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Abstract

Auctions are a popular and prevalent form of trading mechanism, despite the restric-

tion that the seller cannot price-discriminate among potential buyers. To understand

why this is the case, we consider an auction-like environment in which a seller with an

indivisible object negotiates with two asymmetric buyers to determine who obtains the

object and at what price. The trading process resembles the Dutch auction, except that

the seller is allowed to offer different prices to different buyers. We show that when the

seller can commit to a price path in advance, the optimal outcome can generally be im-

plemented. When the seller lacks such commitment power, however, there instead exists

an equilibrium in which the seller’s expected payoff is driven down to the second-price

auction level. Our analysis suggests that having the discretion to price discriminate is not

necessarily beneficial for the seller, and even harmful under plausible conditions, which

could explain the pervasive use of auctions in practice.
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1 Introduction

Auctions, in various formats, are a very popular and prevalent form of trading mechanism

when a seller has an indivisible object up for sale. At a glance, however, the reason for their

popularity is not so obvious because it is well known that standard auctions fail to realize

the optimal (revenue-maximizing) outcome in many instances. The case in point is when

buyers are ex ante asymmetric with respect to their valuations for the object: in a case like

this, the seller must bias against “strong buyers” and level the playing field to achieve the

optimal outcome (Myerson, 1981).1 Since buyers in most trading environments are in fact

heterogenous in terms of readily observable characteristics, such as age, gender, occupation

and so on, it remains to be seen why sellers usually prefer auctions to more flexible forms of

negotiation where they can apparently retain a greater degree of discretion in price setting,

including the ability to price discriminate among potential buyers.

To address this issue, this paper considers a less structured negotiation process in which

a seller with an indivisible object negotiates with two buyers to determine who obtains the

object and at what price. The two buyers are ex ante asymmetric in that their private

valuations for the object are drawn independently from different distributions. The seller

offers a pair of prices at the beginning and gradually lowers them over time until one of

the buyers accepts or the seller terminates the negotiation without selling the object. The

trading environment resembles the Dutch auction (and in fact encompasses it as a special

case), except that the seller is allowed to offer different prices to different buyers at any point

in time. Within this environment, we evaluate the value of price discrimination, i.e., the

extent to which the seller can benefit from having the discretion to offer different prices to

different buyers.

We largely obtain two results in this setup. First, we show that the seller can implement

any individually rational and incentive compatible mechanism when she can commit to a

pair of price sequences, or simply a “price path,” in advance, even though she is restricted to

offer weakly descending price sequences (Theorem 1). This result immediately implies that

the seller can implement Myerson’s optimal outcome with full commitment power, suggesting

that the value of price discrimination cannot be negative in general and is strictly positive in

1Between two buyers, a buyer is weaker if his value distribution is first-order stochastically dominated by
the other buyer’s.

1



the face of asymmetric buyers. The optimal outcome necessarily involves price discrimination

between the two buyers, and is not efficient in that the seller might not sell the object to the

buyer with the highest valuation. By carefully tailoring a price path, the seller can improve

upon the Dutch auction in which she is required to call out a single price for both of the

buyers.

In a typical negotiation environment, however, it is usually prohibitively costly, or simply

infeasible, for the seller to fully commit to a particular price path in advance. We thus shift

our attention to the case where the seller lacks such commitment power, and all the price

offers must be sequentially rational. We show that, in the case without commitment, there

instead exists an equilibrium whose allocation coincides with that of the second-price auction

(Theorem 2). Since the seller’s payoff in the second-price auction is lower than in the Dutch

auction under many plausible circumstances (Vickrey (1961) and Maskin and Riley (2000)),

this result implies that the value of price discrimination can even be negative in the absence

of commitment power. Moreover, we also show that with some reasonable restrictions on

the strategy space and the buyers’ type distributions, this outcome is the unique equilibrium

in this environment (Theorem 3). In light of these results, we argue that the seller would

lose very little, and even gain under plausible conditions, by giving up the discretion to price

discriminate, which could explain the pervasive use of auctions in practice.

To see why the lack of commitment may drive the equilibrium payoff down to the second-

price auction level, recall that when there are two asymmetric buyers, Myerson’s optimal

mechanism must be designed in a way that even when the weak buyer’s realized valuation is

slightly lower than the strong buyer’s, the object is still allocated to the weak buyer. The

optimal mechanism is, however, vulnerable to the commitment problem because the seller

inevitably gains additional information about the buyers’ valuations from their rejections to

which she cannot resist reacting. The key here is that after each rejection, the buyers become

more and more “symmetric” from the seller’s point of view, which diminishes the seller’s

incentive to favor the weak buyer and forces the seller to deviate from the initially intended

optimal path. Knowing this, the buyers no longer bid as aggressively as they would under

the optimal mechanism. We show that in the limit case where the seller can incorporate new

information and revise the price offers continuously, the equilibrium eventually converges to

the second-price auction outcome in which the buyer with the higher valuation always obtains

the object.
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Related Literature: The paper is in spirit most closely related to the literature which com-

pares the performances of auctions and other trading mechanisms. Wang (1993) compares

standard auctions with posted-price selling in an environment where buyers arrive stochas-

tically over time and shows that auctions are generally superior absent any auctioning costs.

Manelli and Vincent (1995) consider a sequential offer process in which the order of buyers

with whom the seller negotiates and the prices offered are determined in advance, and the

seller receives, at most, one chance to negotiate with each buyer.2 They then find that the

negotiation of this form outperforms the second-price auction from the seller’s perspective

under certain conditions.3 Bulow and Klemperer (1996) compare an English auction with

no reserve price and an optimally-structured negotiation with one less bidder and show that

the auction is always preferable under plausible assumptions. Bulow and Klemperer (2009)

consider a sequential negotiation process in which potential buyers in turn decide whether

to enter the bidding and compare this with a standard English auction. They find that

although the sequential negotiation is always more efficient, the auction usually generates

higher revenue because it is more conducive to entry. The current paper also addresses a

similar question, comparing an (asymmetric) auction with a particular form of negotiation,

but approaches from a different perspective with emphasis on the role of price discrimination.

Since our model describes a dynamic trading process without commitment, it also has

an inherent connection with the literature on durable goods monopoly. There is a critical

difference, however, between the durable-goods problem and the current setup. In the pro-

totype durable-goods problem, the monopolist has unlimited supply of the good, making it

impossible to stop at the right moment. In contrast, an important feature of our model is

that the seller only has limited supply (one unit) compared to potential demand (two buyers),

which works as a strong commitment device just like in auction settings. Due to this feature,

the seller can have the buyers compete against one another and extract rents from them even

when they are infinitely patient as we assume here.

In the sense that the seller has only limited supply, the paper is more closely related to the

2To avoid confusion, we consistently apply the terms as specified in our model by referring to the informed
party as the buyers and the uninformed party as the seller.

3In this paper, we show that with independent private value, if the number of chances to negotiate is
unlimited and the price path is determined in advance, Myerson’s optimal outcome can always be implemented,
meaning that the negotiation always outperforms the second-price auction. This result thus indicates that
the key driving force behind their work is the limited number of chances to negotiate in the independent
private-value setting.
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so-called revenue management problem which examines the optimal pricing strategy when the

seller has finitely many goods to sell before a deadline. While much of the literature assumes

perfect commitment power, several recent works (Horner and Samuelson, 2011; Chen, 2012;

Dilme and Li, 2012) analyze this problem when the seller lacks the ability to commit to

any price path in advance. Aside from the fact that our model has no exogenously imposed

deadline, the critical departure from this strand of literature is that potential buyers are ex

ante symmetric in those previous works, so that there is no inherent need to price discriminate

among the buyers.4 In contrast, the two buyers in our setup are ex ante asymmetric, where

their valuations (or their “types”) are possibly drawn from different distributions, so that the

ability to price discriminate is supposed to be highly valuable.

On the more technical side, to formalize the negotiation environment of our interest, we

employ a continuous-time model in which the seller continuously adjusts the prices offered

to the two buyers. The technique adopted to analyze the model is related to the theory of

differential games originated by Isaacs (1954). Most applications of this technique involve

complete-information games, on issues such as oligopoly games with dynamic prices, R&D

competition, and capital accumulation (e.g., Dockner et al., 2000). Recently, the technique

has also been applied to settings under incomplete information as in ours (see, e.g., Bolton

and Harris, 1999; Bergemann and Valimaki, 1997, 2000, 2002; Decamps and Mariotti, 2004).

The remainder of the paper is organized as follows. Section 2 describes the model. Section

3 characterizes the optimal outcome that the seller can achieve when commitment is possible.

Section 4 characterizes the equilibrium without commitment and proves that this equilibrium

is unique under some mild conditions. Section 5 concludes the paper. All the proofs are

relegated to Appendix A.

2 The Model

Environment: Time is continuous and extends from zero to infinity. We consider an open-

ended process in which a seller with an indivisible object negotiates with two asymmetric

buyers, denoted by i = 1, 2, to determine who obtains the object and at what price. All parties

are risk neutral and there is no time discounting. Each buyer has a private valuation Xi for

the object, which is drawn from some distribution Fi over the interval Wi ≡ [wi, wi], wi ≥ 0

4Dilme and Li (2012) consider a model with two types, high and low, where high-type buyers flow into the
market at a constant rate.
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with its corresponding density fi. We make the following assumption on the distribution

functions.

Assumption 1 For i = 1, 2, ψi(x) ≡ x − 1−Fi(x)
fi(x)

, i.e., the virtual valuation, is strictly

increasing in x and fi(x) > 0 for all x ∈Wi.

Note that the buyers are possibly asymmetric in that their valuations might be drawn

from different distributions. Letting xi denote the realized valuation and mi the payment to

the seller, buyer i’s payoff is given by zixi−mi where zi = 1 if buyer i obtains the object and

zi = 0 otherwise. The object yields no value to the seller who simply maximizes the expected

payment she collects from the buyers.

Negotiation process: At each instance t, the seller offers a pair of (possibly asymmetric)

prices p(t) ≡ (p1(t), p2(t)), where pi(t) denotes the price offered to buyer i: strictly for

expositional purposes, we refer to each pi(t) as a price sequence and to p(t) as a price path.

Offers are made in public, so that each buyer knows not only the price offered to him but

also the price offered to the other buyer. The negotiation process ends either when one of

the buyers accepts or when the seller decides to terminate the process without selling the

object. If both of the buyers accept at the same time, each of them obtains the object with

probability one half. We assume that the seller adjusts the price offers continuously over

time, so that each price sequence pi(t) cannot make discrete jumps.

Assumption 2 The price sequence for each buyer, pi(t), is continuous and weakly decreasing

in t.

The negotiation process described above includes the Dutch auction as a special case, in

which case p1(t) = p2(t) is required for all t.5 Within this environment, we ask whether and

to what extent the seller can benefit from this larger degree of discretion in price setting, i.e.,

the discretion to price discriminate, both with and without commitment. We say that the

value of price discrimination is positive (negative) if the seller’s expected payoff when she is

allowed to price discriminate increases (decreases) from the payoff level which she can attain

by running the Dutch auction.

5As long as p1(t) = p2(t) is satisfied for all t, any pair of weakly descending price sequences would replicate
the Dutch-auction outcome.
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3 Optimal Outcome with Commitment

In order to investigate the role of commitment power in this negotiation environment, we first

consider the case, as a benchmark, where the seller can fully commit to any price path before

the negotiation begins. The allocation rule of this trading environment specifies who obtains

the object for each pair of realized valuations (x1, x2). In particular, the allocation rule of any

incentive compatible and individually rational mechanism can be written as x̂2(x1), where

x̂2(x1) indicates the cutoff type of buyer 2 as a function of buyer 1’s valuation, i.e., given x1,

buyer 2 obtains the object if his valuation exceeds x̂2(x1). Given this formulation, we set up

the the seller’s problem as the one to find the optimal pair of (cutoff) buyer type sequences

rather than the one to find the pair of price sequences.6 Since the optimal mechanism may

assign zero probability to types in the lower end, we let the domain of x̂2 (x1) be [x1, w1],

x1 ≥ w1. Note that in the absence of time discounting, the timing of transaction is payoff-

irrelevant as in most standard auction environments and is hence not included in the allocation

rule. To be more precise, a price path {p̃1(αt), p̃2(αt)}, with or without commitment, results

in the same allocation for any α > 0. Throughout the analysis, therefore, we abstract away

from the time dimension.

To derive the optimal path, we first establish in Theorem 1 that, with commitment,

the seller can implement any incentive compatible and individually rational mechanism by

appropriately tailoring a pair of weakly descending price sequences. The fact that the seller

can implement Myerson’s optimal outcome with full commitment power then directly follows

from this result.

Theorem 1 With commitment, the seller can implement any incentive compatible and indi-

vidually rational mechanism.

The optimal allocation rule characterized by Myerson (1981) is to allocate the object

to the buyer whose virtual valuation is the greatest and also positive. A direct corollary

from Theorem 1 is that Myerson’s optimal outcome can be implemented with commitment.

Since the optimal outcome cannot be implemented by standard auctions in the presence of

asymmetric buyers, the result implies that the value of price discrimination is strictly positive

when the buyers are ex ante asymmetric.

6Given the allocation function which pairs the two buyer types, it is relatively straightforward to derive
the associated pair of price sequences which implements this allocation. See the proof of Theorem 1 for detail.
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Corollary 1 By committing to a specifically designed price path, the seller can implement

Myerson’s optimal outcome. With full commitment, the value of price discrimination cannot

be negative in general and is strictly positive when the buyers are ex ante asymmetric.

It is fairly straightforward to construct the optimal price path from the allocation function

x̂2(x1). The seller’s task here is simply to design a price path along which the buyer with

the higher virtual valuation always accepts earlier. Without loss of generality, assume that

ψ1 (w1) ≥ ψ2(w2). Following the notations defined above, let x1 = ψ−1
1 (0) if ψ1 (w1) < 0,

and x1 = w1 otherwise, so that the virtual valuation of buyer 1 is positive if his valuation

is greater than x1. Finally, let the function characterizing the allocation rule be x̂2 (x1) ≡

ψ−1
2 (ψ1 (x1)). Then, buyer 1 with valuation x1 has the same virtual valuation as buyer 2

with valuation x̂2 (x1), i.e., ψ1 (x1) = ψ2 (x̂2 (x1)), and given x̂2 (x1), by committing to the

price path constructed in the proof of Theorem 1, the seller can implement Myerson’s optimal

outcome.

Theorem 1 suggests that, with full commitment, the seller can accomplish various goals,

including revenue maximization, by carefully designing a pair of weakly descending price

sequences. However, as a growing body of literature on mechanism design emphasizes (see,

e.g., McAfee and Vincent, 1997; McAdams and Schwarz, 2007; Skreta, 2006, 2011; Horner

and Samuelson, 2011; Chen, 2012; Vartiainen, 2013), it is often prohibitively costly for the

seller to make full commitment in advance. It is hence crucial to see how much the seller can

gain from her discretion to offer asymmetric prices when she lacks such commitment power

at her disposal. We dedicate the next section to investigate this issue.

4 Equilibrium without Commitment

4.1 Preliminaries

We now examine the case in which the seller cannot commit to any price path, or any

“mechanism,” in advance. The problem is now substantially more complicated because every

price offer must be sequentially rational at any continuation game. In particular, to implement

the optimal outcome, the seller must have an incentive not to deviate from the initially

intended optimal path after each rejection.

Before we formally define the equilibrium concept for the non-commitment case, it is

helpful to establish some equilibrium properties which allow us to narrow down the class of
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strategies we need to consider. To be more precise, we show that any equilibrium of this

game has the following properties:

• Each buyer’s purchasing decision is characterized by a cutoff strategy; 7

• The seller does not terminate the negotiation until the object is sold.

In what follows, we prove these properties in turn.

We first show that each buyer’s strategy attains some sort of monotonicity. The first

property directly follows from the next lemma and corollary.

Lemma 1 Buyer i’s equilibrium strategy has the property that, given any history, belief, and

current price offer, if buyer i with valuation xi accepts, then buyer i with valuation higher

than xi also accepts.

The lemma implies that given any history, a player’s belief about buyer i’s valuation can

be characterized by a cutoff representing the supremum of buyer i’s valuation. Throughout

the analysis, therefore, we generically denote a player’s belief at any continuation game by

ω ≡ (w1, w2) ∈ W ≡ W1 × W2 where wi is the supremum of buyer i’s valuation. This

property in particular implies that the equilibrium allocation of this non-commitment case

can also be characterized by an allocation function x̂2(x1) which pairs the two buyer types.

We will hence attempt to characterize the seller’s strategy in terms of buyer types rather

than of prices, as we did for the commitment case. Given the set of equilibrium strategies,

it is relatively straightforward to construct the associated price path which implements the

equilibrium allocation.

We next show that although we allow the seller to terminate the negotiation at any point,

this option is never exercised in equilibrium when the seller lacks commitment power.

Lemma 2 In equilibrium, the seller never terminates the negotiation process when w1 > w1

and w2 > w2. Therefore, the object is sold with probability one.

7In a dynamic bargaining game where a seller makes offers to a buyer who discounts the future and has
private information about his value, the buyer also adopts a cutoff strategy in equilibrium. In that setting,
time functions as a screening device since different types of buyer value time differently. In our model, instead
of time, buyers are screened by the fear that they will lose the trade to a competitor, who might accept the
current price.

8



The second property suggests that the seller cannot help lowering at least one of the prices

pi to the lower bound of buyer i’s valuation wi, so that the object is sold with probability one.

This draws a clear contrast to the full-commitment case where the seller can set a reserve

price at which she terminates the negotiation without selling the object. More precisely, this

property alone suggests that Myerson’s optimal outcome cannot be implemented without

commitment if w1 −
1−F1(w1)
f1(w1)

< 0 and w2 −
1−F2(w2)
f2(w2)

< 0, in which case the object should be

left unsold with some positive probability in the optimal mechanism.

The equilibrium concept we adopt is the Markov perfect equilibrium, with the posterior

belief ω as the state variable. The two properties mentioned above, along with the notion of

the Markov perfect equilibrium, allow us to characterize the equilibrium in a clearer manner.

The strategies of the game can be defined as follows.

Buyer: Each buyer’s strategy is characterized by a set of functions {Pi,ω(xi)}ω∈W , where

Pi,ω(xi) indicates the maximum price that buyer i with valuation xi is willing to accept, given

the current belief ω. Define buyer i’s marginal strategy by Pi(wi, wj) ≡ Pi,ω(wi), i.e., the

maximum price that the cutoff type is willing to accept. Although Pi(wi, wj) does not fully

describe buyer i’s strategy, it provides enough information to characterize the equilibrium

of this game, due to our focus on continuous strategies in which the seller can adjust the

prices only continuously.8 In what follows, therefore, we simply refer to Pi(xi, xj) as buyer

i’s strategy wherever it is not confusing.

Seller: The seller’s strategy is represented by a set of functions {x2,ω(x1)}ω∈W , where

x2,ω(x1) indicates the pair of buyer types that are induced to accept at the same time,

given the current belief ω.9 Let x1,ω (x2) ≡ x−1
2,ω (x2) = inf {x1 ∈ [w1, w1] | x2,ω (x1) ≥ x2}.

4.2 The Buyer’s Problem

We begin with the buyer’s problem. Taking the seller’s strategy {x2,ω(x1)}ω∈W as given, to

satisfy buyer 1’s incentive compatibility constraints for all types, the following equation must

8Note that along the seller’s equilibrium strategy, buyer i’s strategy, i.e., Pi,ω(x) for x ∈ Wi, can be fully
derived. We will make this point when we solve the buyer’s problem in Section 4.2.

9It is certainly possible to represent the seller’s strategy by a pair of prices to be offered. An advantage of
our current approach is that the domain of the optimization problem is clearly defined. On the other hand,
if we set up the seller’s problem as the one to choose a price path, the relevant domain is not clearly defined
because there exists a path along which no buyer type would accept.
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hold:

F2 (w2) [w1 − P1 (w1, w2)] =

∫ w1

w1

F2 (x2,ω (x)) dx+ F2 (x2,ω (w1)) [w1 − P1 (w1, x2,ω (w1))] . (1)

Equation (1) comes from the revenue equivalence principle.10 The left-hand side is the ex-

pected payoff of buyer 1 with valuation w1. On the right-hand side,

F2 (x2,ω (w1)) (w1 − P1 (w1, x2,ω (w1)))

indicates the expected payoff of buyer 1 with the lowest valuation, and
∫ w1

w1
F2 (x2,ω (x)) dx is

the additional information rent received by buyer 1 with valuation w1. If the expected payoff

of buyer 1 with the lowest valuation w1 is zero, (1) is reduced to

P1 (w1, w2) = w1 −

∫ w1

w1
F2 (x2,ω (x)) dx

F2 (w2)
.

Similarly, P2 (w2, w1) must satisfy

F1 (w1) [w2 − P2 (w2, w1)] =

∫ w2

w2

F1 (x1,ω (x)) dx+ F1 (x1,ω (w2)) [w2 − P2 (w2, x1,ω (w2))] . (2)

We assume that both P1 and P2 are continuous and weakly increasing in their respective

arguments, so that the seller can implement {x2,ω(x1)}ω∈W by offering a pair of descending

price sequences.

While we only use the marginal strategies to characterize the equilibrium, it is conceptu-

ally straightforward to construct each buyer’s fully specified strategy, i.e., Pi,ω(xi) for all xi.

Given the current belief ω, and P1 (x1, x2,ω (x1)) and P2 (x2,ω (x1) , x1) satisfying equations

(1) and (2) for all x1 ∈ [w1, w1], we can prove that the following strategy is optimal for

buyer i: buyer i with valuation xi ≥ wi accepts the current price Pi (wi, wj), and buyer i

with value xi < wi waits and accepts at price Pi (xi, xj,ω (xi)).
11 This implies that given the

current belief ω, the maximum price that buyer i with valuation xi ≥ wi is willing to accept

is Pi (wi, wj), and the maximum price that buyer i with valuation xi < wi is willing to accept

10In our model, given an incentive compatible mechanism, the revenue equivalence principle implies that

qi (xi)xi −mi (xi) = qi (wi)wi −mi (wi) +

∫ xi

wi

qi (t) dt,

where mi (xi) is the expected payment of buyer i with valuation xi, qi (xi) is the probability that the buyer
obtains the object, and therefore, qi (xi)xi −mi (xi) is the expected payoff for the buyer.

11To prove this, we can apply the same argument as in the proof of Theorem 1.
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is xi − Fj(xj,ω(xi))
Fj(wj)

[xi − Pi (xi, xj,ω (xi))].
12

Finally, we can show that the buyers’ strategies, derived from (1) and (2), are robust to

the seller’s deviation from the equilibrium strategy. To see this, suppose that the seller devi-

ates and unexpectedly reaches some belief ω′ = (w′
1, w

′
2). Even in this contingency, since the

deviation is made by a player who does not have any private information, the belief about the

buyers’ valuations cannot be arbitrary and must be consistent with the buyers’ continuation

strategies which maximize their payoffs given their expectations about the seller’s continua-

tion strategy, i.e., x2,ω′ (x). Therefore, P1(x1, x2,ω′ (x1)) and P2(x2,ω′ (x1) , x1) derived from

(1) and (2) for all x1 ∈ [w1, w
′
1] continue to be optimal and characterize the two buyers’

strategies for a continuation game starting with any given ω′.

4.3 The Seller’s Problem

We now turn to the seller’s problem, which is far more complicated in the absence of com-

mitment power because every price offer must now be sequentially rational given the current

belief. The seller’s problem is defined as choosing a function x2(x1) which maximizes her

expected payoff given the current belief ω and the buyers’ strategies Pi(xi, xj), i = 1, 2, un-

der the restriction that the function be weakly increasing.13 Fixing the buyers’ strategies,

the principle of optimality then ensures that if some function x2,ω (x1) is the optimal path

for a game starting with ω, then for any continuation game starting with (x, x2,ω (x)) where

x ∈ (w1, w1), x2,ω (x1) for x1 ≤ x is also the optimal path, so that it gives a sequentially

rational solution.

More precisely, given the current belief ω and each buyer’s strategy Pi(xi, xj), the seller’s

optimal strategy x2,ω (x1) is obtained as the solution to the following problem:

x2,ω (x1) = arg max
x2(x1):[w1,w1]→[w2,w2]

∫ w1

w1

P1 (x1, x2 (x1))F2 (x2 (x1)) f1 (x1) dx1

+

∫ w2

w2

P2 (x2, x1 (x2))F1 (x1 (x2)) f2 (x2) dx2 (P1)

s.t.
dx2
dx1

≥ 0.

12Given the price p = xi − Fj(xj,ω(xi))
Fj(wj)

[xi − Pi (xi, xj,ω (xi))], buyer i with value xi feels indif-

ferent between accepting now and accepting later at price Pi (xi, xj,ω (xi)), i.e., Fj (wj) (xi − p) =
Fj (xj,ω (xi)) [xi − Pi (xi, xj,ω (xi))].

13The restriction that the seller’s strategy must be weakly increasing comes from the fact that the buyer
with the higher valuation accepts earlier.
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The first and the second integrals are the seller’s expected payoffs received from buyer 1

and buyer 2, respectively. The first integrand represents the seller’s payoff increment from

buyer 1 when he decreases x1 by dx1: the object is sold to buyer 1 at price P1 (x1, x2 (x1))

if buyer 2’s value is below x2 (x1) and buyer 1’s value is x1, which occurs with probability

F2 (x2 (x1)) f1 (x1) dx1. Similar reasoning applies to the second integrand. We derive the

seller’s optimal strategy x2,ω (x1) from (P1) for all beliefs ω ∈ W , including those off the

equilibrium path. Given the solution to this problem, we can also straightforwardly construct

the actual price path submitted by the seller (see Appendix B for more detail).

4.4 A Markov perfect equilibrium

We are now ready to obtain an equilibrium of this game. The set of strategies (P1 (x1, x2),

P2 (x2, x1), {x2,ω (x1)}ω∈W ) constitutes a Markov perfect equilibrium if:

• Taking the seller’s strategy {x2,ω(x1)}ω∈W as given, P1(x1, x2) and P2(x2, x1) solve (1)

and (2), respectively, for all (x1, x2) ∈W .

• Taking the buyers’ strategies as given, x2,ω(x1) solves (P1) for all ω ∈W ;

We now establish the next result which constitutes the main contention of the paper.

Theorem 2 When the seller cannot commit to a price path in advance, there always exists

a Markov perfect equilibrium whose allocation is the same as that of the second-price auction.

The theorem states that there always exists an equilibrium in which the seller’s expected

profit is driven down to the second-price auction level. The equilibrium is efficient, but is

more likely to favor the buyers rather than the seller.14 It is now well known that, with

asymmetric buyers, the seller’s payoff in the Dutch auction (or the first-price auction) is

greater than that in the second-price auction in a range of circumstances, including the case

where the buyers’ valuations are distributed uniformly (Vickrey, 1961; Maskin and Riley,

2000) . A striking corollary of this result, combined with this conclusion in the literature, is

14Vartiainen (2013) considers an auction setting in which both the seller and the buyers lack commitment
power and shows that the only implementable mechanism is the English auction because it reveals just the
right amount of information to the seller. Both Vartiainen’s and our results seem to suggest that mechanisms
resulting in efficient allocations are generally robust against commitment problems. Although it is only a
speculation and a lot remains to be seen at this stage, it is of some interest to explore the link between
efficiency and commitment in other contexts as well.
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that the seller could end up with a lower payoff than in the Dutch auction in the absence of

commitment power even though her strategy space is strictly larger.

Corollary 2 In the absence of commitment power, the value of price discrimination can be

negative.

To understand the intuition behind this result, consider a simple setting in which the

valuations of the two buyers are uniformly distributed on [0, w1] and [0, w2], respectively.

Assume w2 > w1, so that buyer 1 (buyer 2) is the weak (strong) buyer. To implement the

optimal mechanism in this specification, the seller must submit prices in a way to pair buyer

1 with valuation w1 with buyer 2 with valuation w1+w2
2 . Suppose that the seller starts the

negotiation with the prices which pair buyer 1 with valuation w1 with buyer 2 with valuation

w′
2 ≡ w1+w2

2 . If buyer 2 rejects this offer, the seller’s belief about buyer 2 (buyer 2’s highest

possible value) is then updated to w′
2, while she gains no relevant information about buyer 1

from the rejection, with her belief remaining at w1. At the next instance, therefore, the seller

faces a different problem in which buyer 2’s valuation is distributed on [0, w′
2], rather than

on [0, w2], in which he needs to pair buyer 1 with valuation w1 with buyer 2 with valuation

w1+w′
2

2 . By repeating this process over and over, the situation eventually converges to the

symmetric case where the valuations of both players are distributed on [0, w1]. Knowing this,

the strong buyer would not bid as aggressively as under the optimal mechanism because there

is virtually no risk of losing the trade to the weak buyer. Theorem 2 shows that this intuition

generally holds in the current trading environment.

4.5 Uniqueness of the equilibrium

In the previous subsection, we established that there always exists an equilibrium whose

allocation coincides with the second-price auction outcome when the seller cannot commit to

a price path in advance. This result does not necessarily imply, though, that the seller cannot

do any better than in the second-price auction because we do not rule out other equilibria

as possible outcomes. What is especially critical from the seller’s viewpoint is whether there

exists any other Markov perfect equilibrium in which the seller can benefit from the discretion

to price discriminate.

One way to address this question is to find a set of conditions under which the equilibrium

identified in Theorem 2 is the unique equilibrium outcome of this negotiation process. Al-
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though establishing the uniqueness of equilibrium is in general a far more challenging problem

to deal with, and especially so in our inherently dynamic setup with incomplete information,

we can nonetheless establish the uniqueness by imposing two mild (and purely technical)

restrictions, one for the seller and the other for the buyers, on the feasible sets of strategies,

as summarized below.

Assumption 3 (i) Given any belief ω, the seller’s strategy x2,ω (x1) is continuous, piecewise

differentiable on [w1, w1], and strictly increasing on the interval
(
x1,ω, x1,ω

)
where

x1,ω ≡ sup {x1 ∈ [w1, w1] | x2,ω (x1) < w2} and x1,ω ≡ inf {x1 ∈ [w1, w1] | x2,ω (x1) > w2} ;

(ii) The two functions characterizing the buyers’ strategies, C1 (w1, w2) ≡
∫ w1

w1
F2 (x2,ω (x)) dx

and C2 (w1, w2) ≡
∫ w2

w2
F1 (x1,ω (x)) dx, are continuous, and the first derivatives of C1 (x1, x2)

and C2 (x1, x2) with respect to x1 and x2 exist.

These restrictions are not at all stringent. The first restriction implies that the probability

that a buyer gets the object increases continuously with his valuation. The restriction does

not entail much loss of generality, because this is an equilibrium property presenting itself in

many mechanisms, including the first-price and second-price auctions. The second restriction

is also a natural one to impose, as it simply states that the function x2,ω (x) does not change

much when the belief ω is slightly modified, so
∫ w1

w1
F2 (x2,ω (x)) dx is continuous in w1 and

w2. Figure 1 shows several examples of this class of paths.

[Figure 1 about here]

Without loss of generality, we focus on the equilibria in which buyer 1 with valuation w1

and buyer 2 with valuation w2 get no information rent. We can then obtain the following

result which establishes the uniqueness of the equilibrium.

Theorem 3 Suppose that the two buyers’ valuations are uniformly distributed on [w1, w1]

and [w2, w2] respectively. Then, under Assumption 3, the efficient equilibrium is the unique

equilibrium.

As is well known, with asymmetric buyers, the seller’s expected payoff in the second-

price auction is lower than in the Dutch auction when the buyers’ valuations are uniformly
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distributed. The theorem thus implies that without commitment, the seller is necessarily

made worse off in this negotiation environment when she is endowed with the discretion

to price discriminate at will. Conversely speaking, this is where auctions can be especially

valuable, as they instantaneously provide credible commitment not to price discriminate,

which renders the buyers bid more aggressively and consequently raises the expected profit.

Corollary 3 Under Assumption 3, the value of price discrimination is strictly negative if

the two buyers’ valuations are uniformly distributed.

We use a simple example to illustrate what the equilibrium price path looks like and

how different types of buyer accept along the path. Suppose that the two buyers’ valuations

are uniformly distributed on [0, w1] and [0, w2], respectively. In this case, under Assumption

3, it is straightforward to show that the following set of strategies constitutes the unique

equilibrium:

x2,ω (x1) =

{
x1, for 0 ≤ x1 ≤ min {w1, w2}
w2, for min {w1, w2} < x1 ≤ w1

and Pi (wi, wj) =

{
wi −

w2
i

2wj
, if wj ≥ wi

wj

2 , if wj < wi

.

Figure 2 shows the equilibrium price path (p1, p2) submitted by the seller and the correspond-

ing cutoff path (x1, x2) when w2 > w1. Note that x2(x1) = x1 for xi ∈ [0, w1], so that the

equilibrium allocation is efficient.

[Figure 2 about here]

4.6 Why do sellers prefer auctions?

We would like to conclude the analysis by revisiting our motivating question concerning the

pervasive use of auctions, i.e., why sellers prefer auctions to more flexible forms of negotiation.

The most distinctive feature of standard auctions arguably lies in their simplicity, with the

trading process characterized by a minimal set of rules which offers both costs and benefits.

An apparent benefit of auctions is that they are easy to implement, and therefore entail low

implementation costs. There is also a drawback, however, because the simplicity of auctions

necessarily restricts the seller’s freedom to pursue strategies to maximize profit. To justify the

use of auctions, therefore, the “benefit of simplicity” must be traded off against the potential

loss of profit which stems from those restrictions.

The current paper provides a framework to evaluate the potential cost of one such restric-

tion that the seller must offer one price for all buyers and therefore cannot price discriminate
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among them.15 As we have seen, this restriction can be quite costly if the seller is endowed

with the ability to fully commit to a price path in advance. In a more realistic environment

where the seller cannot make any credible commitment, however, the restriction is not costly

after all and can even be beneficial under many plausible circumstances. In particular, under

the conditions obtained in section 4.5, the value of price discrimination must be negative,

meaning that there is no loss on the seller’s part to give up the discretion to price discriminate

even when the benefit of simplicity is negligibly small. We argue that these findings could

explain the deep-rooted popularity of auctions even in environments where potential buyers

are apparently heterogeneous.

5 Conclusion

This paper studies the environment in which a seller with an indivisible object negotiates

with two asymmetric buyers to determine who obtains the object and at what price. The

seller repeatedly submits price offers to the two buyers until one of them accepts. Unlike the

Dutch auction, the two prices offered to the two buyers can be different. We show that if

the seller can commit to a price path in advance, the payoff realized in Myerson’s optimal

mechanism is achievable. However, if commitment is not possible, there instead exists an

equilibrium in which the seller’s expected profit is driven down to the second-price auction

level. The result suggests that having the discretion to price discriminate is not beneficial

after all, and even harmful in many cases, which could explain the pervasive use of auctions

in practice.

As a final note, one important extension of our analysis is to explore whether there is any

Markov perfect equilibrium which implements Myerson’s optimal outcome. Although we do

not know of any counterexample at this point, it is a far more challenging task to formally

prove this. Still, one way to attack this problem is to characterize conditions under which the

equilibrium is unique; along with Theorem 2, this necessarily implies that the equilibrium is

always efficient. Theorem 3 thus provides a preliminary answer to this issue, showing that

asymmetric uniform distributions of the buyers’ valuations yield a sufficient condition.

15Note that our methodology and analysis can also be generalized to the n-buyer case. With commit-
ment, we can construct a set of functions {p2 (p1) , p2 (p1) , · · · , pn (p1)} specifying the relationship among
the prices to implement Myerson’s optimal outcome. Without commitment, we find a set of functions
{P1 (x1, · · · , xn) , P2 (x1, · · · , xn) , · · · , Pn (x1, · · · , xn)} and {x2,ω (x1) , x3,ω (x1) , · · · , xn,ω (x1)}ω to consti-
tute a Markov perfect equilibrium. We believe that our conclusion still holds in an n-buyer case and will
leave such exploration to future research.
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Appendix A: the proofs

Proof of Theorem 1: Given an incentive compatible and individually rational mechanism

characterized by x̂2 (x1) : [x1, w1] → [w2, w2], let

b1 (x1) ≡ x1 −

∫ x1

x1
F2 (x̂2 (x)) dx

F2 (x̂2 (x1))
for x1 ∈ [x1, w1] ,

b2 (x2) ≡ x2 −

∫ x2

x2
F1 (x̂1 (x)) dx

F1 (x̂1 (x2))
for x2 ∈ [x2, w2] ,

where x2 ≡ x̂2 (x1), x̂1 (x) ≡ x̂−1
2 (x). If Fj (x̂j (xi)) = 0, let

bi (xi) = xi = lim
xi↓xi

(
xi −

∫ xi

xi
Fj (x̂j (x)) dx

Fj (x̂j (xi))

)
.

Note that both b1 (x) and b2 (x) are strictly increasing. Suppose that the seller commits to a

price path on which the price to buyer 1, p1, and the price to buyer 2, p2, decrease continuously

in a relationship whereby p2 (p1) = b2
(
x̂2
(
b−1
1 (p1)

))
for p1 ∈ [x1, b1 (w1)]. Then if buyer 2

with valuation x2 > x̂2(x1) accepts at b2(x2), we show that accepting at b1(x1) is optimal for

buyer 1 with valuation x1. To see this, note that if the current price for buyer 1 is p1 > b1(x1),

the payoff for buyer 1 from accepting now is

x1 − p1 = x1 − b1
(
x′1
)
, where x′1 = b−1

1 (p1) > x1,

whereas the expected payoff from accepting later at b1(x1) is
F2(x̂2(x1))

F2(x̂2(x′
1))

(x1 − b1 (x1)). Since

F2

(
x̂2
(
x′1
)) (

x1 − b1
(
x′1
))

=
(
x1 − x′1

)
F2

(
x̂2
(
x′1
))

+

∫ x′
1

x1

F2 (x̂2 (x)) dx

<

∫ x1

x1

F2 (x̂2 (x)) dx = F2 (x̂2 (x1)) (x1 − b1 (x1)) ,
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buyer 1 would be better off by waiting and accepting later. If the current price is b1 (x1), on

the other hand, the payoff from accepting now is x1 − b1 (x1), whereas the expected payoff

from accepting later at b1 (x
′′
1) is

F2(x̂2(x′′
1))

F2(x̂2(x1))
(x1 − b1 (x1)). Since

F2

(
x̂2
(
x′′1
)) (

x1 − b1
(
x′′1
))

=
(
x1 − x′′1

)
F2

(
x̂2
(
x′′1
))

+

∫ x′′
1

x1

F2 (x̂2 (x)) dx

<

∫ x1

x1

F2 (x̂2 (x)) dx = F2 (x̂2 (x1)) (x1 − b1 (x1)) ,

it is strictly better for buyer 1 to accept now at b1 (x1). The same argument applies to

buyer 2. This shows that buyer i with valuation xi accepting at price bi (xi) constitutes an

equilibrium.

Given that buyer i with valuation xi accepts bi (xi), if the two price offers, p1 and p2, sat-

isfy the relationship p2 (p1) = b2
(
x̂2
(
b−1
1 (p1)

))
, then the type accepting p1, b

−1
1 (p1), and the

type accepting p2, b
−1
2 (p2), follow the relationship b−1

2 (p2) = x̂2
(
b−1
1 (p1)

)
. Therefore, buyer

1 with valuation x1 accepts earlier than buyer 2 with valuation x2 if and only if x2 < x̂2 (x1).

Proof of Lemma 1: We show that the buyers adopt cutoff strategies in equilibrium, that is,

a buyer with a higher valuation always accepts earlier. To see this, consider a continuation

game starting with price pair (p′1, p
′
2). Suppose that the belief is such that buyer 1’s and

buyer 2’s values are in sets S
p′1
1 and S

p′1
2 , respectively.16 The buyers expect that the seller

will offer two continuously decreasing price sequences in a relationship whereby p2 (p1) for

p1 ≤ p′1, and Sp1
1 and Sp1

2 are the updated beliefs regarding the sets of possible values of

the buyers, conditional on that no one has accepted any price before the price pair reaches

(p1, p2 (p1)) (note that Sp1
i ⊂ S

p′1
i ).

Now suppose that with price pair (p′1, p
′
2), buyer i with value xi rejects the offer. This

implies that buyer i with value xi obtains a weakly higher payoff if he accepts later with some

price pair (p′′1, p
′′
2), where p

′′
2 = p2 (p

′′
1). That is,

xi − p′i ≤
Pr
(
xj ∈ S

p′′1
j

)
Pr
(
xj ∈ S

p′1
j

) (xi − p′′i
)
, (3)

where
Pr

(
xj∈S

p′′1
j

)
Pr

(
xj∈S

p′1
j

) ≤ 1 is the probability that the object is not taken by buyer j that is

yet conditional on the hypothesis that buyer i waits until the price pair reaches (p′′1, p
′′
2). If

16The belief assigns positive support to all the elements in S
p′1
1 and S

p′1
2 .
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Pr

(
xj∈S

p′′1
j

)
Pr

(
xj∈S

p′1
j

) < 1, for x′i < xi,

x′i − p′i <
Pr
(
xj ∈ S

p′′1
j

)
Pr
(
xj ∈ S

p′1
j

) (x′i − p′′i
)
,

so buyer i with value x′i < xi will also reject the offer p′i. If
Pr

(
xj∈S

p′′1
j

)
Pr

(
xj∈S

p′1
j

) = 1, for

the case where p′′i < p′i, buyer i with value x′i will certainly reject the offer p′i; for

the case where p′′i = p′i, without loss of generality, we assume that buyer i with value x′i

also rejects the offer p′i. Therefore, buyer i with a higher value accepts earlier in equilibrium.

Proof of Lemma 2: Given that w1 > w1 and w2 > w2, if the seller terminates the

negotiation, she obtains a payoff of 0; if he continues the game, there must exist a price path

with which the seller’s expected payoff is greater than 0, unless buyer 1 with valuation in

[w1, w1] and buyer 2 with valuation in [w2, w2] only accept at price 0. If that is the case,

given that buyer 2 accepts at price 0, buyer 1 must expect that buyer 2’s price will be

lowered to 0 later than buyer 1’s price, so buyer 1 with a valuation close to w1 is willing to

wait and accept at 0. Likewise, buyer 2 must also expect that buyer 1’s price will be lowered

to 0 later than buyer 2’s price. This is a contradiction. Therefore, the situation where the

two buyers only accept at price 0 cannot arise in equilibrium, and there always exist price

paths which generate a positive payoff for any continuation game.

Proof of Theorem 2: We prove that

x2,ω (x1) =


w2 for w1 ≤ x1 < max {w1w2} ,
x1 for max {w1, w2} ≤ x1 ≤ min {w1, w2} ,
w2 for min {w1, w2} < x1 ≤ w1

P1 (x1, x2) = x1 −

∫ x1

w1
F2 (x2,ω (x)) dx

F2 (x2)
,

P2 (x2, x1) = x2 −

∫ x2

w2
F1 (x1,ω (x)) dx

F1 (x1)
,
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are a set of functions satisfying the equilibrium conditions.17 Note that x2,ω (·) represents a

forty-five degree line for x1 ∈ [max {w1, w2} ,min {w1, w2}], which means that buyers with

the same valuation in [max {w1, w2} ,min {w1, w2}] will accept at the same time, and thus

implies that the buyer with the higher valuation will accept earlier so that the allocation is

efficient and identical to that of the second-price auction.

Given {x2,ω (·)}ω, P1 (x1, x2) and P2 (x2, x1) are derived from (1) and (2), so we only

need to show that given P1 (x1, x2) and P2 (x2, x1), {x2,ω (·)}ω is the seller’s best response.

Without loss of generality, assume that w1 ≥ w2. First notice that given P1 (x1, x2) and

P2 (x2, x1), the price accepted by buyer 2 with valuation x ∈ [w2, w1) is lower than w1, the

price accepted by buyer 1 with valuation w1; in addition, being paired with buyer 2 with

valuation x ∈ [w2, w1) will not raise the prices accepted by buyer 1.18 Therefore, given any

ω, a path x2 (x1) going below w1 (i.e., x2 (x) < w1 for some x ∈ [w1, w1]) is dominated and

cannot occur in equilibrium.

Next we show that, given P1 (x1, x2) and P2 (x2, x1), all the paths that stay above w1 yield

the same expected payoff to the seller. Let (w1, w2) be the initial belief. First consider the

case where w2 > w1 (the other case can be proved in a similar manner). Given P1 (x1, x2) and

P2 (x1, x2), if the seller chooses a function x2 (x1) such that x2 (x1) ≥ x1 for all x1 ∈ [w1, w1],

17If w2 < w1, x1,ω (x2) = w1 for x2 < w1. If w2 > w1, x1,ω (x2) = w1 for x2 > w1. If xj = wj , let

Pi (xi, xj) = xi − limxj↓wj

∫ xi
wi

Fj(xj,ω(x))dx
Fj(xj)

.
18Given any x1, P1 (x1, x) ≤ P1 (x1, y) for y ≥ w1.
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i.e., x2 (x1) is above the forty-five degree line, then the expected payoff is∫ w1

w1

[
x1F2 (x2 (x1))−

∫ x1

w1

F2 (x) dx

]
f1 (x1) dx1

+

∫ w1

w1

[
x1F1 (x1)−

∫ x1

w1

F1 (x) dx

]
f2 (x2 (x1))

dx2 (x1)

dx1
dx1

+

[
w1F1 (w1)−

∫ w1

w1

F1 (x) dx

]
[F2 (w2)− F2 (x2 (w1))]

=

∫ w1

w1

{x1 [F2 (x2 (x1))− F2 (x1)] + w1F2 (w1)} dF1 (x1) +

∫ w1

w1

∫ x1

w1

xdF2 (x) dF1 (x1)

+

∫ x2(w1)

w1

∫ x−1
2 (x2)

w1

xdF1 (x) dF2 (x2)

+

∫ w1

w1

xdF1 (x) [F2 (w2)− F2 (x2 (w1))]

=

∫ w1

w1

∫ x1

w1

xdF2 (x) dF1 (x1) +

∫ w1

w1

{x1 [F2 (x2 (x1))− F2 (x1)] + w1F2 (w1)} dF1 (x1)

+

∫ w1

w1

x1 [F2 (x2 (w1))− F2 (x2 (x1))] dF1 (x1)

+

∫ w1

w1

x1 [F2 (w2)− F2 (x2 (w1))] dF1 (x1)

=

∫ w1

w1

∫ x1

w1

xdF2 (x) dF1 (x1) +

∫ w1

w1

{x1 [F2 (w2)− F2 (x1)] + w1F2 (w1)} dF1 (x1) ,

which is independent of x2 (x1). The first equation comes from integration by

parts:
∫ x1

w1
Fi (x) dx = Fi (x1)x1 − Fi (w1)w1 −

∫ x1

w1
xdFi (x). The second equation

comes from changing the order of integration:
∫ x2(w1)
w1

∫ x−1
2 (x2)

w1
xdF1 (x) dF2 (x2) =∫ w1

w1

∫ x2(w1)
x2(x)

xdF2 (x2) dF1 (x). Therefore, the seller obtains the same expected payoff for all

x2 (x1) such that x2 (x1) ≥ x1. Similarly, we can prove that the seller receives the same

expected payoff for all x2 (x1) such that x2 (x1) ≤ x1, and can further show that the seller

obtains the same expected payoff for any path x2 (x1).
19 Therefore, P1 (x1, x2), P2 (x2, x1),

and {x2,ω (x1)}ω constitute a Markov perfect equilibrium in which the buyer with the

higher valuation obtains the object, and a buyer whose valuation is smaller than or equal to

max {w1, w2} receives zero payoff.

19Note that although the seller receives the same payoff for all x2 (x1), this does not mean that all of those
functions can be sustained in equilibrium. If the seller switches to another function x̃2 (x1), P1 (·) and P2 (·),
which characterize the buyers’ strategies, will change accordingly. Then x̃2 (x1) might no longer be optimal
for the seller.
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Proof of Theorem 3: We prove the uniqueness of the equilibrium under the two restric-

tions in Assumption 3. The first restriction is on the seller’s side and states that, given

ω, the path x2,ω (x1) is continuous, piecewise differentiable on [w1, w1], and strictly in-

creasing on the interval
(
x1,ω, x1,ω

)
where x1,ω ≡ sup {x1 ∈ [w1, w1] | x2,ω (x1) < w2} and

x1,ω ≡ inf {x1 ∈ [w1, w1] | x2,ω (x1) > w2}.20 Under this restriction, program (P1) can be

rewritten as

x2,ω (x1) = arg max
x2(x1)

∫ x1

w1

P1 (x1, x2 (x1))F2 (x2 (x1)) f1 (x1)

+ P2 (x2 (x1) , x1)F1 (x1) f2 (x2 (x1))u (x1) dx1

+ 1(x1<w1)P1 (x1, x2 (x1))F2 (x2 (x1)) [F1 (w1)− F1 (x1)]

+ 1(x2(x1)<w2)P2 (x2 (x1) , x1)F1 (x1) [F2 (w2)− F2 (x2 (x1))] (P2)

s.t. either x1 = w1 and x2 (w1) ≤ w2, or x1 ≤ w1 and x2 (x1) = w2,

x2(w1) ≥ w2,

dx2 (x1)

dx1
= u (x1) ,

0 <
dx2 (x1)

dx1
<∞ for x1 ∈ (x1, x1) ,

where 1(·) is the indicator function and x1 ≡ sup {x1 ∈ [w1, w1] | x2 (x1) < w2}. When x1 =

w1 and x2 (w1) < w2, it means that buyer 2 with valuation between x2 (w1) and w2 obtains

the object with the same probability, so in equilibrium all those types accept the same price

P2 (x2 (x1) , x1); this event occurs with probability F1 (x1) [F2 (w2)− F2 (x2 (x1))] and yields

the payoff shown in the forth term of the objective function. Similarly, when x1 < w1 and

x2 (x1) = w2, buyer 1 with valuation between x1 and w1 accepts price P1 (x1, x2 (x1)); this

occurs with probability F2 (x2 (x1)) [F1 (w1)− F1 (x1)] and yields the payoff shown in the

third term.

We also need to verify that P1 (x1, x2) and P2 (x2, x1) satisfy (1) and (2), respectively.

Since the expected payoffs of the lowest types of the two buyers are zero, by (1) and (2),

Pi (wi, wj) = wi −
Ci (w1, w2)

Fj (wj)
, (4)

where

Ci (w1, w2) ≡
∫ wi

wi

Fj (xj,ω (x)) dx. (5)

20This class of paths satisfies the equilibrium property described in Lemma 2.
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Here, we impose an additional restriction on the buyers’ side that C1 (x1, x2) and C2 (x1, x2)

are continuous, and the first derivatives of C1 (x1, x2) and C2 (x1, x2) with respect to x1 and

x2 exist.21

To prove the uniqueness of the equilibrium, we first use Pontryagin’s maximum principle

to derive necessary conditions for the seller’s equilibrium strategy. Along with (4), we show

that given the strategy spaces described in Assumption 3, there is only one set of strategies

and beliefs satisfying all the conditions and the requirements.

Consider the seller’s optimal control problem in (P2). Define the initial value function as

I (x1, x2 (x1)) =

{
[x1F2 (x2 (x1))− C1 (x1, x2 (x1))] [F1 (w1)− F1 (x1)] if x1 < w1, x2 (x1) = w2,

[x2 (x1)F1 (x1)− C2 (x1, x2 (x1))] [F2 (w2)− F2 (x2 (x1))] if x1 = w1, x2 (x1) < w2,

and the Hamiltonian function H as

H (x1, x2, u, λ) = G (x1, x2, u) + λg (x1, x2, u) ,

where

G (x1, x2, u) = [x1F2 (x2)− C1 (x1, x2)] f1 (x1) + [x2F1 (x1)− C2 (x1, x2)] f2 (x2)u,

g (x1, x2, u) = u.

The following theorem is a restatement of Pontryagin’s maximum principle:

Theorem 4 If a control u (·) with a corresponding state trajectory x2 (·) is optimal, there

exists an absolutely continuous function λ : [w1, w1] 7→ R such that the maximum condition

H (x1, x2 (x1) , u (x1) , λ (x1)) = max {H (x1, x2 (x1) , u, λ (x1)) | 0 ≤ u ≤ ∞} ,

the adjoint equation

λ′ (x1) = −∂H (x1, x2 (x1) , u (x1) , λ (x1))

∂x2
,

21The optimal control theory only requires that the integrand of the objective function in program (P2) be
continuous and that the first derivative of the integrand with respect to x2 exist. However, in our problem,
instead of solving for x2,ω (x1), we can change the formulation to solve for x1,ω (x2). Therefore, we require
that the first derivatives with respect to both x1 and x2 exist.
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and the transversality conditions

λ (w1) ≥ 0;

x2 (w1) ≥ w2;

(x2 (w1)− w2)λ (w1) = 0;

if x1 = w1 and x2 (w1) < w2, λ (w1) =
∂I

∂x2
; (6)

if x1 < w1 and x2 (x1) = w2, H (x1) +
∂I

∂x1
= 0. (7)

are satisfied.

For later convenience, let c1 (x1, x2) = (w2 − w2)C1 (x1, x2) and c2 (x1, x2) =

(w1 − w1)C2 (x1, x2). Given this result, we now prove the theorem through a series of lem-

mas, from lemma 3 to 10.

Lemma 3 c1 (x1, x2) = (x1 − w1) (x2 − w2)− c2 (x1, x2) .

Proof: By (5),

C1 (w1, w2) =

∫ x1,ω

w1

F2 (x2,ω (x)) dx+ F2 (x2,ω (x1,ω)) [w1 − x1,ω] ,

and

C2 (w1, w2) =

∫ x2,ω(x1,ω)

w2

F1 (x1,ω (x)) dx+ F1 (x1,ω) [w2 − x2,ω (x1,ω)] .

Multiplying both sides of the two equations by (w2 − w2) and (w1 − w1) respectively, we

obtain

c1 (w1, w2) =

∫ x1,ω

w1

(x2,ω (x)− w2) dx+ (x2,ω (x1,ω)− w2) [w1 − x1,ω] , (8)

c2 (w1, w2) =

∫ x2,ω(x1,ω)

w2

(x1,ω (x)− w1) dx+ (x1,ω − w1) [w2 − x2,ω (x1,ω)] . (9)

Note that either x1,ω = w1 or x2,ω (x1,ω) = w2. Therefore, c1 (w1, w2) + c2 (w1, w2) =

(w1 − w1) (w2 − w2).

Lemma 4 ci (w1, x2) = 0 and ci (x1, w2) = 0.
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Proof: By Lemma 3, c1 (x1, w2) + c2 (x1, w2) = 0. Since ci (·) ≥ 0, c1 (x1, w2) = 0 and

c2 (x1, w2) = 0. Similarly, c1 (w1, x2) = 0 and c2 (w1, x2) = 0.

Lemma 5 Let x2,ω (x1) be the equilibrium path of the continuation game starting with belief

ω. Then

(x1 − w1)w2+ c1 (x1, x2,ω (x1))−
∫ x1

w1

x− ∂c1 (x, x2,ω (x))

∂x2
+
∂c1 (x, x2,ω (x))

∂x2

dx2,ω (x)

dx1
dx = 0,

(10)

for all x1 ∈ [w1, x1,ω].

Proof: By the maximum condition,

u ∈ (0,∞) if
∂H

∂u
= [x2F1 (x1)− C2 (x1, x2)] f2 (x2) + λ = 0. (11)

By the adjoint equation,

λ′ (x1) = −
{[
x1f2 (x2,ω (x1))−

∂C1

∂x2

]
f1 (x1) +

[
F1 (x1)−

∂C2

∂x2

]
f2 (x2,ω (x1))u

}
,

so λ (x1) = λ (w1) −
∫ x1

w1

[
xf2 (x2,ω (x))− ∂C1

∂x2

]
f1 (x) +

[
F1 (x)− ∂C2

∂x2

]
f2 (x2,ω (x))u (x) dx.

Plugging into equation (11),

[x2,ω (x1)F1 (x1)− C2 (x1, x2,ω (x1))] f2 (x2,ω (x1)) + λ (w1)

−
∫ x1

w1

[
xf2 (x2,ω (x))− ∂C1

∂x2

]
f1 (x) +

[
F1 (x)−

∂C2

∂x2

]
f2 (x2,ω (x))u (x) dx = 0,

which implies that λ (w1) = 0.22 Multiplying both sides by (w1 − w1) (w2 − w2) =

1
f1(x1)f2(x2,ω(x1))

,

[(x1 − w1)x2,ω (x1)− c2 (x1, x2,ω (x1))]−
∫ x1

w1

[
x− ∂c1

∂x2

]
+

[
(x− w1)−

∂c2
∂x2

]
u (x) dx = 0.

By Lemma 3, we obtain (x1 − w1)w2+ c1 (x1, x2,ω (x1))−
∫ x1

w1
x1− ∂c1

∂x2
+ ∂c1

∂x2

dx2,ω

dx1
dx1 = 0 for

all x1 ∈ [w1, x1,ω].

Lemma 6 Let x2,ω (x1) be the equilibrium path of the continuation game starting with belief

ω. Then,
∂c1 (x1, x2,ω (x1))

∂x1
+
∂c1 (x1, x2,ω (x1))

∂x2
= x1 − w2, (12)

for all x1 ∈ [w1, x1,ω].

22When x1 = w1, the equation holds only if λ (w1) = 0.
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Proof: Since equation (10) holds for all x1 ∈ [w1, x1,ω], by taking derivatives with respect to

x1 on both sides, we obtain

∂c1
∂x1

+
∂c1
∂x2

u = (x1 − w2)−
∂c1
∂x2

+
∂c1
∂x2

u.

Therefore,
∂c1(x1,x2,ω(x1))

∂x1
+

∂c1(x1,x2,ω(x1))
∂x2

= x1 − w2.

Let A = {(x1, x2,ω (x1)) | x1 ∈ [w1, x1,ω] , w1 ≤ w1 ≤ w1, w2 ≤ w2 ≤ w2} , and A is the

closure of A. A contains all the points on the equilibrium paths of all the continuation

games. Note that given ω = (x, x) where x ∈ [max {w1, w2} ,min {w1, w2}],

x2,ω (x1) =

{
w2, for x1 ∈ [w1,max {w1, w2}) ,
x1, for max {w1, w2} ≤ x1 ≤ min {w1, w2} ,

so (x, x) ∈ A for x ∈ [max {w1, w2} ,min {w1, w2}].

Lemma 7 For all (x1, x2) ∈ A, c1 (x1, x2) is of the form
(x1−w2)

2

2 + ϕ (x2 − x1).

Proof: If (x1, x2) is on the equilibrium path of a continuation game so that it is in A, then

the differential equation (12) has to hold. The general solution to the differential equation is

c1 (x1, x2) =
(x1−w2)

2

2 + ϕ (x2 − x1).

Let d = max
{
x2 − x1 | (x1, x2) ∈ A

}
and d = min

{
x2 − x1 | (x1, x2) ∈ A

}
.

Lemma 8 c1 (x1, x2) =
(x1−w2)

2

2 − (max{w1−w2,0})
2

2 for x2 ≥ x1.

Proof: For (x1, x2) ∈ A, c1 (x1, x2) =
(x1−w2)

2

2 + ϕ (x2 − x1) by Lemma 7. Suppose

that x2 ≥ x1. We first show that for (x1, x2) ∈ A, ϕ (x2 − x1) = − (max{w1−w2,0})
2

2 ,

and then show that for (x1, x2) /∈ A, ϕ (x2 − x1) = − (max{w1−w2,0})
2

2 as well. Let

UL (x2) = min
{
x1 | (x1, x2) ∈ A

}
for x2 ∈ [w2, w2]. Let x = UL (max {w1, w2}), y =

inf {x2 ∈ [w2, w2] | UL (x2) > w1},23 and y = sup {x2 ∈ [w2, w2] | UL (x2) < w1}. UL (x2)

is strictly increasing on
[
y, y
]
,24 but might not be continuous as shown in Figure 3. For

x2 ∈
(
max {w1, w2} , y

)
, (w1, x2) ∈ A and c1 (w1, x2) = 0; for x1 ∈ (x,max {w1, w2}),

23Note that either x = w1 or y = w2 by Assumption 3 (i).
24If UL (·) is not strictly increasing, then there exist a and b such that a > b but UL (a) ≤ UL (b). However,

this implies that for some path x2,ω (·) passing through (a, UL (a)), x2,ω (·) is not strictly increasing, and
cannot be the solution to program (P2).
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(x1, w2) ∈ A and c1 (x1, w2) = 0; given c1 (x1, x2) =
(x1−w2)

2

2 + ϕ (x2 − x1) for (x1, x2) ∈ A,

it is implied that ϕ (d) = − (max{w1−w2,0})
2

2 for d ∈
[
0, y − x

]
. For any d ∈

(
y − x, d

)
, there

exists a ∈
(
y, w2

)
such that a − UL (a) = d. Since UL is increasing, for any a2 ∈ (a,w2],

(UL (a) , a2) /∈ A. Thus, given belief w1 = UL (a) and w2 = a2, x2,ω (UL (a)) = a. By

(8), c1 (UL (a) , a2) = c1 (UL (a) , a) for all a2 ∈ (a,w2], so ∂c1
∂x2

(UL (a) , a) = 0. Since

(UL (a) , a) ∈ A, we know c1 (x1, x2) is of the form
(x1−w2)

2

2 + ϕ (x2 − x1), and hence

∂c1
∂x2

(UL (a) , a) = ϕ′ (a− UL (a)) = ϕ′ (d) = 0. Thus, for d ∈
(
y − x, d

)
, ϕ′ (d) = 0.

Since ϕ (d) = − (max{w1−w2,0})
2

2 for d ∈
[
0, y − x

]
and ϕ′ (d) = 0 for d ∈

(
y − x, d

)
,

ϕ (d) = − (max{w1−w2,0})
2

2 for d ∈
[
0, d
]
.

[Figure 3 about here]

From the above discussion, we know that, for any (x1, x2) ∈ A, if x2 − x1 ∈
[
0, d
]
,

c1 (x1, x2) =
(x1−w2)

2

2 − (max{w1−w2,0})
2

2 . However, by (8), this implies that x2,ω (x1) = x1 for

x1 ∈ [max {w1, w2} ,min {w1, w2}], so UL (x2) = x2 for x2 ∈ [max {w1, w2} ,min {w1, w2}].

Given UL (x2) = x2, by (8), c1 (x1, x2) =
(x1−w2)

2

2 − (max{w1−w2,0})
2

2 for x1 ∈

[max {w1, w2} ,min {w1, w2}] and x2 ∈ [x1, w2].

Lemma 9 c2 (x1, x2) =
(x2−w1)

2

2 − (max{w2−w1,0})
2

2 for x1 ≥ x2.

Proof: For (x1, x2) ∈ A, c2 (x1, x2) = (x1 − w1) (x2 − w2) − (x1−w2)
2

2 − ϕ (x2 − x1)

by Lemmas 3 and 7. Suppose that x1 ≥ x2. We first show that for (x1, x2) ∈

A, ϕ (x2 − x1) = − (x2−x1)
2

2 − (max{w1−w2,0})
2

2 , and then show that for (x1, x2) /∈ A,

ϕ (x2 − x1) = − (x2−x1)
2

2 − (max{w1−w2,0})
2

2 as well. Let LR (x1) = min
{
x2 | (x1, x2) ∈ A

}
for x1 ∈ [w1, w1]. Let y = LR (max {w1, w2}), x = inf {x1 ∈ [w1, w1] | LR (x1) > w2},25

and x = sup {x1 ∈ [w1, w1] | LR (x1) < w2}. LR (x1) is strictly increasing on [x, x], but

might not be continuous as shown in Figure 4. For x1 ∈ (max {w1, w2} , x) , (x1, w2) ∈ A

and c2 (x1, w2) = 0; for x2 ∈
(
y,max {w1, w2}

)
, (w1, x2) ∈ A and c2 (w1, x2) = 0; given

c2 (x1, x2) = (x1 − w1) (x2 − w2) −
(x1−w2)

2

2 − ϕ (x2 − x1) for (x1, x2) ∈ A, it is implied

that ϕ (d) = −d2

2 − (max{w1−w2,0})
2

2 for d ∈
[
y − x, 0

]
. For any d ∈

(
d, y − x

)
, there ex-

ists a ∈ (x,w1) such that LR (a) − a = d. Since LR is increasing, for any a1 ∈ (a,w1],

25Note that either x = w1 or y = w2 by Assumption 3 (i).
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(a1, LR (a)) /∈ A. Thus, given belief w1 = a1 and w2 = LR (a), x1,ω (LR (a)) = a. By

(9), c2 (a1, LR (a)) = c2 (a, LR (a)) for all a1 ∈ (a,w1], so ∂c2
∂x1

(a, LR (a)) = 0. Since

(a, LR (a)) ∈ A, we know c2 (x1, x2) is of the form (x1 − w1) (x2 − w2)−
(x1−w2)

2

2 −ϕ (x2 − x1),

and hence ∂c2
∂x1

(a, LR (a)) = LR (a) − a + ϕ′ (LR (a)− a) = d + ϕ′ (d) = 0. Thus, for

d ∈
(
d, y − x

)
, ϕ′ (d) = −d. Since ϕ (d) = −d2

2 − (max{w1−w2,0})
2

2 for d ∈
[
y − x, 0

]
and

ϕ′ (d) = −d for d ∈
(
d, y − x

)
, ϕ (d) = −d2

2 − (max{w1−w2,0})
2

2 for d ∈ [d, 0].

[Figure 4 about here]

From the above discussion, we know that, for any (x1, x2) ∈ A, if x2 − x1 ∈ [d, 0],

c2 (x1, x2) =
(x2−w1)

2

2 − (max{w2−w1,0})
2

2 . However, by (9), this implies that x1,ω (x2) = x2 for

x2 ∈ [max {w1, w2} ,min {w1, w2}], so LR (x1) = x1 for x1 ∈ [max {w1, w2} ,min {w1, w2}].

Given LR (x1) = x1, by (9), c2 (x1, x2) =
(x2−w1)

2

2 − (max{w2−w1,0})
2

2 for x2 ∈

[max {w1, w2} ,min {w1, w2}] and x1 ∈ [x2, w1].

Finally, the following lemma completes the proof.

Lemma 10 In equilibrium,

C1 (x1, x2) =

 1
(w2−w2)

[
(x1−w2)

2

2 − (max{w1−w2,0})
2

2

]
if x1 ≤ x2,

1
(w2−w2)

[(x1 − w1) (x2 − w2)− (w1 − w1)C2 (x1, x2)] if x1 ≥ x2,

C2 (x1, x2) =


1

(w1−w1)
[(x1 − w1) (x2 − w2)− (w2 − w2)C1 (x1, x2)] if x1 ≤ x2,

1
(w1−w1)

[
(x2−w1)

2

2 − (max{w2−w1,0})
2

2

]
if x1 ≥ x2,

A = {(x1, x2) | x1 = x2,max {w1, w2} ≤ x1 ≤ min {w1, w2}} .

Proof: From Lemmas 8, 9, and the discussion in their proofs, we know that under Assump-

tion 3, the only possible c1 is that

c1 (x1, x2) =


(x1−w2)

2

2 − (max{w1−w2,0})
2

2 if x1 ≤ x2,

(x1 − w1) (x2 − w2)−
[
(x2−w1)

2

2 − (max{w2−w1,0})
2

2

]
if x1 ≥ x2,

which implies that the seller’s strategy is

x2,ω (x1) =


w2 if x1 ∈ [w1,max {w1, w2}),
x1 if x1 ∈ [max {w1, w2} ,min {w1, w2}],
w2 if x1 ∈ (min {w1, w2} , w1],

given the belief ω about the buyers’ values at the beginning of a continuation game.
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Appendix B: the derivation of the price path

With solution x2,ω (x1), let

Gr (x2,ω) =

{
(x1, x2) ∈ [w1, w1]× [w2, w2] | x2 ∈

[
lim

x→x1−
x2,ω (x) , lim

x→x1+
x2,ω (x)

]}
be the graph of x2,ω (x1) with lines connecting (x1, limx→x1− x2,ω (x)) and

(x1, limx→x1+ x2,ω (x)) when x2,ω (·) is discontinuous at x1. Then

Pω ≡ {(P1 (x1, x2) , P2 (x2, x1)) | (x1, x2) ∈ Gr (x2,ω)}

is the price path submitted by the seller.
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Figures

Figure 1: some examples which satisfy Assumption 3

Figure 2: the actual price path and the cutoff type
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Figure 3

Figure 4
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