identification of an SPE when
the externalities are approximately linear. In a bipartite network which corresponds
to a two-sided market, we show that there exists an SPE in which one of the sellers
monopolizes the market by charging a positive price to every buyer on one side,
and a negative price to every buyer on the other side. The equilibrium prices are
approximately proportional to the size of the other side of the market for each buyer.
In a bilocular network in which each buyer has more neighbors on his side than on
the other side, on the other hand, we show that there exists an equilibrium in which
the two sellers segment the market and earn positive profits.

As is well recognized, the essential feature of the market for goods with network
externalities is the multiplicity of equilibria. In our context, this corresponds to the
multiplicity of equilibria in the buyers’ subgame. Note, however, that our impos-
sibility result on marginal-cost pricing holds true regardless of which one of these
multiple equilibria may be chosen. On the other hand, our construction of an equi-
librium is based on the assumption that following any deviation by either seller, the
buyers coordinate on the extreme equilibrium that least favors the deviator. This
is a significant departure from the literature which restricts the action profile in the
buyers’ subgame in one way or the other. While our assumption supports the broad-
est spectrum of equilibrium in the price competition game, it is not consistent with,
for example, the assumption that the buyers choose the Pareto efficient alternative
whenever there is one. We think that our exercise is useful as a benchmark given
that there is no general consensus on what type of coordination is likely achieved.
One related issue concerns what happens when one of the sellers, say seller A, is
focal as assumed in Jullien (2011). In our terminology, this translates to assuming
that the buyers play the A-maximal NE following any price profile. In this case,
any monopolization equilibrium identified in this paper is valid with seller A acting
as a monopolist. On the other hand, market segmentation is difficult to sustain in

equilibrium. Hence, if and how the buyers coordinate their actions have a significant
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impact on the scope of the equilibrium outcome.

In the present model, the goods of the two sellers are assumed symmetric and
incompatible with each other. A natural extension would involve introducing asym-
metry or a positive degree of compatibility between them. Technically, introduction
of compatibility implies the failure of supermodularity in the buyers’ subgame. En-
dogenous determination of compatibility levels by the sellers is one topic that has
received much attention in the literature. For example, Baake and Boom (2001)
find in their model of global network externalities that the sellers always choose to
offer compatibility in equilibrium. Whether or not the same conclusion holds under
local network externalities remains to be seen.

As discussed earlier, the informational assumptions of our model are rather ex-
treme. For example, we assume that each buyer observes the price offers to all
other buyers, and that the sellers have perfect knowledge about the buyer network.

Relaxing each one of these assumptions yields an interesting model to explore.'*

Appendix

Proof of Lemma 3. For simplicity, let K = K, where K is such that no buyer has
a dominant action in S¥*! for k > K. Suppose to the contrary that 1, 2 € Qx(p, q)
and that 1 and 2 are adjacent. Then it must be the case that

vt — p1 > max {vﬁf{ —q,0} and voE —py > max{vﬂg{ —q9,0}, (21)
where for 7 = 1 and 2, recall that
o = ‘Nz’ N {j : {A} =57, Q)H = ‘Ni N (Uﬁi}le(p,q))‘

is the number of i’s neighbors for whom z; = A is iteratively dominant in round

K — 1 or earlier, and
gl =|Nin{jer: Besi w0}

is the number of 4’s neighbors for whom z; = B is not dominated in round K — 1

or earlier. (21) can be rewritten as

p1 < min {vo‘f{ — Pr +q, 0} and po < min {vo‘g{ — oPE + qo, 0}.

"Pasini et al. (2008) study price dispersion in a model of a two-sided market where sellers only
know the degree distribution of the buyers.
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On the other hand, let p’ be such that p, = p; for i # 2, and
P < v™ — max {vﬂg{ —q2,0} < ph < v T max {vﬁg{_l — q2,0}.

Consider now Q). = Qi (p', q), the set of buyers for whom z; = A is a dominant action
in round k under (p’, q). We then have Qx(p',q) = Qk(p,q) for k=1,..., K —1 and
Qr (', q9) = Qr(p,q) \ {2}. Since 1 € Ny, this implies that in round K + 1,
INon{j: {A} =S[00, 0)}| = af +1
and
NN {iel: BeSF@.q)} =8 —1.

Furthermore, by our choice of pf,
poz +1 — py > max {’U’Bg{_l — 2,0},

which shows that zo = A is dominant for buyer 2 in round K + 1 under (p',q):

Qr+1(p',q) = {2}. Since py > pa, ma(p', ¢, 05) > Ta(p,¢,08), and hence p is not a
best response to (g,c?). W

Proof of Lemma 4. Fix any relabeling of buyers 41,...,ix. Let s = (8;);er be
defined by

si; =0 and Siy, = |le ﬂ{il,...,ik_lH fork=2,...,N.
Let € > 0 be given, and define the price vector p = (p;)icr by
p; = min {v% —v% % £ gF v%i} —e. (22)

As explained in the text, by offering p, seller A makes z;, = A a dominant action
for buyer 41, and in any subsequent step, z;, = A an iteratively dominant action for

buyer 45 under (p, ¢*). Hence, seller A’s payoff under (p,q*, o) satisfies

N
wa(p,q* o) > Z min {v* — pdi—si 4 qf,v%} — Ne.
i=1

Since ¢ > 0 and s € S are arbitrary, if (10) does not hold, then we would have a

contradiction
7"-A(pa q*a U) > T‘-A(p*a q*a J)'

The symmetric argument proves the inequality for seller B’s payoff. B
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Proof of Proposition 5. We first show that (p*,¢*) = (0,0) is an SPE price. Let
o4 and ¢P be the A-maximal and B-maximal equilibria as defined earlier, and let

o be the buyers’ strategy profile such that

(B,....B) if (p,q) = (0,0),
a(p,q) = 0B(p,q) if p#0and ¢ =0,

o (p,q) if p=0and q # 0.

Now consider a deviation from p* = 0 to p # 0 by seller A. Let Qr = Qx(p,q*)
(k=1,...,K) be the set of buyers for whom z; = A is dominant in round & of the
iteration process under (p,q*) as defined in (4). By the definition of o®, a buyer

chooses seller A if and only if it is iteratively dominant for him:

I4(c"(p,q")) = U Q.

Hence, seller A’s payoff under (p, ¢*, o) can be written as:

K
Tap g 0) =Y > pi (23)

k=1 i€Qy

Now recall that
ot = ‘Ni n {j L {A) = S]’?_IH - ‘Ni N (u’g;ll QZ)‘ and fBF = ‘Ni N {j . B e Sj’?_l}‘

denote the number of neighbors of buyer 7 for whom z; = A is dominant in round
k — 1 or earlier, and z; = B is undominated in S¥~!, respectively. Since g =0,
z; = () is dominated by z; = B in S°. If follows that

Ninfi: Be S}t =N\ (VD Q) « Bf=di—ak
If 1 € Qy, hence, we should have by (7),

k k .k k .k
v% — p; > max {vﬁi -q, 0} =pli % o p<o® —plit :h(2a]-“—di
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Note now that

Sy o

k=1 i€Qp

K
Z (#links between (J; and U?;ll QZ)
2 (25)

< #links within U, Qy,

LYY

k=1 i€Qy

IA

Substituting (24) and (25) into (23), we obtain

K
malp,q,0P) < hz Z <2a£~C — di) <0.

k=1 i€Qy

Therefore, p is not a profitable deviation. The symmetric argument shows that seller

B has no profitable deviation q. H

Proof of Lemma 6. Suppose that s and d— s are not permutations of each other.
Then (15) implies that either Zf\il (vsi — 0%i=5i) > 0 or < 0. If the latter holds,
then let i), = ix_p41 for k =1,..., N and define ¢t = (¢;);cr by setting ty equal to

the number of neighbors of ¢} in {3,...,i_,}:
ty =0 and ty =|Ny N{i\,... i 1} fork=2,... N. (26)

Then we can verify that

N N
S (vt =t t) = =37 (05— vt >0
Therefore, in order to prove (16), it suffices to show that d — s is not a permutation

of s for some s. We will consider the following two cases separately.

1) G is not regular.

Take a pair of buyers 7 and j such that 7 is adjacent to j, d; = D and d; < D,
where D > 2 is the highest degree in G. Take another buyer k that is adjacent
to 4 but not to 7. To see that there exists such a buyer, suppose to the contrary

that every buyer # j that is adjacent to ¢ is also adjacent to j. Then j has at
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least D neighbors, a contradiction. Let i; = k, i = 7 and i3 = 7, and define
i4y...,in & {3, ], k} arbitrarily. Then

(Silasiza Sis) = (0, 1, 1) s

(27)
(diy = sivs diy = iy, dig — si3) = (dg, D = 1,dj = 1).

If s is not a permutation of d — s, then we are done. Suppose then that s is a
permutation of d — s, and define 7} = k, i5 = 7, i5 =4, and i), = iy for £ > 4, and let
t = (t;)ier be defined by (26) for these 7),... 4. Then

(tz'lvtzgatzg> = (0707 2) )

(28)
(di’l —ty,din — by di — t¢g> = (dk,dj, D - 2).
Since i} = iy for £ > 4, we have
‘{624: dn—sizzo}‘z‘{ezy difl—t%:o} :
(29)
‘{224: silzo}‘:‘{ezzx: t%:OH.
a) dj =1.
In this case, (27) and (28 ) imply that
H£§3: dii—s”:OH:HEg& si[=0}‘=1.
Hence, since d — s is a permutation of s, we must have
H{e>4:d;, —s;, =0} =[{{>4:s;,=0}.
It then follows from (29) that
‘{624:dif[—tiQ:OH:Hézzl:tiQ:OH. (30)
However,
H€§3:diz—ti2:0}‘§1<2:‘{€§3:tizzo}‘. (31)

(30) and (31) together show that d — ¢ cannot be a permutation of ¢.

b) d; > 2.

In this case, we have D > 3 since D > d; > 2, and also

H(zg3:diz—sn:o}‘zoaz‘{eg&silzo}‘.
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Hence, since d — s is a permutation of s,
He>4:d;j, —s;, =0} =|{¢>4:5,=0}+1

It then follows from (29) that
‘{624:d%—t%zo}‘:‘{EZAL:t%:OH-I-l. (32)

However, (27) and (28 ) imply that
Heg?):di,[—ti;:o}‘:‘{eg?):t%:o}‘—2 (33)

(32) and (33) together imply that d — ¢ is not a permutation of .

2) G is r-regular with 2 <r < N — 1.

Since G is connected and not complete, we can take a pair of buyers ¢; and is
such that i1 and 79 are adjacent, and take another buyer i3 who is adjacent to io
but not to ;. To see that this is possible, suppose to the contrary that for any
pair of adjacent buyers ¢ and j, any buyer k # ¢ adjacent to j is also adjacent to
1. We then show that G must be complete. Take any pair of buyers ¢ and j. Since
G is connected, there is a path k1 =7 — ko — -+ = k1 — k;, = 7. Since ko is
adjacent to 7 = k1 and k3 is adjacent to ks, k3 is adjacent to 7 as well by the above.
Now since k4 is adjacent to k3, it is also adjacent to ¢. Proceeding the same way, we
conclude that j = k,, is adjacent to i = kq, implying that G is complete.

We now label buyers other than {i1,49,i3} as i4,...,4x in an arbitrary manner.

For our choice of i1, is and i3, we have

(52'1752'2752'3) = (07 1, 1) )
(dil - Silvdlé - 3i27di3 - 52'3) = (7“,7“ - 1,r— 1) .

If d — s is a not permutation of s, then we are done. Suppose then that d — s is a

permutation of s. We then must have
‘{e; si£=0}‘=‘{e: di, — 55, = 0}. (34)

Let ¢} = 4y, i5 = 43, i3 = i and i, = iy for £ > 4, and let ¢ = (t;);c; be defined by
(26) for these 7}, ...,4. Note that

(ti’latiéatig) = (07 07 2) s

(di’l =ty din — byt dy, —tig) = (r,r,r —2).
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Since r > 2, if (34) holds, then the same argument as in the non-regular case shows
that

He: t =0H ” He: diy — =0}

implying that d — ¢ is not a permutation of ¢. B

bl

Proof of Lemma 7. We first show that if (p*,¢*, o) is an SPE, then

N N
wa(p*,q" o) > Z min {¢}, v°} and 7g(p*,q¢*,0) > Z min {p}, v°}.  (35)
i=1 i=1

By Lemma 4, for any s € S, seller A’s payoff under (p*, ¢*) satisfies

N
ma(p*,q*,0) > Z min {v* — pdi—si 4 i, vl

=1

Rearranging, we get for any s € S,

N
ﬂ'A(p*,q*’o-) > Z (vsi _ ,Udi—si) + Z min{q;k, ,Udi—si}

=

N
> Z (0¥ — o5y 4 Z min {q}, v°}.
=1 =1

When G is neither cyclic or complete, there exists by Lemma 6 an s € S such that
the first term on the right-hand side is > 0. Hence, the first inequality in (35) must

hold. The proof for the second inequality is similar.

a) If min; ¢f > 0, then 74(p*,¢*,0) =0 < 3, min{g},v"}, contradicting (35).

b) If max; ¢f < 0%, then ma(p*,¢*,0) < 3. ¢f = 5, min{g},v°}, contradicting
(35).

¢) The inequality max; ¢f > v follows from (b) above since I5(p*, ¢*,0) = I implies
TA(p*,¢*,0) = 0and 0 < wp(p*,¢*,0) = >, ¢ If vl — qf < 00 for some i,
then any p such that p; = v® —g and p_; =0 for 0 < ¢ < ¢ — v®% + 0 would
induce buyer i to switch to A and hence is a profitable deviation for seller A.
To see that v” > 207, note first that min; (v% — ¢f) > v° in particular implies
that max; ¢; < vP — Y. Hence, if v” < 20°, we have a contradiction to the first

statement since max; ¢; < P — 0 <0 1
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Proof of Proposition 8. Suppose that G is neither cyclic or complete, and sup-
pose that seller B attracts all the buyers in an SPE (p*, ¢*,0) such that ¢f =--- =
¢n- Then since ma(p*,¢*,0) = 0, Lemma 7(1) implies that ¢f = -+ = ¢y =

min; ¢F < 0. Then, however, mg(p*,¢*,0) < 0, a contradiction. H

Proof of Proposition 9 Tt suffices to show that in each class of networks, (p*, ¢*, o)
is an SPE when (p*, ¢*) = (0,0) and the buyers’ strategy profile o is such that

(B,...,B) if (p,q) = (p",q"),
o(p,q) = ot (p,q)  ifp=p*and ¢ # ¢,
oP(p,q)  ifp#p*andq=q".
In other words, all buyers choose B under (p*,¢*) = (0,0), and when one of the
firms deviates to a non-zero price vector, the buyers coordinate on the extreme NE
which least favors the deviating seller. In what follows, we show that seller A has no

profitable deviation. A symmetric argument shows that seller B has no profitable

deviation.

1) G is a cycle.
Suppose that seller A deviates to p # p*. Let Qr = Qr(p,q") be the set of buyers
for whom z; = A is dominant in round & under (p,q*) as defined in (4). By the

definition of ”, buyer i chooses A if and only if z; = A is iteratively dominant:
Ia(0" (p,q")) = Uit Qx-

Since G is cyclic, d; = |N;| = 2, where N; is the set of neighbors of i. Recall that

b = ‘Ni N {j L {A) = S]’?‘l}‘ - ‘Ni N (u’;;} QZ)‘ and fBF = ‘Ni N {j . Be S]’?‘l}‘

denote the number of neighbors of ¢ for whom z; = A is dominant in round k£ — 1
or earlier, and z; = B is undominated in S*~!, respectively. Since ¢ =0,2z;,=01is
dominated by z; = B in S° for any buyer 4. It follows that B € S¥~! if and only if
{4} ¢ Sf_l, and hence that

Niﬂ{i:BESk_l}:Niﬂ<U?;lng) = ,3;622—015-6.
Suppose now that i € Q. Then we have by (7),
ak 2—ak

k _ak k k
VY —p > 0PN & p < v — 2T
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In particular, i € Q; in round 1 if p; < v — 0?2, and i € Q) in round k& > 1 either if
(i) p; < 0 and exactly one of his two neighbors has already chosen A (a‘;C =1), or
(ii) p; < v? — 9" and both his neighbors have already chosen A (af = 2). Note in
particular that if buyer 7 finds z; = A dominant when neither of his neighbors have
already chosen A, then i € Q.

Seller A’s payoff under (p,¢*, o) hence satisfies

A(p,q*,0) ZZPZ

k=1 i€Qy
< Q1|(v° = v?) + (v* = 2Y) ‘{ze[\(Uél ):af=2}‘.

Since no buyer finds A dominant in round k& > 2 if neither of his neighbors has
already chosen A, the number of components (i.e, connected clusters of buyers) in
Ulgz_ll Q¢ is less than or equal to that in @1 for any k. It follows that

K
S Hien\ (UZ @) ok =2} <1Qul.
k=2

We can therefore conclude that w4 (p, ¢*,0) < 0 and hence that p is not a profitable

deviation.

2) G is complete.
Define Qi = Qi(p,¢*) (k=1,...,K) as above. Denote by ¥ the number o of

buyers who have chosen A in rounds 1,...,k — 1:

k—1
= Z Qe -
=1

Since G is complete, for any buyer 7, the number af of i’s neighbors who have chosen
A equals of. Furthermore, by Proposition 3, we only need consider p such that each
Q. contains a single buyer. (If Qi contains two or more buyers, then since G is
complete, those buyers are adjacent.) Hence, without loss of generality, Q, = {k}

foreach k=1,...,N. For k=1,..., K, we also have
pp < 0% — N TImak

Seller A’s payoff under (p, ¢*, o) hence satisfies

N N
Tap g o) =D > P <y, (vak - vN*I*“k) : (36)



It is then straightforward to verify that the right-hand side equals zero. Hence,
seller A has no profitable deviation. H

Proof of Proposition 10. We will construct an SPE (p*, ¢*,0) in which (p*, ¢*)

is as given in the proposition, and

o(p.q) = Blp,q) ifq=q",
p.q) = A(

o*(p,q) otherwise.

Since o(p*, ¢*) is B-maximal and p* = ¢*, no buyer chooses A. Furthermore, no
buyer chooses () since z = (B, ..., B) yields non-negative payoffs to all buyers. It
follows that seller B monopolizes the market following (p*, ¢*).

Consider any deviation p # p* by seller A. Since it induces the B-maximal NE
oB(p,q*), the set of buyers who choose A equals I4(o(p,q*)) = UK | Q, where
Qr = Qi(p,q*) is the set of buyers i for whom z; = A is dominant in round %k under
(p,q*) as defined in (4). For any J C I, define

NJ = UjeJ Nj
to be the collection of neighbors of buyers in J. Let also Qo = () and Ny = ().
Step 1. If i € Q. for some k > 2, then N; N Z;_1 # ().

If N;NZj,_1 = 0, then for any j € N; such that B € S;?J, z; = B is undominated
in §k—2 by the definition of Zj_;. It follows that N; N Qp_1 = 0,

of = | NN U2 Q| = [N U Qi = of

i
and

ph1 = ‘Ni n{j:Be S]’?—QH = ‘Nz’ n{j:Be Sf‘l}‘ = Bf.
Hence, z; = A cannot become dominant in S¥~! when it is not dominant in S*~2.
In other words, i ¢ Q.
Step 2. Suppose that i € Q. for some k > 2.

a) If i € I, then N; N Qp_1 # 0.
Take any j € N; N Z;,_1, which is # () by Step 1.

For any j € I, z; = 0 is dominated by z; = B in SO since q; > 0. Hence,
Sf C {A,B} for £ > 1. The fact that j € Z;_; then implies that z; = A is
dominant in S¥72: j € Qp_;.
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b) If i € Iy, then there exists N; N (Q,H U (NQH \ Uk=2 Qg)) £ 0.

Take any j € N; N Z;_4. Since z; = B is dominated in Sk=2 we have

k—1 k—1
I - qj < max {vo‘f' - Djs 0} )
k—1
If v% —p; > 0, then z; = A is dominant in Sk=2 g0 that j € Qr_1. If
k—1 k—1
v —p; <0, then T - q; < 0 implies that ﬂffl < dj since ¢; = v% — 0,

On the other hand, since B € S]I-“_Q, zj = B is undominated in Sk=3. Hence, we
have j ¢ U]Z:_IQ Q¢, and also

[3]4“72 * k2
v’ —qj > max {v i = pj, 0} >0,

which shows that ,BJI?_Q = d;. Tt follows that for some neighbor m € I of j,
B € SEk=3 but B ¢ SE-2. Since 7, = B can be dominated only by z,, = A for
m € Iy, this implies that m € Qi_2. Therefore, j € Ng, , \ (Uf;f Qg).

Step 3. If 7 € I, then ﬂf =d; — af.
Ifi € I, N; C I. Since ¢; <0 for any j € Iy, z; = 0 is dominated by z; = B
in SO for any such j. It follows that B € S;-“il if and only if B € S]’VZ and z; = B

is not dominated by z; = A in Sk=2_ Hence, we have by induction,
- k=11 _ . k—2 .
Niﬂ{j.BESj }—Niﬂ{j.BGSj andy¢Qk,1}

=N {j: Besi™and j ¢ QuoUQu}

= Ni\UiZ Q.
This shows that AF = d; — oF.

Step 4. If ﬁf > 1 for some i € I, N Qk and k > 1, then 74(p, ¢*) < 0.

Since az1 =0 and ﬂil =d;, vPi — i +q; =0fors € I1NQy. Hence, 1 € 1 NQ
implies that p; < 0 by (7). On the other hand, since ¥ = d; — af by Step 3 and
af > 1 for £ > 2 by Step 2(a), we have ﬁf < d; for i € I; N Qy, for k > 2. Hence,

under approximate linearity,

k k k k . k k
v — P g =0 — P ot 00 0 4 d - BE > v
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By (7), then i € Iy N Qy for k > 2 implies that p; < v . Tt follows that seller A’s
payoff 74 under (p,q*) satisfies

ma(p,q*)

P

k=1 i€Qy

K K
:Z Z vai'c-l-z (vaf—vﬁf-l-vo—vdi)

k=2 i€cl1NQy k=1 i€l2NQ

(37)

i€INQ1 k=2 i€eQy k=1 i€l2NQy k=1 i€l2NQ

We will show that 74 (p,q*) < —h when the externalities are h-linear and B¥ > 1 for
some 1 € Iy N Q) and k > 1. This will prove the statement when the externalities
are e-close to h-linear for £ > 0 sufficiently small since 74(p, ¢*) is continuous in ¢.

Under h-linearity, we can rewrite (37) as:

K K

K
Tl g ) <hY L D af—hy Y di—hy Y B

k=2 i€Qy k=1 i€l>2NQ} k=1 i€laNQy
Note now that
S k=Y ‘Ni N (uf;ll QZ)‘ — #links between @ and UE_! @,
1€EQk 1E€EQk

and hence that

K

ST Y of = #links within UL, Q

k=2 i€Qy
= #links from o N (Ule Q) to I N (Ufil Q)
< #links from Ir N (US, Q) to Iy

> Y

k=1 i€l2NQy,
It follows that if ﬂf > 1 for some 1 € Is N Qf and k > 1,
K
malp,q") < —h> Y Bf < —h.
k=1 i€lrNQy
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Step 5. IfNi\Uf;Ol Q¢ # D and i € Qp for some k > 1 and i € I, then m4(p, ¢*) < 0.
If Be S]I-“_1 for some j € N; \ Ub=) Q/ # 0, then

gfz‘Nm{j: BeS]’?‘lel.

Suppose then that B ¢ S]I-“_1 for every j € N; \ Ulgz_ol Q¢ # 0, and take any such
j. Since q;-‘ =% —0, B ¢ Sjl?_l implies that there exists m € N; C I such that
B ¢ Sk=2. Since z,, = () is dominated by z,, = B for any such m, B ¢ S¥~2 implies
Sk=2 = { A}, or equivalently, m € U?;g Q- It follows that N; N U?;g Q¢ # 0. Take
the smallest k* < k —2 such that N; N Qg+ # 0 and i* € N;NQg-. Then B € SF '
and hence Zk* > 1.

Step 6. If Qx NI} # () for some k > 2, then 74 (p,q*) < 0.
Let i € QrNI;. We can take j € N;N Q1 # 0 by Step 2(a). Since i ¢ U]e:g Qv,
we have N; \ Uf;g Q¢ # (. Tt then follows from Step 3 that 74(p,q*) < 0.

Step 7. If Qi N Iy # () for some k > 3, then 74(p,q*) < 0.

Let i € QN I5. We can take j € N; N (Qk_l U (NQ]%2 \ U?;f Qg)) # () by Step
2(b). If j € Qg—1, then m4(p,q*) < 0 by Step 6 since j € I1. If j € Ng, , \Us=Z Qy,
then there exists m € I such that m € N;NQj_o. Since j € Ny, \ U]Z:_IQ Q¢, we have
wa(p,q*) < 0 by Step 5.

Step 8. If Q1 C I1, Q2 C I, and Q) = () for k > 3, then m4(p,q*) < 0.

First, if N; \ Q1 # 0 for some i € Qa, then w4(p,¢*) < 0 by Step 5. Suppose
then that N; C Q1 for every ¢ € (2. In this case, a% = d; and ﬁ? = 0 for every
1 € (02, and hence

malp,a”) < Y max {v* = o 47, 0} + 3 max {v% o + 47, 0} =0.
1€Q1 1€EQ2

Proof of Proposition 12. Let
N
0 = max (vsi — vdi_si) .
seS “
=1

When the externalities are e-close to h-linear,

iv: (Usi - Udi*si) = g: {(Usi — sih) — (Udi*si —(di - Si)h) —h((di — si) — Si)}

i=1 i=1
< 2Ne,
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and hence
0 < 2Ne. (38)

Let (I1,I3) be the partition of the buyer set I, and let 14 € I and ip € Is be the

core buyers of the respective sets:
|N;, NIi| > |N;, N I5| and |N;, NI > |N;, N 1.
We specify (p*, ¢*, o) as follows:
(0,—0) ifi =1,

(pi,4i) = § (=6,0) ifi=ip,
(0,0)  otherwise,

and
(Aﬂ"'7A7B7"'7B) if(p7q):(p*7q*)7

(p,9) " "
a\p,q) = 3 *
B (p,q) if p # p*,
o4(p,q) if p=p* and q # ¢*.

Note that w4(p*, ¢*,0) = mp(p*,¢*,0) = 4.
We first show that the buyers’ action profile following (p*, ¢*) is a NE. If ¢ €

Iy \ {ia}, then z; = A is a best response since

,U|Nim'1| |Nir][2‘

‘Niﬂfﬂ 2 ,U|NiﬂIQ| =

—pi=v — q;-

If i = i4, then |[N; N 11| > |N; N I3] so that

,U‘Niﬂll‘ _ U‘Niﬂfﬂ

= (o0 — RN ) = (NP = BN N D) 4+ RN T = N0 D}

> h — 2e.

Hence, if we take
h

202N + 1)’ (39)

£ =
then for any £ < &, (38) implies that

U‘Niﬂll‘ |Niﬂfl‘ _ 5 > ,U|Niﬂfg| + 5 — ,U‘Niﬂ12| — gi.

—pi ="

The symmetric argument shows that x; = B is a best response for each ¢ € I,

following (p*, ¢*).
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We will next show that seller A has no profitable deviation. Let p be any
deviation by seller A, and Q; = Qk(p,q*) be the set of buyers 7 for whom z; = A
is a dominant action in round k under (p,q¢*) as defined in (4). Since the buyers
play the B-maximal NE o7 (p, ¢*), buyer i choose A if and only if i € UF_, Q. By
Lemma 3, we may assume that no buyers in @)} are adjacent.

Suppose that i € Q. For any neighbor j € N; of i, we have
jEUp— Qe = BesSih (40)

We can see that (40) holds as follows: First, take 5 # ig. Since then q; <0,
zj = B is not dominated by z; = . Hence, if z; = A is not dominant in S-1 for
C=1,....k (i.e, j ¢ Uj_| Qu), then B € SF~'. On the other hand, if j = ip, then
qg; =0 <2Ne < h= v" under approximate linearity. Furthermore, i € Q, implies
that {A} # Sf_l. Since 7 # ig, we have B € Sf_l by the preceding argument. Tt
follows that z; = B is not dominated by z; = () in St1 for ¢ =1,...,k since

/4
vﬂf—q;‘2v1—6>0,

where ﬁ]’? = ‘Nj N {m : Be S,’f{l}‘ > 1. Hence, if z; = A is not dominant in Se-1
for £ =1,....k (i.e., j ¢ Uj_{ Q¢), then B € SF ",
Recalling that
af = ‘Ni N (u’;;} QH)‘
equals the number of i’s neighbors for whom A is dominant prior to round k, we
conclude from (40) that B¥ = d; — a¥. Hence, (7) shows that if i € Qj, then p;

i .
satisfies
p; < min {vo‘i'c _pdimad q;, vai'c} < v — ylimel 4 q;,
which in turn implies that seller A’s payoff 74 under (p, ¢*) satisfies

K

Ta(p. g 0) = Z Z bi

k=1 i€Qy

i Z (vo‘i'c — ptiof —|—q§‘) (41)

1E€EQ

Z (vo‘i'c - vdi_aiP) + 0.

1 1€Qy

A
i

M=

k

We will show that m4(p,q*) < 0 for any p by considering the following two cases

separately.
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Suppose first that US_, Q) C I. Since the right-hand side of (41) is continuous
in £, if we show that it is less then —h under exact linearity, then w4 (p,q*) < 0

holds under approximate linearity. Under exact linearity, (41) becomes

Alp,q*,o) < zK: Z (vo‘éc —vdi*o‘i'C) +6

K
=3 Y (208 - d).
k=1 i€Qy
Note that
K
> 3 oF = #inks within UfZ, Qy,
k=1 icQy
and that

K
D> 3 di =2 x (#links within Uf_ ) Q)

k=1 i€Qy
+ #links from UK | Q. to T\ UK | Q.

It follows that
wa(p,q*,0) < (—h) x #links from Uszl Qr to I\ Uszl Qr < —h,

where the inequality follows from the fact that UkK:1 Qr € I.
Suppose next that UX_; Qr = I. In this case, Zszl Zier g; = 0 by definition.

Hence,

K
A(p,q*,0) Z Y pi< Z Z( of ’+Qf)§5=7TA(p*aq*70)a
b=1 icQy

k=1 i€Qy

where the inequality follows from the definition of §. l
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