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Abstract

We consider the problems of allocating several heterogeneous objects owned by gov-
ernments to a group of agents and how much agents should pay. Each agent receives at
most one object and has nonquasi-linear preferences. Nonquasi-linear preferences de-
scribe environments in which large-scale payments influence agents’ abilities to utilize
objects or derive benefits from them. The “minimum price Walrasian (MPW) rule” is
the rule that assigns a minimum price Walrasian equilibrium allocation to each pref-
erence profile. We establish that the MPW rule is the unique rule that satisfies the
desirable properties of strategy-proofness, Pareto-efficiency, individual rationality, and
nonnegative payment on the domain that includes nonquasi-linear preferences. This
result does not only recommend the MPW rule based on those desirable properties, but
also suggest that governments cannot improve upon the MPW rule once they consider
them essential. Since the outcome of the MPW rule coincides with that of the simulta-
neous ascending (SA) auction, our result explains the pervasive use of the SA auction.
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1 Introduction

Purpose. Since the 1990s, governments in numerous countries have conducted auctions
to allocates a variety of heterogeneous objects or assets including spectrum rights, vehicle
ownership licenses, and lands, etc. Although auction revenues sometimes amount to even
as large as government annual budgets, the announced goals of many government auctions
are rather to allocate objects “efficiently”, i.e., to agents who make the most use of them or
benefit most from them.1 Agents making more use of objects or benefiting more are willing to
pay higher prices for them, and thus would have more chances to win the objects in auctions.
However, large-scale auction payments would influence agents’ abilities to utilize objects or
benefit from them, thereby complicating efficient allocation. This article analyzes rules that
allocate auctioned objects efficiently even when payments are so large that it impairs agents’
abilities to utilize them or realize their benefits. We ask what types of allocation rules can
allocate objects efficiently in such environments.
Main Result. An allocation rule (or simply a rule) is a function that assigns to each
agents’ preference profile an allocation, which consists of an assignment of objects and agents’
payments. Each agent is permitted to receive one object at the most. The domain of rules
is the class of agents’ preference profiles. It is well-known that in this model, there is a
minimum price Walrasian equilibrium,2 and that its allocation coincides with the outcome
of the simultaneous ascending (SA) auction.3 We focus on the rule that assigns a minimum
price Walrasian equilibrium allocation to each preference profile. We refer to this rule as the
“minimum price Walrasian (MPW) rule”.

The MPW rule satisfies four desirable properties. The first is Pareto-efficiency. An
allocation is Pareto-efficient if no agent can be better off without making other agents worse
off or reducing a government’s revenue.4 Note that Pareto-efficiency is evaluated based on
agents’ preferences. Thus, a Pareto-efficient allocation cannot be chosen without information
about agents’ preferences. Since preferences are private information, agents have incentives
to behave strategically to influence the final outcome in their favor. Strategy-proofness is an
incentive-compatibility property, which gives a strong incentive for each agent to reveal his
true preferences. It says that in the normal form game induced by the rule, it is a (weakly)
dominant strategy for each agent to reveal his true preference. The MPW rule satisfies
strategy-proofness,5 and chooses a Pareto-efficient allocation corresponding to the revealed
preferences.

Third property is individual rationality, that induces agents’s voluntary participation.
The MPW rule never assigns an allocation that makes an agent worse off than he would be
if he had received no object and paid nothing. Fourth is nonnegative payment. Under the
MPW rule, agents’ payments are always nonnegative, that is, governments never subsidize
agents.

The primary conclusion of this article is that only the minimum price Walrasian rule sat-

1For example, frequency auctions in the United States were introduced to promote “efficient and intensive
use of the electromagnetic spectrum”. See McAfee and McMillan (1996, p.160).

2See Demange and Gale (1985).
3For example, see Demange, Gale, and Sotomayor (1986).
4In our auction model, Pareto-efficiency is defined by taking government revenue into account.
5In addition, the MPW rule satisfies group strategy-proofness, i.e., by misrepresenting their preferences,

no group of agents should obtain assignments that they prefer.
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isfies strategy-proofness, Pareto-efficiency, individual rationality, and nonnegative payment
in environments where large-scale payments influence agents’ abilities to utilize the objects or
enjoy their benefits(Theorem 5.1). This result does not only recommend the MPW rule based
on the four desirable properties, but also implies that no other rules are available options
once governments consider the four properties as essential. Since the outcome of the MPW
rule coincides with that of the SA auction, the result also supports SA auctions adopted by
many governments.
Novelties and technical difficulties. Holmström (1979) establishes a fundamental
result relating to our question that applies when agents’ benefits from auctioned objects are
not influenced by their payments, i.e., agents have “quasi-linear” preferences. He assumes
that the domain includes only quasi-linear preference, and shows that only the Vickrey–
Clarke–Groves type (VCG)6 allocation rules satisfy strategy-proofness and Pareto-efficiency.7

Preferences are approximately quasi-linear if payments are sufficiently low. However, quasi-
linearity is not an appropriate assumption for large-scale auctions. Excessive payment for
the auctioned objects may damage bidders’ budgets and render effective use of the objects
impossible. In fact, in spectrum license auctions and vehicle ownership license auctions,
license prices often equal or exceed bidders’ annual revenues. Thus, bidders’ preferences are
nonquasi-linear for such important auctions.8 As contrasted with Holmström (1979), our
result can be applied even to such environments.

Saitoh and Serizawa (2008) investigate a problem similar to ours in the case where the
domain includes nonquasi-linear preferences but objects are homogeneous. They generalize
VCG-type rules by employing compensating valuations, and characterize the generalized
VCG-type rules by the four desirable properties.9 We stress that when preferences are not
quasi-linear, the heterogeneity of objects makes the MPW rule substantially different from
the generalized VCG rule. In Section 2, we illustrate the MPW rule for simple cases, and
contrast it with the VCG-type rule.

Although the assumption of quasi-linearity neglects the serious effects of large-scale auc-
tion payments of auctions in actual practice, it is difficult to investigate the above question
without this assumption. Quasi-linearity simplifies the description of Pareto-efficient alloca-
tions. More precisely, under quasi-linear preferences, a Pareto-efficient allocation of objects
can be achieved simply by maximizing the sum of realized benefits from objects (agents’ net
benefits), and hence, efficient allocations of objects are independent of how much agents pay.
In this sense, Holmström (1979) characterizes only the payment part of strategy-proof and
Pareto-efficient rules. On the other hand, without quasi-linearity, Pareto-efficient alloca-
tions of objects do depend on payments, and thus are complicated to identify. Moreover,
we illustrate this point in Section 2 in more detail. Furthermore, as mentioned earlier, on
nonquasi-linear domains, the MPW rule is rather different from the VCG rule, and the for-
mer outperforms the latter in terms of our desirable properties. Therefore, the extension of
Holmström’s (1979) result to nonquasi-linear domains is far from trivial. Needless to say,
Holmström’s (1979) proof techniques fail when the domain includes nonquasi-linear prefer-

6See Clarke (1971), Groves (1973), and Vickrey (1961).
7More precisely, Holmström (1979) studies public goods models. When agents have quasi-linear prefer-

ences, his result can be applied to the auction model.
8Ausubel and Milgrom (2002) also discuss the importance of the analysis under nonquasi-linear preferences.
9Sakai (2008) also obtains a result similar to theirs.
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ences. It is worthwhile to mention that most standard results of auction theory, such as the
Revenue Equivalence Theorem, also depend on assuming quasi-linearity. In this article, we
overcome that difficulty.
Related Literature. We relate our results to literature not referenced above. Analyzing
a model resembling ours, Miyake (1998) shows that only the MPW rule satisfies strategy-
proofness among “Walrasian rules”.10 Note that Walrasian rules are a small part of the
class of allocation rules satisfying Pareto-efficiency, individual rationality, and nonnegative
payment. By developing analytical tools substantially different from Miyake’s (1998), we
extend his characterization in that we establish the uniqueness of the rules satisfying the
desirable properties without confinement to Walrasian rules.

Many authors have analyzed SA auctions in quasi-linear settings. For example, see
Ausubel (2004, 2006); Ausubel and Milgrom (2002); de Vries, Schummer, and Vohra (2007);
Gul and Stacchetti (2000); and Mishra and Parkes (2007), etc. In nonquasi-linear settings,
MPW rules differ from VCG rules, and it is the MPW allocation that coincides with the
outcome of the SA auction. Since our result states that only the MPW rule satisfies ba-
sic desirable properties, it indicates that their works are more important in nonquasi-linear
settings.

Other related literature concerns matching models. The concept of stability in matching
models is equivalent to Walrasian equilibrium in our model. The “agent-proposing deferred
acceptance algorithm (APDAA)” in matching models without monetary transfers corresponds
to the MPW rule. Alcalde and Barberà (1994) characterize the APDAA rule by strategy-
proofness among stable rules. Kojima and Manea (2010) characterize the APDAA rule
without imposing stability, but with different properties, which they call individually rational
monotonicity and weak Maskin monotonicity. In a spirit akin to ours, those articles analyze
rules satisfying desirable properties.
Organization. The article is organized as follows. Section 2 illustrates the minimum
price Walrasian rule, and demonstrates how nonquasi-linear preferences complicate analy-
sis. Section 3 sets up the model and introduces basic concepts formally. Section 4 defines
Walrasian equilibria and characterizes them by the concepts of underdemanded and overde-
manded sets. Section 5 provides our main result. Section 6 defines the SA auction, and
shows that its outcome coincides with the minimum price Walrasian equilibrium allocation.
Section 7 gives an overview of the proof of our primary conclusion. Section 8 concludes. All
the formal proofs appear in the Appendix.

2 An illustration of Minimum Price Walrasian Rule

with Nonquasi-linear preferences

In this section, we illustrate the minimum price Walrasian (MPW) rule in the simplest cases
when three agents (agents 1, 2, and 3) have varied preferences and there are only one or two
objects. In addition, we contrast the MPW rule with the Vickrey–Clarke–Groves (VCG) rule
to demonstrate their difference.

Case I: Quasi-linear domain. When agents have quasi-linear preferences, each agent’s

10A “Walrasian rule” is the rule that assigns a Walrasian equilibrium allocation to each preference profile.
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valuation of each object is independent of his payment, and the outcome of the MPW rule
coincides with that of the VCG rule. Under the two rules, the objects are allocated efficiently
(i.e., the sum of agents’ valuations is maximized), and each agent pays the social opportunity
cost of allocating to him the object he receives. It is known that this rule is a unique rule
satisfying efficiency, strategy-proofness, and individual rationality (Holmström, 1979; Chew
and Serizawa, 2007).

Case II: Nonquasi-linear domain (one-object case). When preferences are not quasi-
linear, agents’ valuations of objects are not defined independently of their payments. How-
ever, when there is only one object, the MPW rule still coincides with a simple generalization
of the VCG rule based on compensating valuations from the origin of an agent’s consumption
space,11 which we call “the VCG rule from 0”.

Consider the case where agents preferences, R1, R2, and R3 are depicted in Figure 1, where
Ri (i = 1, 2, 3) denotes agent i’s preference, and zi denotes i’s consumption point assigned
by the MPW rule. Denote the highest and second highest compensating valuations from the
origin 0 among agents by CV 1(0) and CV 2(0), respectively. Under the two rules, the agent
with the highest compensating valuation CV 1(0) receives the object and pays CV 2(0).

This rule can easily be extended to the case with n agents and m homogeneous objects.
In this case, agents with m highest compensating valuations receive the objects and pay the
(m + 1)-th highest compensating valuation. While objects are homogeneous, this is also a
unique rule satisfying efficiency, strategy-proofness, individual rationality, and nonnegative
payment (Saitoh and Serizawa, 2008; Sakai, 2008).

[Figure 1 about here]

Case III: Nonquasi-linear domain (two-object case, 1). We now illustrate the outcome
of the MPW rule when there are two heterogeneous objects, A and B. Consider the case where
agents’ preferences, R1, R2, and R3 are depicted in Figure 2. Denote agent i’s (i = 1, 2, 3)
compensating valuation of object x (x = A,B) from the origin 0 by CVi(x;0). Compensating
valuations are ranked as CV1(A;0) > CV3(A;0) > CV2(A;0) and CV2(B;0) > CV3(B;0) >
CV1(B;0). In this case, under the MPW rule, agent 1 receives object A and pays CV3(A;0),
and agent 2 receives object B and pays CV3(B;0). Note that each object is allocated to the
agent with the highest compensating valuation from the origin at the price established by
the second highest compensating valuation. This outcome still coincides with the outcome
of the VCG rule from 0 when it is applied to the two objects independently.

[Figure 2 about here]

Case IV: Nonquasi-linear domain (two-object case, 2). We next consider the case
where agents’ preferences are depicted in Figure 3. The compensating valuations from the
origin are ranked as CV2(A;0) > CV1(A;0) > CV3(A;0) and CV1(B;0) > CV2(B;0) >
CV3(B;0). Denote agent i’s (i = 1, 2, 3) compensating valuation of object x (x = A, B) from
his consumption point zi = (xi, pi) by CVi(x; zi), where xi is the object that agent i receives
and pi is his payment. In this case, the outcome of the MPW rule is as follows: Agent 1

11In our model, the origin of an agent’s consumption space means that he receives no object and pays
nothing. Let 0 denote the origin of an agent’s consumption space.
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receives object A and pays CV3(A;0), i.e., the price pA of object A is CV3(A;0). This agent
1’s consumption point is depicted as z1 in Figure 3. Agent 2 receives object B and pays
CV1(B; z1), i.e., the price pB of object B is CV1(B; z1). This agent 2’s consumption point is
depicted as z2 in Figure 3.

Let’s see why this is the outcome of the MPW rule. First, note that for each agent
i = 1, 2, 3, zi is maximal for Ri in the budget set {0, (A, pA), (B, pB)}. Thus, the above
outcome is a Walrasian equilibrium. Next, let (p̂A, p̂B) be a Walrasian equilibrium price. If
p̂A < pA, then, all agents prefer (A, pA) to 0, that is, all three agents demand A or B or
both. In that case, one agent cannot receive an object he demands, contradicting Walrasian
equilibrium. Therefore, p̂A ≥ pA. If p̂B < pB, both agents 1 and 2 strictly prefer (B, pB) to 0
and (A, pA). In that case, agent 1 or 2 cannot receive the object he demands, contradicting
Walrasian equilibrium. Therefore, p̂B ≥ pB. Hence, the above outcome is of the MPW rule.

Moreover, it is easy to see that the above outcome is that of the SA auction. While
the price pA of object A is lower than CV3(A;0), no agent exits, and therefore the auction
does not stop. Thus, in the outcome, pA ≥ CV3(A;0). Similarly, pB ≥ CV3(B;0). If
pB < CV1(B; z1), then since pA ≥ CV3(A;0), agents 1 and 2 both continue bidding on B.
Thus, pB ≥ CV1(B; z1). When pA = CV3(A;0) and pB = CV1(B; z1), agent 3 exits, and
agents 1 and 2 demand objects A and B, respectively. Then, the auction stops.

It is worthwhile to demonstrate that agent 2’s compensating valuation of object A from
the origin is highest; however, he does not receive A, and that the price of object B is not
any agent’s compensating valuation of object B from the origin. Accordingly, the MPW
outcome does not coincide with the VCG rule from 0. Additionally, we demonstrate that
efficient allocations of objects cannot be obtained simply by maximizing the sum of agents’
compensating valuations from the origin in this case.

[Figure 3 about here]

Case V: Nonquasi-linear domain (two-object case, 3). Finally, we consider the case
where agents’ preferences are depicted in Figure 4. The compensating valuations from the
origin are ranked as CV1(A;0) > CV3(A;0) > CV2(A;0) and CV1(B;0) > CV2(B;0) >
CV3(B;0). In this case, the outcome of the MPW rule is as follows: Agent 1 receives object
A and pays CV3(A;0), i.e., the price pA of object A is CV3(A;0). This agent 1’s consumption
point is depicted as z1 in Figure 4. Agent 2 receives object B and pays CV1(B; z1), i.e., the
price pB of object B is CV1(B; z1). This agent 2’s consumption point is depicted as z2 in
Figure 4. In this case, it is agent 1’s preference that decided whether agent 2 or 3 receives an
object. In Figure 4, agent 1 prefers (A,CV3(A;0)) to (B,CV2(B;0)), and agent 2 receives an
object. However, if agent 1 prefers (B,CV2(B;0)) to (A, CV3(A;0)), agent 3 instead receives
an object.

Similar to above Case IV, it is easy to see why this allocation is the outcome of the MPW
rule, and coincides with the outcome of the SA auction. As in Case IV, the price of object
B is not any agent’s compensating valuation of object B from the origin, the MPW outcome
does not coincide with the VCG rule from 0, and efficient allocation of objects cannot be
obtained simply by maximizing the sum of agents’ compensating valuations from the origin.

[Figure 4 about here]
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In the above five cases, we contrasted the MPW rule with the VCG rule. Outcomes
of the two rules coincide in Cases I, II and III, but not in Cases IV and V. The VCG
rule above employs only a small part of the information about agents’ preferences (i.e.,
“compensating valuations from the origin”). On the other hand, the MPW rule employs
other information (i.e., “compensating valuations from various points”). As we show in the
remainder of this article, only the MPW rule satisfies strategy-proofness, Pareto-efficiency,
individual rationality, and nonnegative payment on the domain including nonquasi-linear
preferences. Thus, the information about compensating valuations from various points is
necessary to design rules satisfying the above four properties on this domain.

As Demange, Gale, and Sotomayor (1986), etc., discuss and we show formally in Sec-
tion 6, the outcome of the SA auction always coincides with the minimum price Walrasian
equilibrium allocation.

3 The Model and Definitions

There are n agents and m objects, where 2 ≤ n < ∞ and 1 ≤ m < ∞. We denote the set
of agents by N ≡ {1, . . . , n}, and the set of objects by M ≡ {1, . . . ,m}. Let L ≡ {0} ∪ M .
Each agent is permitted to receive one object at most. We denote the object that agent
i ∈ N receives by xi ∈ L. Object 0 is referred as the “null object”, and xi = 0 means that
agent i receives no object. We denote the money that agent i pays by ti ∈ R. For each
i ∈ N , agent i’s consumption set is L×R, and agent i’s (consumption) bundle is a pair
zi ≡ (xi, ti) ∈ L × R. Let 0 ≡ (0, 0).

Each agent i has a complete and transitive preference relation Ri on L×R. Let Pi and Ii

be the strict and indifference relation associated with Ri, respectively. Given a preference Ri

and a bundle zi ∈ L×R, we denote the upper contour set and lower contour set of Ri at
zi by the sets UC(Ri, zi) ≡ {ẑi ∈ L×R : ẑi Ri zi} and LC(Ri, zi) ≡ {ẑi ∈ L×R : zi Ri ẑi},
respectively. We assume that a preference satisfies the following properties:

Continuity: For each zi ∈ L × R, UC(Ri, zi) and LC(Ri, zi) both are closed.

Money monotonicity: For each xi ∈ L and each ti, t̂i ∈ R, if t̂i < ti, then, (xi, t̂i) Pi (xi, ti).

Finiteness: For each ti ∈ R, each xi, x̂i ∈ L, there is t̂i ∈ R such that (x̂i, t̂i) Ri (xi, ti).

Let RE be the class of continuous, money monotonic, and finite preferences, which we call
the “extended domain”. Given Ri ∈ RE, zi ∈ L×R, and yi ∈ L, we define compensating
valuation CV i(yi; zi) of yi from zi for Ri by (yi, CVi(yi; zi)) Ii zi. Note that by continuity
and finiteness of preferences, CVi(yi; zi) exists, and by money monotonicity, CVi(yi; zi) is

unique. The compensating valuation for R̂i is denoted by ĈV i.
We introduce another property of preferences.

Desirability of objects: For each xi ∈ M and each ti ∈ R, (xi, ti) Pi (0, ti).
12

Definition 3.1. A preference Ri is classical if it satisfies continuity, money monotonicity,
finiteness, and desirability of objects.

12The following is a weaker condition of desirability of objects. A preference Ri satisfies weak desirability
of objects if for each xi ∈ M , (xi, 0) Pi 0. All the results in this article still hold if desirability of objects is
replaced by weak desirability.
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Let RC be the class of classical preferences, which we call the “classical domain”. Note
that RC ( RE.

Definition 3.2. A preference Ri is quasi-linear if there is a valuation function vi : L→ R+

such that vi(0) = 0, and for each zi ≡ (xi, ti) ∈ L × R, and each ẑi ≡ (x̂i, t̂i) ∈ L × R,

zi Ri ẑi ⇐⇒ vi(xi) − ti ≥ vi(x̂i) − t̂i.

We denote the class of quasi-linear preferences by RQ, which we call the “quasi-linear
domain”.

An object allocation is an n-tuple (x1, . . . , xn) ∈ Ln such that for each i, j ∈ N , if
xi 6= 0 and i 6= j, then xi 6= xj, that is, any two agents do not receive the same object. Let
X be the set of object allocations. A (feasible) allocation is an n-tuple z ≡ (z1, . . . , zn)
of bundles such that (x1, . . . , xn) ∈ X. Let Z be the set of feasible allocations. We denote
the object allocation and agents’ payments under an allocation ẑ by x̂ ≡ (x̂1, . . . , x̂n) and
t̂ ≡ (t̂1, . . . , t̂n), respectively.

Let R be a class of preferences such that R ⊆ RE. A preference profile is an n-tuple
R ≡ (R1, . . . , Rn) ∈ Rn. Given R ≡ (R1, . . . , Rn) ∈ Rn and N ′ ⊆ N , let RN ′ ≡ (Ri)i∈N ′ and
R−N ′ ≡ (Ri)i∈N\N ′ .

An allocation rule, or simply a rule, on Rn is a function f from Rn to Z. Given a rule
f and a preference profile R ∈ Rn, we denote agent i’s assignment of objects under f at R
by fx

i (R) and i’s payment under f at R by f t
i (R), and we write

fi(R) ≡ (fx
i (R), f t

i (R)), f(R) ≡ (f1(R), . . . , fn(R)), and f−i(R) ≡ fj(R)j∈N\{i}.

We introduce basic properties of rules. The efficiency condition defined below takes the
auctioneer’s preference into account and assumes that he is indifferent to the auctioned
objects, that is, he is only interested in his revenue. An allocation z ∈ Z is Pareto-efficient
for R ∈ Rn if there is no feasible allocation ẑ ∈ Z such that

(i)
∑
i∈N

t̂i ≥
∑
i∈N

ti, (ii) for each i ∈ N, ẑi Ri zi, and (iii) for some j ∈ N, ẑj Pi zj.

For each R ∈ Rn, let P (R) be the set of Pareto-efficient allocations for R.

Efficiency: For each R ∈ Rn, f(R) ∈ P (R).

Individual rationality defined below requires that a rule should never assign an alloca-
tion which makes some agent worse off than he would be if he had received no object and
paid nothing. Nonnegative payment requires that the payment of agents always should be
nonnegative.

Individual rationality: For each R ∈ Rn and each i ∈ N , fi(R) Ri 0.

Nonnegative payment: For each R ∈ Rn and each i ∈ N , f t
i (R) ≥ 0.

The two properties below are of incentive-compatibility. The first says that by misrepre-
senting his preferences, no agent should obtain an assignment that he prefers.

Strategy-proofness: For each R ∈ Rn, each i ∈ N , and each R̂i ∈ R, fi(R) Ri fi(R̂i, R−i).
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The second is a stronger property: by misrepresenting their preferences, no group of
agents should obtain assignments that they prefer.

Group strategy-proofness: For each R ∈ Rn and each N̂ ⊆ N , there is no R̂N̂ ∈ R#N̂

such that for each i ∈ N̂ , fi(R̂N̂ , R−N̂) Pi fi(R).13

4 Minimum Price Walrasian Equilibrium

We define “Walrasian equilibrium” and “minimum price Walrasian equilibrium” in this
model. As Demange, Gale, and Sotomayor (1986), etc., explain, and we show in Section
6, the minimum price Walrasian equilibria coincide with the outcomes of SA auctions. Let
R ⊆ RE in this section. All results in this section also hold on the classical domain RC .

Given a price vector p ≡ (p1, . . . , pm) ∈ Rm
+ of m objects, the budget set (or available

set) is defined as B(p) ≡ {(x, px) : x ∈ L}, where px = 0 if x = 0. Given Ri ∈ R and p ∈ Rm
+ ,

agent i’s demand set D(Ri, p) is defined as D(Ri, p) ≡ {x ∈ L : ∀ y ∈ L, (x, px) Ri (y, py)}.
Next is the definition of “Walrasian equilibrium”.

Definition 4.1. Let R ∈ Rn. A pair (z, p) ∈ Z × Rm
+ of feasible allocation and price vector

is a Walrasian equilibrium for R if it satisfies the following two conditions:

(WE-i) for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi ,

(WE-ii) for each x ∈ M, if for each i ∈ N, xi 6= x, then, px = 0.

Condition (WE-i) says that each agent receives the object he demands, and pays its price.
Condition (WE-ii) says that an object’s price is zero if it is not assigned.

Fact 4.1. For each R ∈ Rn, there is a Walrasian equilibrium for R.

Fact 4.1 is already proven in the literature. For example, see Alkan and Gale (1990).
Our model is a special case of their model. In Section 6, we give an alternative proof of the
existence of Walrasian equilibrium as Proposition 6.1 by using the SA auction.

Given R ∈ Rn, let W (R) be the set of Walrasian equilibrium allocations for R,
that is, z ∈ W (R) if and only if there is a price vector p ∈ Rm

+ such that the pair (z, p) is a
Walrasian equilibrium for R. Fact 4.2 below is so-called First Welfare Theorem.

Fact 4.2. Let R ∈ Rn and z ∈ W (R). Then, z is Pareto-efficient for R.14

Fact 4.3 below says that for each preference profile, there is a minimum price Walrasian
equilibrium.

13Let #A denote the cardinality of set A.
14To see this, suppose that z ≡ (z1, . . . , zn) is not Pareto-efficient for R. Then, there is ẑ ≡ (ẑ1, . . . , ẑn)

such that
(i)

∑
i∈N

t̂i ≥
∑
i∈N

ti, (ii) for each i ∈ N, ẑi Ri zi, (iii) for some j ∈ N, ẑj Pj zj .

Since z ∈ W (R), there is a price vector p ∈ Rm
+ such that (z, p) is a Walrasian equilibrium for R. Then,

by (ii) and (WE-i), for each i ∈ N , t̂i ≤ px̂i . By (iii) and (WE-i), t̂j < px̂j . Thus,
∑

i∈N t̂i <
∑

i∈N px̂i =∑
i∈N ti. This contradicts (i).
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Fact 4.3 (Demange and Gale, 1985). Let R ∈ Rn. There is a Walrasian equilibrium
(zmin, pmin) ∈ Z × Rm

+ for R such that, for each price vector p ∈ Rm
+ , if there is z ∈ Z such

that the pair (z, p) is a Walrasian equilibrium for R, then for each x ∈ M , px
min ≤ px.15

Given R ∈ Rn, let Wmin(R) be the set of the minimum price Walrasian equilibrium
allocations for R. That is, z ∈ Wmin(R) if and only if there is pmin ∈ Rm

+ such that the
pair (z, pmin) is a minimum price Walrasian equilibrium for R. By Facts 4.1 and 4.3, for each
R ∈ Rn, the set Wmin(R) is nonempty. Although the correspondence Wmin is set valued, but
it is essentially single-valued. That is, for each R ∈ Rn, each pair z, z′ ∈ Wmin(R), and each
i ∈ N , zi Ii z

′
i.

16 We denote the minimum Walrasian equilibrium price for R by pmin(R).
Next, we introduce the concepts of “overdemanded set” and “underdemanded set” (De-

mange, Gale, and Sotomayor, 1986; Mishra and Talman, 2010). We relate these concepts to
Walrasian equilibria.

Definition 4.2. A set M ′ ⊆ M of objects is (weakly) overdemanded at p for R if

#{i ∈ N : D(Ri, p) ⊆ M ′} (≥) > #M ′.

A set M ′ ⊆ M of objects is (weakly) underdemanded at p for R if

[∀x ∈ M ′, px > 0] =⇒ #{i ∈ N : D(Ri, p) ∩ M ′ 6= ∅} (≤) < #M ′.

Fact 4.4 below is shown by Mishra and Talman (2010) under the assumption that prefer-
ences are quasi-linear. However, their proof does not depend on this assumption.

Fact 4.4 (Mishra and Talman, 2010). Let R ∈ Rn. A price vector p is a Walrasian
equilibrium price for R if and only if no set of objects is overdemanded and no set of objects
is underdemanded at p for R.

Theorem 4.1 below is a characterization of the minimum price Walrasian equilibrium
by means of the concepts of overdemanded and weakly underdemanded sets. Mishra and
Talman (2010) first obtain the same conclusion on the quasi-linear domain. We emphasize,
in contrast to Fact 4.4, that Mishra and Talman’s (2010) proof crucially depends on the
quasi-linearity. It relies on a simple fact that when preferences are quasi-linear, if a set M ′

of objects is weakly underdemanded at a Walrasian equilibrium (z, p), then all the prices of
M ′ can be slightly lowered by the same amount while maintaining the Walrasian equilibrium
conditions (WE-i) and (WE-ii). However, it is not true when preferences are not quasi-linear.
Theorem 4.1 below is a novel result in that point.

Theorem 4.1 is the key to obtaining all the important results introduced in the subsequent
sections, such as Theorem 5.1 in Section 5 and Proposition 6.1 in Section 6. As mentioned
earlier, we obtain the existence of Walrasian equilibrium as a byproduct of Proposition 6.1.
Thus, this theorem is also a key to the existence of Walrasian equilibrium.

Theorem 4.1. Let R ∈ Rn. A price vector p is a minimum Walrasian equilibrium price for R
if and only if no set of objects is overdemanded and no set of objects is weakly underdemanded
at p for R.

15They also show that for each preference profile, there is a maximum price Walrasian equilibrium.
16An allocation z′ ∈ Z is obtained by an indifferent permutation from z ∈ Z if there is a permutation π

on N such that for all i ∈ N , z′i = zπ(i) and z′i Ii zi (Tadenuma and Thomson, 1991). Note that for each pair
z, z′ ∈ Wmin(R), z′ is obtained by an indifferent permutation from z.
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The following structures of the minimum price Walrasian equilibrium are obtained as a
corollary of Theorem 4.1. Corollary 4.1 says that if the number of objects is greater than or
equal to the number of agents, the price of some objects is 0. Corollary 4.2 says that each
object bearing a positive price is connected by agents’ demands to the null object or to an
object with a price of 0.

Corollary 4.1 (Existence of Free Object). Let m ≥ n, R ∈ Rn, and z ∈ Wmin(R).
Then, there is i ∈ N such that pxi

min(R) = 0.

Corollary 4.2 (Demand Connectedness).17 Let R ∈ Rn and (z, p) be a minimum Wal-
rasian equilibrium price for R. For each x ∈ M with px > 0, there is a sequence {ik}K

k=1

of K distinct agents such that (i) xi1 = 0 or pxi1 = 0, (ii) xiK = x, and (iii) for each
k ∈ {1, . . . , K − 1}, {xik , xik+1

} ⊆ D(Rik , p).

Proofs of Theorem 4.1 and Corollaries 4.1 and 4.2 appear in the Appendix.

5 Main Results

In this section, we provide a characterization of the minimum price Walrasian equilibrium
by means of the properties of rules.

Let R ⊆ RE. Let g be a rule such that for each R ∈ Rn, g(R) ∈ Wmin(R). Then, g is
called a selection from the minimum price Walrasian equilibrium, which we call a minimum
price Walrasian rule.

5.1 Properties of the Minimum Price Walrasian Rule

We discuss the properties of the minimum price Walrasian rule. Let g be a minimum price
Walrasian rule on Rn. First, by Fact 4.2, for each R ∈ Rn, g(R) is Pareto-efficient for R. Let
R ∈ Rn. Then, there is a price vector p ≡ (p1, . . . , pm) ∈ Rm

+ such that for each i ∈ N , (a)
gi(R) ∈ B(p), and (b) for each ẑi ∈ B(p), gi(R) Ri ẑi. Let i ∈ N . Note that, for each x ∈ M ,
px ≥ 0, and B(p) = {(0, 0), (1, p1), (2, p2), . . . , (m, pm)}. Thus, by (a), gt

i(R) ≥ 0, and by
(b), gi(R) Ri 0. Therefore, the minimum price Walrasian rules satisfy efficiency, individual
rationality, and nonnegative payment.

Fact 5.1 below was first shown by Demange and Gale (1985). By using Theorem 4.1 in
Section 4, we show this fact more directly in the Appendix.

Fact 5.1 (Demange and Gale, 1985). The minimum price Walrasian rules are group
strategy-proof.

5.2 Characterizations

In this subsection, we focus on the analysis in the case where each agent has a classical
preference and the number of agents exceeds the number objects. Remember that all results
established in Section 4 also hold in this case. Theorem 5.1 below is a main conclusion of
this article, a characterization of the minimum price Walrasian rule.

Theorem 5.1. Let R ≡ RC and n > m. A rule f on Rn satisfies strategy-proofness,
efficiency, individual rationality, and nonnegative payment if and only if it is a minimum
price Walrasian rule: for each R ∈ Rn, f(R) ∈ Wmin(R).

17This structure is discussed by Demange, Gale, and Sotomayor (1986) and Miyake (1998).
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Since the minimum price Walrasian rules are group strategy-proof, we obtain the following
as a corollary of Theorem 5.1.

Corollary 5.1. Let R ≡ RC and n > m. A rule f on Rn satisfies group strategy-proofness,
efficiency, individual rationality, and nonnegative payment if and only if it is a minimum
price Walrasian rule.

Proof of Theorem 5.1 is in the Appendix. In addition, we give an overview of the proof
in Section 7.

5.3 Independence of the Axioms

The only if part of Theorem 5.1 fails if we drop any of the four axioms. The following
examples establish the independence of the axioms in Theorem 5.1.

Example 1 (Dropping strategy-proofness). Let f be a rule that chooses a “maximum”
price Walrasian equilibrium allocation for each preference profile. Then, the rule f satisfies
efficiency, individual rationality, and nonnegative payment, but not strategy-proofness.

Example 2 (Dropping efficiency). Let f be the rule such that for each preference profile,
each agent receives no object and pays nothing. Then, the rule f satisfies strategy-proofness,
individual rationality, and nonnegative payment, but not efficiency.

Next, we introduce variants of Walrasian equilibrium, one with “entry fee”. Let R ∈ Rn

and t0 ∈ R. A pair (z, p) ∈ Z × Rm+1 of feasible allocation and price vector is a Walrasian
equilibrium with “entry fee t0” for R if (i) p0 = t0 and for each x ∈ M , px ≥ t0, (ii) for each
i ∈ N and each y ∈ L, (xi, p

xi) Ri (y, py) and ti = pxi , and (iii) for each x ∈ M , if for each
i ∈ N , xi 6= x, then px = t0. Note that, by Facts 4.1 and 4.3, for each preference profile
and each entry fee t0, there is a minimum price Walrasian equilibrium with entry fee t0.
Moreover, we remark that, by Fact 5.1, for each entry fee t0, any selection from the minimum
price Walrasian equilibrium with entry fee t0 is (group) strategy-proof.

Example 3 (Dropping individual rationality). Let t0 > 0. Let f be a rule that chooses
a minimum price Walrasian equilibrium with positive entry fee t0 for each preference profile.
Then, the rule f satisfies strategy-proofness, efficiency, and nonnegative payment, but not
individual rationality.

Example 4 (Dropping nonnegative payment). Let t0 < 0. Let f be a rule that chooses
a minimum price Walrasian equilibrium with negative entry fee t0 for each preference profile.
Then, the rule f satisfies strategy-proofness, efficiency, and individual rationality, but not
nonnegative payment.

6 Simultaneous Ascending Auction

In this section, we define a class of simultaneous ascending auctions, and show that they
achieve the minimum price Walrasian equilibrium. Let R ⊆ RE.

Definition 6.1. Given R ∈ Rn and p ∈ Rm
+ , a set M ′ ⊆ M of objects is a minimal

overdemanded set at p for R if M ′ is overdemanded at p for R, and there is no M ′′ ( M ′

such that M ′′ is overdemanded at p.

12



Under a (continuous time) “simultaneous ascending auction”, in each time, each bidder
submits his demand at a current price vector, and the prices of the objects in a minimal
overdemanded set are raised at a speed at least d > 0.

Definition 6.2. A simultaneous ascending (SA) auction is a function p̂ from R+ ×
Rm

+ ×Rn to Rm
+ such that

(i) for each p ∈ Rm
+ , each R ∈ Rn, and each x ∈ M , p̂x(0, p, R) ≡ 0,

(ii) there is d > 0 such that for each t ∈ R+, each p ∈ Rm
+ , each R ∈ Rn, and each x ∈ M ,

(ii-a) dp̂x(t, p, R)/dt ≥ d if x is in a minimal overdemanded set at p for R, and
(ii-b) dp̂x(t, p, R)/dt = 0 otherwise.

Remark 6.1. For each R ∈ Rn, an SA auction p̂ generates a price path p(·) such that for
each x ∈ M and each t ∈ R+,

px(t) =

∫ t

0

dp̂x(s, p(s), R)

ds
ds.

Proposition 6.1. For each preference profile, the price path generated by any simultaneous
ascending auction converges to the minimum Walrasian equilibrium price in a finite time.

The proof is in the Appendix. Proposition 6.1 says that for each R ∈ Rn, the price
path p(·) generated by an SA auction has a final time T such that for each t ≥ T , p(t) =
p(T ) = pmin(R), and at the final price p(T ), each agent receives an object from his demand.
Moreover, this proposition shows the existence of Walrasian equilibrium.

7 Overview of the proof of Theorem 5.1

We give an overview of the proof of Theorem 5.1. Since if part of the theorem follows from
the discussion in Subsection 5.1, we explain the proof of only if part of the theorem.

As we emphasized in Introduction, without quasi-linearity of preferences, efficient alloca-
tions of objects depend on payments. Thus, it is difficult to identify the object allocations of
the rules satisfying our desirable properties without knowing their payments. On the other
hand, it is also difficult to identify the payments of the rules satisfying our properties with-
out knowing their object allocations. In this section, we discuss how we overcome those dual
difficulties.

Let R ≡ RC and n > m. The proof consists of the following four parts.

PART 1. We show the four preliminary results below, which are repeatedly used in the
proof.

Lemma 5.1 below says that under individual rationality and nonnegative payment, when-
ever an agent does not receive any object, then the payment of the agent should be zero.

Lemma 5.1. Let f be a rule that satisfies individual rationality and nonnegative payment
on Rn. Let R ∈ Rn and i ∈ N be such that fx

i (R) = 0. Then, f t
i (R) = 0.

Lemma 5.2 says that under efficiency, individual rationality, and nonnegative payment,
each object should be assigned to someone.

13



Lemma 5.2. Let f be a rule that satisfies efficiency, individual rationality, and nonnegative
payment on Rn. Let R ∈ Rn and x ∈ M . Then, there is i ∈ N such that fx

i (R) = x.

The next lemma says that given an allocation, if there is a pair {i, j} of agents such
that i prefers his own assignment to j’s one, but j prefers i’s assignment to his own, and
the difference between j’s payment and i’s compensating valuation (CV) of j’s assignment of
objects from i’s assignment is less than the difference between i’s payment and j’s CV of i’s
assignment of objects from j’s assignment, then there must be a Pareto-improvement.

Lemma 5.3. Let R ∈ Rn, i, j ∈ N , and z ∈ Z with xi 6= 0. Assume that (a) 0 ≤
tj − CVi(xj; zi) < CVj(xi; zj) − ti. Then, there is ẑ ∈ Z that Pareto-dominates z at R.

Given a bundle zi ≡ (xi, ti) ∈ L × R with xi 6= 0, let RNCV (zi) be the set of preferences

R̂i ∈ R such that for each y ∈ L \ {xi}, ĈV i(y; zi) < 0, that is, for each object except for xi,
the compensating valuation of R̂i from zi is negative. We refer to the preferences in RNCV (zi)
as “zi-favoring”.

Lemma 5.4 says that under strategy-proofness and nonnegative payment, given a prefer-
ence profile R, for each agent who is assigned an object, if the agent’s preference is changed
to a preference that is fi(R)-favoring, then his assignment remains the same.

Lemma 5.4. Let f be a rule that satisfies strategy-proofness and nonnegative payment on
Rn. Let R ∈ Rn and i ∈ N be such that fx

i (R) 6= 0. Let R̂i ∈ RNCV (fi(R)). Then,
fi(R̂i, R−i) = fi(R).

PART 2. We establish Proposition 5.1 below, which says that for each preference profile, the
allocation chosen by the rule f satisfying strategy-proofness, efficiency, individual rationality,
and nonnegative payment on Rn should (weakly) dominate the minimum price Walrasian
equilibrium allocations. This proposition implies that under the rule satisfying our properties,
the payment of each agent is at most the minimum Walrasian price. Thus, Proposition 5.1
derives stringent upper bounds of outcome payments of the rules even without knowing
their object allocations. It is a crucial step to overcome the dual difficulties in the proof of
Theorem 5.1.

Proposition 5.1.18 Let f be a rule satisfying strategy-proofness, efficiency, individual ra-
tionality, and nonnegative payment on Rn. Let R ∈ Rn and z ∈ Wmin(R). Then, for each
i ∈ N , fi(R) Ri zi.

To prove Proposition 5.1, we introduce some additional notations and three lemmas.
Given R ∈ Rn, x ∈ M , and z ∈ (L×R)n, let πx(R) ≡ (πx

1 (R), . . . , πx
n(R)) be the permutation

on N such that CVπx
n(R)(x; zπx

n(R)) ≤ . . . ≤ CVπx
1 (R)(x; zπx

1 (R)). That is, πx
n(R) is the agent

with the lowest compensating valuation of object x from z, πx
n−1(R) is the agent with the

second lowest compensating valuation of object x from z, and so on. For each k ∈ N ,
let Ck(R, x; z) ≡ CVπx

k (R)(x; zπx
k (R)). That is, Ck(R, x; z) is the k-th highest compensating

valuation (CV) of object x from z. We simply write Ck(R, x; (0, . . . , 0)) as Ck(R, x).
Hereafter, we maintain the assumption that f is a rule on Rn, and that the rule f satisfies

strategy-proofness, efficiency, individual rationality, and nonnegative payment.
The next lemma says that if an agent receives object x, then his payment is not less than

the (m + 1)-th highest CV of object x from the origin. Thus, the (m + 1)-th highest CV of
18This result also holds for any Walrasian equilibrium allocation z.
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each object from the origin is a lower bound for the payment of the agent who obtains the
object.

Lemma 5.5. Let R ∈ Rn, i ∈ N , and x ∈ M be such that fx
i (R) = x. Then, f t

i (R) ≥
Cm+1(R, x).

By using Lemma 5.5, we obtain Lemma 5.6 below, which says that if an agent receives
object x, then his CV for object x from the origin is not less than the m-th highest CV of
object x from the origin. Lemma 5.6 says that an agent cannot be assigned an object x by
the rule unless CVi(x;0) ≥ Cm(R, x). For each object, this lemma restricts the candidates
of agents who obtain the object without knowing payments.

Lemma 5.6. Let R ∈ Rn, i ∈ N , and x ∈ M be such that fx
i (R) = x. Then, CVi(x;0) ≥

Cm(R, x).

Lemma 5.6 implies that if for any object other than x, an agent’s CV from the origin is
less than the m-th highest, then he never receives an object other than x. Whether or not an
agent receives object x depends on his CV of object x from the origin. It is straightforward
from efficiency that if an agent has the highest CV of object x from the origin, he receives
object x. Lemma 5.7 below gives a weaker sufficient condition that agent i receives object x.

Given R ∈ RN , let ZIR(R) be the set of individually rational allocations, that is,
ZIR(R) ≡ {z ∈ Z : for each i ∈ N, zi Ri 0}.

Lemma 5.7. Let R ∈ Rn, x ∈ M , and i ∈ N be such that for each y ∈ M \ {x},
CVi(y;0) < Cm(R, y). Let z ∈ ZIR(R), CVi(x;0) > C1(R−i, x; z), and fj(R) Rj zj for each
j ∈ N \ {i}. Then, fx

i (R) = x.

Now, we present an informal sketch of the proof of Proposition 5.1, but only for Case V
in Section 2 (Figure 4), to explain intuitions in the simplest way.

Sketch of proof of Proposition 5.1. (Figure 5) By individual rationality, f3(R) R3 z3.
Let i ∈ N \ {3}. Without loss of generality, let i = 1. By contradiction, suppose that
z1 P1 f1(R). Then, since t1 < CV1(A; f1(R)), there is a preference R̂1 that satisfies (1-a):

ĈV 1(B;0) < C3(R,B) and (1-b): t1 < ĈV 1(A;0) < CV1(A; f1(R)).

Step 119: We show z2 P2 f2(R̂1, R2,3). Suppose that f2(R̂1, R−1) R2 z2. By individual ratio-

nality, f3(R̂1, R2,3) R3 z3. By (1-a), ĈV 1(B;0) < C2(R̂1, R2,3, B). By (1-b) and z ∈ Wmin(R),

ĈV 1(A;0) > C1(R2,3, B; z). Since z ∈ ZIR(R̂1, R2,3), Lemma 5.7 implies fx
1 (R̂1, R2,3) = A,

and so, by individual rationality, f t
1(R̂1, R2,3) ≤ ĈV 1(A;0). However, by (1-b): ĈV 1(A;0) <

CV1(A; f1(R)), f1(R̂1, R2,3) P1 f1(R), which contradicts strategy-proofness.

Step 220: We derive a contradiction to conclude that f1(R) R1 z1. It follows from Step 1 that

t2 < CV2(B; f2(R̂1, R2,3)), and so, there is a preference R̂2 that satisfies (2-a): ĈV 2(A;0) <

C3(R̂1, R2,3, A) and (2-b): t2 < ĈV 2(B;0) < CV2(B; f2(R̂1, R2,3)). For each i = 1, 2, 3, let
ẑi ≡ 0. Then, by individual rationality, (2-a), and (2-b), the assumptions of Lemma 5.7 hold
for the profile (R̂1,2, R3). Then, by Lemma 5.7, fx

2 (R̂1,2, R3) = B, and thus, by individual

19This step corresponds to Step 2-1 of Proof of Proposition 5.1 in the Appendix.
20This step corresponds to Step 2-2 of Proof of Proposition 5.1 in the Appendix. Here we derive a contra-

diction in a simpler way by using the assumption that m = 2.
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rationality, f t
2(R̂1,2, R3) ≤ ĈV 2(B;0). However, by (2-b): ĈV 2(B;0) < CV2(B; f2(R̂1, R2,3)),

f2(R̂1,2, R3) P2 f2(R̂1, R2,3), which contradicts strategy-proofness.

[Figure 5 about here]

When there are more than two objects, by applying the similar argument, in Step 2, we
show that there is i 6= 1, 2 such that zi Pi fi(R̂1,2, R−1,2). Repeating this argument m times
inductively, we can also obtain a similar contradiction as in Step 2. ¤

PART 3. To prove Theorem 5.1, we introduce more four lemmas. The important steps of
PART 3 are to prove Lemma 5.9 and Lemma 5.11 below.

Let f be a rule satisfying strategy-proofness, efficiency, individual rationality, and non-
negative payment on Rn. Given a Walrasian equilibrium allocation z, let RI(z) be the set of
preferences Ri ∈ R such that for each i, j ∈ N , zi Ii zj, that is, all the assignments under z
are indifferent. We refer to the preferences in RI(z) as “z-indifferent”.

The next lemma says that given a minimum price Walrasian equilibrium (z∗, p), if a group
of agents change their preferences to z∗-indifferent preferences, then, for the new preference
profile, (a) z∗ is also a minimum price Walrasian equilibrium allocation, (b) the allocation
chosen by the rule f (weakly) dominates z∗, and (c) an agent who does not obtain any object
demands the null object at the price p.

Lemma 5.8. Let R ∈ Rn, z∗ ∈ Wmin(R), p be the price vector associated with z∗, N ′ ⊆ N ,
R̂N ′ ∈ RI(z∗)#N ′

, and R̂ ≡ (R̂N ′ , R−N ′). Then, (a) z∗ ∈ Wmin(R̂), (b) for each i ∈ N ,
fi(R̂) R̂i z

∗
i and (c) for each i ∈ N , if fx

i (R̂) = 0, then 0 ∈ D(R̂i, p).

Given p ∈ Rm
++ and R ∈ Rn, let N(R, p) denote the set of demanders of the non-null

objects at the price p, that is, N(R, p) ≡ {i ∈ N : D(Ri, p) ∩ M 6= ∅}.
As discussed in Section 4, an important structure of the minimum price Walrasian equi-

libria is demand connectedness (Corollary 4.2). Lemma 5.9 below implies that the rule f
possesses a similar structure, although in a limited pattern. It is an important step to derive
the minimum price Walrasian equilibrium allocations from the desirable properties. Lemma
5.9 says that given a minimum price Walrasian equilibrium (z∗, p) and a preference profile
such that a group N ′ of agents have z∗-indifferent preferences, if (9-i) the payments of the
agents outside N ′ are not less than the price p, and (9-ii) each agent in N ′ receives an object,
then (9-a) each agent demanding only the null object at the price p receives the null object,
and (9-b) an object obtained by a z∗-indifferent agent is connected to the null object by the
demands of non z∗-indifferent agents.

Lemma 5.9. Let R ∈ Rn, z∗ ∈ Wmin(R), and p be the price vector associated with z∗. Let
N ′ ⊆ N with 1 ≤ #N ′ ≤ m, R̄N ′ ∈ RI(z∗)#N ′

, R̄ ≡ (R̄N ′ , R−N ′) and N ′′ ≡ N(R, p) \ N ′.
Assume that (9-i) for each i ∈ N \ N ′, and each x ∈ M , if fx

i (R̄) = x, then f t
i (R̄) ≥ px,

and (9-ii) for each j ∈ N ′, fx
j (R̄) 6= 0. Then,

(9-a) for each j /∈ N(R, p) ∪ N ′, fx
j (R̄) = 0, and

(9-b) there is a sequence {ik}K
k=1 of K distinct agents such that (i) K ∈ {2, . . . ,m + 1},

(ii) fx
i1
(R̄) = 0, (iii) for each k ∈ {1, . . . , K − 1}, ik ∈ N ′′, and iK ∈ N ′, and (iv) for

each k ∈ {1, . . . , K − 1}, {fx
ik

(R̄), fx
ik+1

(R̄)} ⊆ D(Rik , p).

See Figure 6 for an illustration of (9-b).
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[Figure 6 about here]

In the proof of Lemma 5.9, we intensively use Theorem 4.1, which is a characterization
result of the minimum price Walrasian equilibrium by the concepts of overdemanded and
weakly underdemanded sets introduced in Section 4.

We give an informal sketch of the proof of Lemma 5.9. Although we sketch the proof only
for two objects case, it can be easily generalized to any finite objects case. In the Appendix,
we give a formal proof of Lemma 5.9 by using induction.

Sketch of proof of Lemma 5.9 for two objects case. First, we show (9-a). Suppose
that for some j /∈ N(R, p) ∪ N ′, x ≡ fx

j (R̄) 6= 0. Since agent j demands only the null object
at the price p, individual rationality implies f t

j (R̄) ≤ CVj(x;0) < px. This contradicts (9-i).21

We turn to the proof of (9-b). Since n > m, at least one agent receives the null object. By
Lemma 5.8-(a), z∗ is also a minimum price Walrasian equilibrium for R̄. Then, by Theorem
4.1, no weakly underdemanded set exists at p for R̄. Thus, at least one agent who obtains
the null object demands the non-null objects at p under R̄. By (9-ii), no z∗-indifferent agent
receives the null object. Thus, N ′′

1 ≡ {i1 ∈ N ′′ : fx
i1
(R̄) = 0} 6= ∅.

Let D1 ≡ [
⋃

i∈N ′′
1

D(Ri, p)] \ {0}. Since ∅ 6= N ′′
1 ⊆ N(R, p), D1 6= ∅. By Lemma 5.2, for

each x ∈ D1, there is i(x) ∈ N \ N ′′
1 such that fx

i(x)(R̄) = x.

Assume that some agents in N ′ receive the object in D1, i.e., for some x1 ∈ D1, i(x1) ∈ N ′.
Since x1 ∈ D1, there is i1 ∈ N ′′

1 such that x1 ∈ D(Ri1 , p). Let i2 ≡ i(x1). Then, {i1, i2}
satisfies conditions (i), (ii), and (iii) of (9-b). By fx

i1
(R̄) = 0 and Lemma 5.8-(c), (iv) of (9-b)

also holds. Thus, (9-b) holds in this case.
Next, we assume that (9-b-1): no agent in N ′ receives the object in D1, i.e., for each

x ∈ D1, i(x) /∈ N ′. By (9-ii), M \ D1 6= ∅. Let N ′′
2 ≡ {j ∈ N ′′ \ N ′′

1 : ∃ i ∈ N ′′
1 s.t. fx

j (R̄) ∈
D(Ri, p)}. By (9-b-1) and (9-a), for each x ∈ D1, i(x) ∈ N ′′ \ N ′′

1 . Thus, N ′′
2 6= ∅. Since no

two agents receive the same object, #D1 = #N ′′
2 . Then, we can show that (9-b-2): there is

j ∈ N ′′
2 who demands the object in M \ D1, i.e., D(Rj, p) ∩ (M \ D1) 6= ∅.22

Let D2 ≡ [
⋃

i∈N ′′
2

D(Ri, p)] \ (D1 ∪ {0}). By (9-b-2), D2 6= ∅. By Lemma 5.2, for each

x ∈ D2, there is i(x) ∈ N \ (N ′′
1 ∪ N ′′

2 ) such that fx
i(x)(R̄) = x.

Note that, in two objects case, some agents in N ′ receive the object in D2, i.e., for
some x2 ∈ D2, i(x2) ∈ N ′.23 Let i3 ≡ i(x2). Since x2 ∈ D2, there is i2 ∈ N ′′

2 such that
x2 ∈ D(Ri2 , p). Thus, fx

i3
(R̄) ∈ D(Ri2 , p). Since i2 ∈ N ′′

2 , there is i1 ∈ N ′′
1 such that

21Note that the proof of (9-a) does not depend on the assumption that m = 2.
22To see this, suppose that for each j ∈ N ′′

2 , D(Rj , p) ∩ (M \ D1) = ∅. Then,

#
{
j ∈ N : D(R̄j , p) ∩ (M \ D1) 6= ∅

}
= #N ′ + #N ′′ − #N ′′

1 − #N ′′
2

= #M − #D1

= #M \ D1,

where the first equality follows from #
{
j ∈ N : D(R̄j , p) ∩ M 6= ∅

}
= #N ′ + #N ′′, and for each k ∈ {1, 2}

and each i ∈ N ′′
k , D(Ri, p)∩ (M \D1) = ∅, and the second from #N ′ + #N ′′ −#N ′′

1 = m and #D1 = #N ′′
2 .

Thus, the set M \D1 is weakly underdemanded at p for R̄. However, by Lemma 5.8-(a) and Theorem 4.1,
there is no weakly underdemanded set at p for R̄. This is a contradiction.

23To see this, suppose that for each x ∈ D2, i(x) /∈ N ′. Then, by (9-b-1), for each x ∈ D1 ∪D2, i(x) /∈ N ′.
Since D1 6= ∅, D2 6= ∅ and D1 ∩D2 = ∅, in two objects case, we have D1 ∪D2 = M . However, by N ′ 6= ∅ and
(9-ii), there is j ∈ N ′ such that fx

j (R̄) 6= 0. Thus, for some x ∈ D1 ∪D2, i(x) ∈ N ′, which is a contradiction.
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fx
i2
(R̄) ∈ D(Ri1 , p). We show that {i1, i2, i3} satisfies conditions (i), (ii), (iii), and (iv) in

(9-b) (see Figure 7).
Note that, by fx

i1
(R̄) = 0 and Lemma 5.8-(c), {fx

i1
(R̄), fx

i2
(R̄)} ⊆ D(Ri1 , p). Finally,

we show that fx
i2
(R̄) ∈ D(Ri2 , p). By contradiction, suppose that fx

i2
(R̄) /∈ D(Ri2 , p). Let

y ≡ fx
i2
(R̄). Since x∗

i2
∈ D(Ri2 , p), z∗i2 Pi2 (y, py). By Lemma 5.8-(b), fi2(R̄) Ri2 z∗i2 . Thus,

fi2(R̄) Ri2 z∗i2 Pi2 (y, py), which implies f t
i2
(R̄) < py. This contradicts (9-i). Thus, (9-b) also

holds in this case.

[Figure 7 about here]

When there are more than two objects, we next consider the case where no agents in N ′

receives the object in D2. Applying a similar argument repeatedly, we can also show (9-b)
in Lemma 5.9 for more general cases. ¤

Lemma 5.10 below says that when an agent i receives object x and his CV of the null
object from his assignment is negative, for each agent j 6= i, if j’s CV of object x from the
origin is greater than the difference between i’s payment and i’s CV of the null object from
his assignment, then agent j receives an object.

Lemma 5.10. Let R ∈ Rn, i ∈ N , and x ∈ M be such that fx
i (R) = x and CVi(0; fi(R)) < 0.

Let j ∈ N \ {i}. Assume that (10-i) −CVi(0; fi(R)) < CVj(x;0) − f t
i (R). Then, fx

j (R) 6= 0.

Next, we explain Lemma 5.11 below, which says that given a minimum price Walrasian
equilibrium (z∗, p) and a preference profile such that a group N ′ of agents have z∗-indifferent
preferences, if (11-i) for “any” z∗-indifferent preferences of the group N ′, the payments of the
agents outside N ′ are not less than the price p, then the payments of the agents in N ′ are not
less than the price p. Thus, although in a limited pattern, this lemma derives stringent lower
bounds of outcome payments of the rules even without knowing their object allocations.

Lemma 5.11. Let R ∈ Rn, z∗ ∈ Wmin(R), and p be the price vector associated with z∗. Let
N ′ ⊆ N . Assume that (11-i) for each R̄N ′ ∈ RI(z∗)#N ′

, each i ∈ N \N ′, and each x ∈ M , if
fx

i (R̄N ′ , R−N ′) = x, then f t
i (R̄N ′ , R−N ′) ≥ px. Let R̂N ′ ∈ RI(z∗)#N ′

. Then, for each i ∈ N ′

and each x ∈ M , if fx
i (R̂N ′ , R−N ′) = x, then f t

i (R̂N ′ , R−N ′) ≥ px.

In the proof of Lemma 5.11, we derive a contradiction by showing that whenever the
payment of a z∗-indifferent agent is less than the price p, there is another allocation that
Pareto-dominates the allocation chosen by the rule. To guarantee the existence of such
Pareto-improvements, we apply Lemma 5.9.

Let us explain how Lemma 5.9 works in the proof. Let R̂ ≡ (R̂N ′ , R−N ′) be a preference
profile such that the agents in N ′ have z∗-indifferent preferences R̂N ′ . Suppose that the
payment of a z∗-indifferent agent i who obtains object x is less than the price px of object
x. Let R̄i be an “fi(R̂)-favoring” and “z∗-indifferent” preference such that the difference
between i’s payment and i’s compensating valuation of the null object from i’s assignment is
less than the price px, i.e., (11-ii) f t

i (R̂) − CV i(0; fi(R̂)) < px. Let R̄ ≡ (R̄i, R̂N ′\{i}, R−N ′).

Then, since R̄i is fi(R̂)-favoring, Lemma 5.4 implies fi(R̄) = fi(R̂). Since R̄i is z∗-indifferent,
the preferences R̄N ′ of the group N ′ are also in RI(z∗)#N ′

. Then, (9-i) in Lemma 5.9 follows

from (11-i). Note that for each j ∈ N ′ \ {i}, ĈV j(x;0) = px. Thus, by (11-ii) and Lemma

5.10, for each j ∈ N ′ \ {i}, fx
j (R̄) 6= 0. Moreover, by fi(R̄) = fi(R̂), fx

i (R̄) = x 6= 0. Thus,
(9-ii) in Lemma 5.9 also holds.
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Then, by lemma 5.9, there is a sequence {ik}K
k=1 of distinct agents satisfying conditions

(i), (ii), (iii), and (iv) in (9-b). By (11-i) and Proposition 5.1, for each k < K, fx
ik

(R̄) = px(k),
where x(k) ≡ fx

ik
(R̄). For simplicity, we focus on the case where (a) K = 4, (b) i = iK , and

(c) for each k ∈ {1, 2, 3, 4}, agent ik’s assignment under f at R̄ is depicted in Figure 8.

[Figure 8 about here]

Let z′ be the allocation such that for each k ∈ {1, 2}, agent ik obtains ik+1’s assignment
under f at R̄, i3 and i4 receive z′i3 and z′i4 depicted in Figure 8 respectively, and the other
agents receive their own assignments under f at R̄. Then, since f t

i1
(R̄) = 0, f t

i2
(R̄) = p1, and

f t
i3
(R̄) = p2, agent i3 prefers z′i3 to his own assignment fi3(R̄), but all the other agents are

indifferent between the two assignments. Thus, z′ is a Pareto-improvement for the allocation
under f at R̄. Applying a similar argument, we can also show the existence of such Pareto-
improvements for more general cases.

PART 4. We complete the proof of Theorem 5.1, that is, we show that if a rule f satisfies
strategy-proofness, efficiency, individual rationality, and nonnegative payment on Rn, then,
for each preference profile, the allocation chosen by the rule f is a minimum price Walrasian
equilibrium allocation.

Sketch of proof of Theorem 5.1. We present an informal sketch of the proof of Theorem
5.1. Let R be a preference profile, and let (z∗, p) be a minimum price Walrasian equilibrium
associated with R.

Let R̄ be a profile of z∗-indifferent preferences. Then, for each object, the (m + 1)-th
highest CV from the origin is equal to the price p. Thus, by Lemma 5.5, for each object x,
the payment of an agent who obtains object x is not less than the price px. We replace the
preferences in R̄ by the original preferences in R one by one, and inductively show that for
each object x, the payment of an agent who obtains x is not less than the price px.

Step 1: We replace the preference R̄i in R̄ of an agent i by his original preference Ri. Then, if
agent i obtains an object x at the new profile (Ri, R̄−i), then f t

i (Ri, R̄−i) ≥ px. For otherwise
since R̄i is z∗-indifferent, fi(Ri, R̄−i) P̄i fi(R̄), contradicting strategy-proofness. Then, Lemma
5.11 implies that the payments of the remaining agents are also not less than the price p.

Step 2: We replace the preference R̄j in (Ri, R̄−i) of an agent j 6= i by his original preferences
Rj. Then, if agent i obtains an object x at the new profile (Ri,j, R̄−i,j), then f t

i (Ri,j, R̄−i,j) ≥
px. For otherwise since R̄i is z∗-indifferent, Step 1 implies fi(Ri,j, R̄−i,j) P̄i fi(Rj, R̄−j), con-
tradicting strategy-proofness. Similarly, if agent j obtains an object x at the new profile
(Ri,j, R̄−i,j), then f t

j (Ri,j, R̄−i,j) ≥ px. Then, Lemma 5.11 implies that the payments of the
remaining agents are also not less than the price p.

...

Repeating this argument inductively, we conclude that, under the original preference
profile R, the payment of each agent is not less than the minimum Walrasian equilibrium
price p. Together with Proposition 5.1, this implies that each agent receives an assignment
of objects in his demand set at the price p and pays its price. Thus, (WE-i) in Definition 4.1
holds. Since R ≡ RC and n > m, the minimum Walrasian equilibrium price of each object is
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positive. Lemma 5.2 implies that each object is assigned to someone under the rule f . Thus,
(WE-ii) in Definition 4.1 also holds. Since p is the minimum Walrasian equilibrium price for
R, we conclude that f(R) ∈ Wmin(R). ¤

8 Concluding Remarks

In this article, we considered the problem of allocating several heterogeneous objects among
a group of agents and how much agents should pay. Each agent is permitted to receive
one object at most and has “nonquasi-linear” preferences. First, we extended the results of
Mishra and Talman (2010) on the quasi-linear domain to the domains including nonquasi-
linear preferences, that is, we established that on the extended domain, a price vector is a
minimum Walrasian equilibrium price if and only if no set of objects is overdemanded and no
set of objects is weakly underdemanded at the price (Theorem 4.1). Next, in the case where
the number of agents exceeds the number of objects, we established that on the domain of
classical preferences, the minimum price Walrasian rule is a unique rule that satisfies strategy-
proofness, efficiency, individual rationality, and nonnegative payment (Theorem 5.1).

Since the minimum price Walrasian equilibrium allocations can be achieved by conducting
the simultaneous ascending auctions (Proposition 6.1; Demange, Gale, and Sotomayor, 1986;
etc.), our results provide an answer to the question: “what types of auction rules are desirable
for large scale auctions?”, that is, the simultaneous ascending auctions should be employed
when agents’ preferences are not necessary quasi-linear.

Appendix: Proofs

A.1 Proofs for Section 4 (Theorem 4.1, and Corollaries 4.1 and 4.2)

Let R ⊆ RE. To prove Theorem 4.1, we introduce the concept of “truncation”of a
preference, and show a remark, two lemmas, and a fact below.

Given Ri ∈ R and di ∈ R, the di-truncation of Ri is the preference R̂i such that for
each zi ∈ M × R, ĈV i(0; zi) = CVi(0; zi) + di. Given R ∈ Rn, the d-truncation of R is
the preference profile R̂ such that for each i ∈ N, R̂i is the di-truncation of Ri.

Remark 4.1. Let Ri ∈ R, di ∈ R, and R̂i be the di-truncation of Ri. Then, for each
zi, ẑi ∈ M × R, zi Ri ẑi if and only if zi R̂i ẑi.

Lemma 4.1. Let R ∈ Rn and (z, p) be a Walrasian equilibrium for R. Let R̂ be the d-
truncation of R such that for each i ∈ N with xi 6= 0, di ≤ −CVi(0; zi), and for each i ∈ N
with xi = 0, di ≥ 0. Then, (z, p) is also a Walrasian equilibrium for R̂.

Proof of Lemma 4.1. Since (z, p) is a Walrasian equilibrium for R, (z, p) satisfies (WE-i)
and (WE-ii) for R. Since (WE-ii) is independent of preferences, we show only (WE-i) for R̂,
that is, that for each i ∈ N and each y ∈ L, (xi, p

xi) R̂i (y, py). Let i ∈ N and y ∈ L.
First, consider the case where xi 6= 0. If y 6= 0, then by Remark 4.1, (xi, p

xi) R̂i (y, py). If
y = 0, then by di ≤ −CVi(0; zi), (xi, p

xi) R̂i 0 = (y, py).
Next, consider the case where xi = 0. If y = 0, then by (y, py) = 0 = (xi, p

xi),
(xi, p

xi) R̂i (y, py). If y 6= 0, then by (xi, p
xi) Ri (y, py) and di ≥ 0, (xi, p

xi) R̂i (y, py). ¤
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Lemma 4.2. Let i ∈ N , Ri ∈ R, di ∈ R, and R̂i ∈ R be the di-truncation of Ri. Let
p, q ∈ Rm

+ x ∈ M , and y ∈ L be such that x ∈ D(Ri, p) and y ∈ D(R̂i, q).
(i) If qx < px and y ∈ M , then, (y, qy) Pi (x, px) and qy < py.
(ii) If qx < px and di ≤ −CVi(0; (x, px)), then, y ∈ M , (y, qy) Pi (x, px), and qy < py.

Proof of Lemma 4.2.
Proof of (i). Let qx < px and y ∈ M . By y ∈ D(R̂i, q), (y, qy) R̂i (x, qx). Since R̂i is the
di-truncation of Ri, it follows from Remark 4.1 that (y, qy) Ri (x, qx). Thus,

(y, qy) Ri (x, qx) Pi (x, px) Ri (y, py),

where the second preference relation follows from qx < px, and the third from x ∈ D(Ri, p).
Thus, (y, qy) Pi (x, px). Also, (y, qy) Pi (y, py) implies that qy < py.

Proof of (ii). Let qx < px and di ≤ −CVi(0; (x, px)). Then, ĈV i(0; (x, px)) ≤ 0, and so
(x, px) R̂i 0. Thus,

(y, qy) R̂i (x, qx) P̂i (x, px) R̂i 0,

where the first preference relation follows from y ∈ D(R̂i, q), and the second from qx < px.
Then, (y, qy) P̂i 0 implies that y ∈ M . Thus, by (i) of Lemma 4.2, (y, qy) Pi (x, px) and
qy < py. ¤
Fact 4.5 (Roth and Sotomayor, 1990). Let R ∈ Rn, and let R̂ be the d-truncation of
R such that for each i ∈ N, di ≥ 0. Then, pmin(R̂) ≤ pmin(R).

We now proceed to prove Theorem 4.1.

Proof of Theorem 4.1. We first show if part of Theorem 4.1. Then, we prove only if part.
Proof of “IF” part. Assume that no set of objects is overdemanded and no set of objects
is weakly underdemanded at p for R. Then, by Fact 4.4, p is a Walrasian equilibrium price.
Suppose that there is a Walrasian equilibrium price q such that q ≤ p and q 6= p. Without
loss of generality, assume that for each x ∈ M ′, qx < px, and for each x /∈ M ′, qx = px, where
M ′ ≡ {1, . . . ,m′} and 1 ≤ m′ ≤ m.

Since M ′ is not weakly underdemanded at p for R, there is N ′ ⊆ N such that #N ′ > #M ′

and for each i ∈ N ′, D(Ri, p) ∩ M ′ 6= ∅. For each i ∈ N ′, let yi ∈ D(Ri, p) ∩ M ′. Since for
each x ∈ M ′, qx < px, and for each x /∈ M ′, qx = px, it follows that for each i ∈ N ′ and each
x /∈ M ′, (yi, q

yi) Pi (yi, p
yi) Ri (x, px) = (x, qx). Thus, for each i ∈ N ′, D(Ri, q) ⊆ M ′. By

#N ′ > #M ′, this implies that M ′ is overdemanded at q. Since q is a Walrasian equilibrium
price, by Fact 4.4, this is a contradiction.

Proof of “ONLY IF” part. Let p be the minimum Walrasian equilibrium price for R.
Then, by Fact 4.4, no set of objects is overdemanded and no set of objects is underdemanded
at p for R. We show that no set of objects is weakly underdemanded at p for R. Suppose that
there is a set M ′ of objects that is weakly underdemanded at p for R, that is, for each x ∈ M ′,
px > 0, and #{i ∈ N : D(Ri, p) ∩ M ′ 6= ∅} ≤ #M ′. Let N ′ ≡ {i ∈ N : D(Ri, p) ∩ M ′ 6= ∅}.
Without loss of generality, assume that M ′ is minimum among the weakly underdemanded
sets at p for R, that is, no proper subset of M ′ is weakly underdemanded at p. Since
p is a Walrasian equilibrium price, there is an allocation z ∈ Z such that for each i ∈ N,
xi ∈ D(Ri, p) and ti = pxi . Since no set of objects is underdemanded at p for R, #N ′ = #M ′.
Without loss of generality, let M ′ ≡ {1, . . . ,m′} and N ′ ≡ {1, . . . ,m′}.
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Step 1. For each i ∈ N ′, xi ∈ M ′.

Proof of Step 1. Since for each x ∈ M ′, px > 0, it follows from (WE-ii) that for each
x ∈ M ′, there is i(x) ∈ N ′ such that xi(x) = x. Then, by #N ′ = #M ′, for each i ∈ N ′,
xi ∈ M ′. ¤

For each x ∈ M ′, let qx ≡ max{{CVj(x; zj) : j ∈ N \N ′} ∪ {0}}. Then, for each x ∈ M ′,

qx < px.24 Let R̂m′+1 ∈ R be such that for each x ∈ M ′, if qx > 0, ĈV m′+1(x;0) = qx,

and if qx = 0, ĈV m′+1(x;0) ∈ (0, px). Consider the economy E ′ with objects M ′, agents
N ′′ ≡ N ′ ∪ {m′ + 1}, and their preference profile (RN ′ , R̂m′+1). Let z̄m′+1 ≡ 0 and z̄N ′′ =
(zN ′ , z̄m′+1).

Step 2. (z̄N ′′ , pM ′
) is a minimum price Walrasian equilibrium of the economy E ′.

Proof of Step 2. Let (z̃N ′′ , p̃) be the minimum price Walrasian equilibrium of E ′. Since
(z̄N ′′ , pM ′

) is a Walrasian equilibrium of E ′, p̃ ≤ pM ′
. Let M− ≡ {x ∈ M ′ : p̃x < px}. We

show that M− = ∅. Suppose that M− 6= ∅. Let N− ≡ {i ∈ N ′ : D(Ri, p) ∩ M− 6= ∅}.
Step 2.1. For each i ∈ N−, x̃i ∈ M−.

Proof of Step 2.1. Let i ∈ N−. Then, there is x ∈ D(Ri, p) ∩ M−. Thus, x ∈ M ′ and
p̃x < px. Since (z̃N ′′ , p̃) is a Walrasian equilibrium for (RN ′ , R̂m′+1), x̃i ∈ D(Ri, p̃). Then,
Lemma 4.2-(ii) implies that x̃i ∈ M ′ and p̃x̃i < px̃i . Thus, x̃i ∈ M−. ¤
Step 2.2. M− = M ′, N− = N ′, and #M− = #N−.

Proof of Step 2.2. Since no two agents in N− receive the same object, Step 2.1 implies
#M− ≥ #N−.

Suppose M− 6= M ′. Then, since M− ( M ′ and M ′ is minimum among the weakly
underdemanded sets at p for R, M− is not weakly underdemanded at p for (RN ′ , R̂m′+1).
Thus, since for each x ∈ M−, px > 0, we have #N− ≥ #M− + 1. This contradicts #M− ≥
#N−. Thus, M− = M ′.

By the definition of N−, M− = M ′ implies N− = N ′.
Since M ′ is weakly underdemanded, #N ′ = #M ′. By the above results, #M− = #M ′ =

#N ′ = #N−. ¤
Step 2.3. For each x ∈ M ′, p̃x ≥ qx.

Proof of Step 2.3. Suppose that there is x ∈ M ′ such that p̃x < qx. Then, by x̃m′+1 ∈
D(R̂m′+1, p̃) and p̃x < ĈV m′+1(x;0), x̃m′+1 ∈ M ′. By M− = M ′ and N− = N ′ (Step 2.2),
Step 2.1 implies that for each i ∈ N ′, x̃i ∈ M ′. Since there are only m′ objects in M ′, this is
a contradiction. ¤

Let (ẑ, p̂) ∈ Z × Rm
+ be such that ẑN ′ = z̃N ′ , ẑ−N ′ = z−N ′ , p̂M ′

= p̃, and p̂−M ′
= p−M ′

.

Step 2.4. (ẑ, p̂) is a Walrasian equilibrium of the original economy with objects M, agents
N , and preference profile R.

Proof of Step 2.4. By Step 2.3, for each y ∈ M ′, p̃y ≥ qy. Let h ∈ N \ N ′. Then, for each
y ∈ L, if y /∈ M ′, then

(x̂h, p̂
x̂h) = (xh, p

xh) Rh (y, py) = (y, p̂y),
24To see this, suppose that for some x ∈ M ′, qx ≥ px. Then, there is j ∈ N \ N ′ such that (x, px) Rj zj .

Since xj ∈ D(Rj , p), x ∈ D(Rj , p). Thus, j ∈ N ′. This contradicts j ∈ N \ N ′.
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where the preference relation follows from xh ∈ D(Rh, p), and if y ∈ M ′, then

(x̂h, p̂
x̂h) = (xh, p

xh) Rh (y, qy) Rh (y, p̂y),

where the first preference relation follows from the definition of qy, and the last from p̂y =
p̃y ≥ qy. Thus, for each h ∈ N \ N ′, x̂h ∈ D(Rh, p̂).

Let h ∈ N ′. Then, for each y ∈ L, if y /∈ M ′, then

(x̂h, p̂
x̂h) = (x̃h, p̃

x̃h) Rh (xh, p̃
xh) Rh (xh, p

xh) Rh (y, py) = (y, p̂y),

where the first preference relation follows from x̃h ∈ D(Rh, p̃), the second from p̃ ≤ pM ′
, and

the third from xh ∈ D(Rh, p), and if y ∈ M ′, then

(x̂h, p̂
x̂h) = (x̃h, p̃

x̃h) Rh (y, p̃y) = (y, p̂y),

where the preference relation follows from x̃h ∈ D(Rh, p̃). Thus, for each h ∈ N ′, x̂h ∈
D(Rh, p̂).

Since (z, p) and (z̃N ′′ , p̃) both satisfy (WE-ii), (ẑ, p̂) also satisfies (WE-ii). Thus, (ẑ, p̂) is
a Walrasian equilibrium for R. ¤

Remember that p is the minimum Walrasian equilibrium price for R. However, since
M− 6= ∅, p̂ ≤ p and p̂ 6= p. This is a contradiction. Thus, M− = ∅. This completes the proof
of Step 2.

Without loss of generality, let x1 ≡ 1, . . . , xm′ ≡ m′. Denote by Π the set of the permu-
tations of M ′ and by {x(k)}m′

k=1 its generic element. Given {x(k)}m′

k=1 ∈ Π, let {i(k)}m′

k=1 be
such that

xi(1) = x(1), xi(2) = x(2), . . . , xi(m′) = x(m′),

and {t(k)}m′

k=1 be such that

t(1) ≤ ĈV m′+1(x(1);0), t(2) ≡ CVi(1)(x(2); z0(1)), . . . , t(m′) ≡ CVi(m′−1)(x(m′); z0(m
′−1)),

where for each k ∈ {1, . . . ,m′}, z0(k) ≡ (x(k), t(k)). We call such a pair {z0(k), i(k)}m′

k=1 an
assignment sequence. See Figure A.1 for an illustration of assignment sequence.

[Figure A.1 about here]

Step 3. There is b < p1 such that for any assignment sequence {z0(k), i(k)}m′

k=1 constructed
as above, and for k with x(k) = 1, t(k) < b.

Proof of Step 3. For any assignment sequence {z0(k), i(k)}m′

k=1, since t(1) ≤ qx(1) < px(1),
the following holds inductively: for each k ≥ 2,

(x(k), t(k)) Ri(k−1) z0(k − 1) Pi(k−1) (x(k − 1), px(k−1)) Ri(k−1) (x(k), px(k)),

and t(k) < px(k),

where the first preference relation follows from t(k) = CVi(k−1)(x(k); z0(k − 1)), the second
from t(k − 1) < px(k−1), and the third from x(k − 1) ∈ D(Ri(k−1), p). Since the cardinality of
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Π is finite (m′!), there is b < p1 such that for any assignment sequence {z0(k), i(k)}m′

k=1, and
for k with x(k) = 1, t(k) < b. ¤

Let R̂1 be such that (i) R̂1 is the d1-truncation of R1, and (ii) b < ĈV 1(x1;0) < p1.25

Consider the economy Ê with objects M ′, agents N ′′ ≡ {1, . . . ,m′ + 1}, and their preference
profile (R̂1, R̂m′+1, RN ′\{1}). Let (ẑ, p̂) be a minimum price Walrasian equilibrium of the

economy Ê.

Step 4. x̂1 6= 0.

Proof of Step 4. Suppose that x̂1 = 0. We use Claim 4.1 below. It implies that m′ agents
(agents 2, . . . ,m′ + 1) receive m′ different objects in M ′\{x1}. By #M ′ = m′, this is a
contradiction. Thus, proving Claim 4.1 completes Proof of Step 4.

Claim 4.1. The following sequences {i(k)} and {z0(k) ≡ (x(k), t(k))}, k = 1, . . . ,m′, can be
constructed:

x(1) ≡ x̂m′+1, xi(1) = x(1), and t(1) ≡ p̂x(1), and

∀k ∈ {2, . . . ,m′}, x(k) ≡ x̂i(k−1), xi(k) = x(k), and t(k) ≡ CVi(k−1)(x(k); z0(k − 1)).

Furthermore, for each k ∈ {1, . . . ,m′}, x(k) 6= 0, x(k) 6= x1, p̂x(k) ≤ t(k) and p̂x(k) < px(k).

Proof of Claim 4.1. We prove by induction.
Part I. First, we show x(1) ≡ x̂m′+1 6= 0. Suppose x̂m′+1 = 0. Then, since two agents (1
and m′ + 1) in N ′′ receive no object and #N ′′ = #M ′ + 1, there is x ∈ M such that for each

h ∈ N ′′, x̂h 6= x. By (WE-ii), p̂x = 0. Since ĈV m′+1(x;0) > 0, (x, p̂x) P̂m′+1 0. This is a
contradiction since x̂m′+1 = 0 and (ẑ, p̂) is a Walrasian equilibrium. Thus, x(1) 6= 0.

Note that by Step 1, x(1) 6= 0 implies that agent i(1) with xi(1) = x(1) uniquely exists.
Thus, x(1), i(1), and t(1) are well-defined.

Second, we show that x(1) 6= x1. Suppose that x(1) = x1. Then, by Step 3 and (ii) of

R̂1, p̂x(1) ≡ t(1) < b < ĈV 1(x1;0), that is, (x(1), p̂x(1)) P̂1 0. Thus, by x̂1 = 0, x̂1 /∈ D(R̂1, p̂).

However, since (ẑ, p̂) is a Walrasian equilibrium of Ê, this is a contradiction. Thus, x(1) 6= x1.

Third, by x(1) ≡ x̂m′+1 ∈ D(R̂m′+1, p̂), p̂x(1) ≤ ĈV m′+1(x(1);0) < px(1).
Part II (Induction argument). Let k ∈ {2, . . . ,m′}. Assume that Claim 4.1 holds until
k − 1. Since x(k − 1) ∈ D(Ri(k−1), p), x̂i(k−1) ∈ D(Ri(k−1), p̂), and p̂x(k−1) < px(k−1), Lemma
4.2-(ii) implies that x(k) ≡ x̂i(k−1) 6= 0 and p̂x(k) < px(k).

Note that by Step 1, x(k) 6= 0 implies that agent i(k) with xi(k) = x(k) uniquely exists.
Thus, x(k), i(k), and t(k) are well-defined.

If p̂x(k) > t(k) = CVi(k−1)(x(k); z0(k − 1)), then

(x(k − 1), p̂x(k−1)) Ri(k−1) z0(k − 1) Pi(k−1) (x(k), p̂x(k)),

contradicting x(k) ≡ x̂i(k−1) ∈ D(Ri(k−1), p̂). Thus, p̂x(k) ≤ t(k).

We show x(k) 6= x1. Suppose that x(k) = x1. Then, by Step 3 and (ii) of R̂1, p̂x(k) ≤
t(k) < b < ĈV 1(x1;0). Thus, (x(k), p̂x(k)) P̂1 0. Then, by x̂1 = 0, x̂1 /∈ D(R̂1, p̂). However,

since (ẑ, p̂) is a Walrasian equilibrium of Ê, this is a contradiction. Thus, x(k) 6= x1. ¤
25Note that d1 > 0.
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Step 5. We derive a contradiction to conclude that no set of objects is weakly underdemanded
at p for R.

Note that by (i) and (ii) of R̂1, d1 > 0. Since (ẑ, p̂) is a minimum price Walrasian
equilibrium for (R̂1, R̂j, RN ′\{1}), Step 2 and Fact 4.5 imply that p̂ ≤ pM ′

. Note that

(x̂1, p̂
x̂1) R̂1 0 Î1 (x1, ĈV 1(x1;0)) P̂1 (x1, p

x1),

where the first preference relation follows from x̂1 ∈ D(R̂1, p̂), the second from the definition
of compensating valuation, and the third from (ii) of R̂1.

By Step 1 and 4, x1 6= 0 and x̂1 6= 0. Since (i) of R̂1, by Remark 4.1, (x̂1, p̂
x̂1) P1 (x1, p

x1).
Then,

(x̂1, p̂
x̂1) P1 (x1, p

x1) R1 (x̂1, p
x̂1),

where the second preference relation follows from x1 ∈ D(R1, p). Thus, p̂x̂1 < px̂1 .

By (i) and (ii) of R̂1, R1 is the (−d1)-truncation of R̂1 and −d1 ≤ 0 ≤ −ĈV 1(0; ẑ1).
Then, Lemma 4.1 implies that p̂ is a Walrasian equilibrium price for (RN ′ , R̂j). However, by

Step 2, pM ′
is the minimum Walrasian equilibrium price for (RN ′ , R̂j). Since p̂ ≤ pM ′

and
p̂x̂1 < px̂1 , this is a contradiction. ¤
Proof of Corollary 4.1. Suppose that for each i ∈ N , pxi

min(R) > 0. Then, for each i ∈ N ,
xi 6= 0. Let M̄ ≡ {x1, . . . , xn}. Then, #M̄ ≡ #N . Since M̄ = {i ∈ N : D(Ri, p) ∩ M̄ 6= ∅},
M̄ is weakly underdemanded at p for R. This is a contradiction to Theorem 4.1. ¤
Proof of Corollary 4.2. Let x ∈ M be such that px > 0. Then, by (WE-ii) in Definition
4.1, there is j1 ∈ N such that xj1 = x. By Theorem 4.1, the set {x} is demanded at p by
at lease two agents, and so, there is j2 ∈ N \ {j1} such that x ∈ D(Rj2 , p). If xj2 = 0 or
pxj2 = 0, then by letting i1 ≡ j2 and i2 ≡ j1, we obtain the desired conclusion. Thus, we
assume that xj2 6= 0 and pxj2 > 0. Then, the set {xj1 , xj2} is demanded at p by at lease three
agents, and so, there is j3 ∈ N \ {j1, j2} such that x ∈ D(Rj3 , p). If xj3 = 0 or pxj3 = 0,
then by letting i1 ≡ j3, i2 ≡ j2, and i3 ≡ j1, we obtain the desired conclusion. Thus, we
assume that xj3 6= 0 and pxj3 > 0. Repeating this argument inductively, there is a sequence
{jk}K

k=1 of K distinct agents such that (a) xjK
= 0 or pxjK = 0, (b) xj1 = x, and (c) for each

k ∈ {2, . . . , K}, {xjk
, xjk−1

} ⊆ D(Rjk
, p). For each k ∈ {1, . . . , K}, let ik ≡ jK−(k−1). Then,

the desired conclusion follows from (a), (b), and (c). ¤

A.2 Proofs for Section 5 (Fact 5.1 and Theorem 5.1)

Proof of Fact 5.1. Let R ⊆ RE. Let g be a minimum price Walrasian rule on Rn. By
contradiction, suppose that there exist R ∈ Rn, N̂ ⊆ N, and R̂N̂ ∈ R#N̂ such that for

each i ∈ N̂ , gi(R̂N̂ , R−N̂) Pi gi(R). Let z ≡ g(R) and ẑ ≡ g(R̂N̂ , R−N̂). Let p and p̂ be
the equilibrium prices associated with z and ẑ, respectively. Without loss of generality, let
N̂ = {1, . . . , n̂}. Let M+ ≡ {x ∈ M : 0 < px} and m+ ≡ #M̂ . Note that, if n > m, then
n > m+, and if n ≤ m, then by Corollary 4.1, m+ ≤ n − 1 < n.

In this paragraph, we show that for each i ∈ N̂ , x̂i 6= 0, and p̂x̂i < px̂i . Let i ∈ N̂ . Note
that (x̂i, p̂

x̂i) Pi (xi, p
xi) Ri 0, where the first preference relation follows from gi(R̂N̂ , R−N̂) Pi gi(R),

and the second from xi ∈ D(Ri, p). Thus, x̂i 6= 0. Also, note that (x̂i, p̂
x̂i) Pi (xi, p

xi) Ri (x̂i, p
x̂i),

where the last preference relation also follows from xi ∈ D(Ri, p). Thus, (x̂i, p̂
x̂i) Pi (x̂i, p

x̂i)
implies that p̂x̂i < px̂i .
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Note that, for each i ∈ N̂ , since 0 ≤ p̂x̂i < px̂i , x̂i ∈ M+. Then, if m+ < n̂, more than
m+ agents receive the objects in M+, which is a contradiction. Thus, assume that m+ ≥ n̂.
By Theorem 4.1, there is i′ ∈ N \ N̂ such that D(Ri′ , p) ∩ {x̂1, . . . , x̂n̂} 6= ∅. Without loss
of generality, let i′ ≡ n̂ + 1. Note that Rn̂+1 itself is its dn̂+1-truncation. Thus, by Lemma
4.2-(ii), x̂n̂+1 6= 0, and 0 ≤ p̂x̂n̂+1 < px̂n̂+1 . Thus, x̂n̂+1 ∈ M+. Then, by Theorem 4.1, there is
i′′ ∈ N \{1, . . . , n̂+1} such that D(Ri′′ , p)∩{x̂1, . . . , x̂n̂+1} 6= ∅. Without loss of generality, let
i′′ ≡ n̂ + 2. Note that Rn̂+2 itself is its dn̂+2-truncation. Thus, by Lemma 4.2-(ii), x̂n̂+2 6= 0,
and 0 ≤ p̂x̂n̂+2 < px̂n̂+2 . Thus, x̂n̂+2 ∈ M+. Repeat this argument (m+ − n̂ + 1) times. Then,
more than m+ agents receive the objects in M+. This is a contradiction. ¤

Next, we prove Theorem 5.1. Let R ≡ RC and n > m. Let f be a rule satisfying
strategy-proofness, efficiency, individual rationality, and nonnegative payment on Rn.

Part 1: Preliminary results (Proofs of Lemmas 5.1–5.4)

Proof of Lemma 5.1. By nonnegative payment, f t
i (R) ≥ 0. By individual rationality,

f t
i (R) ≤ 0. Thus, f t

i (R) = 0. ¤
Proof of Lemma 5.2. By contradiction, suppose that for each i ∈ N , fx

i (R) 6= x. Then,
by n > m, there is j ∈ N such that fx

j (R) = 0. By Lemma 5.1, f t
j (R) = 0. Let ẑ ∈ Z

be such that ẑj ≡ (x, 0) and for each i ∈ N \ {j}, ẑi ≡ fi(R). Then, since (x, 0) Pi (0, 0),
ẑj Pj fj(R). Note that for each i ∈ N \ {j}, ẑi Ii fi(R), and

∑
i∈N t̂i =

∑
i∈N f t

i (R). Thus, ẑ
Pareto-dominates f(R) at R, which contradicts efficiency. ¤
Proof of Lemma 5.3. Let d ≡ tj −CVi(xj; zi), and let ẑ ∈ Z be such that ẑi ≡ (xj, tj − d),
ẑj ≡ (xi, ti + d), and for each k ∈ N \ {i, j}, ẑk ≡ zk. Then, since ẑi = (xj, CVi(xj; zi)),
ẑi Ii zi. By (a) and ẑj = (xi, ti + tj − CVi(xj; zi)), ẑj Pj (xi, CVj(xi; zj)) Ij zj. Also, for each
k ∈ N \ {i, j}, ẑk Ik zk, and

∑
k∈N t̂k = tj − d + ti + d +

∑
k 6=i,j tk =

∑
k∈N tk. Thus ẑ

Pareto-dominates z at R. ¤
Proof of Lemma 5.4. First, we show that fx

i (R̂i, R−i) = fx
i (R). Suppose not. Let x ≡

fx
i (R̂i, R−i). By strategy-proofness, fi(R̂i, R−i) R̂i fi(R). Thus, f t

i (R̂i, R−i) ≤ ĈV i(x; fi(R)).

Since R̂i ∈ RNCV (fi(R)), ĈV i(x; fi(R)) < 0. Thus, f t
i (R̂i, R−i) < 0, which contradicts

nonnegative payment.
Next, we show that f t

i (R̂i, R−i) = f t
i (R). Suppose that f t

i (R̂i, R−i) < f t
i (R). (The

opposite case can be treated symmetrically.) Then, fi(R̂i, R−i) Pi fi(R), which contradicts
strategy-proofness. ¤
Part 2: Proof of Proposition 5.1. (Proofs of Lemmas 5.5–5.7 and Proposition 5.1)

Proof of Lemma 5.5. Note that for each i ∈ N , (x, 0) Pi (0, 0). Thus, Cm+1(R, x) > 0.
By contradiction, suppose that f t

i (R) < Cm+1(R, x). Let R̂i ∈ RNCV (fi(R)) be such that (i)

−ĈV i(0; fi(R)) < Cm+1(R, x) − f t
i (R). Then, by Lemma 5.4, fi(R̂i, R−i) = fi(R).

Since #{j ∈ N \ {i} : CVj(x;0) ≥ Cm+1(R, x)} ≥ m, there is j ∈ N \ {i} such that

CVj(x;0) ≥ Cm+1(R, x) and fx
j (R̂i, R−i) = 0. By Lemma 5.1, f t

j (R̂i, R−i) = 0. By (i) and

Lemma 5.3, there is ẑ ∈ Z that Pareto-dominates f(R̂i, R−i) at (R̂i, R−i), which contradicts
efficiency. ¤
Proof of Lemma 5.6. By contradiction, suppose that CVi(x;0) < Cm(R, x). Then, by
Lemma 5.5, Cm+1(R, x) ≤ f t

i (R). By individual rationality, f t
i (R) ≤ CVi(x;0). Then, by
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CVi(x;0) ≤ Cm+1(R, x), f t
i (R) = CVi(x;0). Since #{j ∈ N : CVj(x;0) ≥ Cm(R, x)} = m,

there is j ∈ N \ {i} such that CVj(x;0) ≥ Cm(R, x) and fx
j (R) = 0. By Lemma 5.1,

f t
j (R) = 0. Then, by CVi(x;0) < Cm(R, x) ≤ CVj(x;0) and Lemma 5.3, there is ẑ ∈ Z that

Pareto-dominates f(R) at R, which contradicts efficiency. ¤
Proof of Lemma 5.7. (Figure A.2) By contradiction, suppose that fx

i (R) 6= x. Then,
by Lemma 5.2, there is j ∈ N \ {i} such that fx

j (R) = x. Since fj(R) Rj zj, f t
j (R) ≤

CVj(x; zj) < CVi(x;0). By z ∈ ZIR(R), for each y ∈ M , CVj(y; zj) ≤ CVj(y;0). Let

R̂j ∈ RNCV (fj(R)) be such that (i) −ĈV j(0; fj(R)) < CVi(x;0) − f t
j (R), and (ii) for each

y ∈ M \ {x}, ĈV j(y;0) = CVj(y;0). Then, by Lemma 5.4, fj(R̂j, R−j) = fj(R). Since

fx
j (R̂j, R−j) = x, fx

i (R̂j, R−j) 6= x. Next, we show that fx
i (R̂j, R−j) /∈ M \{x}. Suppose that

there is y ∈ M \ {x} such that fx
i (R̂j, R−j) = y. By (ii), Cm(R̂j, R−j, y) = Cm(R, y). Since

CVi(y;0) < Cm(R, y), CVi(y;0) < Cm(R̂j, R−j, y), which contradicts Lemma 5.6. Thus,

fx
i (R̂j, R−j) = 0. By Lemma 5.1, f t

i (R̂j, R−j) = 0. Then, by (i) and Lemma 5.3, there is

ẑ ∈ Z that Pareto-dominates f(R̂j, R−j) at (R̂j, R−j), which contradicts efficiency. ¤

[Figure A.2 about here]

Proof of Proposition 5.1. We only show f1(R) R1 z1 since the case of any other agent
can be treated in the same way. If x1 = 0, then z1 = 0, and so, by individual rationality,
f1(R) R1 z1. Thus, we assume that x1 6= 0. Let N+ ≡ {j ∈ N : xj 6= 0}. Note that
#N+ = m.

By contradiction, suppose that z1 P1 f1(R). We prove Claim 5.1 below by induction.
(iv-(k + 1)) of Claim 5.1 induces a contradiction by the finiteness of N+.

Claim 5.1. For each k ≥ 0, there exist a set N(k + 1) of k + 1 distinct agents, say
N(k + 1) ≡ {1, . . . , k + 1}, and R̂N(k+1) ∈ Rk+1 such that

(i-(k + 1)) zk+1 Pk+1 fk+1(R̂N(k), R−N(k)),

(ii-(k+1)) for each j ∈ N(k+1) and each y ∈ M\{xj}, ĈV j(y;0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, y),

(iii-(k + 1)) tk+1 < ĈV k+1(xk+1;0) < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))), and
(iv-(k + 1)) N(k + 1) ( N+,
where N(k) ≡ {1, . . . , k}.
Proof of Claim 5.1.
Step 1. Let k = 0 and N(1) ≡ 1. By z1 P1 f1(R), (i-1) holds, and so, t1 < CV1(x1; f1(R)).
Note that for each y ∈ M , Cn(R, y) > 0. Thus, there is R̂1 ∈ R such that (ii-1): for each

y ∈ M \ {x1}, ĈV 1(y;0) < Cn(R, y), and (iii-1): t1 < ĈV 1(x1;0) < CV1(x1; f1(R)).
Note that {1} ⊆ N+. Suppose that {1} = N+. Since #N+ = m, m = 1. Thus, by

x1 6= 0, for each j ∈ N \ {1}, zj = 0. Since z ∈ W (R), for each j ∈ N \ {1}, zj Rj z1, and so,

CVj(x1;0) ≤ t1. Thus, by (iii-1), C1(R−1, x1; z) ≤ t1 < ĈV 1(x1;0). By individual rationality,

for each j ∈ N \ {1}, fj(R̂1, R−1) Rj 0 = zj. Since z ∈ ZIR(R̂1, R−1), Lemma 5.7 implies

that fx
1 (R̂1, R−1) = x1. By individual rationality, f t

1(R̂1, R−1) ≤ ĈV 1(x1;0). However, by
(iii-1), f t

1(R̂1, R−1) < CV1(x1; f1(R)). Thus, f1(R̂1, R−1) P1 f1(R), which contradicts strategy-
proofness. Therefore, (iv-1): {1} ( N+.

Step 2 (Induction argument). Let k ≥ 1. As induction hypothesis, we assume that there
exist a set N(k) ⊇ N(1) of k distinct agents, say N(k) ≡ {1, . . . , k}, and R̂N(k) ∈ Rk such

27



that
(i-k) zk Pk fk(R̂N(k)\{k}, R−N(k)\{k}),

(ii-k) for each j ∈ N(k) and each y ∈ M \ {xj}, ĈV j(y;0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, y),

(iii-k) tk < ĈV k(xk;0) < CVk(xk; fk(R̂N(k)\{k}, R−N(k)\{k})), and
(iv-k) N(k) ( N+.

See Figure A.3 for an illustration of (i-(k + 1)), (ii-(k + 1)) and (iii-(k + 1)) for k = 1.

[Figure A.3 about here]

By (iv-k), N+ \ N(k) 6= ∅. The proof consists of the following two steps.

Step 2-1. There is k′ ∈ N+ \ N(k) such that zk′ Pk′ fk′(R̂N(k), R−N(k)).

Proof of Step 2-1. By contradiction, suppose that for each j ∈ N+\N(k), fj(R̂N(k), R−N(k)) Rj zj.

First, we show that fx
k (R̂N(k), R−N(k)) = xk. By (ii-k), for each y ∈ M \ {xk},

ĈV k(y;0) < Cn(R̂N(k)\{k}, R−N(k)\{k}, y) = Cn−1(R̂N(k), R−N(k), y) ≤ Cm(R̂N(k), R−N(k), y).

Let ẑ ∈ Z be such that for each j ∈ N \ N(k), ẑj ≡ zj, and for each j ∈ N(k), ẑj ≡ 0.

Then, ẑ ∈ ZIR(R̂N(k), R−N(k)). By the supposition of Step 2-1, for each j ∈ N+ \ N(k),

fj(R̂N(k), R−N(k)) Rj zj ≡ ẑj. By individual rationality, for each j ∈ N(k) ∪ (N \ N+),

fj(R̂N(k), R−N(k)) Rj 0 = ẑj.
Since z ∈ W (R), for each j ∈ N \ N(k), CVj(xk; ẑj) = CVj(xk; zj) ≤ tk. By (ii-k), for

each j ∈ N(k) \ {k},

ĈV j(xk; ẑj) = ĈV j(xk;0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, xk) ≤ Cn(R, xk) ≤ tk.

Thus, by (iii-k), C1(R̂N(k)\{k}, R−N(k), xk; ẑ) ≤ tk < ĈV k(xk;0).

Since the assumptions of Lemma 5.7 hold for the profile (R̂N(k), R−N(k)) as above, Lemma

5.7 implies that fx
k (R̂N(k), R−N(k)) = xk.

By individual rationality, f t
k(R̂N(k), R−N(k)) ≤ ĈV k(xk;0). However, (iii-k) implies that

f t
k(R̂N(k), R−N(k)) < CVk(xk; fk(R̂N(k)\{k}, R−N(k)\{k})).

Thus, fk(R̂N(k), R−N(k)) Pk fk(R̂N(k)\{k}, R−N(k)\{k}), contradicting strategy-proofness. ¤
Step 2-2. We complete the proof of Claim 5.1.

Proof of Step 2-2. Without loss of generality, let k+1 ≡ k′ and N(k+1) ≡ N(k)∪{k+1}.
Then, N(k + 1) ) N(k), and (i-(k + 1)) follow from zk′ Pk′ fk′(R̂N(k), R−N(k)). By (i-(k + 1)),

tk+1 < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))). Also, for each y ∈ M , Cn(R̂N(k), R−N(k), y) > 0.

Thus, there is R̂k+1 ∈ R such that

tk+1 < ĈV k+1(xk+1;0) < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))),

and for each y ∈ M\{xk+1}, ĈV k+1(y;0) < Cn(R̂N(k), R−N(k), y). Let R̂N(k+1) ≡ (R̂N(k), R̂k+1).
Then, (ii-(k + 1)) and (iii-(k + 1)) follow from (ii-k).

By (iv-k) and {k + 1} ⊆ N+, N(k + 1) ⊆ N+.
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Finally, we show (iv-(k + 1)): N(k + 1) ( N+. Suppose that N(k + 1) = N+. Then,
#N(k + 1) = #N+ = m. Thus, for each j ∈ N \ N(k + 1), zj = 0.

By (ii-(k + 1)), for each y ∈ M \ {xk+1},

ĈV k+1(y;0) < Cn(R̂N(k), R−N(k), y) = Cn−1(R̂N(k+1), R−N(k+1), y) ≤ Cm(R̂N(k+1), R−N(k+1), y).

Let ẑ ∈ Z be such that for each j ∈ N , ẑj ≡ 0. Then, ẑ ∈ ZIR(R̂N(k+1), R−N(k+1)).

By individual rationality, for each j ∈ N \ {k +1}, fj(R̂N(k+1), R−N(k+1)) Rj 0 = ẑj. Since
z ∈ W (R), for each j ∈ N \ N(k + 1), CVj(xk+1; ẑj) = CVj(xk+1; zj) ≤ tk+1. By (ii-(k + 1)),
for each j ∈ N(k + 1) \ {k + 1},

ĈV j(xk+1; ẑj) = ĈV j(xk+1;0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, xk+1) ≤ Cn(R, xk+1) ≤ tk+1.

Thus, by (iii-(k + 1)), ĈV k+1(xk+1;0) > tk+1 ≥ C1(R̂N(k), R−N(k+1), xk+1; ẑ), and the as-

sumptions of Lemma 5.7 hold for the profile (R̂N(k+1), R−N(k+1)). Lemma 5.7 implies that

fx
k+1(R̂N(k+1), R−N(k+1)) = xk+1.

By individual rationality, f t
k+1(R̂N(k+1), R−N(k+1)) ≤ ĈV k+1(xk+1;0). However, by (iii-

(k + 1)), f t
k+1(R̂N(k+1), R−N(k+1)) < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))).

Thus, fk+1(R̂N(k+1), R−N(k+1)) Pk+1 fk+1(R̂N(k), R−N(k)), contradicting strategy-proofness.
¤

Part 3: Proofs of Lemmas 5.8–5.11.

Proof of Lemma 5.8. First, we show (a). Let M ′ ⊆ M . Since z∗ ∈ Wmin(R), it follows
from Theorem 4.1 that (i) #{i ∈ N : D(Ri, p) ⊆ M ′} ≤ #M ′ and (ii) #{i ∈ N : D(Ri, p) ∩
M ′ 6= ∅} > #M ′. Note that for each i ∈ N ′, D(R̂i, p) = L and for each j ∈ N \ N ′,
D(R̂j, p) = D(Rj, p). Thus, for each i ∈ N ′, D(R̂i, p) * M ′ and D(R̂i, p) ∩ M ′ 6= ∅. Then,

#{i ∈ N : D(R̂i, p) ⊆ M ′} ≤ #{i ∈ N : D(Ri, p) ⊆ M ′} ≤ #M ′, and

#{i ∈ N : D(R̂i, p) ∩ M ′ 6= ∅} ≥ #{i ∈ N : D(Ri, p) ∩ M ′ 6= ∅} > #M ′.

That is, no set of objects is overdemanded nor weakly underdemanded at p for R̂. Thus, (a)
follows from Theorem 4.1. Then, (b) also follows from Proposition 5.1.

Finally, we show (c). Let i ∈ N . By contradiction, suppose that fx
i (R̂) = 0 and 0 /∈

D(R̂i, p). Then, by Lemma 5.1, z∗i P̂i 0 = fi(R̂). This contradicts (b). ¤
Proof of (9-b) of Lemma 5.9. Let N ′′

1 ≡ {i ∈ N ′′ : fx
i (R̄) = 0}. We show that (9-1-b):

N ′′
1 6= ∅. Since N ′′ ≡ N(R, p) \ N ′, N ′′ ∪ N ′ = N(R, p). Thus, #N ′′ + #N ′ ≥ #N(R, p). By

Lemma 5.8-(a), z∗ ∈ Wmin(R̄). Thus, by Theorem 4.1, there is no weakly underdemanded
set at p for R̄, and so, #N(R, p) ≥ m + 1. Therefore, #N ′′ + #N ′ ≥ m + 1. By (9-ii), for
each j ∈ N ′, fx

j (R̄) 6= 0. Thus, at least one agent in N ′′ receives no object, that is, (9-1-b)
holds.

Since N ′′
1 ⊆ N(R, p), for each i ∈ N ′′

1 , D(Ri, p) ∩ M 6= ∅. Thus, by (9-1-b), we have
(9-1-d): there is i1 ∈ N ′′

1 such that D(Ri1 , p) ∩ M 6= ∅.
Let N(1) ≡ N ′′

1 and D1 ≡ [
⋃

i∈N(1) D(Ri, p)]\{0}. Given k ≥ 2, let N ′′
k ≡ {j ∈ N ′′\N(k−

1) : fx
j (R̄) ∈ Dk−1}, N(k) ≡ N(k−1)∪N ′′

k , and Dk ≡ [
⋃

j∈N ′′
k

D(Rj, p)]\[
⋃

j∈N(k−1) D(Rj, p)].
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We introduce Claim 5.2 below to show (9-b) inductively. Note that Assumptions (9-
(k − 1)-b) and (9-(k − 1)-d) of Claim 5.2 follow from (9-1-b) and (9-1-d) when k = 2, that
(9-k-b) implies N(k) ) N(k − 1), and that Assumptions except for (9-(k − 1)-a*) hold
recursively. Thus, for any k ≥ 2, as long as (9-(k − 1)-a*) holds, Claim 5.2 is applied and
N(k) increases as k increases. Since N(k) ⊆ N ′′, and N ′′ is finite,26 there is k ≤ m such that
(9-k-a*) does not hold. Let k be the first number that violates (9-k-a*) in this iteration.

By (9-k-b), for each k′ ∈ {1, . . . , k}, N ′′
k′ 6= ∅. Since (9-k-a*) does not hold, there are

jk ∈ N ′′
k and jk+1 ∈ N ′ such that fx

jk+1
(R̄) ∈ D(Rjk

, p). Then,

for each k′ ∈ {1, . . . , k − 1}, there is jk′ ∈ N ′′
k′ such that fx

jk′+1
(R̄) ∈ D(Rjk′ , p).

To show that the sequence {jk′}k+1
k′=1satisfies (iv) of (9-b), we prove

for each k′ ∈ {1, . . . , k}, fx
jk′

(R̄) ∈ D(Rjk′ , p).

By j1 ∈ N ′′
1 , fx

j1
(R̄) = 0. Then, by Lemma 5.8-(c), fx

j1
(R̄) ∈ D(Rj1 , p). Let k′ ∈ {2, . . . , k}.

By contradiction, suppose that fx
jk′

(R̄) /∈ D(Rjk′ , p). Let y ≡ fx
jk′

(R̄). Then, by x∗
jk′

∈
D(Rik′ , p), z∗jk′

Pik′ (y, py). By Lemma 5.8-(b), fjk′ (R̄) Rjk′ z
∗
jk′

. Thus, fjk′ (R̄) Rjk′ z
∗
jk′

Pik′ (y, py),

which implies f t
jk′

(R̄) < py. This contradicts (9-i) of Lemma 5.9.

Then, the sequence {jk′}k+1
k′=1 satisfies (i), (ii), (iii), and (iv) of (9-b). Thus, for the rest of

the proof of (9-b), we prove Claim 5.2 below.

Claim 5.2. Let k ≥ 2. Assume that
(9-(k − 1)-a) for each i ∈ N(k − 2) and each j ∈ N ′, fx

j (R̄) /∈ D(Ri, p),27

(9-(k − 1)-b) for each k′ ∈ {1, . . . , k − 1}, N ′′
k′ 6= ∅,

(9-(k − 1)-c) for each k′ ∈ {2, . . . , k − 1}, #N ′′
k′ = #Dk′−1,

28

(9-(k − 1)-d) there is ik−1 ∈ N ′′
k−1 such that D(Rik−1

, p) ∩ [M \
⋃

k′≤k−2 Dk′ ] 6= ∅,29 and

(9-(k − 1)-a*) for each i ∈ N ′′
k−1 and each j ∈ N ′, fx

j (R̄) /∈ D(Ri, p).
Then,
(9-k-a) for each i ∈ N(k − 1) and each j ∈ N ′, fx

j (R̄) /∈ D(Ri, p),
(9-k-b) for each k′ ∈ {1, . . . , k}, N ′′

k′ 6= ∅,
(9-k-c) for each k′ ∈ {2, . . . , k}, #N ′′

k′ = #Dk′−1, and
(9-k-d) there is ik ∈ N ′′

k such that D(Rik , p) ∩ [M \
⋃

k′≤k−1 Dk′ ] 6= ∅.
Proof of Claim 5.2. First, (9-k-a) follows from (9-(k − 1)-a) and (9-(k − 1)-a*). By (9-
(k− 1)-d), there is ik−1 ∈ N ′′

k−1 such that D(Rik−1
, p)∩ [M \

⋃
k′≤k−2 Dk′ ] 6= ∅. Thus, Dk 6= ∅.

By Lemma 5.2, for each x ∈ Dk, there is i(x) ∈ N such that fx
i(x)(R̄) = x. Note that, by

(9-a), i(x) ∈ N(R, p) ∪ N ′. By (9-k-a) and the definition of N(k − 1), for each x ∈ Dk,
i(x) ∈ N ′′ \ N(k − 1). Thus, N ′′

k 6= ∅. Then, (9-k-b) follows from (9-(k − 1)-b).
Since fx(R̄) ∈ X, no two agents receive the same object i.e., for each x, y ∈ Dk with

x 6= y, i(x) 6= i(y). Thus, #N ′′
k = #Dk−1. Then, (9-k-c) also follows from (9-(k − 1)-c).

Finally, we show (9-k-d). By contradiction, suppose that for each i ∈ N ′′
k , D(Ri, p)∩ [M \⋃

k′≤k−1 Dk′ ] = ∅. See Figure A.4 for an illustration of proof of (9-k-d).

[Figure A.4 about here]

26By (9-ii) of Lemma 5.9 and feasibility of object allocation, it should be #N ′′ ≤ m.
27Define N(0) = ∅. When k = 2, (9-(k − 1)-a) holds vacantly.
28When k = 2, (9-(k − 1)-c) holds vacantly.
29When k = 2, (9-(k − 1)-d) requires that there is i1 ∈ N ′′

1 such that D(Ri1 , p) ∩ M 6= ∅.
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Then,

#

{
j ∈ N : D(R̄j, p) ∩

[
M \

⋃
k′≤k−1

Dk′

]
6= ∅

}
= #N ′ + #N ′′ − #N ′′

1 −
k∑

k′=2

#N ′′
k′

= #M −
k∑

k′=2

#Dk′−1

= #

{
M \

⋃
k′≤k−1

Dk′

}
,

where the first equality follows from #
{
j ∈ N : D(R̄j, p) ∩ M 6= ∅

}
= #N ′ + #N ′′, and for

each k′ ∈ {1, . . . , k} and each i ∈ N ′′
k′ , D(Ri, p) ∩

[
M \

⋃
k′′≤k−1 Dk′′

]
= ∅, and the second

from #N ′ + #N ′′ − #N ′′
1 = m and (9-k-c): for each k′ ∈ {2, . . . , k}, #N ′′

k′ = #Dk′−1.
Therefore, the set

[
M \

⋃
k′≤k−1 Dk′

]
is weakly underdemanded at p for R̄. However, by

Lemma 5.8-(a), z∗ ∈ Wmin(R̄), and so, by Theorem 4.1, there is no weakly underdemanded
set at p for R̄. This is a contradiction. ¤
Proof of Lemma 5.10. Suppose that fx

j (R) = 0. By Lemma 5.1, f t
j (R) = 0. By assumption

(10-i), −CVi(0; fi(R)) < CVj(x;0)−f t
i (R). Then, by Lemma 5.3, there is ẑ ∈ Z that Pareto-

dominates f(R) at R, which contradicts efficiency. ¤
Proof of Lemma 5.11. Let R̂ ≡ (R̂N ′ , R−N ′). Without loss of generality, let N ′ ≡
{1, 2, . . . , n′}. We only show that if fx

1 (R̂) = x ∈ M , f t
1(R̂) ≥ px since we can treat similarly

the other agents in N ′. Let fx
1 (R̂) ≡ x ∈ M . By contradiction, suppose that f t

1(R̂) < px.
Let N ′′ ≡ N(R, p) \ N ′.
Case 1. #N ′ ≥ m + 1.

Since f t
1(R̂) < px, there is R̄1 ∈ RNCV (f1(R̂)) such that (ii) −CV 1(0; f1(R̂)) < px−f t

1(R̂).
Then, by Lemma 5.4, f1(R̄1, R̂−1) = f1(R̂). Note that for each j ∈ N ′ \ {1},

−CV 1(0; f1(R̂)) < px − f t
1(R̂) = ĈV j(x;0) − f t

1(R̂),

where the inequality follows from (ii) and the equality from R̂j ∈ RI(z∗). Thus, by Lemma

5.10, for each j ∈ N ′ \ {1}, fx
j (R̄1, R̂−1) 6= 0. However, since #N ′ ≥ m + 1, this is a

contradiction.

Case 2. #N ′ ≤ m.
First, we show the following step.

Step 1. Let S ⊆ N ′, R̄S ∈ RI(z∗)#S, and R̄ ≡ (R̄S, R̂−S). For each i ∈ N ′, let xi ≡ fx
i (R̄).

Assume that
(11-1-i) for each i ∈ N ′, xi 6= 0,
(11-1-ii) for each i ∈ S and each zi ≡ (y, t) ∈ M × R with t < py, −CV i(0; zi) < py − t,
(11-1-iii) there is j ∈ S such that f t

j (R̄) < pxj , and
(11-1-iv) there is a sequence {ik}K

k=1 of K distinct agents such that (i*) 2 ≤ K ≤ m + 1,
(ii*) fx

i1
(R̄) = 0, (iii*) for each k ∈ {1, . . . , K − 1}, ik ∈ N ′′, and iK ∈ N ′, and (iv*) for

each k ∈ {1, . . . , K − 1}, {fx
ik

(R̄), fx
ik+1

(R̄)} ⊆ D(R̄ik , p).

Then, (11-a) f t
iK

(R̄) < pxiK , and (11-b) iK /∈ S.
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Proof of Step 1.
Proof of (11-a). If iK = j, f t

iK
(R̄) < pxiK follows from (11-1-iii). Thus, let iK 6= j. By

Lemma 5.8-(b), f t
iK

(R̄) ≤ pxiK . By contradiction, suppose that f t
iK

(R̄) = pxiK . Let z′ ∈ Z
be such that

z′j ≡ (0, CV j(0; fj(R̄))),

z′iK ≡ (xj, f
t
j (R̄) − CV j(0; fj(R̄))),

for each k ∈ {1, . . . , K − 1}, z′
ik
≡ fik+1

(R̄), and

for each i ∈ N \ ({ik}K
k=1 ∪ {j}), z′

h ≡ fh(R̄).

See Figure A.5 for the illustration of z′.

[Figure A.5 about here]

We show that z′ Pareto-dominates f(R̄) at R̄.
By the definition of CV j(0; fj(R̄)), z′j Īj fj(R̄).
Note that

z′iK P̄iK (xj, p
xj) ĪiK fiK (R̄),

where the first preference relation follows from z′iK ≡ (xj, f
t
j (R̄) − CV j(0; fj(R̄))), (11-1-iii):

f t
j (R̄) < pxj , and (11-1-ii): −CV j(0; fj(R̄)) < pxj − f t

j (R̄), and the indifference relation from
f t

iK
(R̄) = pxiK and iK ∈ N ′, which implies R̄iK ∈ RI(z∗).
Lemma 5.8-(b) and (11-i) imply that for each k ∈ {1, . . . , K − 1}, f t

ik
(R̄) = pxik . Thus,

by (11-1-iv)-(iv*), for each k ∈ {1, . . . , K − 1}, z′ik = fik+1
(R̄) Īik fik(R̄).

For each i ∈ N \ ({ik}K
k=1 ∪ {j}), by z′i ≡ fi(R̄), z′i Īi fi(R̄).

Note that∑
i∈N

t′i = CV j(0; fj(R̄)) + f t
j (R̄) − CV j(0; fj(R̄)) +

K−1∑
k=1

f t
ik+1

(R̄) +
∑

i∈N\({ik}K
k=1∪{j})

f t
i (R̄)

= f t
j (R̄) +

K∑
k=2

f t
ik

(R̄) +
∑

i∈N\({ik}K
k=1∪{j})

f t
i (R̄)

=
∑
i∈N

f t
i (R̄),

where the last equality follows from (11-1-iv)-(ii*): f t
i1
(R̄) = 0. Thus, z′ Pareto-dominates

f(R̄) at R̄, which contradicts efficiency. ¤
Proof of (11-b). By contradiction, suppose that iK ∈ S. By (11-1-i) and (11-1-iv)-(iii*),
xiK 6= 0. By Step 1-(11-a), f t

iK
(R̄) < pxiK . Let z′ ∈ Z be such that

z′iK ≡ (0, CV iK (0; fiK (R̄))),

z′iK−1
≡ (xiK , f t

iK
(R̄) − CV iK (0; fiK (R̄)))

for each k ∈ {1, . . . , K − 2}, z′
ik
≡ fik+1

(R̄), and

for each i ∈ N \ {ik}K
k=1, z′i ≡ fi(R̄).

See Figure A.6 for the illustration of z′.
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[Figure A.6 about here]

We show that z′ Pareto-dominates f(R̄) at R̄.
By the definition of CV j(0; fj(R̄)), z′iK ĪIK

fiK (R̄).
Lemma 5.8-(b) and (11-i) imply that for each k ∈ {1, . . . , K − 1}, f t

ik
(R̄) = pxik . By

(11-1-iv)-(iv*), for each k ∈ {1, . . . , K − 2}, z′ik = fik+1
(R̄) Īik fik(R̄).

Note that
z′

iK−1
P̄iK−1

(xiK , pxiK ) ĪiK−1
(xiK−1

, pxiK−1 ) ĪiK−1
fiK−1

(R̄),

where the strict preference relation follows from iK ∈ S, z′iK−1
= (xiK , f t

iK
(R̄)−CV iK (0; fiK (R̄))),

(11-a): f t
iK

(R̄) < pxiK , and (11-1-ii): −CV iK (0; fiK (R̄)) < pxiK − f t
iK

(R̄), the first in-
difference relation from (11-1-iv)-(iv*): {xiK−1

, xiK} ⊆ D(R̄iK−1
, p), and the second from

f t
iK−1

(R̄) = pxiK−1 .

For each i ∈ N \ {ik}K
k=1, by z′i = fi(R̄), z′i Īi fi(R̄).

Note that

∑
i∈N

t′i = CV iK (0; fik(R̄)) + f t
iK

(R̄) − CV iK (0; fiK (R̄)) +
K−2∑
k=1

f t
ik+1

(R̄) +
∑

i∈N\({ik}K
k=1)

f t
i (R̄)

= f t
iK

(R̄) +
K−1∑
k=2

f t
ik

(R̄) +
∑

i∈N\({ik}K
k=1)

f t
i (R̄)

=
∑
i∈N

f t
i (R̄),

where the last equality follows from (11-1-iv)-(ii*): f t
i1
(R̄) = 0. Thus, z′ Pareto-dominates

f(R̄) at R̄, which contradicts efficiency. ¤
Step 2. We derive a contradiction to conclude that f t

1(R̂) ≥ px.

Since f t
1(R̂) < px, there is R̄1 ∈ RI(z∗) ∩RNCV (f1(R̂)) such that

(11-1-a) for each z1 ≡ (y, t) ∈ M × R with t < py, −CV 1(0; z1) < py − t.

Then, by R̄1 ∈ RNCV (f1(R̂)) and Lemma 5.4, f1(R̄1, R̂−1) = f1(R̂). Thus,

(11-1-b) fx
1 (R̄1, R̂−1) = x ∈ M and f t

1(R̄1, R̂−1) < px.

Note that {1} ⊆ N ′. Suppose that {1} = N ′. Since f1(R̄1, R̂−1) = f1(R̂) and fx
1 (R̂) =

x 6= 0, fx
1 (R̄1, R̂−1) = x 6= 0. Then, by (11-i) of Lemma 5.11, it follows from (9-b) of Lemma

5.9 that there is a sequence {ik}K
k=1 of K distinct agents such that (i) 2 ≤ K ≤ m + 1,

(ii) fx
i1
(R̄1, R̂−1) = 0, (iii) for each k ∈ {1, . . . , K − 1}, ik ∈ N ′′, and iK ∈ N ′, and (iv) for

each k ∈ {1, . . . , K − 1}, {fx
ik

(R̄1, R̂−1), f
x
ik+1

(R̄1, R̂−1)} ⊆ D(R̂ik , p). Then, by Step 1 (11-b),
iK /∈ {1}. Since {1} = N ′, iK /∈ N ′, which contradicts (iii): iK ∈ N ′. Thus, if {1} = N ′, we
obtain a contradiction.

Therefore, we assume that

(11-1-c) {1} ( N ′.

Induction argument:
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Let s ≥ 1 and N(1) ≡ {1}. As induction hypothesis, we assume that there exist a set
N(s) ⊇ N(1) of s distinct agents and R̄N(s) ∈ RI(z∗)s such that

(11-s-a) for each i ∈ N(s) and each zi ≡ (y, t) ∈ M ×R with t < py, −CV i(0; zi) < py− t,

(11-s-b) for some j ∈ N(s), fx
j (R̄N(s), R̂−N(s)) ≡ x′ ∈ M and f t

j (R̄N(s), R̂−N(s)) < px′
, and

(11-s-c) N(s) ( N ′.

Note that (11-s-a), (11-s-b), and (11-s-c) follow from (11-1-a), (11-1-b), and (11-1-c) if
s = 1.

We show that there exist a set N(s + 1) ) N(s) of s + 1 distinct agents and R̄N(s+1) ∈
RI(z∗)s+1 such that

(11-(s + 1)-a) for each i ∈ N(s + 1) and each zi ≡ (y, t) ∈ M × R with t < py,

−CV i(0; zi) < py − t, and

(11-(s + 1)-b) for some j′ ∈ N(s + 1),

fx
j′(R̄N(s+1), R̂−N(s+1)) ≡ x′′ ∈ M and f t

j′(R̄N(s+1), R̂−N(s+1)) < px′′
.

First, we show (11-(s + 1)-a). Since (R̄N(s), R̂−N ′\N(s)) ∈ RI(z∗)#N ′
, (11-s-b) and Lemma

5.10 imply that

(B-1) for each i ∈ N ′, fx
i (R̄N(s), R̂−N(s)) 6= 0.

Then, by (11-i) of Lemma 5.11, it follows from (9-b) of Lemma 5.9 that there is a sequence
{ik}K

k=1 of K distinct agents such that (i) 2 ≤ K ≤ m + 1, (ii) fx
i1
(R̄N(s), R̂−N(s)) = 0, (iii)

for each k ∈ {1, . . . , K − 1}, ik ∈ N ′′, and iK ∈ N ′, and (iv) for each k ∈ {1, . . . , K − 1},
{fx

ik
(R̄N(s), R̂−N(s)), f

x
ik+1

(R̄N(s), R̂−N(s))} ⊆ D(R̂ik , p). Let xiK ≡ fx
iK

(R̄N(s), R̂−N(s)).
Then, by Step 1-(11-a),

(B-2) f t
iK

(R̄N(s), R̂−N(s)) < pxiK .

Also, by Step 1-(11-b),

(B-3) iK ∈ N ′ \ N(s).

Next, let j′ ≡ iK and N(s + 1) ≡ N(s) ∪ {j′}. Then, by (B-3), N(s + 1) ) N(s). Also,
(B-1) and (B-2) imply that fx

iK
(R̄N(s), R̂−N(s)) 6= 0 and f t

j′(R̄N(s), R̂−N(s)) < pxj′ . Thus, there

is R̄j′ ∈ RI(z∗) ∩RNCV (fj′(R̄N(s), R̂−N(s))) such that

for each zj′ ≡ (y, t) ∈ M × R with t < py, −CV j′(0; zj′) < py − t,

Thus, (11-(s + 1)-a) follows from (11-s-a).
Next, we show (11-(s + 1)-b). By R̄j′ ∈ RNCV (fj′(R̄N(s), R̂−N(s))) and Lemma 5.4,

fj′(R̄N(s+1), R̂−N(s+1)) = fj′(R̄N(s), R̂−N(s)). Then, by (B-1), fx
j′(R̄N(s+1), R̂−N(s+1)) 6= 0. By

(B-2), f t
j′(R̄N(s+1), R̂−N(s+1)) < pxj′ . Thus, (11-(s + 1)-b) holds.

Since N(s) ( N ′ and j′ ∈ N ′, N(s + 1) ⊆ N ′. Suppose that N(s + 1) = N ′. Since
(R̄N(s+1), R̂−N ′\N(s+1)) ∈ RI(z∗)#N ′

, (11-(s + 1)-b) and Lemma 5.10 imply that

(B-4) for each i ∈ N ′, fx
i (R̄N(s+1), R̂−N(s+1)) 6= 0.
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Then, by (11-i) of Lemma 5.11, it follows from (9-b) of Lemma 5.9 that there is a sequence
{ik}K

k=1 of K distinct agents such that (i) 2 ≤ K ≤ m + 1, (ii) fx
i1
(R̄N(s+1), R̂−N(s+1)) = 0,

(iii) for each k ∈ {1, . . . , K − 1}, ik ∈ N ′′, and iK ∈ N ′, and (iv) for each k ∈ {1, . . . , K − 1},
{fx

ik
(R̄N(s+1), R̂−N(s+1)), f

x
ik+1

(R̄N(s+1), R̂−N(s+1))} ⊆ D(R̂ik , p).
Then, by Step 1-(11-b), iK /∈ N(s + 1). Since N(s + 1) = N ′, iK /∈ N ′, which contradicts

(iii): iK ∈ N ′. Thus, if N(s + 1) = N ′, we obtain a contradiction.
If N(s+1) ( N ′, we obtain a contradiction by repeating the induction argument (#N ′−

#N(s + 1)) times. ¤
Part 4: Proof of Theorem 5.1.

Proof of Theorem 5.1. Let R ∈ Rn, z∗ ∈ Wmin(R), and p be the price vector associated
with z∗. By Lemma 5.5, for each R̄ ∈ RI(z∗)n, each i ∈ N , and each x ∈ M , if fx

i (R̄) = x,
then, f t

i (R̄) ≥ px. Next, we prove the following claim.

Claim 5.3. Let k ∈ {1, . . . , n} and Nk ⊆ N be such that #Nk = k. Then, for each R̄−Nk
∈

RI(z∗)#N\Nk , each i ∈ N , and each x ∈ M , if fx
i (RNk

, R̄−Nk
) = x, then, f t

i (RNk
, R̄−Nk

) ≥ px.

Proof of Claim 5.3. We prove Claim 5.3 by induction on k. Let k = 1. Let N1 ⊆ N with
#N1 = 1. Let R̄−N1 ∈ RI(z∗)#N\N1 , i ∈ N1, and x ∈ M be such that fx

i (RN1 , R̄−N1) = x.
Suppose that f t

i (RN1 , R̄−N1) < px. Let R̄i ∈ RI(z∗) and x̂ ≡ fx
i (R̄). Then, since f t

i (R̄) ≥
px̂, fi(RN1 , R̄−N1) P̄i fi(R̄), which contradicts strategy-proofness. Thus, for each R̄−N1 ∈
RI(z∗)#N\N1 , each i ∈ N1, and each x ∈ M , if fx

i (RN1 , R̄−N1) = x, then, f t
i (RN1 , R̄−N1) ≥ px.

Then, it follows from Lemma 5.11 that for each R̄−N1 ∈ RI(z∗)#N\N1 , each i ∈ N \ N1, and
each x ∈ M , if fx

i (RN1 , R̄−N1) = x, then, f t
i (RN1 , R̄−N1) ≥ px.

Let k ∈ {2, . . . , n}. As induction hypothesis, we assume that

C: for each Nk−1 ⊆ N with #Nk−1 = k − 1, each R̄−Nk−1
∈ RI(z∗)#N\Nk−1, each i ∈ N , and

each x ∈ M , if fx
i (RNk−1

, R̄−Nk−1
) = x, then, f t

i (RNk−1
, R̄−Nk−1

) ≥ px.

Let Nk ⊆ N be such that #Nk = k. Let R̄−Nk
∈ RI(z∗)#N\Nk , i ∈ Nk and x ∈ M be

such that fx
i (RNk

, R̄−Nk
) = x. Suppose that f t

i (RNk
, R̄−Nk

) < px. Let Nk−1 ≡ Nk \ {i}.
Let x̂ ≡ fx

i (RNk−1
, R̄−Nk−1

). Then, by induction hypothesis (C), f t
i (RNk−1

, R̄−Nk−1
) ≥ px̂.

Thus, fi(RNk
, R̄−Nk

) P̄i fi(RNk−1
, R̄−Nk−1

), which contradicts strategy-proofness. Thus, for
each R̄−Nk

∈ RI(z∗)#N\Nk , each i ∈ Nk, and each x ∈ M , if fx
i (RNk

, R̄−Nk
) = x, then,

f t
i (RNk

, R̄−Nk
) ≥ px. Then, it follows from Lemma 5.11 that for each R̄−Nk

∈ RI(z∗)#N\Nk ,
each i ∈ N \ Nk, and each x ∈ M , if fx

i (RNk
, R̄−Nk

) = x, then, f t
i (RNk

, R̄−Nk
) ≥ px. ¤

By Claim 5.3, for each i ∈ N and each x ∈ M , if fx
i (R) = x, then, f t

i (R) ≥ px. By
Proposition 5.1, for each i ∈ N , fi(R) Ri zi. Thus, for each i ∈ N and each x ∈ M , if
CVi(x; zi) < px, fx

i (R) 6= x. Therefore, for each i ∈ N , fi(R) ∈ B(p) and fx
i (R) ∈ D(Ri, p).

Thus, f(R) satisfies (WE-i) in Definition 4.1. Since R ≡ RC and n > m, for each x ∈ M ,
px > 0. By Lemma 5.3, for each x ∈ M , there is i ∈ N such that fx

i (R) = x. Thus, f(R)
also satisfies (WE-ii) in Definition 4.1. Since p is the minimum Walrasian equilibrium price
for R, we conclude that f(R) ∈ Wmin(R). ¤

A.3 Proofs for Section 6 (Proposition 6.1)

Proof of Proposition 6.1. Let R ⊆ RE and R ∈ Rn. Consider a simultaneous ascending
(SA) auction defined in Section 6. By the definition of the SA auction, the price path p(t)
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generated by the SA auction is nondecreasing with respect to time t. Next, for each x ∈ M ,
let p̂x > C1(R, x). Then, each agent demands only the null object at the price vector p̂, that
is, no overdemanded set exists at p̂. Thus, the price path p(·) is bounded above, that is, for
each t ∈ R+, p(t) ≤ p̂. Note that the prices are raised at a speed at least d > 0. Thus, there
is a price vector p∗ such that the price path p(·) generated by the SA auction converges to
the price vector p∗ in a finite time.

Let T be the final time of the SA auction. We show that the final price p(T ) is a minimum
Walrasian equilibrium price for R. By the definition of SA auctions, no overdemanded set
exists at the price p(T ). If no weakly underdemanded set exists at p(T ), then the desired
conclusion follows from Theorem 4.1. Thus, we show that no weakly underdemanded set
exists at p(T ). The proof consists of the following two steps.

Step 1. Let t′ ∈ (0, T ]. Assume that there is a set M ′ of objects that is weakly underdemanded
at p(t′). Let N ′ ≡ {i ∈ N : D(Ri, p(t′)) ∩ M ′ 6= ∅}. Then, (6-a) #N ′ ≥ 2, and (6-b) there
exist t′′ ∈ (0, t′) and M ′′ ( M ′ such that N ′′ ≡ {i ∈ N : D(Ri, p(t′′)) ∩ M ′′ 6= ∅} ( N ′ and
M ′′ is underdemanded at p(t′′).

Proof of Step 1. Since M ′ is weakly underdemanded at p(t′), for each x ∈ M ′, px(t′) > 0
and #N ′ ≤ #M ′. For each i ∈ N , let z′i ≡ (x′

i, t
′
i) ∈ D(Ri, p(t′)). Note that for each

i ∈ N \N ′ and each x ∈ M ′, CVi(x; z′i) < px(t′). For each x ∈ M ′, let qx ≡ max{{CVj(x; z′j) :
j ∈ N \ N ′} ∪ {0}}. Let e > 0 be such that for each x ∈ M ′, qx < px(t′) − e ≡ px.
Let t′′ ≡ max{t ∈ R+ : for some x ∈ M ′, px(t) ≤ px}. Then, there is x′ ∈ M ′ such that
dpx′

(t′′)/dt > 0 and px′
(t′′) = px′

. Since dpx′
(t′′)/dt > 0, there is a minimal overdemanded

set M̂ at p(t′′) including x′. See Figure A.7 for an illustration.

[Figure A.7 about here]

Let M̂ ′ ≡ M̂ ∩ M ′. Since x′ ∈ M ′, M̂ ′ 6= ∅. Let

N̂ ′ ≡ {i ∈ N ′ : D(Ri, p(t′′)) ∩ M̂ ′ 6= ∅ and D(Ri, p(t′′)) ⊆ M̂}.
We show that #N̂ ′ > #M̂ ′. If M̂ ⊆ M ′, then M̂ ′ = M̂ and for each i ∈ N̂ ′, D(Ri, p(t′′)) ⊆

M̂ ′. Since M̂ is an overdemanded set at p(t′′), the desired conclusion holds. Thus, we assume
that M̂ * M ′. Let M̂ ′′ ≡ M̂ \ M ′ and N̂ ′′ ≡ {i ∈ N : D(Ri, p(t′′)) ⊆ M̂ ′′}. Then,

{i ∈ N : D(Ri, p(t′′)) ⊆ M̂}
={i ∈ N : D(Ri, p(t′′)) ⊆ M̂ ′′} ∪ {i ∈ N : D(Ri, p(t′′)) ∩ M̂ ′ 6= ∅ and D(Ri, p(t′′)) ⊆ M̂}
=N̂ ′′ ∪ N̂ ′,

where the first equality follows from M̂ ′′ ∪ M̂ ′ = M̂ and M̂ ′′ ∩ M̂ ′ = ∅, and the second from
{i ∈ N : D(Ri, p(t′′)) ∩ M̂ ′ 6= ∅} ⊆ N ′. Note that for each x ∈ M ′, qx < px ≤ px(t′′). Thus,
for each i ∈ N \ N ′ and each x ∈ M ′,

(x′
i, p

x′
i(t′′)) Ri (x

′
i, p

x′
i(t′)) Ri (x, qx) Pi (x, px(t′′)).

Since M̂ ′ ⊆ M ′, for each i ∈ N \ N ′, D(Ri, p(t′′)) ∩ M̂ ′ = ∅. Thus, N̂ ′′ ∩ N̂ ′ = ∅. Then,

#N̂ ′′ + #N̂ ′ = #{i ∈ N : D(Ri, p(t′′)) ⊆ M̂}
> #M̂ (M̂ is an overdemanded set at p(t′′))

= #M̂ ′′ + #M̂ ′.
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Note that M̂ ′′ ( M̂ . Since M̂ is a minimal overdemanded set at p(t′′), M̂ ′′ is not overde-
manded at p(t′′), and so, #N̂ ′′ ≤ #M̂ ′′. This implies that #N̂ ′ > #M̂ ′.

We show (6-a). Since M̂ ′ 6= ∅, 1 ≤ #M̂ ′. By #N̂ ′ > #M̂ ′ and N̂ ′ ⊆ N ′, we have
1 ≤ #M̂ ′ < #N̂ ′ ≤ #N ′, and thus, #N ′ ≥ 2.

Next, we show (6-b). Let M ′′ ≡ M ′ \ M̂ ′. Since M̂ ′ ( M ′,30 M ′′ 6= ∅. By M̂ ′ 6= ∅,
M ′′ ( M ′. First, we show that N ′′ ⊆ N ′ \ N̂ ′, that is, for each i ∈ N ′′, i ∈ N ′ and
i /∈ N̂ ′. Let i ∈ N ′′. Then, D(Ri, p(t′′)) ∩ M ′′ 6= ∅. Since for each x ∈ M ′, qx < px(t′′)
and M ′′ ⊆ M ′, for each j ∈ N \ N ′, D(Rj, p(t′′)) ∩ M ′ = ∅. This implies i ∈ N ′. Since

M̂ ′ = M ′ ∩ M̂ implies M ′′ = M ′ \ M̂ , D(Ri, p(t′′)) ∩ M ′′ 6= ∅ implies D(Ri, p(t′′)) \ M̂ 6= ∅.
Since N̂ ′ ⊆ {j ∈ N : D(Rj, p(t′′)) ⊆ M̂}, this implies i /∈ N̂ ′. Thus, N ′′ ⊆ N ′ \ N̂ ′.

Since #N̂ ′ > #M̂ ′ ≥ 1, #N̂ ′ ≥ 2, and so, N ′′ ( N ′. Finally, it follows from the
inequalities below that M ′′ is underdemanded at p(t′′).

#N ′′ ≤ #N ′ − #N̂ ′ by N̂ ′ ⊆ N ′

< #N ′ − #M̂ ′ by #N̂ ′ > #M̂ ′

≤ #M ′ − #M̂ ′ by #N ′ ≤ #M ′

= #M ′′.

¤
Step 2. There is no weakly underdemanded set at p(T ).

Proof of Step 2. By contradiction, suppose that there is a set M1 of objects that is
weakly underdemanded at p(T ). Let N1 ≡ {i ∈ N : D(Ri, p(T )) ∩ M1 6= ∅}. Then,
by Step 1, #N1 ≥ 2, and there exist t1 < T and M2 ( M1 such that N2 ≡ {i ∈ N :
D(Ri, p(t1))∩M2 6= ∅} ( N1 and M2 is underdemanded at p(t1). Since M2 is underdemanded
at p(t1), Step 1 also implies that #N2 ≥ 2, and there exist t2 < t1 and M3 ( M2 such
that N3 ≡ {i ∈ N : D(Ri, p(t2)) ∩ M3 6= ∅} ( N2 and M3 is underdemanded at p(t2).
Repeating this argument inductively, there is a sequence {Nk} ( N1 such that for each
k ≥ 2, #Nk < #Nk−1 and #Nk ≥ 2. However, since N1 is finite and for each k ≥ 2,
Nk ( N1, this is a contradiction. ¤
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Figure A.1. Illustration of assignment sequence for the case of m′ = 4, x(1) = x2,
x(2) = x3, x(3) = x1, and x(4) = x4.
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Figure A.2. Illustration of proof of Lemma 5.7.
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Figure A.3. Illustration of (i-(k+1)) and (ii-(k+1)) in the proof of Proposition 5.1
for k = 1.
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Figure A.4. Illustration of (9-k-d) of Lemma 5.9 for the case of k = 3, m = 4,
n = 5, N ′′

1 ≡ {i1}, N ′′
2 ≡ {i2}, N ′′

3 ≡ {i3}, and N ′ ≡ N \ {i1, i2, i3}. In this case,
D1 = {1}, D2 = {2}, and {j ∈ N : D(R̄j, p) ∩ [M \ (D1 ∪D2)] 6= ∅} = N ′.
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Figure A.5. Illustration of z′ in (11-a) of Lemma 5.11 for K = 4.
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Figure A.6. Illustration of z′ in (11-b) of Lemma 5.11 for K = 4.
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Figure A.7. Illustration of proof of Step 1 of Proposition 6.1 for the case of m = 4,
M ′ ≡ {1, 2, 3}, N ′ ≡ {1, 2, 3}, x′ ≡ 2, and M̂ ′ ≡ {2, 4}. In this case, M̂ ′ = {2},
N̂ ′ = {2, 3}, M̂ ′′ = {4}, N̂ ′′ = {4}, M ′′ = {1, 3}, and N ′′ = {1}.
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