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Abstract

Except for several pairs of utility functions and distribution functions, expected util-
ity maximization problems do not have closed form solutions so that these problems
often require complex numerical optimizations. The paper proposes an approximated
solution to this problem using higher moments of returns. Utility functions are approx-
imated by polynomials by the Taylor expansion, and thus expected utility functions are
approximated by linear combinations of moments. With the GARCH effects, a simple
approach to estimate conditional higher moments is given. In an empirical study, the
strategy is compared to alternative strategies such as mean variance optimization and
static optimization.
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1 Introduction

Markowitz (1952) proposed the now well known mean variance portfolio selection. When

asset returns follow the multivariate normal distribution, this approach is a good approxima-

tion of the expected utility maximization for risk averse investors. However, when returns are

non-normally distributed higher moments may affect the optimal portfolios since the mean

variance criteria cannot capture the investor’s preference about the asymmetric property or

the heavy tailedness of distributions of asset returns. Recently, many papers have reported

that asset returns are asymmetric and heavy tailed distribution. In addition, many papers

reported that asset returns have conditional heteroskedasticities. Asset allocation strategies

using the conditional heteroskedasticities are known as volatility timing. In this paper, I

consider a simple asset allocation problem with non-normalities and volatility timing.

Previous studies have used two model specifications where asset allocation problems are

studied under non-normalities. The first is the regime switching model. Ang and Bekaert

(2002) and Guidolin and Timmerman (2008) consider asset allocation problems where returns

are regime switching in international stock markets. In this specification, the conditional

distributions that investors face are the mixtures of normal distributions. The other speci-

fication is the Generalized conditional heteroskedasticity model (GARCH) with non-normal

innovations. Harvey et al (2010) and Jondeau and Rockinger (2012) focused on the skew

normal distribution proposed by Sahu, Dey and Branco (2003), of which the co-skewness

matrix and co-kurtosis matrix can be computed explicitly from the parameters of the distri-

bution function to demonstrate the optimizations. Patton (2004) and Jondeau and Rockinger

(2006) used the copula-GARCH model. With an assumption of a location-scale mixture of

the multivariate normal distributions, Mencia and Sentana (2009) derived a mean-variance-

skewness optimization problem. Under the GARCH model with non-normal innovations,

conditional distribution is derived by scaling innovations with GARCH effects. Other re-

lated studies include the following, Adcock (2010) demonstrated an asset allocation problem

under multivariate skew normal and skew-t distribution which were proposed by Azzalini

and Capitanio (2003). Konno et al. (1991) derived a mean-absolute deviation-skewness op-
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timization problem that can handle a very large number of assets. Theoretical properties

of the mean-variance-skewness frontier were derived by Athayde and Flores (2004). Non-

normalities of asset returns have been reported in many studies not directly related to asset

allocation problems. Longin and Solnik (2001) reported non-normalities of international as-

set returns using the exceedance correlation measure. Bauwens and Laurent (2005) adapted

a multivariate skew-t distribution for the multivariate GARCH model. For univariate series,

Hansen (1994) considered skewed distributions for innovations of the GARCH model. Jon-

deau and Rockinger (2003) studied conditional shapes of distributions of asset returns using

distributions proposed by Hansen (1994). Harvey (1999) proposed the GARCHS model,

which models the conditional skewnesses in the manner of the GARCH formula.

Except for several pairs of distributions and utility functions, the expected utility func-

tions cannot be computed analytically. When non-normalities are introduced, this is true for

most cases. One of approaches for calculating expected utility function are numerical inte-

grations called quadrature methods proposed by Tauchen and Hussey (1991). Ang and Chen

(2002) employed this approach under the regime switching model. The second approach is

Monte Carlo integration, which is used when random generations are possible. Patton (2004)

used this approach under the copula-GARCH model. These two approaches require heavy

computation to obtain the expected utility function, and the optimization is often unstable.

The third approach is an approximation of the utility function by the Taylor expansion.

Expansion up to the second moments results in the quadratic utility function, so it only

focuses on the first two moments (mean variance approach). In the cases of non-normal

distributions of returns, an approximation using higher moments may be valuable. Jondeau

and Rockinger (2006) derived an optimal asset allocation problem with the expansion up to

the first four moments using sample moments. Jondeau and Rokinger (2012) extended this

to incorporate the dynamic conditional correlation GARCH (DCC-GARCH) model. They

assume specific distribution for innovations, which restricts the structures of the moments.

In this paper, I propose a simple expected utility maximization problem using an approx-

imation by the Taylor expansion under the GARCH model without assuming any specific
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distributions. As in Jondeau and Rockinger (2006), Jondeau and Rockinger (2012) and

Guidolin and Timmerman (2008), I expand an investor’s utility function up to the first four

moments. This paper can be considerd an extension of Jondeau and Rockinger (2006). For

simplicity, it is assumed that asset returns follow the multivariate GARCH model with the

correlation matrix, co-skewness matrix co-kurtosis matrix of innovations constant over time;

however, the DCC GARCH is also applicable. The main idea is a two step estimation. I first

estimate the multivariate GARCH model by variance targeting Gaussian Quasi-maximum

likelihood estimation (QMLE). Given the estimated GARCH parameters, I estimate the

standardized innovation series and the co-skewness matrix of innovations by those sample

moments. Changing the location and scale of the correlation matrix, co-skewness matrix and

co-kurtosis matrix of innovations by the GARCH effects, conditional covariance matrices, co-

skewness matrices and co-kurtosis matrices are estimated. This two step estimation is easy

to compute relative to the previous studies and is adaptive for many studies of the GARCH

model. With the estimated conditional moments, optimal asset allocations are estimated by

maximizing the approximated expected utility function in each period.

The effects of the degree of approximation for the expected utility functions are measured

by the certainty equivalent returns (performance fee) as in Fleming, Kirby and Ostdiek

(2001), Patton (2004) and Jondeau and Rockinger (2012). To evaluate these differences

statistically, the bootstrap method is employed. The remainder of this paper is organized as

follows. In the section 2, a model of the asset allocation problem and underlying asset returns

processes are described. Derivation of optimal portfolio weights with approximated expected

utility functions is explained. In the section 3, alternative portfolios and the methods to

compare their performances are given. In section 4, an example of an empirical application

is shown. and the section 5, concludes.
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2 Model

In this section, an approach to the expected utility maximization problem for a risk averse

investor is explained. In the first subsection, assumptions for return processes are given.

Returns are assumed to be the multivariate GARCH model and innovations are identically

and independently distributed and have finite third and fourth moments. Several previous

studies assumed specific distributions for innovations (Jondeau and Rockinger (2012), Men-

cia and Sentana (2009) and Harvey et al. (2010)). In contrast to these studies, this paper

does not assume any specific distributions for innovations. Under this setting, this paper

demonstrates how to estimate time varying conditional covariance matrices, co-skewness

matrices and co-kurtosis matrices which are induced by the GARCH effect. In the second

subsection, an expected utility maximization problem and approximations are given. Ex-

cept for several cases, the expected utility cannot be calculated analytically and numerical

integrations are required. In this paper, utility functions are approximated by the Taylor

expansion to evaluate expected utility. This makes it possible to approximate the expected

utility function by a weighted sum of the elements of the moment matrices. The approach is

easy to compute relative to numerical integration methods such as the quadrature method

and Monte Carlo integration. By maximizing the approximated utility functions under the

estimated conditional moments, conditional optimal portfolio weights are estimated for each

period.

2.1 Return process

2.1.1 Estimations of the GARCH and central moment matrices

In this subsection, a model of asset returns is given, and the dynamics of conditional covari-

ance matrices and co-skewness matrices and estimations are explained. There are a risk free

asset and n risky assets with return vector rt = (r1t, r2t, . . . , rnt)
′ and those processes are mul-

tivariate GARCH with constant conditional correlation. That is, the individual return series

follow univariate asymmetric-GARCH (1,1) which is proposed by Glosten, Jagannathan and
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Runkle (1993) and the correlation matrix of innovations εt = (ε1t, ε2t, . . . , εnt)
′ is constant

over time. In addition, it is assumed that the co-skewness matrix and co-kurtosis matrix of

the innovations are constant over time:

rit = µi + σitεit, (1)

σ2
it = wi + αiσ

2
it−1 + βiε

2
it−1 + γε2

it−1I{εit−1<0}, (2)

εt ∼ iid(0, Ω,S,K), (3)

where S and K are the co-skewess matrix (n×n2) and co-kurtosis matrix (n×n3) respectively,

the same as in Jondeau and Rockinger (2006) such that:

S = E[(εt − µ) ⊗ (εt − µ)′ ⊗ (εt − µ)′], (4)

K = E[(εt − µ)(εt − µ)′ ⊗ (εt − µ)′ ⊗ (εt − µ)′]. (5)

The co-skewness matrix consists of n submatrices such that

S =
[
S1 S2 · · · Sn

]
,

where

Si =


si11 si12 · · · si1n

si21 si22 · · · si2n

...
...

. . .
...

sin1 sin2 · · · sinn

 .

The co-kurtosis matrix consists of n submatrices such that

K =
[
K1 K2 · · · Kn

]
,

where Ki consists of submatrices such that

Ki =
[
Ki1 Ki2 · · · Kin

]
,
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where

Kij =


kij11 kij21 · · · kij1n

kij21 kij22 · · · kij2n

...
...

. . .
...

kijn1 kijn1 · · · kijnn

 ,

where sijk = E[εitεjtεkt] and kijkl = E[εitεjtεktεkt]. The co-skewness matrix and co-kurtosis

matrix have n(n + 1)(n + 2)/6 and n(n + 1)(n + 2)(n + 3)/24 non-redundant components

respectively. Using these matrices, Jondeau and Rockinger (2006) proposed a framework

to use higher moments for asset allocation problems with sample moments. I extend their

approach to incorporate the GARCH effects. Mencia and Sentana (2009) also applied the

GARCH model assuming that the distributions of εt are location-scale mixture of the mul-

tivariate normal distributions. Jondeau and Rockinger (2012) and Harvey et al. (2010) also

used the GARCH model and higher moments assuming the innovations to be the skewed

t-distribution proposed by Sahu, Dey and Branco (2003). In contrast to these previous stud-

ies, this paper does not assume any specific distributions for innovations so it has flexibility

for the shape of εt. In this paper, a two step semiparametric estimation is employed. The

first step is the estimation of GARCH parameters. The second step is the estimation of the

shape of innovations, that is, an estimation of higher moment matrices.

For the GARCH estimation, variance targeting estimation is employed. Unconditional

means and variances are estimated by the sample moments for each asset:

µ̂i =
1

T

T∑
t=1

rit, (6)

σ̄i =
1

T

T∑
t=1

(rit − µ̂i)
2. (7)

Given these unconditional moments, the GARCH parameters are estimated by the Gaussian
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QMLE which uses the likelihood function of the multivariate normal distribution as follows:

max l(αi, βi, γi, Ω; r) = −nT

2
log 2π − T

2
log |Ω| −

T∑
t=1

n∑
i=1

log |σit| −
1

2

T∑
i=1

ε′tΩ
−1εt, (8)

s.t σ2
it = ωi + ασ2

it−1 + βiε
2
it−1 + γiε

2
it−1I{εit−1<0},

ωi

1 − αi − βi − γi

2

= σ̄2
i ,

where εit = (rit − µ̂i)/σit. When the dynamics of scales are correctly specified, the Gaussian

QMLE gives consistent estimations for {wi, αi, βi, γi, Ω}. Given the estimated parameters,

innovations for the GARCH are estimated:

σ̂2
it = ŵi + α̂iσ̂

2
it−1 + β̂iε̂

2
it−1 + γ̂iε

2
it−1I{εit−1<0}, (9)

ε̂it =
rit − µ̂i

σ̂it

. (10)

Using these standardized innovations, the co-skewness matrix and co-kurtosis matrix of

innovations are estimated as follows:

Ŝ =
1

T
ε̂tε̂

′
t ⊗ ε′t, (11)

K̂ =
1

T
ε̂tε̂

′
t ⊗ (ε′t ⊗ ε′t). (12)

These are (n×n2) and (n×n3) matrcies, and their components are simply ŝijk = 1
T

∑T
t=1 ε̂itε̂jtε̂kt,

k̂ijkl = 1
T

∑T
t=1 ε̂itε̂jtε̂ktε̂lt, Using the estimated GARCH parameters, volatility series and stan-

darized innovation series are estimated. Since S and K are the third and fourth moment

matrices of standardized innovations respectively, conditional moment matricies also vary be-

cause of the change in scale induced by the GARCH effects. Taking into account the GARCH

effects, the conditional covariance matrix, co-skewness matrix and co-kurtosis matrix are as

follows:

Vt = GtΩGt, (13)

St =
[
σ1tGtS1Gt σ2tGtS2Gt · · · σntGtSnGt

]
, (14)

Kt =
[
σ1tσ1tGtK11Gt σ1tσ2tGtK12Gt · · · σntσntGtKnnGt

]
, (15)
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where Gt = diag{σ1t · · · σnt}. The elements of the conditional co-skewness matrix are

ŝijkt = σ̂itσ̂jtσ̂ktŝijk and the elements of the conditional co-kurtosis matrix are k̂ijklt =

σ̂itσ̂jtσ̂ktσ̂ltkijkl. The conditional covariance matrix is the same as the constant conditional

correlation model (CCC). Since the focus is not on the dynamics of the second moments, the

constant correlation GARCH is assumed for simplicity. However the dynamic conditional

correlation model (DCC) proposed by Engle (2002) can be applied. The conditional co-

skewness matrix and co-kurtosis matrix are also scaled by the GARCH effects as well as the

covariance matrix. In this way, conditional moments with the GARCH effects are estimated.

2.1.2 Transformation into noncentral moments from central moments

As showen later, when the utility function is approximated by a polynomial, the expected

utility function is the weighted sum of the noncentral moments of a portfolio return. Since

GARCH models are those of central moments, moment matrices estimated above are also cen-

tral moments. Preliminary to an asset allocation problem, I transform central moments into

noncentral moments using binomial expansion. Let M2,t,M3,t,and M4,t be the first,second

,third, and fourth conditional noncentral moment matrices, respectively. Elements of the

noncentral moments are computed from central moments as follows:

m2,ijt = Et[rit+1rjt+1] = m2,ijt + µiµj, (16)

m3,ijkt = Et[rit+1rjt+1rkt+1] = s3
ijkt + m2,ijtµk + m2,iktµj + m2,jktµi − 2µiµjµk, (17)

m4,ijklt = Et[rit+1rjt+1rkt+1rlt+1] = k4
ijklt + m3,ijktµl + m3,ijltµk + m3,ikltµj + m3,jkltµi (18)

− m2,ijtµkµl − m2,iktµjµl − m2,iltµjµk − m2,jktµiµl − m2,jltµiµk − m2,kltµiµj

+ 3µiµjµk.

2.2 Asset allocation

In this subsection, a conditional expected utility maximization problem for a risk averse

investor is explained under the assumptions of the return process described in the previous

subsection. There are n risky assets with return vector rt = (r1t, . . . , rnt)
′ and a corresponding
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portfolio vector is denoted by wt = (w1t, . . . , wnt)
′ and the weight for the risk free asset is

denoted by wft = 1−w′
t1 =1−

∑n
i=1 wit ≥ 0. Given the initial wealth is Wt at t, the myopic

optimization problem is as follows:

max
wt

Et[U(Wt+1)] = Et[U(Wt(1 + wt
′rt+1 + wftrft))]. (19)

Except for some pairs of a utility function and a distribution function, this problem does not

have a closed form solution. For instance, a pair of the exponential utility function and the

multivariate normal distribution has a closed form solution so that a numerical optimization

is required to evaluate the integration. When specific distributions are assumed, the inte-

gration can be calculated with the quadrature methods proposed by Tauchen and Hussey

(1991). Ang and Bekaert (2002) employed this approach to calculate the expected utility

function where returns are regime switching. Another approach is Monte Carlo integration

which was employed by Patton (2004) when random generations were possible. However,

both approaches involve heavy computation. In this paper, another approach is employed to

evaluate the expected utility function. The utility function is approximated by the Taylor

expansion up to a finite number of moments as follows:

Et[U(Wt+1)] ≈
K∑

k=1

θk

k!
Et[(Wt+1 − Wt)

k]. (20)

When the expansion is up to the second moment, the problem results in mean variance

optimization. When returns follow a multivariate normal distribution, the first two moments

suffice for the expected utility maximization problem. However, when non-normalities are

introduced, higher moments affect the investor’s optimization problem. A great deal of

empirical research suggests that asset returns are sometimes asymmetric and heavy tailed

(Longin and Solnik (2001), Bauwen and Laurent (2003)). In this paper, the utility function

is expanded up to the first four moments. Jondeau and Rockinger (2006) and Harvey et al

(2010) also employed this approach. A case of Taylor expansion up to the fourth moments
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can be written as follows:

Et[U(Wt+1)] ≈ e(wt) =U (1)(Wt)m1,P t+1(wt) +
1

2
U (2)(Wt) · m2,P t+1(wt) (21)

+
1

6
U (3)(Wt)m3,P t+1(wt) +

1

24
U (4)(Wt)m4,P t+1(wt)

where m1,P t+1(wt),m2,P t+1(wt), m3,P t+1(wt) and m4,P t+1(wt) are the first, second, third and

fourth noncentral moments of the portfolio, respectively. The noncentral moments of the

portfolio are computed from the weighted sum of noncentral moment matrices as follows:

m1,P t+1(wt) = w′
tµt+1 =

n∑
i=1

witµi + wftrft+1,

m2,P t+1(wt) = w′
tM2,t+1wt =

n∑
i=1

n∑
j=1

witwjtm2,ijt+1,

m3,P t+1(wt) = wt
′M3,t+1(wt ⊗ wt) =

n∑
i=1

n∑
j=1

n∑
k=1

witwjtwktm3,ijkt+1,

m4,P t+1(wt) = wt
′M4,t+1(wt ⊗ wt ⊗ wt) =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

witwjtwktwltm4,ijklt+1.

To maximize this approximated utility function by standard techniques, the derivative

vector and the Hessian matrix are required. The elements of the derivative vector and

the Hessian matrix can be written using submatrices of the higher moment matrices. The

elements of the derivative vector are as follows:

∂m1,P t+1

∂wit

= µi − rft+1,

∂m2,P t+1

∂wit

= 2
n∑

j=1

witm2,ijt+1,

∂m3,P t+1

∂wit

= 3wt
′M3,t+1wt = 3

n∑
j=1

n∑
k=1

wjtwktm3,ijkt+1,

∂m4,P t+1

∂wit

= 4wt
′M4,t+1(wt ⊗ wt) = 4

n∑
j=1

n∑
k=1

n∑
l=1

wjtwktwltm4,ijklt+1.
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The elements of the Hessian matrix are as follows:

∂2m2,P t+1

∂wit∂wjt

= 2m2,ijt+1

∂2m3,P t+1

∂wit∂wjt

= 6
n∑

k=1

m3,ijkt+1wkt

∂2m4,P t+1

∂wit∂wjt

= 12wt
′M4,t+1wt = 12

n∑
k=1

n∑
l=1

m4,ijklt+1wktwlt.

In this paper, I consider an investor whose preference is represented by a constant relative

risk aversion (CRRA) utility function (i.e. U(W ) = W 1−λ

1−λ
) and normalize the initial wealth

W = 1. The approximated utility function is as follows:

Et[U(1 + w′
trt+1 + wftrft+1)] ≈ m1,P t+1 −

λ

2
m2,P t+1(wt) (22)

+
λ(λ + 1)

6
m3,P t+1(wt) −

λ(λ + 1)(λ + 2)

24
m4,P t+1(wt).

For risk averse investors, the effects of the third and fourth moments are positive and negative

respectively. This is consistent with the intuition that an investor tries to avoid a large

negative return and a fat-tailed distribution. It is logical to assume that the CRRA utility

function is useful since optimizations are not affected by the level of initial wealth. If the

initial wealth is W , then the optimal weight is Wω∗
t where ω∗

t is the optimal portfolio when

the initial wealth is unity. To sum up, replacing the moments matrices with estimated series,

the conditional optimal portfolio weights given information up to t−1 are selected by solving

following problem:

max
wt

ê(wt) = m̂1,P t+1 −
λ

2
m̂2,P t+1(wt) +

λ(λ + 1)

6
m̂3,P t+1(wt) −

λ(λ + 1)(λ + 2)

24
m̂4,P t+1(wt)

s.t m̂1,P t+1(wt) = w′
tµ̂i + wftrft+1,

m̂2,P t+1(wt) = wt
′M̂2,t+1wt

′,

m̂3,P t+1(wt) = wt
′M̂3,t+1(wt ⊗ wt),

m̂4,P t+1(wt) = wt
′M̂4,t+1(wt ⊗ wt ⊗ wt),

12



The optimization problem is solved by the Newton-Rapthon method for each t. Since the

problem is an approximation of the expected utility maximization, the performance of an

approximation is of interest. By casting estimated portfolio weights in the argument of

utility function, realized utilities can be calculated. In the following section, I measure the

difference between alternative strategies.

3 Comparison of performance

In section 2, an approximated expected utility maximization problem is introduced. When

returns are non-normally distributed, including higher moments will better approximate the

expected utility function. In this section I determine whether including the higher moments

and volatility timing is valuable or not.

3.1 Alternative portfolios

In this subsection, alternative asset allocation strategies are defined. To study the effect of

higher moments and volatility timings, I compare static and dynamic portfolios changing the

degree of approximations. The first strategy is the static portfolio with mean and variance

which maximizes the approximated expected utility function up to first two moments. The

approximated expected utility function is as follows:

Et[U(1 + wt
′rt+1 + wftrft+1)] ≈ mPt+1 −

λ2

2
m2

Pt+1(wt). (23)

The second strategy is the static portfolio with first four moments. This portfolio captures

the non-normalities of returns but the GARCH effects are not considered. The third strategy

is the dynamic mean-variance portfolio which changes portfolio weights depending on the

GARCH effects. This portfolio captures the GARCH effects but non-normalities are not

considered.

13



3.2 Method of the comparison

To measure the difference of alternative strategies, I use the concept of certainty equivalent

return. Let wt
∗ and wt

∗∗ be allocations under different strategies. Then an unconditional

certainty equivalent return is m such that

E[U(1 + wt
∗′rt+1 + m)] = E[U(1 + wt

∗∗′rt+1)]. (24)

Certainty equivalennt return m is a required extra return where investors become indifferent

to both strategies. This can be interpreted as the investor being willing to pay m to switch

his strategy from wt
∗ to wt

∗∗. This enables an investor to compare the cost of calculating

the higher moments and its benefit. The certainty equivalent return is estimated by solving

sample analogs of (24):

1

T

T∑
t=1

U(1 + ŵ′
trt+1 + wftrft+1 + m̂) =

1

T

T∑
t=1

U(1 + w̃′
trt+1 + wftrft+1) (25)

by the grid search method.

3.3 Bootstrap

To compare the expected utilities of two alternative strategies statistically, I employ a boot-

strap method. To derive a bootstrap distributions of certainty equivalent returns, the fol-

lowing procedures are iterated.

1. Estimate the GARCH model (1), (2) and (3) using the return series {r(k)
t }.

2. Calculate the certainty equivalent return m(k) using the original return series rt and

the estimated parameters.

3. Using the original return series rt and the estimated parameters, the mean, variance
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and innovation series {µ(k)
i , σ

2(k)
it , ε

(k)
t } are estimated as in section 2

µ̂
(k)
i =

1

T

T∑
t=1

r
(k)
it ,

σ̂
2(k)
i0 =

1

T

T∑
t=1

(r
(k)
it − µ̂

(k)
i )2,

σ̂
2(k)
it = ŵ

(k)
i + α̂

(k)
i σ̂

2(k)
it−1 + β̂

(k)
i ε̂

2(k)
it−1 + γ̂

(k)
i ε̂

2(k)
it−1I{εit−1<0},

ε̂
(k)
it =

rit − µ̂
(k)
i

σ̂
(k)
it

.

4. Resampling ε
(k)
t , the bootstrap series of innovations {ε(k∗)

t } is computed.

5. A bootstrap series of returns {rt
(k+1)} are computed as follows:

r
(k+1)
it = µ̂

(k)
i + σ̂

(k)
it ε

(k∗)
it .

The null hypothesis is m = 0 and the alternative is m 6= 0. The null hypothesis implies

that the two strategies are indifferent, at least unconditionally. Demeaning the bootstrap

sample of m, the distribution of the certainty equivalent return under the null is simulated.

The p-value for m̂ is computed as

p(m̂) = 2 min

{
1

B

B∑
k=1

I(m(k) − m̄ ≤ m̂),
1

B

B∑
k=1

I(m(k) − m̄ > m̂)

}
(26)

where m̄ = 1
B

∑B
k=1 m(k). In the following section, an illustrative empirical application is

demonstrated.

4 Empirical Application

In this section, an empirical application for the Tokyo Stock Exchange (TSE) is demon-

strated. The most popular index of the TSE is TOPIX which consists of all the stocks in the

first section of the TSE. In the TSE, TOPIX includes 33 categorizes industries. I construct

portfolios using several indexes and a risk-free asset. The selected categories are Mining, Iron
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& Steel, Transportation Equipments and Securities & Commodity Futures and the risk free

rate is proxied by the commercial paper rate. The data are weekly returns from 1999/12/28

to December 2011/4/29.

4.1 Estimation of the GARCH and moment matrices

In Table 1, the estimated parameters of the GARCH model are reported. The co-skewness

matrix is 4 × 42 and the co-kurtosis matrix is 4 × 43 and only non-redundant elements are

displayed. As the correlation matrix shows, the indexes are positively correlated so that there

is little gain from diversification that reducing the variance of a portfolio. However, there is

an another type of gain from diversification that increases a skewness or reduces a kurtosis.

Under the multivariate normal distribution, E[ε3
it] = 0, E[εitε

2
jt] = 0, E[ε4

it] = 3, E[ε2
itε

2
jt] =

1, E[εitε
3
jt] = 0. Co-skewnesses E[ε1t, ε

2
2t] can be interpreted as correlation of ε1t and ε2

2t. The

negative co-skewness E[ε1tε
2
2t] = −0.11 implies that when the Mining index experience large

return in absolute value, the Iron & Steel index tends to experience negative return. Since

rare event of Mining and negative return of Iron & Steel are correlated, this combination

raises the possibility of large negative return. This has negative effect on skewness of a

portfolio return, and thus this combination can be interpreted as risky. Co-kurtosis E[ε2
1ε

2
2]

can be interpreted as the covariance of ε2
1t and ε2

2t. The positive co-kurtosis E[ε2
1tε

2
2t] = 1.69

implies that when the Mining index experiences a rare event, Iron & Steel index also tends

to experience rare event. This combination raises the possibility of very rare event, and so

can be interpreted as risky. These bootstrap resamplings are repeated 100 times with the

procedure shown in section 3. Bootstrap standard errors are reported in parentheses.

Table 1: GARCH parameters and moment matrices of innovations

With the estimated GARCH parameters and higher moment matrices of innovations,

conditional moment matrices are estimated every week. Given the conditional moments,

optimal asset allocations are estimated for each strategy. As in Jondeau and Rockinger

(2012), I use the parameters of risk aversion λ = 5, 10, 15. When this value is large the
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investor is more risk averse. In the following subsections the performance of each strategy is

reported.

4.2 Descriptive statistics of the realized return

Table 2 represents the descriptive statistics of the realized return for each strategy. Each

row reports the summary statistics of the portfolio return of the dynamic higher moment

portfolio, dynamic mean-variance portfolio, static higher moment portfolio and static mean-

variance portfolio. Two static portfolios shows very similar performance. This implies that

higher moment does not has value unconditionally. The dynamic higher moment portfolio

have large mean, large variance, large skewness and large kurtosis than that of dynamic mean

variance portfolio. In terms of the mean variance criterion, the portfolio may be interpreted

as a high risk, high return portfolio; however, in terms of the expected utility, the risk is not

so large since relatively large skewness makes the probability of negative return small.

Table 2: Summary statistics of the realized returns

4.3 Expected utility and certainty equivalent returns

For several values of risk aversion, certainty equivalent returns are estimated. Certainty

equivalent returns are measured between the dynamic higher moment portfolio and other

strategies respectively. Table 3 presents the computation results. The first column shows

the certainty equivalent return for each strategy and the dynamic higher moment portfolio.

The second column shows the bootstrap p-values explained in section 3. Figure 1 presents

the bootstrap distribution of the certainty equivalent returns with λ = 15. The result shows

that the dynamic higher moment portfolio significantlly improve the performance when it is

compared to dynamic mean-variance portfolio. This impies that considering higher moments

is valuable in term of the expected utility when it is combined to the volatility timing. The

value 0.0000056 of the certainty equivalent return between the dynamic higher moment

portfolio and the dynamic mean variance portfolio implies that investors are willing to pay

17



0.0000056 to switch the strategy from dynamic mean variance portfolio to dynamic higher

moment portfolio. Since average risk free rate during this period is 0.0000385, it can be

interpreted that considering higher moments has about seventh part of value of the risk free

rate when λ = 15. Also figure 1 shows, the most of simulated certainty equivalent returns are

positive. Comparing to static mean variance, or static higher moment portfolio, certainty

equivalent returns are 0.000020 but is not statistically significant. As figure 2 and 3 show,

the value of the certainty equivalent returns are volatile. This imply that the value of volality

timing is ambiguous.

Table 3: Certainty equivalent returns and bootstrap p-values

Figure 1: Bootstrap distribution of the certainty equivalent returns (a) Dynamic mean

variance portfolio

Figure 2: Bootstrap distribution of the certainty equivalent returns (b) Static higher

moment portfolio

Figure 3: Bootstrap distribution of the certainty equivalent returns (c) Static mean

variance portfolio

5 Conclusion and future work

In this paper a simple asset allocation problem with higher moments and GARCH effects

is introduced. The approach is easy to estimate since the time series estimations are based

on the standard estimation of the GARCH and portfolio optimizations are solved by the

Newton-Rapthon method with explicitly computed derivative vectors and Hessian matrices.

The performance of the strategies is measured by the bootstrap method. The empirical

results demonstrated that conditional higher moments with GARCH effects improve an

investor’s utility. For most risk aversion parameters, the certainty equivalent return that

investors are willing to pay to switch their strategy to the portfolio with higher moments

and GARCH effects is positive. This implies that information of the higher moments of the

18



return has value at some situations where non-normalities are observed. The paper considers

only a simple model with constant moment matrices of the GARCH innovations. However

the dynamic conditional correlation model is applicable. Additionally, conditional skewness

and kurtosis should be topics for future research.
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Table 1: GARCH parameters and moment matrices of innovations

µ σ̄2 α β γ

Mining 0.00098 0.0021 0.88 0.052 0.12
(0.0000) (0.0001) (0.14) (0.0005) (0.0015)

Iron & Steel 0.0011 0.0019 0.91 0.0738 0.18
(0.0000) (0.0002) (0.16) (0.0008) (0.0010)

Transportation 0.0010 0.0013 0.81 0.02 0.22
Equipments (0.0000) (0.0002) (0.15) (0.0010) (0.0017)
Securities & 0.00038 0.0030 0.91 0.021 0.017
Commodity Futures (0.0002) (0.0001) (0.14) (0.0005) (0.0023)

Correlation matrix

1.00
0.47 (0.00) 1.00
0.34 (0.00) 0.55 (0.00) 1.00
0.31 (0.00) 0.59 (0.02) 0.59 (0.01) 1.0000

Co-skewness matrix

S1 0.00 (0.07)
-0.11 (0.02) -0.04 (0.01)
-0.20 (0.01) -0.17 (0.01) -0.20 (0.02)
-0.06 (0.01) -0.03 (0.00) -0.06 (0.00) 0.04 (0.00)

S2

0.21 (0.03)
-0.14 (0.02) -0.24 (0.01)
0.07 (0.01) -0.07 (0.01) 0.12 (0.01)

S3

-0.18 (0.07)
-0.14 (0.02) 0.06 (0.01)

S4

0.51 (0.03)
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Co-kurtosis matrix

K11 3.78 (3.66)
1.69 (0.46) 1.80 (0.16)
1.22 (0.28) 1.16 (0.19) 1.46 (0.24)
1.12 (0.11) 1.14 (0.03) 0.93 (0.03) 1.38 (0.01)

K12

1.66 (0.18)
1.08 (0.21) 1.10 (0.27)
1.02 (0.03) 0.71 (0.04) 0.97 (0.01)

K13

1.17 (0.48)
0.74 (0.06) 0.70 (0.01)

K14

1.02 (0.03)
K21

3.70 (0.22)
1.93 (0.33) 1.93 (0.45)
1.96 (0.07) 1.36 (0.08) 1.86 (0.02)

K22

2.00 (0.76)
1.38 (0.12) 1.29 (0.03)

K23

1.89 (0.07)
K33

3.57 (1.51)
1.87 (0.24) 1.72 (0.05)

K34

1.85 (0.03)
K44

3.69 (0.30)
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Table 2: Summary statistics of the realized returns

Mean Sd Skew Kurt Max Min

λ = 5

Dynamic higher moment 0.00047 0.0010 -0.14 1.06 0.034 -0.038

Dynamic mean-variance 0.00036 0.00080 -0.19 0.91 0.028 -0.033

Static higher moment 0.00028 0.068 -0.41 5.55 0.043 -0.43

Static mean-variance 0.00027 0.068 -0.42 5.56 0.043 -0.43

λ = 10

Dynamic higher moment 0.00026 0.0050 -0.13 1.06 0.017 -0.019

Dynamic mean-variance 0.00020 0.0040 -0.19 0.91 0.014 -0.016

Static higher moment 0.00016 0.0034 -0.41 5.55 0.043 -0.022

Static mean-variance 0.00016 0.0034 -0.42 5.55 0.043 -0.022

λ = 15

Dynamic higher moment 0.00018 0.0033 -0.13 1.06 0.012 -0.013

Dynamic mean-variance 0.00014 0.0026 -0.19 0.91 0.0092 -0.010

Static higher moment 0.00012 0.0023 -0.42 5.55 0.14 -0.014

Static mean-variance 0.00012 0.0023 -0.42 5.55 0.14 -0.014
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Table 3: Certainty equivalent returns and bootstrap p-values

C.E P-value

λ = 5

Dynamic mean-variance 0.000017 0.02

Static higher moment 0.000061 0.14

Static mean-variance 0.000061 0.15

λ = 10

Dynamic mean-variance 0.0000082 0.01

Static higher moment 0.000031 0.14

Static mean-variance 0.000031 0.14

λ = 15

Dynamic mean-variance 0.0000056 0.01

Static higher moment 0.000020 0.14

Static mean-variance 0.000020 0.14

C.E means the certainty equivalent returns between

Dynamic higher moment portfolio and other portfolios.
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Figure 1: Bootstrap distribution of the certainty equivalent returns

(a) Dynamic mean variance portfolio
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Figure 2: Bootstrap distribution of the certainty equivalent returns

(b) Static higher moment portfolio

26



0
5

10
15

F
re

qu
en

cy

−.0001 −.00005 0 .00005 .0001
Certainty equivalent return

Figure 3: Bootstrap distribution of the certainty equivalent returns

(c) Static mean variance portfolio
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