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Abstra
t

Two sellers engage in pri
e 
ompetition to attra
t buyers lo
ated on a net-

work. The value of the good of either seller to any buyer depends on the number

of neighbors on the network who 
onsume the same good. For a generi
 spe
i-

�
ation of 
onsumption externalities, we show that an equilibrium pri
e equals

the marginal 
ost if and only if the buyer network is 
omplete or 
y
li
. When

the externalities are approximately linear in the size of 
onsumption, we iden-

tify the 
lass of networks in whi
h one of the sellers monopolizes the market,

or the two sellers segment the market.

Key words: graphs, networks, externalities, Bertrand, divide and 
onquer, dis-


riminatory pri
ing, monopolization, segmentation, two-sided market.

Journal of E
onomi
 Literature Classi�
ation Numbers: C72, D82.

1 Introdu
tion

Goods have network externalities when their value to ea
h 
onsumer depends on

the 
onsumption de
isions of other 
onsumers. The externalities may derive from

physi
al 
onne
tion to 
onsumers adopting the same good as in the 
ase of tele
om-

muni
ation devi
es, from provision of 
omplementary goods as in the 
ase of oper-

ating systems and softwares for 
omputers, or from pure psy
hologi
al fa
tors as in

the 
ase of a 
onsumption bandwagon. Despite their importan
e in reality, we only

have limited understanding of network externalities parti
ularly when those goods

�
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are supplied 
ompetitively. The obje
tive of this paper is to study pri
e 
ompeti-

tion in the presen
e of 
onsumption externalities represented by a buyer network.

Spe
i�
ally, we formulate a model of pri
e 
ompetition under lo
al network external-

ities by supposing that two sellers 
ompete for a network of buyers who experien
e

positive externalities when their neighbors in the network 
onsume the same good.

A more detailed des
ription of our model is as follows: Two sellers ea
h sell

goods that are in
ompatible with ea
h other. Consumers of either good experien
e

larger positive externalities when more of his neighbors in the network 
onsume the

same good. In stage 1, the two sellers post pri
es simultaneously. The pri
es 
an

be perfe
tly dis
riminatory and 
an be negative. Upon publi
ly observing the pri
e

ve
tors posted by both sellers, the buyers in stage 2 simultaneously de
ide whi
h

good to buy or not to buy either. The sellers have no 
ost of serving the market,

and their payo�s simply equal the sum of pri
es o�ered to the buyers who 
hoose

to buy their goods.

In this framework, we �nd that the equilibrium out
ome of pri
e 
ompetition

subtly depends on the network stru
ture. Our �rst observation 
on
erns the validity

of marginal 
ost pri
ing. When no network externalities are present, it is 
lear that

the unique subgame perfe
t equilibrium of this game has both sellers o�er zero

to all buyers. We �rst show that su
h marginal-
ost pri
ing is 
onsistent with an

equilibrium in an arbitrary network when the externalities are linear in the number

of neighbors 
onsuming the same good. We note however that while linearity is an

important 
lass, it is not a generi
 property in the spa
e of all externalities. Under a

generi
 spe
i�
ation of externalities, we show the following: (1) Unless the network

is 
omplete or 
y
li
, there exists no equilibrium in whi
h either seller monopolizes

the market by o�ering the same pri
e to all buyers;

1

(2) Unless the network is


omplete or 
y
li
, there exists no (monopolization or segmentation) equilibrium in

whi
h both sellers o�er zero (= marginal 
ost) to every buyer; (3) If the network

is 
omplete or 
y
li
, there exists an equilibrium in whi
h both sellers o�er zero to

every buyer and one of them monopolizes the market. We �nd it surprising that the

non-existen
e results apply even to networks that are symmetri
 with respe
t to all

buyers. It is also interesting to note that no unintuitive 
on
lusion results as long as

we 
on�ne ourselves to 
omplete networks, whi
h 
orrespond to global externalities.

Given these results, we pro
eed to the 
hara
terization of an equilibrium when the

1

A graph is 
omplete if any pair of buyers are neighbors. The linear externalities in parti
ular

imply that the value of the good is zero to a buyer when none of his neighbors 
onsumes it.

2



externalities are non-linear.

Positive identi�
ation of an equilibrium is possible when the externalities are

approximately linear and when the network satis�es 
ertain properties as follows.

First, we 
onsider bipartite networks. A network is bipartite if the set of buyers is

divided into two subsets and if all neighbors of any buyer in one subset belong to the

other subset. This 
lass of networks is important sin
e it is a graph-theoreti
 rep-

resentation of a two-sided market that has re
eived mu
h attention in the literature

as dis
ussed in the next se
tion. We show that in a bipartite network, there exists

an equilibrium in whi
h one of the sellers monopolizes the market (i.e., buyers on

both sides) by 
harging positive pri
es to all buyers on one side while subsidizing all

buyers on the other side. Furthermore, the equilibrium pri
e to ea
h buyer (either

positive or negative) is shown to be approximately proportional to the number of

links he has to the other side of the market. We relate these �ndings to the identi�-


ation of the buyers that need to be prote
ted from the indu
ement from the other

seller, and those that 
an be squeezed for pro�ts.

Next, we 
onsider the possibility of a segmentation equilibrium. We say that

a network is bilo
ular if the set of buyers is divided into two subsets and if every

buyer in ea
h subset has at least as many neighbors in the same subset as in the

other subset, and some buyer in ea
h subset has stri
tly more neighbors in the same

subset than in the other subset. When the externalities are approximately linear,

we show that market segmentation in a bilo
ular network takes pla
e in equilibrium

with ea
h seller making positive pro�ts.

The paper is organized as follows: After dis
ussing the related literature in the

next se
tion, we formulate a model of pri
e 
ompetition in Se
tion 3. Se
tion 4


onsiders the subgame played by the buyers that follows the publi
 observation of

pri
es posted by both sellers. The subgame following ea
h pri
e pro�le is one of

strategi
 
omplementarities, and hen
e has maximal and minimal Nash equilibria.

We use the iterated elimination of dominated a
tions to 
hara
terize those equilibria

and also to identify the existen
e of pro�table deviations by a seller in the subsequent

analysis. We turn to the analysis of a subgame perfe
t equilibrium in Se
tion 5

and identify lower bounds on the sellers' equilibrium payo�s. Se
tion 6 examines

the validity of uniform pri
ing and marginal 
ost pri
ing in equilibrium. With the

de�nition of approximate linearity, we study in Se
tion 7 the possibility of market

monopolization in a bipartite network, whi
h 
orresponds to a two-sided market.

Equilibrium market segmentation in bilo
ular networks is studied in Se
tion 8. We
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on
lude with a dis
ussion in Se
tion 9. The Appendix 
ontains most of the proofs.

2 Related Literature

Sin
e the pioneering work of Dybvig and Spatt (1983), problems related to the

monopoly provision of a good with network externalities are studied by Cabral et

al. (1999), Park (2004), Sekigu
hi (2009), O
hs and Park (2010), Aoyagi (2013),

Parakhonyak and Vikander (2013), among others. In light of the multipli
ity of

equilibria under externalities, these papers study su
h issues as implementing eÆ-


ient or revenue maximizing equilibria under 
omplete and in
omplete information,

intertemporal patterns of adoption de
isions, as well as the validity of introdu
tory

pri
ing.

2

One key ingredient of the present paper is that of divide-and-
onquer, whi
h

has been studied by Segal (2003), Winter (2004) and Bernstein and Winter (2012)

among others in 
ontra
ting problems under externalities. In these problems, a

single prin
ipal o�ers a 
ontra
t to the set of agents whose parti
ipation de
isions


reate externalities to other agents. The divide-and-
onquer strategy of the prin
ipal

spe
i�es the sequential order in whi
h the prin
ipal approa
hes those agents. The


ontra
t o�ered to the �rst agent makes it a dominant strategy to a

ept it even if

all other agents reje
t, the 
ontra
t o�ered to the se
ond agent makes it a dominant

strategy to a

ept it even if all but the �rst agent reje
t, and so on.

3

Our analysis of

an equilibrium involves the same argument: Given some pri
e pro�le, we examine

if it is pro�table for either seller to deviate by o�ering an alternative pri
e ve
tor.

We 
onsider pri
e ve
tors that amount to approa
hing the buyers one by one in

some order and swit
hing them provided that it su

eeds in swit
hing all their

prede
essors. We relate the pro
ess to the iterative elimination of stri
tly dominated

strategies, and use it derive a lower bound on equilibrium payo�s.

Modeling lo
al externalities as a graph-theoreti
 network, Candogan et al. (2012)

and Blo
h and Qu�erou (2013) both study the problem of optimal monopoly pri
ing.

Candogan et al. (2012) formulate a model in whi
h the good is divisible and the

2

See Rohlfs (1974) for an early treatment of network externalities.

3

A similar idea 
an be found in the study of an optimal marketing strategies under externalities

in Hartline et al. (2008). A marketing strategy determines the order in whi
h the monopolist

approa
hes the set of buyers with private valuations as well as a sequen
e of 
ontingent pri
es

o�ered to them. See also Aoyagi (2010) for the analysis of an optimal marketing strategy against

informationally interdependent buyers.
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externalities between any pair of 
onsumers may be dire
ted. Blo
h and Qu�erou

(2013) 
onstru
t a model in whi
h the good is indivisible and the externalities are

undire
ted, but ea
h 
onsumer has private information about his valuation of the

good. It is interesting to note that in both these models, the optimal pri
e is

independent of the network 
on�guration in the 
ase of undire
ted externalities as

in the present paper, and is uniform a
ross the buyers if they have (ex ante) the

same valuation.

Competition between suppliers of goods with network externalities was �rst for-

mulated by Katz and Shapiro (1985). Subsequent work on the subje
t in
ludes

Sundararajan (2003), Gabszewi
z and Wauthy (2004), Hagiu (2006), Ambrus and

Argenziano (2009), Bernaji and Dutta (2009), Blume et al. (2009), Fjeldstad et

al. (2010), Cabral (2011), Jullien (2011), and Blo
h and Qu�erou (2013). Among

them, Blume et al. (2009) and Blo
h and Qu�erou (2013) study pri
e 
ompetition

under lo
al network externalities when market segmentation amongst the sellers is

exogenously given.

Ambrus and Argenziano (2009) and Jullien (2011) present models that are most


losely related to the present paper. These models are 
ou
hed in terms of two-

sided markets, where the sellers are providers of platforms who o�er a marketpla
e

for agents on two sides su
h as sellers and buyers of some good. In su
h models,

the utility of an agent on one side is an in
reasing fun
tion of the number of par-

ti
ipants from the other side.

4

Ambrus and Argenziano (2009) analyze Bertrand


ompetition between platforms in a two-sided market. Jullien (2011) applies the

divide-and-
onquer argument to his analysis of multi-sided markets, and derives a

bound on the platforms' payo�s when they engage in Sta
kelberg pri
e 
ompetition.

Both Ambrus and Argenziano (2009) and Jullien (2011) formulate externalities dif-

ferently from the present paper, and also make some assumptions on the ability of

the agents to 
oordinate their a
tions. For example, the assumption of 
orrelated

rationalizability by Ambrus and Argenziano (2009) implies that the agents 
oor-

dinate on the pareto-eÆ
ient alternative whenever there is one. In 
ontrast, our

interest is in the maximal s
ope of an equilibrium when there is no restri
tion on

the buyers' strategies. Spe
i�
ally, our argument is based on the bang-bang prop-

erty of a subgame perfe
t equilibrium by allowing full 
oordination by the buyers

on an extreme equilibrium following any deviation by either seller.

Banerji and Dutta (2009) use the graph-theoreti
 de�nition of network exter-

4

See Armstrong (1998), and La�ont et al. (1998a,b).
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nalities as in the present paper, and identify 
onditions under whi
h pri
e 
ompe-

tition leads to monopolization and market segmentation. They assume that the

sellers 
annot pri
e dis
riminate the buyers, and also pla
e restri
tions on the buy-

ers' strategies. These di�eren
es in assumptions make it diÆ
ult to 
ompare their

�ndings with ours.

3 Model

Two sellers A and B 
ompete for the set I = f1; : : : ; Ng of N � 3 buyers. Con-

sumption of either seller's good generates externalities to the buyers a

ording to

a buyer network. Formally, a buyer network is represented by a simple undire
ted

graph G whose nodes 
orrespond to the buyers, and 
onsumption externalities exist

between buyers i and j if they are adja
ent in the sense that there is a link between

i and j. When buyer j is adja
ent to buyer i, we also say that j is i's neighbor.

The buyer network G is 
onne
ted in the sense that for any pair of buyers i and

j, there exists a path from i to j. That is, there exist buyers i

1

; i

2

; : : : ; i

m

, su
h

that i

1

is adja
ent to i, i

2

is adja
ent to i

1

, . . . , and i

m

is adja
ent to j. For any

buyer i in network G, denote by N

i

(G) (or simply N

i

) the set of i's neighbors in G.

The degree d

i

(G) = jN

i

(G)j of buyer i in network G is the number of i's neighbors.

De�ne also M to be the number of links in G. Sin
e ea
h link 
ounts twi
e when

aggregating the number of degrees in G, we have M =

1

2

P

i2I

d

i

.

For r = 2; : : : ; N � 1, the network G is r-regular if all buyers have the same

degree r, and regular if it is r-regular for some r. G is 
y
li
 if it is 
onne
ted and

2-regular, and 
omplete if it is (N � 1)-regular, or equivalently, every pair of buyers

are adja
ent to ea
h other.

The value of either seller's good to any buyer i is determined by the number of

neighbors of i who 
onsume the same good. We denote by v

n

the value of either good

to any 
onsumer when n of his neighbors 
onsume the same good. In parti
ular, v

0

denotes the stand-alone value, or the value to any buyer of either good when none

of his neighbors 
onsumes the same good. Impli
it in this assumption is that the

two goods A and B are in
ompatible with ea
h other sin
e the value of either good

to any buyer is assumed the same whether his neighbor 
onsumes the other good

or nothing. The value does not depend on the identity of a buyer or the identity of

the seller who supplies the good. The 
onsumption externalities are non-negative in

the sense that 0 � v

0

� v

1

� � � � � v

N�1

.
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The good 
an be produ
ed at no 
ost for both sellers. The sellers 
an perfe
tly

pri
e dis
riminate the buyers, and we let p

i

and q

i

denote the pri
es o�ered to buyer

i by seller A and seller B, respe
tively. They simultaneously quote pri
e ve
tors

p = (p

i

)

i2I

2 R

N

and q = (q

i

)

i2I

2 R

N

. The buyers publi
ly observe (p; q), and

then simultaneously de
ide whether to buy either good, or buy neither.

Publi
 observability of the entire pri
e ve
tors and the possibility of perfe
t

pri
e dis
rimination are the two key assumptions of our model. We note in passing

that these assumptions may be more in line with the reality for intermediate goods

markets with a limited number of buyers than for large 
onsumption goods markets.

5

Buyer i's a
tion x

i

is an element of the set S

i

= fA;B; ;g, where ; represents no

pur
hase. Ea
h seller's strategy is an element of R

N

, whereas buyer i's strategy �

i

is a mapping from the set R

2N

of pri
e ve
tors (p; q) to S

i

. For ea
h a
tion pro�le

x = (x

i

)

i2I

2 S =

Q

i2I

S

i

of buyers, let

I

A

(x) = fi 2 I : x

i

= Ag; and I

B

(x) = fi 2 I : x

i

= Bg

denote the set of buyers 
hoosing A and the set of buyers 
hoosing B, respe
tively.

Given the pri
e pro�le (p; q), buyer i's payo� under the a
tion pro�le x is given by

u

i

(x) =

8

>

>

>

<

>

>

>

:

v

jN

i

\I

A

(x)j

� p

i

if x

i

= A,

v

jN

i

\I

B

(x)j

� q

i

if x

i

= B,

0 if x

i

= ;,

(1)

If we denote by � = (�

i

)

i2I

the buyers' strategy pro�le, the payo�s �

A

(p; q; �) and

�

B

(p; q; �) of sellers A and B, respe
tively, under the strategy pro�le (p; q; �) are

given by

�

A

(p; q; �) =

X

i2I

A

(�(p;q))

p

i

;

�

B

(p; q; �) =

X

i2I

B

(�(p;q))

q

i

;

and buyer i's payo� �

i

(p; q; �) under the strategy pro�le (p; q; �) is given by

�

i

(p; q; �) = u

i

(�(p; q)):

A pri
e ve
tor (p

�

; q

�

) and a strategy pro�le � = (�

i

)

i2I

together 
onstitute a

subgame perfe
t equilibrium (SPE) if given any pri
e ve
tor (p; q) 2 R

2N

, the a
tion

5

For example, pri
e dis
rimination in large markets may be better modeled as one full pri
e and

one dis
ount pri
e as in Candogan et al. (2012).
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ve
tor (�

i

(p; q))

i2I

is a Nash equilibrium of the subgame following (p; q), and given

�, ea
h 
omponent of the pri
e ve
tor (p

�

; q

�

) is optimal against the other:

�

i

(p; q; �(p; q)) � �

i

(p; q; x

i

; �

�i

(p; q)) for every x

i

, i and (p; q),

�

A

(p

�

; q

�

; �(p

�

; q

�

)) � �

A

(p; q

�

; �(p; q

�

)) for every p,

�

B

(p

�

; q

�

; �(p

�

; q

�

)) � �

B

(p

�

; q; �(p

�

; q)) for every q.

4 Nash Equilibrium in the Buyers' Game

In this se
tion, we �x the pri
e ve
tor (p; q), and 
onsider an equilibrium of the

buyers' subgame following (p; q) in whi
h the set of a
tions of ea
h buyer i equals

S

i

= fA;B; ;g, and his payo� fun
tion u

i

is de�ned by (1). The simultaneous-move

game (I; S =

Q

i2I

S

i

; (u

i

)

i2I

) among the buyers is a supermodular game when the

set S

i

of a
tions of ea
h buyer is endowed with the ordering A � ; � B. It follows

that the game has pure Nash equilibria that are maximal and minimal with respe
t

to the partial ordering �

S

on S indu
ed by �.

6

We refer to the maximal equilibrium

as the A-maximal equilibrium and denote it by x

A

, and the minimal equilibrium as

the B-maximal equilibrium and denote it by x

B

. By de�nition, for any NE y and

buyer i, y

i

= A implies x

A

i

= A, and y

i

= B implies x

B

i

= B.

It is known that any NE must survive the iterative elimination of stri
tly dom-

inated a
tions, and that in a �nite supermodular game, any strategy pro�le x that

survives this pro
ess lies between x

A

and x

B

: x

A

<

S

x <

S

x

B

.

7

In what follows, we

apply the iterative elimination pro
ess to the buyers' game and use it to 
hara
terize

the maximal and minimal NE. The notation appearing in this pro
ess will be used

in the subsequent analysis.

De�ne T

0

= ; and S

0

= S, and suppose that for k = 1; 2; : : :, the set T

k�1

� I

and the a
tion pro�le x

�

T

k�1

of buyers in T

k�1

have been spe
i�ed. Intuitively, T

k�1

is the set of buyers i for whom x

�

i

has been identi�ed as a dominant a
tion after

k� 1 rounds of elimination of stri
tly dominated a
tions. Formally, for any produ
t

subset S

0

=

Q

i

S

0

i

� S of a
tion pro�les su
h that S

0

i

6= ;, buyer i's a
tion x

i

2 S

0

i

is

(stri
tly) dominated in S

0

(by another pure a
tion) if there exists x

0

i

2 S

0

i

su
h that

u

i

(x

i

; x

�i

) < u

i

(x

0

i

; x

�i

) for every x

�i

2 S

0

�i

.

x 2 S

0

i

is dominant in S

0

if any other a
tion x

0

i

2 S

0

i

is dominated in S

0

(by x).

6

See Topkis (1998).

7

See Milgrom and Roberts (1990).

8



For k = 1; 2; : : :, let

Y

k

=

n

i 2 I n T

k�1

: x

i

= A is dominated in S

k�1

o

;

Z

k

=

n

i 2 I n T

k�1

: x

i

= B is dominated in S

k�1

o

;

W

k

=

n

i 2 I n T

k�1

: x

i

= ; is dominated in S

k�1

o

;

(2)

and

S

k

=

�

x 2 S

k�1

:x

j

6= A if j 2 Y

k

, x

j

6= B if j 2 Z

k

and x

j

6= ; if j 2W

k

	

:

(3)

Further, let

P

k

= Y

k

\W

k

=

�

i 2 I n T

k�1

: x

i

= B is dominant in S

k�1

	

;

Q

k

= Z

k

\W

k

=

�

i 2 I n T

k�1

: x

i

= A is dominant in S

k�1

	

;

R

k

= Y

k

\ Z

k

=

�

i 2 I n T

k�1

: x

i

= ; is dominant in S

k�1

	

:

(4)

De�ne now

T

k

= T

k�1

[ (P

k

[Q

k

[R

k

) ; (5)

and

x

�

i

=

8

>

>

>

<

>

>

>

:

B if i 2 P

k

,

A if i 2 Q

k

,

; if i 2 R

k

.

(6)

Sin
e ea
h buyer has at most two dominated a
tions, the above pro
ess stops in or

before 2N rounds. Let then K be the minimal number su
h that

P

k+1

= Q

k+1

= R

k+1

= ; for k � K.

In other words, no buyer has a dominant a
tion in S

k

for k � K. The sets S

k

,

T

k

, Y

k

, Z

k

, W

k

, P

k

, Q

k

, and R

k

as well as the number K all depend on the pri
e

pro�le (p; q). In this sense, we write Q

k+1

(p; q) and so on when we want to make

this dependen
e expli
it.

If x 2 S is any NE, every buyer in T

K

must be 
hoosing his iteratively dominant

a
tion in x so that

x

T

K

= x

�

T

K

:

It follows that any two NE may be di�erent from ea
h other only in the a
tions


hosen by buyers in I n T

K

. The following proposition states that the A-maximal

9



and B-maximal NE 
an be 
onstru
ted by having the maximal number of buyers

among them 
hoose A and B, respe
tively. Spe
i�
ally, let J

A

� I n T

K

be the

maximal set that satis�es

u

i

�

x

�

T

K

; x

J

A

= (A; : : : ; A); x

InT

K

nJ

A

= (;; : : : ; ;)

�

� 0:

Note that the maximality is well-de�ned sin
e if the inequality holds for J and

J

0

� I n T

K

, then it also holds for J [ J

0

. The buyers in J

A


an ea
h realize a

non-negative payo� by 
olle
tively 
hoosing A.

8

Likewise, let J

B

� I n T

K

be the

maximal set that satis�es

u

i

�

x

�

T

K

; x

J

B

= (B; : : : ; B); x

InT

K

nJ

B

= (;; : : : ; ;)

�

� 0:

Proposition 1 De�ne x

A

and x

B

by

x

A

= (x

�

T

K

; x

J

A

= (A; : : : ; A); x

InT

K

nJ

A

= (;; : : : ; ;)); and

x

B

= (x

�

T

K

; x

J

B

= (B; : : : ; B); x

InT

K

nJ

B

= (;; : : : ; ;)):

Then x

A

and x

B

are the A-maximal and B-maximal NE, respe
tively.

Proof. We show that x

A

is an A-maximal NE. The symmetri
 argument shows that

x

B

is a B-maximal NE. In parti
ular, when T

K

= I, every buyer has an iteratively

dominant a
tion, and x

A

= x

B

is the unique NE.

� x

A

is a NE.

In x

A

, any buyer i 2 T

K

is 
hoosing his iteratively dominant a
tion and hen
e

has no in
entive to deviate. Take i 2 I n T

K

. If i 2 J

A

, then sin
e x

i

= A yields by

de�nition a non-negative payo� to buyer i, he 
annot pro�tably deviate to x

i

= ;. If

i 
an pro�tably deviate to x

i

= B, then then x

i

= B would be his dominant a
tion

in S

K

sin
e no other buyer in I nT

K


hooses B in x

A

. This would be a 
ontradi
tion

to P

K+1

= ;. If i =2 J

A

, then x

i

= A is not a pro�table deviation for buyer i sin
e if

it were, then we would have a 
ontradi
tion to the maximality of J

A

. x

i

= B is not

a pro�table deviation either sin
e if it were, then we would have a 
ontradi
tion to

P

K+1

= ; by the same logi
 as above.

� x

A

is A-maximal.

8

Set J

A


an alternatively obtained by eliminating x

i

= A if it is iteratively dominated by x

i

= ;

in S

K

.

10



Take any NE x. As noted in the text, x

T

K

= x

�

T

K

= x

A

T

K

. If x

i

= A for

i 2 I n T

K

n J

A

, then x 
annot be a NE sin
e x

i

= ; would be a pro�table deviation

for him by the de�nition of J

A

. It follows that no NE x 
an have more buyers 
hoose

A than x

A

.

The dominan
e argument 
an be des
ribed more expli
itly in terms of v

d

and

(p; q) as follows. Note that the minimal number of i's neighbors who may 
hoose A

in S

k�1

is given by

�

k

i

=

�

�

�

N

i

\

n

j : S

k�1

j

= fAg

o

�

�

�

;

and that the maximal number of i's neighbors who may 
hoose B in S

k�1

is given

by

�

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

:

It follows that x

i

= A is dominant in S

k�1

(i.e., i 2 Q

k

(p; q)) if and only if

v

�

k

i

� p

i

> max

n

v

�

k

i

� q

i

; 0

o

;

or equivalently,

p

i

< max

n

v

�

k

i

� v

�

k

i

+ q

�

i

; v

�

k

i

o

: (7)

This is the key inequality that will be used extensively in what follows.

5 Subgame Perfe
t Equilibrium

We now turn to the original two-stage game in
luding the sellers. The proposition

below makes a simple observation that if a pri
e ve
tor (p

�

; q

�

) is sustained in some

SPE, then it must be sustained in an SPE in whi
h the buyers 
hoose an extreme

response to either seller's deviation: If seller A deviates from p

�

, then all buyers


oordinate on the B-maximal NE that least favors seller A, and vi
e versa. The

proposition hen
e presents a bang-bang property of an SPE.

Proposition 2 For any network G, (p

�

; q

�

) is an SPE pri
e ve
tor if and only if

there exists buyers' strategy pro�le � su
h that (p

�

; q

�

; �) is an SPE and

�(p; q) =

8

<

:

�

B

(p; q) if p 6= p

�

and q = q

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

11



Consider next seller A's best response p to B's pri
e q when the buyers play the

B-maximal strategy �

B

. Sin
e �

B

(p; q) is a B-maximal NE for any (p; q), seller A


an attra
t buyer i if and only if x

i

= A is an iteratively dominant a
tion for buyer

i: i 2 [

K

k=1

Q

k

, where Q

k

is as de�ned in (4). Hen
e,

�

A

(p; q; �

B

) =

K

X

k=1

X

i2Q

k

p

i

:

The following lemma shows that if seller A's pri
e ve
tor p is a best response to

(q; �

B

), then no two buyers in Q

k

= Q

k

(p; q) are adja
ent, where Q

k

is as de�ned

in (4) and equals the set of buyers for whom A is dominant in round k � 1 of the

iteration pro
ess. In other words, the optimal way to attra
t adja
ent buyers i and

j is to approa
h them sequentially. Intuitively, this is be
ause making 
hoi
e A

dominant for both buyers simultaneously requires o�ering lower pri
es to both of

them than making x

i

= A dominant for buyer i �rst, then making x

j

= A dominant

for buyer j next 
onditional on i 
hoosing x

i

= A.

Lemma 3 Let (Q

k

)

k=1;:::;K

be as de�ned in (4) under the pri
e ve
tor (p; q). If p

is a best response to (q; �

B

), then for every k = 1; : : : ;K,

i; j 2 Q

k

) i and j are not adja
ent.

We now derive a key result that establishes a lower bound for ea
h seller's equi-

librium payo� given the pri
e ve
tor of the other seller. Although the dis
ussion is

based on the iterated dominan
e argument of Se
tion 4, we �nd it useful to present

it in terms of the sequen
e of buyers rather than the sequen
e of sets of buyers. We

return to the 
omparison of the two pro
esses later in the se
tion. As mentioned in

the Introdu
tion, the argument is one of divide and 
onquer, where seller A, say, ap-

proa
hes ea
h buyer sequentially a

ording to some ordered list, and presents them

with a pri
e whi
h makes the 
hoi
e A a dominant a
tion when all his prede
essors

in the list 
hoose A.

Formally, �x the pri
e q

�

of seller B, and suppose that the buyers play the B-

maximal NE fa
ing (p; q

�

) for any p: Buyer i 
hooses x

i

= A only when it is an

iteratively dominant a
tion. Suppose further that seller A approa
hes the buyers

in the order i

1

; : : : ; i

N

: Seller A �rst makes a pri
e o�er to buyer i

1

that makes A

12



dominant for him. In fa
t, x

i

1

= A is dominant for buyer i

1

if p

i

1

is su
h that

v

0

� p

i

1

> max

n

v

d

i

1

� q

�

i

1

; 0

o

;

or equivalently,

p

i

1

< min

n

v

0

� v

d

i

1

+ q

�

i

1

; v

0

o

:

Let H

1

= fi

1

g. Seller A next makes a pri
e o�er to buyer i

2

that makes x

i

2

= A

dominant given the 
hoi
e of buyer i

1

. This 
an be a

omplished by p

i

2

su
h that

p

i

2

< min

n

v

s

i

2

� v

d

i

2

�s

i

2

+ q

�

i

2

; v

s

i

2

o

;

where s

i

2

= jN

i

2

\H

1

j so that s

i

2

= 1 if buyer i

2

is adja
ent to i

1

, and = 0 otherwise.

Now let H

2

= fi

1

; i

2

g. Pro
eeding iteratively, we see that seller A 
an have buyer

i

k


hoose x

i

k

= A as his iteratively dominant a
tion by o�ering p

i

k

su
h that

p

i

k

< min

n

v

s

i

k

� v

d

i

k

�s

i

k

+ q

�

i

k

; v

s

i

k

o

; (8)

where s

i

k

= jN

i

k

\H

k�1

j is the number of neighbors of i

k

in the set H

k�1

=

fi

1

; : : : ; i

k�1

g. Intuitively, s

i

k

is the externalities of good A to buyer i

k

when those

buyers in H

k�1


hoose A. On the other hand, d

i

k

� s

i

k

gives an upper bound on

the externalities of good B to i

k

when only those buyers in I nH

k�1

may 
hoose B.

Note that for any list i

1

; : : : ; i

N

of buyers,

N

X

k=1

s

i

k

=M;

where M is the total number of links in G. De�ne S by

S =

n

s = (s

i

)

i2I

: s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k � 2

for some ordering (i

1

; : : : ; i

N

) of buyers

o

:

(9)

Note that if s 
orresponds to the list i

1

; : : : ; i

N

, then d�s = (d

i

�s

i

)

i2I


orresponds

to the reversed list i

N

; : : : ; i

1

. Hen
e, if s 2 S, then d� s 2 S as well.

Some 
omments are in order on the above pro
ess of divide and 
onquer. First,

in relation to the iterated dominan
e argument of Se
tion 4, buyer i

1

belongs to

Q

1

(p; q

�

) de�ned in (4) sin
e he has a dominant a
tion in S

0

= S. Buyer i

2

belongs

to Q

2

if he is adja
ent to i

1

sin
e then x

i

2

= A is dominant only after x

i

1

= B and

x

i

1

= ; are eliminated from S

0

. Otherwise, x

i

2

= A is dominant in S

0

itself so that

13



i

2

2 Q

1

as well. In general, buyer i

k

belongs to one of Q

1

; Q

2

; : : : ; Q

k

depending on

the status of his neighbors. In other words,

H

k

� [

k

`=1

Q

`

(p; q

�

):

Next, against some pri
e ve
tor q

�

of seller B, seller Amay a
hieve a higher payo� by

o�ering pri
es that attra
t only a subset of buyers than o�ering pri
es that attra
t

all of them. The above pro
ess to the 
ontrary assumes that seller A attra
ts all

buyers by o�ering p. In other words, we use the existen
e of su
h a pri
e ve
tor p to

establish a ne
essary 
ondition for an equilibrium: (p

�

; q

�

; �) is an equilibrium only

if �

A

(p; q

�

; �) > �

A

(p

�

; q

�

; �) for any p that attra
ts all buyers.

To summarize the dis
ussion so far, even if the buyers play the B-maximal

equilibrium �

B

(p; q

�

) that least favors seller A, he 
an attra
t all buyers by o�ering

the pri
es satisfying (8). We hen
e have the following lemma that gives a lower

bound for ea
h seller's equilibrium payo�.

Lemma 4 If (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

;

�

B

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ p

�

i

; v

s

i

o

:

(10)

While the above lemma gives a lower-bound, note also that (8) implies the

following inequality on seller A's payo� from any given divide-and-
onquer pri
ing

strategy p:

N

X

i=1

p

i

<

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

: (11)

We use (11) as a way to explain intuition for some of the results in what follows.

Figures 1 and 2 illustrate the dis
ussion for the line network of three buyers. In

Figure 1, seller A approa
hes the buyers in the order (i

1

; i

2

; i

3

) = (1; 3; 2) while seller

B o�ers q

�

= (q

�

1

; q

�

2

; q

�

3

): Seller A 
an make x

1

= A dominant a
tions for buyer 1

if his payo� from 
hoosing A is stri
tly higher than that from 
hoosing either ; or

B under the assumption that his neighbor (i.e., buyer 2) 
hooses B. This leads

to the 
omparison between v

0

� p

1

and max

�

v

1

� q

�

1

; 0

	

. The same argument

applies to buyer 2. When p satis�es the stated inequalities, hen
e, Q

1

= f1; 3g sin
e

14



v

0

� p

1

> max fv

1

� q

�

1

; 0g

1

2

3

v

0

� p

3

> max fv

1

� q

�

3

; 0g

, p

1

< min fv

0

� v

1

+ q

�

1

; v

0

g

, p

3

< min fv

0

� v

1

+ q

�

3

; v

0

g

v

2

� p

2

> max fv

0

� q

�

2

; 0g

1

2

3

, p

2

< min fv

2

� v

0

+ q

�

2

; v

2

g

)

Figure 1: Divide-and-
onquer by seller A with (i

1

; i

2

; i

3

) = (1; 3; 2).

v

1

� p

1

> max fv

0

� q

�

1

; 0g

1

2

3 v

1

� p

3

> max fv

0

� q

�

3

; 0g

, p

1

< minfv

1

� v

0

+ q

�

1

; v

1

g

, p

3

< minfv

1

� v

0

+ q

�

3

; v

1

g

v

0

� p

2

> max fv

2

� q

�

2

; 0g

1

2

3

, p

2

< min fv

0

� v

2

+ q

�

2

; v

0

g

)

Figure 2: Divide-and-
onquer by seller A with (i

1

; i

2

; i

3

) = (2; 1; 3).

x

i

= B and x

i

= ; are eliminated in the �rst round in the iterated elimination

pro
ess for both i = 1 and i = 3. For buyer 2, on the other hand, x

2

= A is

a dominant a
tion for him if his payo� from 
hoosing A is stri
tly higher than

that from 
hoosing either ; or B under the assumption that his neighbors (i.e.,

buyers 1 and 3) 
hoose A. This leads to the 
omparison between v

2

� p

2

and

max

�

v

0

� q

�

2

; 0

	

. Under the stated inequalities, hen
e, Q

2

= f2g. Hen
e, even if

the buyers play the B-maximal equilibrium �

B

(p; q

�

), seller A's divide-and-
onquer

strategy with (i

1

; i

2

; i

3

) = (1; 3; 2) is a pro�table deviation if

min fv

0

� v

1

+ q

�

1

; v

0

g+min fv

0

� v

1

+ q

�

3

; v

0

g

+min fv

2

� v

0

+ q

�

2

; v

2

g > �

A

(p

�

; q

�

; �):

(12)
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Likewise, his divide-and-
onquer strategy with (i

1

; i

2

; i

3

) = (2; 1; 3) illustrated in

Figure 2 is a pro�table deviation if

min fv

0

� v

2

+ q

�

2

; v

0

g+min fv

1

� v

0

+ q

�

1

; v

1

g

+min fv

1

� v

0

+ q

�

3

; v

1

g > �

A

(p

�

; q

�

; �);

(13)

and that with (i

1

; i

2

; i

3

) = (1; 2; 3) is a pro�table deviation if

min fv

0

� v

1

+ q

�

1

; v

0

g+min fv

1

� v

1

+ q

�

2

; v

1

g

+min fv

1

� v

0

+ q

�

3

; v

1

g > �

A

(p

�

; q

�

; �):

(14)

It follows that (p

�

; q

�

) 
annot be an equilibrium pri
e ve
tor if any one of the in-

equalities (12), (13) and (14) holds. This will be examined for the pri
e ve
tor

(p

�

; q

�

) = (0; 0) in the next se
tion.

6 Uniform and Marginal-Cost Pri
ing

When there are no 
onsumption externalities 0 < v

0

= � � � = v

N�1

, it is 
lear that

a subgame perfe
t equilibrium pri
e (p

�

; q

�

) is unique and equal to the marginal


ost: (p

�

; q

�

) = (0; 0). In this se
tion, we will examine if and how this result 
an be

extended when there are externalities.

Let D = D(G) be the highest degree in G:

D(G) = max

i2I

d

i

(G):

For the network G, hen
e, the relevant levels of externalities are (v

0

; : : : ; v

D

). We

say that the externalities (v

0

; : : : ; v

D

) are linear if there exists h > 0 su
h that

v

k

= kh for every k = 0; 1; : : : ;D.

Note that linearity implies the zero stand-alone value v

0

and hen
e pure network

externalities or pure intermediation. Linearity is a working assumption in many

models of network externalities in the literature.

9

Proposition 5 Let G be an arbitrary buyer network. Under the linear externalities

(v

0

; : : : ; v

D

), (p

�

; q

�

) = (0; 0) is an SPE pri
e ve
tor.

9

See, for example, Caillaud and Jullien (2003) and Ambrush and Argenziano (2009). On the

other hand, linearity violates the weak externalities de�ned in Jullien (2011, Assumption 1).
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To see the intuition behind Proposition 5, note that no divide-and-
onquer strat-

egy is pro�table under linearity: When seller B monopolizes the market with q

�

i

= 0

for every i and the buyers play the B-maximal equilibrium following seller A's devi-

ation from 0, (11) shows that his payo� from a divide-and-
onquer pri
ing strategy

satis�es

N

X

i=1

p

i

<

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; 0

o

�

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

= 0;

where the equality is an immediate 
onsequen
e of linearity sin
e

P

N

i=1

s

i

=

P

N

i=1

(d

i

�

s

i

) =M as noted earlier.

We next 
onsider the 
onsequen
e of introdu
ing some generi
 property of ex-

ternalities. As will be seen, whether or not the marginal 
ost pri
ing 
an be an

equilibrium depends 
ru
ially on the 
on�guration of the buyer network in this


ase. Spe
i�
ally, for S de�ned in (9), suppose that the externalities (v

0

; : : : ; v

D

)

satisfy the following 
ondition:

s 2 S and d� s is not a permutation of s )

N

X

i=1

v

s

i

6=

N

X

i=1

v

d

i

�s

i

. (15)

Re
all that s is the sequen
e of externalities of one good, say A, when the buyers

swit
h to A one by one in some order. d � s, on the other hand, is the sequen
e

of externalities of good A when they swit
h to A one by one in the reverse order.

(15) implies that the sum of externalities over buyers is di�erent between the two

pro
edures. The set of (v

0

; : : : ; v

D

) satisfying (15) is generi
 in the set

�

(v

0

; : : : ; v

D

) : 0 � v

0

� � � � � v

D

	

of all externalities.

Lemma 4 in the pre
eding se
tion shows that a seller's equilibrium payo� is


losely linked to the value of

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

It turns out that whether this quantity is positive or not under (15) depends 
ru
ially

on the network 
on�guration as seen in the following lemma.
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Lemma 6 Suppose that the externalities v = (v

0

; : : : ; v

D

) satisfy (15). If the buyer

network G is neither 
y
li
 nor 
omplete, then

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0: (16)

The proof of Lemma 6 involves showing that by 
hoosing the order (i

1

; : : : ; i

N

)

appropriately, we 
an always make s and d�s not permutations of ea
h other unless

the network is 
y
li
 or 
omplete. In fa
t, this is a

omplished by 
hoosing only

the �rst three buyers (i

1

; i

2

; i

3

) appropriately. The following lemma, whi
h readily

follows from Lemmas 4 and 6, provides some key observations on equilibrium pri
ing.

Lemma 7 Suppose that (p

�

; q

�

; �) is an SPE for the buyer network G whi
h is

neither 
omplete nor 
y
li
, and that the externalities v = (v

0

; : : : ; v

D

) satisfy (15).

Then

a) �

A

(p

�

; q

�

; �) = 0 ) min

i

q

�

i

< 0.

b) �

A

(p

�

; q

�

; �) �

P

i

q

�

i

) max

i

q

�

i

> v

0

.


) I

B

(�(p

�

; q

�

)) = I ) max

i

q

�

i

> v

0

, min

i

(v

d

i

� q

�

i

) � v

0

, and v

D

> 2v

0

.

Note that (a) and (b) of Lemma 7 hold true whether monopolization or seg-

mentation takes pla
e in equilibrium, while (
) applies only to a monopolization

equilibrium. An immediate 
onsequen
e of this lemma is the impossibility of uni-

form pri
ing under monopolization: Suppose that monopolization by seller B takes

pla
e in equilibrium: I

B

(�(p

�

; q

�

)) = I. Then seller B must subsidize at least one

buyer by (a), and the pri
e for some buyer is stri
tly above the stand-alone value

by (
):

min

i

q

�

i

< 0 � v

0

< max

i

q

�

i

< v

D

� v

0

: (17)

Proposition 8 Suppose that the buyer network G is neither 
omplete nor 
y
li


and that the externalities v = (v

0

; : : : ; v

D

) satisfy (15). Then there exists no SPE in

whi
h one of the sellers monopolizes the market by 
harging the same pri
e to every

buyer.
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It is interesting to note that Candogan et al. (2012) and Blo
h and Qu�erou (2013)

both �nd that uniform pri
ing is optimal for a monopolist when the externalities are

undire
ted as in the present paper. When the sellers fa
e 
ompetition, however, it

is no longer an equilibrium by Proposition 8. We also note that there are networks

whi
h are not 
y
li
 or 
omplete, but are symmetri
 with respe
t to every buyer. For

example, 
onsider the buyer network in Figure 3. Under a generi
 spe
i�
ation of

externalities, these ex ante symmetri
 buyers fa
e pri
e dis
rimination in equilibrium

if one of the sellers monopolizes the market.

For monopolization to take pla
e in equilibrium, we also see from (17) that the

largest externalities in a network 
annot be too small 
ompared with the stand-alone

value: v

D

> 2v

0

. This is a non-trivial restri
tion for networks in whi
h every buyer

has a small degree as in line networks.

1

2

3

4

5

6

7

8

Figure 3: 4-regular network with eight buyers

We are now ready to state our main result on marginal 
ost pri
ing. Suppose that

both sellers o�er zero to all the buyers. In this 
ase, both sellers' payo�s equal zero

regardless of whether or not they 
apture a positive segment of the market. Hen
e,

this pri
e pro�le 
annot be an equilibrium by Lemma 7(a) unless the network is


omplete or 
y
li
. The following proposition proves the reverse impli
ation that

when the network is either 
omplete or 
y
li
, there indeed exists an SPE in whi
h

both sellers o�er zero.

Proposition 9 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (15). (p

�

; q

�

) = (0; 0) is an SPE pri
e ve
tor if and only if G is either 
y
li


or 
omplete.
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The intuition between the possibility of an equilibrium in a 
y
li
 or 
omplete

network is as follows. Suppose that sellerB monopolizes the market with q

�

= 0, and

that the buyers play the B-maximal equilibrium following (p; q

�

). First, in a 
y
li


network, any buyer i seller A attempts to attra
t in the �rst round of the domination

pro
ess must be o�ered the pri
e su
h that p

i

< v

0

� v

2

< 0 sin
e joining A implies

i has no neighbor while remaining at B implies he has two neighbors. On the other

hand, seller A 
an make positive pro�ts only when he attra
ts a buyer whose both

neighbors have already been attra
ted to A. In this 
ase, A 
an o�er the pri
e su
h

that p

i

< v

2

� v

0

. Whether or not seller A 
an make positive pro�ts, hen
e, 
omes

down to the simple 
omparison between the number of buyers whose both neighbors

have already swit
hed to A, and the number of buyers who swit
h in the �rst round.

Simple inspe
tion shows that the former 
annot be greater than the latter. The

argument for a 
omplete network is based on a di�erent logi
. In a 
omplete network,

if seller A employs divide-and-
onquer, the order in whi
h he approa
hes the buyers

is immaterial. If seller A attra
ts buyers 1; : : : ; N in this order, then he needs to

o�er the pri
es su
h that p

1

< v

0

� v

N�1

, p

2

< v

1

� v

N�2

; : : : ; p

N

< v

N�1

� v

0

. It

is then 
lear that these pri
es sum up to less than zero.

For illustration of the impossibility of marginal 
ost pri
ing, return to the ex-

ample of the three-buyer line network depi
ted in Figures 1 and 2. Suppose that

q

�

= 0. In this 
ase, we have

(12) , 2v

1

� v

2

� v

0

< 0;

(13) , 2v

1

� v

2

� v

0

> 0:

Hen
e, if

2v

1

6= v

2

+ v

0

; (18)

seller A 
an pro�tably divide and 
onquer the buyers against q

�

= 0. Note that

(18) 
orresponds to (16) in Lemma 6: It fails under the linear externalities v

0

= 0,

v

1

= h and v

2

= 2h, but is true under generi
 spe
i�
ations of v

0

, v

1

and v

2

.

7 Monopolization on a Bipartite Network

The results in the pre
eding se
tion suggest that some form of dis
riminatory pri
ing

is inevitable in equilibrium. A natural question then is on the form of equilibrium

pri
e dis
rimination. Interesting related questions are (1) whi
h buyers are the

\weak link" in the network that need to be prote
ted, and (2) whi
h buyers 
an
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be squeezed for more pro�ts. Sin
e it appears diÆ
ult to provide general answers

to these questions, we will restri
t attention to 
ertain 
lasses of networks for the

identi�
ation of an equilibrium. In this se
tion, we identify a 
lass of networks in

whi
h monopolization takes pla
e in equilibrium.

Our analysis in what follows assumes that the externalities are approximately

linear in the following sense: For h > 0, the externalities (v

0

; : : : ; v

D

) are "-
lose to

linear if

jv

k

� khj < " for k = 0; 1; : : : ;D.

Sin
e the 
ondition holds for any " > 0 when the externalities are exa
tly linear,

the 
on
lusions under approximate linearity are valid under exa
t linearity. In 
on-

jun
tion with Proposition 5, then, this implies the multipli
ity of equilibria in these

markets.

The buyer network is bipartite if the buyer set I is partitioned into two disjoint

subsets I

1

and I

2

su
h that every neighbor of i 2 I

1

belongs to I

2

and every neighbor

of i 2 I

2

belongs to I

1

. Line and star networks are simple examples of a bipartite

network. For example, the line network in Figures 1 and 2 is bipartite with the

partition I

1

= f1; 3g and I

2

= f2g. A 
y
le network with an even number of buyers

is also bipartite. A bipartite network is 
omplete if every buyer in I

1

is linked to

every buyer in I

2

. Re
all that d

i

denotes the degree of buyer i. By renaming the

partition elements if ne
essary, we may suppose without loss of generality that I

1

and I

2

satisfy

X

i2I

1

�

v

d

i

� v

0

�

�

X

i2I

2

�

v

d

i

� v

0

�

: (19)

Bipartite networks are parti
ularly important sin
e they represent two-sided

markets that attra
t mu
h attention in the literature. For example, we 
an think

of I

1

as the set of sellers and I

2

as the set of buyers of a 
ertain good. In this 
ase,

the sellers A and B are interpreted as the platforms that o�er marketpla
e to these

sellers and buyers, and their pri
es are interpreted as parti
ipation fees required

for registration into their platforms. A 
omplete bipartite network 
orresponds to a

two-sided market in whi
h ea
h agent �nds more value in a given platform whenever

more agents on the other side parti
ipate in the same platform. Our 
on
lusion on

a bipartite network translates to that on a two-sided market where two platforms


ompete.

Proposition 10 Suppose that the buyer network G is bipartite with the buyer par-

tition (I

1

; I

2

). For any h > 0, there exists �" > 0 su
h that if the externalities are
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"-
lose to h-linear for " < �", then there exists an SPE (p

�

; q

�

; �) in whi
h one seller


aptures all the buyers. The SPE pri
es (p

�

; q

�

) are su
h that

p

�

i

= q

�

i

=

8

<

:

v

d

i

� v

0

for i 2 I

1

, and

v

0

� v

d

i

for i 2 I

2

.

The 
onstru
tion of the equilibrium in Proposition 10 involves the play of the

extreme equilibrium in the buyers' subgame that least favors the deviating seller

as in Proposition 2. A

ording to Proposition 10, every buyer on one side of the

market is taxed whereas those on the other side are subsidized in equilibrium. Su
h

a pri
ing strategy is in line with a frequent observation in two-sided markets that

one side re
eives a heavy dis
ount. For example, Kaiser and Wright (2006) identify

a magazine market in Germany as a two-sided market with readers on one side

and advertisers on the other, and �nd that magazines subsidize their readers while

making all pro�ts from their advertisers. Caillaud and Jullien (2003) are the �rst

to o�er a theoreti
al justi�
ation of the tax-subsidy pri
ing s
heme in a two-sided

market by applying the divide-and-
onquer argument to pri
e 
ompetition in the

market with a single agent on ea
h side.

10

Another 
riti
al observation of Proposition 10 is that the equilibrium pri
ing

is degree-proportional : The transfer from or to ea
h buyer i is (approximately)

proportional to his degree sin
e v

d

i

� v

0

� hd

i

under approximate linearity. Figure

4 illustrates Proposition 10 in a star network with �ve buyers when the externalities

satisfy approximate linearity and

v

4

� v

0

� 4(v

1

� v

0

); (20)

so that I

1

= f1g and I

2

= f2; 3; 4; 5g. Buyer 1 at the hub is taxed whereas all

the buyers in the periphery are subsidized. We 
an interpret the subsidies to the

peripheral buyers as a prote
tion against the indu
ement from the other seller. In

fa
t, when (20) holds, it is relatively more diÆ
ult for the other seller, say seller A,

to indu
e the hub buyer to swit
h: When for example all buyers fa
e q

i

= 0, seller A

must pay buyer 1 more than v

4

� v

0

to indu
e him by making x

1

= A dominant (in

S

0

), whereas he needs to pay just above 4(v

1

�v

0

) to indu
e all peripheral buyers by

making x

i

= A dominant (in S

0

). When the inequality (20) is reversed, then buyer

10

Alternative explanation of the tax-subsidy s
heme in two-sided markets is provided by Bolt

and Tieman (2008), and Parker and Van Alstyne (2005) among others.
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1 now re
eives a subsidy v

4

� v

0

, whereas the peripheral buyers are 
harged v

1

� v

0

.

In this 
ase, hen
e, the hub buyer needs to be prote
ted as it is relatively easier for

the other seller to indu
e him to swit
h. As seen in this example, the spe
i�
ation

of externalities determines whi
h buyer(s) should be prote
ted with subsidies.

2

3

4

5

1

p

1

= q

1

= v

4

� v

0

p

2

= q

2

= v

0

� v

1

p

3

= q

3

= v

0

� v

1

p

4

= q

4

= v

0

� v

1

p

5

= q

5

= v

0

� v

1

Figure 4: Monopolization through dis
riminatory pri
ing on a star network when

v

4

� v

0

� 4(v

1

� v

0

).

When a bipartite network is 
omplete as in the star network above, further


hara
terization of the equilibrium pri
ing in Proposition 10 is possible. We say

that the marginal externalities are in
reasing if

v

1

� v

0

� v

2

� v

1

� � � � � v

D

� v

D�1

;

and de
reasing if

v

D

� v

D�1

� � � � � v

2

� v

1

� v

1

� v

0

:

Under in
reasing marginal externalities, any buyer in a 
omplete bipartite network

is subsidized in equilibrium if and only if his side of the market is larger than the

other side. The opposite holds under de
reasing marginal externalities.

Corollary 11 Suppose that the network is 
omplete bipartite with partition (I

1

; I

2

)

su
h that n

1

= jI

1

j � jI

2

j = n

2

. For any h > 0, there exists �" > 0 su
h that if the

externalities are "-
lose to h-linear for " < �", then then there exists an SPE (p; q; �)

su
h that

p

i

= q

i

=

8

<

:

v

n

2

� v

0

for i 2 I

1

,

v

0

� v

n

1

for i 2 I

2

,
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when the marginal externalities are in
reasing, and

p

i

= q

i

=

8

<

:

v

0

� v

n

2

for i 2 I

1

,

v

n

1

� v

0

for i 2 I

2

,

if the marginal externalities are de
reasing.

8 Segmentation on a Bilo
ular Network

Maintaining the assumption of approximately linear externalities as in the previous

se
tion, we now examine the possibility of an equilibrium in whi
h market segmen-

tation takes pla
e. For this, we 
onsider a 
lass of buyer networks that have roughly

the opposite property to the bipartite networks in the previous se
tion: In this 
lass

of networks, the buyer set is again partitioned into two disjoint subsets, but ea
h

buyer has at least as many neighbors in the same subset than in the other subset.

Formally, the buyer network is bilo
ular if there exists a two-way partition (I

1

; I

2

)

of the set I of buyers su
h that for m, n = 1, 2, and m 6= n,

jN

i

\ I

n

j � jN

i

\ I

m

j for every i 2 I

n

, and

jN

i

\ I

n

j > jN

i

\ I

m

j for some i 2 I

n

.

Intuitively, in a bilo
ular network with partition (I

1

; I

2

), we 
an 
lassify buyers in I

1

or I

2

into 
ore and peripheral buyers: The 
ore buyers are those who have stri
tly

more neighbors in the same set than in the other set, while the peripheral buyers

have as many neighbors in the same set as in the other set. One interpretation of a

bilo
ular network is that ea
h one of I

1

and I

2

is a group of traders who trade within

their own group more often than outside it. The sellers 
an then be interpreted as

o�ering platforms to those traders.

11

A line of four or more buyers is bilo
ular if I

1


onsists of buyers on the left, I

2


onsists of buyers on the right, and jI

1

j, jI

2

j � 2.

12

The buyers on the two ends


an be taken as 
ore buyers in this 
ase. The regular network in Figure 3 is also

bilo
ular when we take I

1

= f1; 2; 3; 4g and I

2

= f5; 6; 7; 8g. Buyer 2 and 3 are 
ore

buyers for I

1

and buyers 6 and 7 are 
ore buyers for I

2

.

Proposition 12 Suppose that G is bilo
ular. For any h > 0, there exists �" > 0

su
h that if the externalities are "-
lose to h-linear for " < �", there exists an SPE in

11

This interpretation is suggested by Hitoshi Matsushima.

12

Hen
e, a bilo
ular network 
an be bipartite and vi
e versa.
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2

3

4

1

(p

1

; q

1

) = (Æ;�Æ)

(p

4

; q

4

) = (�Æ; Æ)

(p

2

; q

2

) = (0; 0) (p

3

; q

3

) = (0; 0)

Figure 5: Segmentation on a line network (Æ = jv

2

+ v

1

� 2v

0

j > 0): A 
aptures

I

1

= f1; 2g and B 
aptures I

2

= f3; 4g.

whi
h buyers in I

1


hoose seller A and buyers in I

2


hoose seller B. In this SPE,

p

i

1

= �q

i

1

= Æ for a single 
ore buyer i

1

2 I

1

, p

i

2

= �q

i

2

= �Æ for a single 
ore

buyer i

2

2 I

2

, and p

i

= q

i

= 0 for all other buyers i, where

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

Note that Æ is stri
tly positive under generi
 externalities (Lemma 6), small

under approximate linearity, and equal to zero under exa
t linearity. Ea
h seller's

equilibrium payo� equals Æ, while the sum of their pri
es over all buyers equals

zero. Figure 5 illustrates the equilibrium for a line network of four buyers. As

in Proposition 2, any deviation by either seller results in the play of the extreme

equilibrium that least favors the deviating seller. Ea
h 
ore buyer who is 
harged

Æ will not swit
h to the other seller sin
e externalities are stri
tly higher when he


onsumes the same good as the majority of his neighbors. Intuitively, seller A 
annot

bene�t from any divide-and-
onquer strategy sin
e it yields at most

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

�

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

+

N

X

i=1

q

�

i

=

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

;

whi
h is less than or equal to his 
urrent payo� Æ.

13

9 Dis
ussion

In this paper, we formulate a model of pri
e 
ompetition between two sellers when

ea
h one of their goods exhibits lo
al network externalities as represented by a graph-

theoreti
 network of buyers. We show that whether a given pri
e pro�le is 
onsistent

13

The proof also shows that attra
ting a proper subset of buyers is not pro�table.
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with a subgame perfe
t equilibrium of the two-stage game depends 
ru
ially on the

exa
t spe
i�
ations of network stru
ture and externalities. In the non-generi
 
ase

of linear externalities, the marginal 
ost pri
ing of both sellers quoting zero to every

buyer is 
onsistent with an SPE for any network. Under the generi
 spe
i�
ation

of externalities, however, it is 
onsistent with an SPE if and only if the network

is either 
y
li
 or 
omplete. That is, in any other networks, some form of pri
e

dis
rimination is inevitable even if every buyer has exa
tly symmetri
 lo
ations in

those networks. Given these results, we pro
eed to the identi�
ation of an SPE when

the externalities are approximately linear. In a bipartite network whi
h 
orresponds

to a two-sided market, we show that there exists an SPE in whi
h one of the sellers

monopolizes the market by 
harging a positive pri
e to every buyer on one side,

and a negative pri
e to every buyer on the other side. The equilibrium pri
es are

approximately proportional to the size of the other side of the market for ea
h buyer.

In a bilo
ular network in whi
h ea
h buyer has more neighbors on his side than on

the other side, on the other hand, we show that there exists an equilibrium in whi
h

the two sellers segment the market and earn positive pro�ts.

As is well re
ognized, the essential feature of the market for goods with network

externalities is the multipli
ity of equilibria. In our 
ontext, this 
orresponds to the

multipli
ity of equilibria in the buyers' subgame. Note, however, that our impos-

sibility result on marginal-
ost pri
ing holds true regardless of whi
h one of these

multiple equilibria may be 
hosen. On the other hand, our 
onstru
tion of an equi-

librium is based on the assumption that following any deviation by either seller, the

buyers 
oordinate on the extreme equilibrium that least favors the deviator. This

is a signi�
ant departure from the literature whi
h restri
ts the a
tion pro�le in the

buyers' subgame in one way or the other. While our assumption supports the broad-

est spe
trum of equilibrium in the pri
e 
ompetition game, it is not 
onsistent with,

for example, the assumption that the buyers 
hoose the Pareto eÆ
ient alternative

whenever there is one. We think that our exer
ise is useful as a ben
hmark given

that there is no general 
onsensus on what type of 
oordination is likely a
hieved.

One related issue 
on
erns what happens when one of the sellers, say seller A, is

fo
al as assumed in Jullien (2011). In our terminology, this translates to assuming

that the buyers play the A-maximal NE following any pri
e pro�le. In this 
ase,

any monopolization equilibrium identi�ed in this paper is valid with seller A a
ting

as a monopolist. On the other hand, market segmentation is diÆ
ult to sustain in

equilibrium. Hen
e, if and how the buyers 
oordinate their a
tions have a signi�
ant
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impa
t on the s
ope of the equilibrium out
ome.

In the present model, the goods of the two sellers are assumed symmetri
 and

in
ompatible with ea
h other. A natural extension would involve introdu
ing asym-

metry or a positive degree of 
ompatibility between them. Te
hni
ally, introdu
tion

of 
ompatibility implies the failure of supermodularity in the buyers' subgame. En-

dogenous determination of 
ompatibility levels by the sellers is one topi
 that has

re
eived mu
h attention in the literature. For example, Baake and Boom (2001)

�nd in their model of global network externalities that the sellers always 
hoose to

o�er 
ompatibility in equilibrium. Whether or not the same 
on
lusion holds under

lo
al network externalities remains to be seen.

As dis
ussed earlier, the informational assumptions of our model are rather ex-

treme. For example, we assume that ea
h buyer observes the pri
e o�ers to all

other buyers, and that the sellers have perfe
t knowledge about the buyer network.

Relaxing ea
h one of these assumptions yields an interesting model to explore.

14

Appendix

Proof of Lemma 3. For simpli
ity, let k = K, where K is su
h that no buyer has

a dominant a
tion in S

k+1

for k � K. Suppose to the 
ontrary that 1, 2 2 Q

K

(p; q)

and that 1 and 2 are adja
ent. Then it must be the 
ase that

v

�

K

1

� p

1

> max fv

�

K

1

� q

1

; 0g and v

�

K

2

� p

2

> max fv

�

K

2

� q

2

; 0g; (21)

where for i = 1 and 2, re
all that

�

K

i

=

�

�

�

N

i

\

n

j : fAg = S

K�1

j

(p; q)

o

�

�

�

=

�

�

�

N

i

\

�

[

K�1

`=1

Q

`

(p; q)

�

�

�

�

is the number of i's neighbors for whom x

j

= A is iteratively dominant in round

K � 1 or earlier, and

�

K

i

=

�

�

�

N

i

\

n

j 2 I : B 2 S

K�1

j

(p; q)

o

�

�

�

is the number of i's neighbors for whom x

j

= B is not dominated in round K � 1

or earlier. (21) 
an be rewritten as

p

1

< min

n

v

�

K

1

� v

�

K

1

+ q

1

; 0

o

and p

2

< min

n

v

�

K

2

� v

�

K

2

+ q

2

; 0

o

:

14

Pasini et al. (2008) study pri
e dispersion in a model of a two-sided market where sellers only

know the degree distribution of the buyers.
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On the other hand, let p

0

be su
h that p

0

i

= p

i

for i 6= 2, and

p

2

< v

�

K

2

�max fv

�

K

2

� q

2

; 0g < p

0

2

< v

�

K

2

+1

�max fv

�

K

2

�1

� q

2

; 0g:

Consider nowQ

0

k

= Q

k

(p

0

; q), the set of buyers for whom x

i

= A is a dominant a
tion

in round k under (p

0

; q). We then have Q

k

(p

0

; q) = Q

k

(p; q) for k = 1; : : : ;K�1 and

Q

K

(p

0

; q) = Q

K

(p; q) n f2g. Sin
e 1 2 N

2

, this implies that in round K + 1,

�

�

N

2

\

�

j : fAg = S

K

j

(p

0

; q)

	

�

�

= �

K

2

+ 1

and

�

�

N

2

\

�

i 2 I : B 2 S

K

j

(p

0

; q)

	

�

�

= �

K

2

� 1:

Furthermore, by our 
hoi
e of p

0

2

,

v

�

K

2

+1

� p

0

2

> max fv

�

K

2

�1

� q

2

; 0g;

whi
h shows that x

2

= A is dominant for buyer 2 in round K + 1 under (p

0

; q):

Q

K+1

(p

0

; q) = f2g. Sin
e p

0

2

> p

2

, �

A

(p

0

; q; �

B

) > �

A

(p; q; �

B

), and hen
e p is not a

best response to (q; �

B

). �

Proof of Lemma 4. Fix any relabeling of buyers i

1

; : : : ; i

N

. Let s = (s

i

)

i2I

be

de�ned by

s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k = 2; : : : ; N .

Let " > 0 be given, and de�ne the pri
e ve
tor p = (p

i

)

i2I

by

p

i

= min fv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g � ": (22)

As explained in the text, by o�ering p, seller A makes x

i

1

= A a dominant a
tion

for buyer i

1

, and in any subsequent step, x

i

k

= A an iteratively dominant a
tion for

buyer i

k

under (p; q

�

). Hen
e, seller A's payo� under (p; q

�

; �) satis�es

�

A

(p; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g �N":

Sin
e " > 0 and s 2 S are arbitrary, if (10) does not hold, then we would have a


ontradi
tion

�

A

(p; q

�

; �) > �

A

(p

�

; q

�

; �):

The symmetri
 argument proves the inequality for seller B's payo�. �
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Proof of Proposition 5. We �rst show that (p

�

; q

�

) = (0; 0) is an SPE pri
e. Let

�

A

and �

B

be the A-maximal and B-maximal equilibria as de�ned earlier, and let

� be the buyers' strategy pro�le su
h that

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (0; 0),

�

B

(p; q) if p 6= 0 and q = 0,

�

A

(p; q) if p = 0 and q 6= 0.

Now 
onsider a deviation from p

�

= 0 to p 6= 0 by seller A. Let Q

k

= Q

k

(p; q

�

)

(k = 1; : : : ;K) be the set of buyers for whom x

i

= A is dominant in round k of the

iteration pro
ess under (p; q

�

) as de�ned in (4). By the de�nition of �

B

, a buyer


hooses seller A if and only if it is iteratively dominant for him:

I

A

(�

B

(p; q

�

)) = [

K

k=1

Q

k

:

Hen
e, seller A's payo� under (p; q

�

; �) 
an be written as:

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

: (23)

Now re
all that

�

k

i

=

�

�

�

N

i

\

n

j : fAg = S

k�1

j

o

�

�

�

=

�

�

�

N

i

\

�

[

k�1

`=1

Q

`

�

�

�

�

and �

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

denote the number of neighbors of buyer i for whom x

i

= A is dominant in round

k � 1 or earlier, and x

i

= B is undominated in S

k�1

, respe
tively. Sin
e q

�

i

= 0,

x

i

= ; is dominated by x

i

= B in S

0

. If follows that

N

i

\ fi : B 2 S

k�1

g = N

i

n

�

[

k�1

`=1

Q

`

�

( �

k

i

= d

i

� �

k

i

:

If i 2 Q

k

, hen
e, we should have by (7),

v

�

k

i

� p

i

> max

n

v

�

k

i

� q

�

i

; 0

o

= v

d

i

��

k

i

, p

i

< v

�

k

i

� v

d

i

��

k

i

= h

�

2�

k

i

� d

i

�

:

(24)
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Note now that

K

X

k=1

X

i2Q

k

�

k

i

=

K

X

k=1

�

#links between Q

k

and [

k�1

`=1

Q

`

�

� #links within [

K

k=1

Q

k

�

1

2

K

X

k=1

X

i2Q

k

d

i

:

(25)

Substituting (24) and (25) into (23), we obtain

�

A

(p; q

�

; �

B

) < h

K

X

k=1

X

i2Q

k

�

2�

k

i

� d

i

�

� 0:

Therefore, p is not a pro�table deviation. The symmetri
 argument shows that seller

B has no pro�table deviation q. �

Proof of Lemma 6. Suppose that s and d�s are not permutations of ea
h other.

Then (15) implies that either

P

N

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0 or < 0. If the latter holds,

then let i

0

k

= i

N�k+1

for k = 1; : : : ; N and de�ne t = (t

i

)

i2I

by setting t

i

0

k

equal to

the number of neighbors of i

0

k

in fi

0

1

; : : : ; i

0

k�1

g:

t

i

0

1

= 0 and t

i

0

k

= jN

i

0

k

\ fi

0

1

; : : : ; i

0

k�1

gj for k = 2; : : : ; N . (26)

Then we 
an verify that

N

X

i=1

�

v

t

i

� v

d

i

�t

i

�

= �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0:

Therefore, in order to prove (16), it suÆ
es to show that d� s is not a permutation

of s for some s. We will 
onsider the following two 
ases separately.

1) G is not regular.

Take a pair of buyers i and j su
h that i is adja
ent to j, d

i

= D and d

j

< D,

where D � 2 is the highest degree in G. Take another buyer k that is adja
ent

to i but not to j. To see that there exists su
h a buyer, suppose to the 
ontrary

that every buyer 6= j that is adja
ent to i is also adja
ent to j. Then j has at
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least D neighbors, a 
ontradi
tion. Let i

1

= k, i

2

= i and i

3

= j, and de�ne

i

4

; : : : ; i

N

=2 fi; j; kg arbitrarily. Then

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (d

k

;D � 1; d

j

� 1) :

(27)

If s is not a permutation of d � s, then we are done. Suppose then that s is a

permutation of d� s, and de�ne i

0

1

= k, i

0

2

= j, i

0

3

= i, and i

0

`

= i

`

for ` � 4, and let

t = (t

i

)

i2I

be de�ned by (26) for these i

0

1

; : : : ; i

0

N

. Then

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (d

k

; d

j

;D � 2) :

(28)

Sin
e i

0

`

= i

`

for ` � 4, we have

�

�

�

n

` � 4 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

�

�

�

n

` � 4 : s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

:

(29)

a) d

j

= 1.

In this 
ase, (27) and (28 ) imply that

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

= 1:

Hen
e, sin
e d� s is a permutation of s, we must have

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj :

It then follows from (29) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

: (30)

However,

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

� 1 < 2 =

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

: (31)

(30) and (31) together show that d� t 
annot be a permutation of t.

b) d

j

� 2.

In this 
ase, we have D � 3 sin
e D > d

j

� 2, and also

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

= 0 < 1 =

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

:
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Hen
e, sin
e d� s is a permutation of s,

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj+ 1:

It then follows from (29) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

+ 1: (32)

However, (27) and (28 ) imply that

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

� 2 (33)

(32) and (33) together imply that d� t is not a permutation of t.

2) G is r-regular with 2 < r < N � 1.

Sin
e G is 
onne
ted and not 
omplete, we 
an take a pair of buyers i

1

and i

2

su
h that i

1

and i

2

are adja
ent, and take another buyer i

3

who is adja
ent to i

2

but not to i

1

. To see that this is possible, suppose to the 
ontrary that for any

pair of adja
ent buyers i and j, any buyer k 6= i adja
ent to j is also adja
ent to

i. We then show that G must be 
omplete. Take any pair of buyers i and j. Sin
e

G is 
onne
ted, there is a path k

1

= i ! k

2

! � � � ! k

m�1

! k

m

= j. Sin
e k

2

is

adja
ent to i = k

1

and k

3

is adja
ent to k

2

, k

3

is adja
ent to i as well by the above.

Now sin
e k

4

is adja
ent to k

3

, it is also adja
ent to i. Pro
eeding the same way, we


on
lude that j = k

m

is adja
ent to i = k

1

, implying that G is 
omplete.

We now label buyers other than fi

1

; i

2

; i

3

g as i

4

; : : : ; i

N

in an arbitrary manner.

For our 
hoi
e of i

1

, i

2

and i

3

, we have

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (r; r � 1; r � 1) :

If d � s is a not permutation of s, then we are done. Suppose then that d � s is a

permutation of s. We then must have

�

�

�

f` : s

i

`

= 0g

�

�

�

=

�

�

�

f` : d

i

`

� s

i

`

= 0g

�

�

�

: (34)

Let i

0

1

= i

1

, i

0

2

= i

3

, i

0

3

= i

2

and i

0

`

= i

`

for ` � 4, and let t = (t

i

)

i2I

be de�ned by

(26) for these i

0

1

; : : : ; i

0

N

. Note that

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (r; r; r � 2) :
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Sin
e r > 2, if (34) holds, then the same argument as in the non-regular 
ase shows

that

�

�

�

n

` : t

i

0

`

= 0

o

�

�

�

6=

�

�

�

n

` : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

implying that d� t is not a permutation of t. �

Proof of Lemma 7. We �rst show that if (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) >

N

X

i=1

min fq

�

i

; v

0

g and �

B

(p

�

; q

�

; �) >

N

X

i=1

min fp

�

i

; v

0

g: (35)

By Lemma 4, for any s 2 S, seller A's payo� under (p

�

; q

�

) satis�es

�

A

(p

�

; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g:

Rearranging, we get for any s 2 S,

�

A

(p

�

; q

�

; �) �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

+

X

i

minfq

�

i

; v

d

i

�s

i

g

�

N

X

i=1

(v

s

i

� v

d

i

�s

i

) +

N

X

i=1

minfq

�

i

; v

0

g:

When G is neither 
y
li
 or 
omplete, there exists by Lemma 6 an s 2 S su
h that

the �rst term on the right-hand side is > 0. Hen
e, the �rst inequality in (35) must

hold. The proof for the se
ond inequality is similar.

a) If min

i

q

�

i

� 0, then �

A

(p

�

; q

�

; �) = 0 �

P

i

min fq

�

i

; v

0

g, 
ontradi
ting (35).

b) If max

i

q

�

i

� v

0

, then �

A

(p

�

; q

�

; �) �

P

i

q

�

i

=

P

i

minfq

�

i

; v

0

g, 
ontradi
ting

(35).


) The inequality max

i

q

�

i

> v

0

follows from (b) above sin
e I

B

(p

�

; q

�

; �) = I implies

�

A

(p

�

; q

�

; �) = 0 and 0 � �

B

(p

�

; q

�

; �) =

P

i

q

�

i

. If v

d

i

� q

�

i

< v

0

for some i,

then any p su
h that p

i

= v

0

� " and p

�i

= 0 for 0 < " < q

�

i

� v

d

i

+ v

0

would

indu
e buyer i to swit
h to A and hen
e is a pro�table deviation for seller A.

To see that v

D

> 2v

0

, note �rst that min

i

(v

d

i

� q

�

i

) � v

0

in parti
ular implies

that max

i

q

�

i

� v

D

� v

0

. Hen
e, if v

D

� 2v

0

, we have a 
ontradi
tion to the �rst

statement sin
e max

i

q

�

i

� v

D

� v

0

� v

0

. �
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Proof of Proposition 8. Suppose that G is neither 
y
li
 or 
omplete, and sup-

pose that seller B attra
ts all the buyers in an SPE (p

�

; q

�

; �) su
h that q

�

1

= � � � =

q

�

N

. Then sin
e �

A

(p

�

; q

�

; �) = 0, Lemma 7(1) implies that q

�

1

= � � � = q

�

N

=

min

i

q

�

i

< 0. Then, however, �

B

(p

�

; q

�

; �) < 0, a 
ontradi
tion. �

Proof of Proposition 9 It suÆ
es to show that in ea
h 
lass of networks, (p

�

; q

�

; �)

is an SPE when (p

�

; q

�

) = (0; 0) and the buyers' strategy pro�le � is su
h that

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (p

�

; q

�

),

�

A

(p; q) if p = p

�

and q 6= q

�

,

�

B

(p; q) if p 6= p

�

and q = q

�

.

In other words, all buyers 
hoose B under (p

�

; q

�

) = (0; 0), and when one of the

�rms deviates to a non-zero pri
e ve
tor, the buyers 
oordinate on the extreme NE

whi
h least favors the deviating seller. In what follows, we show that seller A has no

pro�table deviation. A symmetri
 argument shows that seller B has no pro�table

deviation.

1) G is a 
y
le.

Suppose that seller A deviates to p 6= p

�

. Let Q

k

= Q

k

(p; q

�

) be the set of buyers

for whom x

i

= A is dominant in round k under (p; q

�

) as de�ned in (4). By the

de�nition of �

B

, buyer i 
hooses A if and only if x

i

= A is iteratively dominant:

I

A

(�

B

(p; q

�

)) = [

K

k=1

Q

k

:

Sin
e G is 
y
li
, d

i

= jN

i

j = 2, where N

i

is the set of neighbors of i. Re
all that

�

k

i

=

�

�

�

N

i

\

n

j : fAg = S

k�1

j

o

�

�

�

=

�

�

�

N

i

\

�

[

k�1

`=1

Q

`

�

�

�

�

and �

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

denote the number of neighbors of i for whom x

i

= A is dominant in round k � 1

or earlier, and x

i

= B is undominated in S

k�1

, respe
tively. Sin
e q

�

i

= 0, x

i

= ; is

dominated by x

i

= B in S

0

for any buyer i. It follows that B 2 S

k�1

if and only if

fAg ( S

k�1

i

, and hen
e that

N

i

\ fi : B 2 S

k�1

g = N

i

\

�

[

k�1

`=1

Q

`

�

( �

k

i

= 2� �

k

i

:

Suppose now that i 2 Q

k

. Then we have by (7),

v

�

k

i

� p

i

> v

2��

k

i

, p

i

< v

�

k

i

� v

2��

k

i

:
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In parti
ular, i 2 Q

1

in round 1 if p

i

< v

0

� v

2

, and i 2 Q

k

in round k > 1 either if

(i) p

i

< 0 and exa
tly one of his two neighbors has already 
hosen A (�

k

i

= 1), or

(ii) p

i

< v

2

� v

0

and both his neighbors have already 
hosen A (�

k

i

= 2). Note in

parti
ular that if buyer i �nds x

i

= A dominant when neither of his neighbors have

already 
hosen A, then i 2 Q

1

.

Seller A's payo� under (p; q

�

; �) hen
e satis�es

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

< jQ

1

j(v

0

� v

2

) + (v

2

� v

0

)

K

X

k=2

�

�

�

fi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2g

�

�

�

:

Sin
e no buyer �nds A dominant in round k � 2 if neither of his neighbors has

already 
hosen A, the number of 
omponents (i.e, 
onne
ted 
lusters of buyers) in

[

k�1

`=1

Q

`

is less than or equal to that in Q

1

for any k. It follows that

K

X

k=2

jfi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2gj � jQ

1

j:

We 
an therefore 
on
lude that �

A

(p; q

�

; �) � 0 and hen
e that p is not a pro�table

deviation.

2) G is 
omplete.

De�ne Q

k

= Q

k

(p; q

�

) (k = 1; : : : ;K) as above. Denote by �

k

the number �

k

of

buyers who have 
hosen A in rounds 1; : : : ; k � 1:

�

k

=

k�1

X

`=1

jQ

`

j :

Sin
e G is 
omplete, for any buyer i, the number �

k

i

of i's neighbors who have 
hosen

A equals �

k

. Furthermore, by Proposition 3, we only need 
onsider p su
h that ea
h

Q

k


ontains a single buyer. (If Q

k


ontains two or more buyers, then sin
e G is


omplete, those buyers are adja
ent.) Hen
e, without loss of generality, Q

k

= fkg

for ea
h k = 1; : : : ; N . For k = 1; : : : ;K, we also have

p

k

< v

�

k

� v

N�1��

k

:

Seller A's payo� under (p; q

�

; �) hen
e satis�es

�

A

(p; q

�

; �) =

N

X

k=1

N

X

k=1

p

k

<

K

X

k=1

�

v

�

k

� v

N�1��

k

�

: (36)
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It is then straightforward to verify that the right-hand side equals zero. Hen
e,

seller A has no pro�table deviation. �

Proof of Proposition 10. We will 
onstru
t an SPE (p

�

; q

�

; �) in whi
h (p

�

; q

�

)

is as given in the proposition, and

�(p; q) =

8

<

:

�

B

(p; q) if q = q

�

,

�

A

(p; q) otherwise.

Sin
e �(p

�

; q

�

) is B-maximal and p

�

= q

�

, no buyer 
hooses A. Furthermore, no

buyer 
hooses ; sin
e x = (B; : : : ; B) yields non-negative payo�s to all buyers. It

follows that seller B monopolizes the market following (p

�

; q

�

).

Consider any deviation p 6= p

�

by seller A. Sin
e it indu
es the B-maximal NE

�

B

(p; q

�

), the set of buyers who 
hoose A equals I

A

(�(p; q

�

)) = [

K

k=1

Q

k

, where

Q

k

= Q

k

(p; q

�

) is the set of buyers i for whom x

i

= A is dominant in round k under

(p; q

�

) as de�ned in (4). For any J � I, de�ne

N

J

= [

j2J

N

j

to be the 
olle
tion of neighbors of buyers in J . Let also Q

0

= ; and N

;

= ;.

Step 1. If i 2 Q

k

for some k � 2, then N

i

\ Z

k�1

6= ;.

If N

i

\Z

k�1

= ;, then for any j 2 N

i

su
h that B 2 S

k�2

j

, x

j

= B is undominated

in S

k�2

by the de�nition of Z

k�1

. It follows that N

i

\Q

k�1

= ;,

�

k�1

i

=

�

�

�

N

i

\ [

k�2

`=0

Q

`

�

�

�

=

�

�

�

N

i

\ [

k�1

`=0

Q

`

�

�

�

= �

k

i

;

and

�

k�1

i

=

�

�

�

N

i

\

n

j : B 2 S

k�2

j

o

�

�

�

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

= �

k

i

:

Hen
e, x

i

= A 
annot be
ome dominant in S

k�1

when it is not dominant in S

k�2

.

In other words, i =2 Q

k

.

Step 2. Suppose that i 2 Q

k

for some k � 2.

a) If i 2 I

1

, then N

i

\Q

k�1

6= ;.

Take any j 2 N

i

\ Z

k�1

, whi
h is 6= ; by Step 1.

For any j 2 I

2

, x

j

= ; is dominated by x

j

= B in S

0

sin
e q

�

j

> 0. Hen
e,

S

`

j

� fA;Bg for ` � 1. The fa
t that j 2 Z

k�1

then implies that x

j

= A is

dominant in S

k�2

: j 2 Q

k�1

.
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b) If i 2 I

2

, then there exists N

i

\

�

Q

k�1

[

�

N

Q

k�2

n [

k�2

`=1

Q

`

��

6= ;.

Take any j 2 N

i

\ Z

k�1

. Sin
e x

j

= B is dominated in S

k�2

, we have

v

�

k�1

j

� q

�

j

< max

n

v

�

k�1

j

� p

j

; 0

o

:

If v

�

k�1

j

� p

j

> 0, then x

j

= A is dominant in S

k�2

so that j 2 Q

k�1

. If

v

�

k�1

j

� p

j

� 0, then v

�

k�1

j

� q

�

j

< 0 implies that �

k�1

j

< d

j

sin
e q

�

j

= v

d

j

� v

0

.

On the other hand, sin
e B 2 S

k�2

j

, x

j

= B is undominated in S

k�3

. Hen
e, we

have j =2 [

k�2

`=1

Q

`

, and also

v

�

k�2

j

� q

�

j

� max

n

v

�

k�2

j

� p

j

; 0

o

� 0;

whi
h shows that �

k�2

j

= d

j

. It follows that for some neighbor m 2 I

2

of j,

B 2 S

k�3

m

but B =2 S

k�2

m

. Sin
e x

m

= B 
an be dominated only by x

m

= A for

m 2 I

2

, this implies that m 2 Q

k�2

. Therefore, j 2 N

Q

k�2

n

�

[

k�2

`=1

Q

`

�

.

Step 3. If i 2 I

1

, then �

k

i

= d

i

� �

k

i

.

If i 2 I

1

, N

i

� I

2

. Sin
e q

�

j

< 0 for any j 2 I

2

, x

j

= ; is dominated by x

j

= B

in S

0

for any su
h j. It follows that B 2 S

k�1

j

if and only if B 2 S

k�2

j

and x

j

= B

is not dominated by x

j

= A in S

k�2

. Hen
e, we have by indu
tion,

N

i

\

n

j : B 2 S

k�1

j

o

= N

i

\

n

j : B 2 S

k�2

j

and j =2 Q

k�1

o

= N

i

\

n

j : B 2 S

k�3

j

and j =2 Q

k�2

[Q

k�1

o

= � � �

= N

i

n [

k�1

`=1

Q

`

:

This shows that �

k

i

= d

i

� �

k

i

.

Step 4. If �

k

i

� 1 for some i 2 I

2

\Q

k

and k � 1, then �

A

(p; q

�

) < 0.

Sin
e �

1

i

= 0 and �

1

i

= d

i

, v

ap

1

i

� v

�

1

i

+ q

�

i

= 0 for i 2 I

1

\Q

1

. Hen
e, i 2 I

1

\Q

1

implies that p

i

< 0 by (7). On the other hand, sin
e �

k

i

= d

i

� �

k

i

by Step 3 and

�

k

i

� 1 for k � 2 by Step 2(a), we have �

k

i

< d

i

for i 2 I

1

\ Q

k

for k � 2. Hen
e,

under approximate linearity,

v

ap

k

i

� v

�

k

i

+ q

�

i

= v

ap

k

i

� v

�

k

i

+ v

d

i

� v

0

� v

�

k

i

+ d

i

� �

k

i

> v

�

k

i

:
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By (7), then i 2 I

1

\Q

k

for k � 2 implies that p

i

< v

�

k

i

. It follows that seller A's

payo� �

A

under (p; q

�

) satis�es

�

A

(p; q

�

)

<

K

X

k=1

X

i2Q

k

p

i

=

K

X

k=2

X

i2I

1

\Q

k

v

�

k

i

+

K

X

k=1

X

i2I

2

\Q

k

�

v

�

k

i

� v

�

k

i

+ v

0

� v

d

i

�

=

X

i2I

2

\Q

1

v

0

+

K

X

k=2

X

i2Q

k

v

�

k

i

�

K

X

k=1

X

i2I

2

\Q

k

�

v

d

i

� v

0

�

�

K

X

k=1

X

i2I

2

\Q

k

v

�

k

i

:

(37)

We will show that �

A

(p; q

�

) � �h when the externalities are h-linear and �

k

i

� 1 for

some i 2 I

2

\ Q

k

and k � 1. This will prove the statement when the externalities

are "-
lose to h-linear for " > 0 suÆ
iently small sin
e �

A

(p; q

�

) is 
ontinuous in ".

Under h-linearity, we 
an rewrite (37) as:

�

A

(p; q

�

) < h

K

X

k=2

X

i2Q

k

�

k

i

� h

K

X

k=1

X

i2I

2

\Q

k

d

i

� h

K

X

k=1

X

i2I

2

\Q

k

�

k

i

:

Note now that

X

i2Q

k

�

k

i

=

X

i2Q

k

�

�

�

N

i

\

�

[

k�1

`=1

Q

`

�

�

�

�

= #links between Q

k

and [

k�1

`=1

Q

`

,

and hen
e that

K

X

k=2

X

i2Q

k

�

k

i

= #links within [

K

`=1

Q

`

= #links from I

2

\

�

[

K

`=1

Q

`

�

to I

1

\

�

[

K

`=1

Q

`

�

� #links from I

2

\

�

[

K

`=1

Q

`

�

to I

1

=

K

X

k=1

X

i2I

2

\Q

k

d

i

:

It follows that if �

k

i

� 1 for some i 2 I

2

\Q

k

and k � 1,

�

A

(p; q

�

) < �h

K

X

k=1

X

i2I

2

\Q

k

�

k

i

� �h:
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Step 5. IfN

i

n[

k�1

`=0

Q

`

6= ; and i 2 Q

k

for some k � 1 and i 2 I

2

, then �

A

(p; q

�

) < 0.

If B 2 S

k�1

j

for some j 2 N

i

n [

k�1

`=0

Q

`

6= ;, then

�

k

i

=

�

�

�

N

i

\

n

j : B 2 S

k�1

j

o

�

�

�

� 1:

Suppose then that B =2 S

k�1

j

for every j 2 N

i

n [

k�1

`=0

Q

`

6= ;, and take any su
h

j. Sin
e q

�

j

= v

d

j

� v

0

, B =2 S

k�1

j

implies that there exists m 2 N

j

� I

2

su
h that

B =2 S

k�2

m

. Sin
e x

m

= ; is dominated by x

m

= B for any su
h m, B =2 S

k�2

m

implies

S

k�2

m

= fAg, or equivalently, m 2 [

k�2

`=0

Q

`

. It follows that N

j

\ [

k�2

`=0

Q

`

6= ;. Take

the smallest k

�

� k� 2 su
h that N

j

\Q

k

�

6= ; and i

�

2 N

j

\Q

k

�

. Then B 2 S

k

�

�1

j

and hen
e �

k

�

i

�

� 1.

Step 6. If Q

k

\ I

1

6= ; for some k � 2, then �

A

(p; q

�

) < 0.

Let i 2 Q

k

\ I

1

. We 
an take j 2 N

i

\Q

k�1

6= ; by Step 2(a). Sin
e i =2 [

k�2

`=0

Q

`

,

we have N

j

n [

k�2

`=0

Q

`

6= ;. It then follows from Step 3 that �

A

(p; q

�

) < 0.

Step 7. If Q

k

\ I

2

6= ; for some k � 3, then �

A

(p; q

�

) < 0.

Let i 2 Q

k

\ I

2

. We 
an take j 2 N

i

\

�

Q

k�1

[

�

N

Q

k�2

n [

k�2

`=1

Q

`

��

6= ; by Step

2(b). If j 2 Q

k�1

, then �

A

(p; q

�

) < 0 by Step 6 sin
e j 2 I

1

. If j 2 N

Q

k�2

n[

k�2

`=1

Q

`

,

then there exists m 2 I

2

su
h that m 2 N

j

\Q

k�2

. Sin
e j 2 N

m

n[

k�2

`=1

Q

`

, we have

�

A

(p; q

�

) < 0 by Step 5.

Step 8. If Q

1

� I

1

, Q

2

� I

2

, and Q

k

= ; for k � 3, then �

A

(p; q

�

) � 0.

First, if N

i

n Q

1

6= ; for some i 2 Q

2

, then �

A

(p; q

�

) < 0 by Step 5. Suppose

then that N

i

� Q

1

for every i 2 Q

2

. In this 
ase, �

2

i

= d

i

and �

2

i

= 0 for every

i 2 Q

2

, and hen
e

�

A

(p; q

�

) <

X

i2Q

1

max

n

v

0

� v

d

i

+ q

�

i

; 0

o

+

X

i2Q

2

max

n

v

d

i

� v

0

+ q

�

i

; 0

o

= 0:

Proof of Proposition 12. Let

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

When the externalities are "-
lose to h-linear,

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

=

N

X

i=1

n

(v

s

i

� s

i

h)�

�

v

d

i

�s

i

� (d

i

� s

i

)h

�

� h ((d

i

� s

i

)� s

i

)

o

< 2N";
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and hen
e

Æ < 2N": (38)

Let (I

1

; I

2

) be the partition of the buyer set I, and let i

A

2 I

1

and i

B

2 I

2

be the


ore buyers of the respe
tive sets:

jN

i

A

\ I

1

j > jN

i

A

\ I

2

j and jN

i

B

\ I

2

j > jN

i

B

\ I

1

j.

We spe
ify (p

�

; q

�

; �) as follows:

(p

�

i

; q

�

i

) =

8

>

>

>

<

>

>

>

:

(Æ;�Æ) if i = i

A

,

(�Æ; Æ) if i = i

B

,

(0; 0) otherwise,

and

�(p; q) =

8

>

>

>

>

>

<

>

>

>

>

>

:

(A; : : : ; A

| {z }

I

1

; B; : : : ; B

| {z }

I

2

) if (p; q) = (p

�

; q

�

),

�

B

(p; q) if p 6= p

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

Note that �

A

(p

�

; q

�

; �) = �

B

(p

�

; q

�

; �) = Æ.

We �rst show that the buyers' a
tion pro�le following (p

�

; q

�

) is a NE. If i 2

I

1

n fi

A

g, then x

i

= A is a best response sin
e

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� v

jN

i

\I

2

j

= v

jN

i

\I

2

j

� q

i

:

If i = i

A

, then jN

i

\ I

1

j > jN

i

\ I

2

j so that

v

jN

i

\I

1

j

� v

jN

i

\I

2

j

=

�

v

jN

i

\I

1

j

� hjN

i

\ I

1

j

�

�

�

v

jN

i

\I

2

j

� hjN

i

\ I

2

j

�

+ h fjN

i

\ I

1

j � jN

i

\ I

2

jg

� h� 2":

Hen
e, if we take

�" =

h

2(2N + 1)

; (39)

then for any " < �", (38) implies that

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� Æ > v

jN

i

\I

2

j

+ Æ = v

jN

i

\I

2

j

� q

i

:

The symmetri
 argument shows that x

i

= B is a best response for ea
h i 2 I

2

following (p

�

; q

�

).
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We will next show that seller A has no pro�table deviation. Let p be any

deviation by seller A, and Q

k

= Q

k

(p; q

�

) be the set of buyers i for whom x

i

= A

is a dominant a
tion in round k under (p; q

�

) as de�ned in (4). Sin
e the buyers

play the B-maximal NE �

B

(p; q

�

), buyer i 
hoose A if and only if i 2 [

K

k=1

Q

k

. By

Lemma 3, we may assume that no buyers in Q

k

are adja
ent.

Suppose that i 2 Q

k

. For any neighbor j 2 N

i

of i, we have

j =2 [

k�1

`=1

Q

`

) B 2 S

k�1

j

: (40)

We 
an see that (40) holds as follows: First, take j 6= i

B

. Sin
e then q

�

j

� 0,

x

j

= B is not dominated by x

j

= ;. Hen
e, if x

j

= A is not dominant in S

`�1

for

` = 1; : : : ; k (i.e., j =2 [

k�1

`=1

Q

`

), then B 2 S

k�1

j

. On the other hand, if j = i

B

, then

q

�

j

= Æ < 2N" < h = v

1

under approximate linearity. Furthermore, i 2 Q

k

implies

that fAg 6= S

k�1

i

. Sin
e i 6= i

B

, we have B 2 S

k�1

i

by the pre
eding argument. It

follows that x

j

= B is not dominated by x

j

= ; in S

`�1

for ` = 1; : : : ; k sin
e

v

�

`

j

� q

�

i

� v

1

� Æ > 0;

where �

k

j

=

�

�

N

j

\

�

m : B 2 S

k�1

m

	

�

�

� 1. Hen
e, if x

j

= A is not dominant in S

`�1

for ` = 1; : : : ; k (i.e., j =2 [

k�1

`=1

Q

`

), then B 2 S

k�1

j

.

Re
alling that

�

k

i

=

�

�

�

N

i

\

�

[

k�1

�=1

Q

�

�

�

�

�

equals the number of i's neighbors for whom A is dominant prior to round k, we


on
lude from (40) that �

k

i

= d

i

� �

k

i

. Hen
e, (7) shows that if i 2 Q

k

, then p

i

satis�es

p

i

< min fv

�

k

i

� v

d

i

��

k

i

+ q

�

i

; v

�

k

i

g � v

�

k

i

� v

d

i

��

k

i

+ q

�

i

;

whi
h in turn implies that seller A's payo� �

A

under (p; q

�

) satis�es

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

<

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

�

+ Æ:

(41)

We will show that �

A

(p; q

�

) � 0 for any p by 
onsidering the following two 
ases

separately.
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Suppose �rst that [

K

k=1

Q

k

( I. Sin
e the right-hand side of (41) is 
ontinuous

in ", if we show that it is less then �h under exa
t linearity, then �

A

(p; q

�

) < 0

holds under approximate linearity. Under exa
t linearity, (41) be
omes

�

A

(p; q

�

; �) <

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

�

+ Æ

= h

K

X

k=1

X

i2Q

k

�

2�

k

i

� d

i

�

:

Note that

K

X

k=1

X

i2Q

k

�

k

i

= #links within [

K

k=1

Q

k

;

and that

K

X

k=1

X

i2Q

k

d

i

= 2� (#links within [

K

k=1

Q

k

)

+ #links from [

K

k=1

Q

k

to I n [

K

k=1

Q

k

:

It follows that

�

A

(p; q

�

; �) < (�h)�#links from [

K

k=1

Q

k

to I n [

K

k=1

Q

k

� �h;

where the inequality follows from the fa
t that [

K

k=1

Q

k

( I.

Suppose next that [

K

k=1

Q

k

= I. In this 
ase,

P

K

k=1

P

i2Q

k

q

�

i

= 0 by de�nition.

Hen
e,

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

� Æ = �

A

(p

�

; q

�

; �);

where the inequality follows from the de�nition of Æ. �
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