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Abstract

In this paper we analyze a cheap talk model with a partially informed receiver. In clear

contrast to the previous literature, we find that there is a case where the receiver’s prior

knowledge enhances the amount of information conveyed via cheap talk. The point of depar-

ture is our explicit focus on the “dual role” of the sender’s message in this context: when the

receiver has imperfect private information of her own, the sender’s message provides informa-

tion about the true state as well as about the reliability of the receiver’s private information.

This feature gives rise to the asymmetric response of the receiver’s action, where the receiver

reacts less to the truthful message and more to the misrepresented one, which is essential in

disciplining the sender to be more truthful.
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1 Introduction

This paper analyzes a cheap talk model with a partially informed receiver. More precisely,

we extend the canonical model of Crawford and Sobel [3] (hereafter, CS) to a setting where

the receiver is also endowed with some private information of her own, on top of the sender’s

message which can be observed subsequently. Within this framework, we ask how the receiver’s

prior knowledge affects the strategic nature of communication and, in particular, the amount of

information conveyed by the sender via cheap talk messages.

Recently, several papers have explored this problem, i.e., how the nature of communication

alters when the receiver becomes more informed in a broad sense (Chen [2], Lai [7], Moreno de

Barreda [4]).1 While they differ in their ways to add the receiver’s private information to the

model, all of these studies by and large show that the more informed the receiver is, the less

information she can extract from the sender. A similar conclusion is also obtained in models with

multiple senders (Austen-Smith [1], Morgan and Stocken [8], Galeotti et al. [5]).2 For instance,

Morgan and Stocken [8] examine information aggregation in polls and show that truth telling is

impossible when the size of a poll is sufficiently large.

The main logic behind this result is fairly simple, if we carefully dissect why any information

can be conveyed via cheap talk messages. To see this, consider the standard setup of CS where

the state of nature is denoted by t ∈ [0, 1]. The receiver’s bliss point is t whereas the sender’s

is t + b, b > 0, meaning that the sender always prefers a larger action than the receiver, and

hence has an incentive to exaggerate his message. The key insight of CS is that even in this

case, the receiver can still extract some information from the sender by dividing the state space

into intervals. These intervals endogenously create the cost of exaggeration because if the sender

exaggerates and sends a message in the next interval, the resultant action could move further

to the right (towards one) and away from his bliss point. In other words, what makes this

strategy work is the sensitivity of the receiver’s action to the sender’s (misrepresented) message.

Since the receiver naturally becomes less sensitive to the sender’s message when she has private

information of her own, the sender’s incentive to exaggerate his information is magnified and, as

a consequence, the quality of communication deteriorates.

1In a model with the discrete state space, Ishida and Shimizu [6] also show that the receiver’s prior information
becomes an impediment to efficient communication.

2Since the model with an informed receiver does not specify the source of her private information, it inherently
has a close connection with the model with multiple senders.
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So, does this mean that the impact of the receiver’s prior knowledge on the quality of com-

munication is invariably negative? While this conclusion, and the reasoning behind it, appear

fairly robust, it is still hard to believe that this single mechanism is all there is to this problem:

intuition certainly suggests that there are also situations where it is more difficult to lie to a bet-

ter informed receiver, so that the receiver’s prior knowledgable facilitates, rather than impedes,

communication. If this is the case, i.e., there is a route through which more information facili-

tates communication, it means that the existing literature overlooks some critical link between

the receiver’s information on one hand and the quality of communication on the other. The aim

of this paper is to find this “missing piece” in this class of problems, if any, which hopefully gives

us a clearer insight on the role of information in strategic communication.

The point of departure from the existing literature is our explicit focus on the “dual role” of

the sender’s message: when the receiver is partially informed, the sender’s message can provide

information not only about the true state but also about the reliability of the receiver’s private

information. The latter aspect, which has been largely neglected in the literature, is the driving

force of our model. To see how this works, note that the receiver knows that her private infor-

mation is less reliable than the sender’s.3 If the sender’s message is consonant with what she

privately knows, she thinks that her private information is more likely to be correct and, conse-

quently, places more weight on it. As the receiver relies more on her own information, her action

necessarily becomes less sensitive to the sender’s message. If the message is not consonant with

her private information, on the other hand, she loses her confidence in her private information

and her action becomes more sensitive to the message. Since the sender’s message is more likely

to be consonant with the receiver’s private information when the sender truthfully reveals his

information, the receiver reacts less to the truthful message and more to the misrepresented one.

As we will clarify in more detail later, this asymmetric response of the receiver is essential in

disciplining the sender to be more truthful and hence facilitating communication between them.

We think that adding private information to the receiver’s side is a natural extension of the

existing literature and poses an intriguing question in itself, as it is not a priori clear whether

the quality of communication improves or deteriorates when the receiver has more precise infor-

mation. The extension also yields more practical implications when how much information to

collect on her own is the receiver’s endogenous choice. If the quality of communication dimin-

ishes as the receiver becomes more informed, then information acquisition and communication

3As in CS and most cheap talk models, we assume that the sender knows the true state with precision.
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are substitutes, and the incentive to collect information certainly diminishes when the sender’s

information is expected to be reliable. In contrast, if the quality of communication enhances

as the receiver becomes more informed, information acquisition and communication are comple-

ments, and the incentive to collect information intensifies. Our analysis shows that information

acquisition and communication can be complements, rather than substitutes as the previous

literature indicates, depending on the information structure on the receiver’s side.

The paper is organized as follows. Section 2 outlines the model which is an extension of CS.

Section 3 characterizes equilibria of the model and discusses their implications. Finally, section

4 offers some concluding remarks. All the proofs are relegated to Appendix.

2 The Model

We consider an extended version of CS’s uniform-quadratic model. There are two players, the

sender (male) and the receiver (female), and the model goes as follows.

1. Nature randomly draws the state of nature t ∈ [0, 1] from the uniform distribution. The

state is the sender’s private information.

2. The sender sends a message m ∈ [0, 1] to the receiver.

3. The receiver observes a private signal r ∈ [0, 1] which is drawn according to the following

probability:

P (r ∈ A|t) = qI(t ∈ A) + (1− q)λ(A),

where I is the indicator function and λ is Lebesgue measure. In other words, the signal

reflects the true state, i.e., r = t, with probability q while it is randomly drawn from the

uniform distribution on [0, 1] with probability 1− q.

4. Upon observing m and r, the receiver chooses an action a ∈ [0, 1].

The payoff for the receiver is

UR(t, a) = −(t− a)2,

whereas that for the sender is

US(t, a) = −(t+ b− a)2.
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We call b the bias and assume b ∈ (0, 0.5).

The only difference from the original CS model is that we allow for the possibility that

the receiver observes a possibly informative signal of the state of nature. The signal is either

perfectly informative (with probability q) or noisy (with the remaining probability), but the

receiver cannot tell whether any given signal is informative or noisy. What is critical in this

specification is the way noise is introduced into the receiver’s signal: in the current setting,

there is a positive probability that the observed signal is a complete noise containing no useful

information.4 This feature is essential in giving rise to the dual role of the sender’s message as

we detail below. We interpret q as the accuracy of the signal where the model is equivalent to

the original CS model when q = 0.

3 Analysis

3.1 The equilibrium concept

Throughout the analysis, we focus on the class of monotone partition equilibria, which is a subset

of perfect Bayesian equilibria, defined as below.5

Definition 1 Let µt denote the type t sender’s strategy (i.e., a probability distribution over the

message space [0, 1]). A monotone partition strategy (MPS) is the sender’s strategy where there

exists a partition of [0, 1], {Ti}i∈I (I is some index set) such that

• Ti is a non-empty interval for any i ∈ I,

• µt = µt′ for any i ∈ I and any t, t′ ∈ Ti, and

• Supp µt ∩ Supp µt′ = ∅ for any distinctive i, i′ ∈ I and any t ∈ Ti, t
′ ∈ Ti′ .

A monotone partition equilibrium (MPE) is a perfect Bayesian equilibrium where the sender’s

strategy is an MPS.

4The assumption that the signal contains no information with some probability is made only for analytical
simplicity and not essential. Our results holds in a qualitative sense as long as there is some positive probability
that the signal is sufficiently weakly correlated with the true state.

5The need for this focus arises from a special feature of cheap talk models with an informed receiver. When
the receiver is endowed with some information of her own, the sender typically induces lotteries over actions, not
actions themselves. This feature produces some complicated equilibria that never exist in the original CS model:
for example, Chen [2] shows that there exist a non-monotone equilibrium in a version of cheap talk models with
an informed receiver. We rule out this possibility given the question we set out to solve, although it is certainly
intriguing as a theoretical possibility. Note that CS shows that in the case of q = 0, there exists only monotone
partition equilibria.
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We can show that any MPE consists of finite intervals.

Proposition 1 For any MPE, I is a finite set.

Based on this proposition, we denote any MPE partition by {Tn}n=1,...,N where N is some

natural number and supTn = inf Tn+1 for n = 1, . . . , N − 1. We call Tn the nth interval.

Furthermore, we identify an MPS with a partition {Tn}n=1,...,N as a vector t = (t0, . . . , tN )

defined as

tn
d
=

{

0 for n = 0,

supTn for n = 1, . . . , N.

We call such tn a threshold. Note that 0 = t0 < t1 < · · · < tN = 1. Let τn = tn− tn−1 denote the

length of the nth interval which, as usual, is taken as a measure of the quality of communication:

the shorter each interval is, the more information is conveyed via cheap talk in equilibrium.

3.2 The receiver’s problem

In any MPS, the receiver has two sources of information: her own signal r and the sender’s

message m which indicates in which interval the true state is lying. Given this, the receiver’s

equilibrium strategy is pure and we denote it by α(m, r). Furthermore, the actions induced on

any equilibrium path are determined as follows:

α(m, r) =

{

q
q+(1−q)τn

r + (1−q)τn
q+(1−q)τn

tn+tn−1

2 if ∃n ∀t ∈ Tn µt(m) > 0 and r ∈ Tn,
tn+tn−1

2 if ∃n ∀t ∈ Tn µt(m) > 0 and r /∈ Tn.

Note that the receiver uses her own information only when the sender’s message falls into the

same interval. On the other hand, the receiver sees her private information as a noise and

disregards it altogether if the message does not agree with her private signal, given that the

sender plays the equilibrium (truth-telling) strategy. This is the critical feature of the current

model: when the message is “close” to the receiver’s signal, she places more confidence in her

signal; when it is “further away”, she relies less on it and more on the sender’s message. As

we will see later, this asymmetric response is what disciplines the sender to be more truthful.

The current model provides a setup which captures this dual role of the sender’s message in a

relatively tractable manner.

Remark 1 This argument implies that a subtle difference in the information structure could

result in a large qualitative change in equilibrium outcomes. To elaborate more on the difference
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from the existing literature, consider an alternative information structure in which the receiver

can observe whether the state is low [0, 0.5] or high (0.5, 1], as assumed in Lai [7].6 Now suppose

that there exists an equilibrium with two intervals, {[0, t1], (t1, 1]}, and moreover that t ≤ t1 < 0.5

so that the receiver observes a “low” signal. In this environment, if the sender deviates and

claims that the state is in (t1, 1], the receiver thinks that the state must lie in (t1, 0.5] and

chooses a = 2t1+1
4 .7 Since the uninformed receiver would think that the state must lie in (t1, 1]

and choose a = t1+1
2 , the presence of the receiver’s prior information makes her less sensitive to

the misrepresented message, which magnifies the incentive to exaggerate.

3.3 The equilibrium conditions

Given the receiver’s strategy, we can now identify the conditions for an MPE with a partition t

(an MPE with t for short) by checking the sender’s incentives. In particular, what we need to

see is that given some partition t and the true state t, the sender has no incentive to deviate by

sending a “nearby” message. To this end, define ∆(t; tn−1, tn, tn+1) as follows:

∆(t; tn−1, tn, tn+1) = −

∫ 1

0
[t+ b− α(mn+1, r)]

2 P (dr | t) +

∫ 1

0
[t+ b− α(mn, r)]

2 P (dr | t),

where mn is any message sent (with positive probability) when the true state lies in the nth

interval. Then, a necessary condition for the equilibrium with N intervals is that

∆(t; tn−1, tn, tn+1)

{

≤ 0 for t ∈ (tn−1, tn)

≥ 0 for t ∈ (tn, tn+1)

holds for any n = 1, . . . , N − 1. Moreover, a sufficient condition is that

∆(t; tn−1, tn, tn+1)

{

≤ 0 for t < tn

≥ 0 for t > tn

holds for any n = 1, . . . , N − 1.

In the original CS model, the length of each partition must satisfy certain conditions in

equilibrium: in the linear-quadratic specification, each interval must be exactly 4b longer than

the last. The following result establishes the conditions along this line in our extended setup.

6Strictly speaking, in Lai [7], the threshold, which is exogenously set at 0.5 in this example, is also only private
known and drawn from the uniform distribution.

7In contrast, if the sender reveals truthfully, the receiver ignores her own signal and chooses a = t1

2
. We do

not focus much on this side because there is no qualitative difference in the way the receiver updates her belief.
Even though the receiver ignores her own signal, this is to some extent a figment of the simplified information
structure as assumed here. For instance, if the receiver’s signal space is partitioned into three intervals, very low
[0, ε), low [ε, 0.5) and high [0.5, 1], and the true state lies in [ε, 0.5), she uses both pieces of her information and
chooses a = ε+t1

2
on the equilibrium path.

7



Proposition 2 Define

G+(τn, τn+1; q)

d
= (τn+1 + τn)(τn+1 − τn − 4b)

+
q2(1− q)τ3n+1

3 (q + (1− q)τn+1)
2 +

2q2(1− q)τ3n
3 (q + (1− q)τn)

2 +
q2τn(τn + 4b)

q + (1− q)τn
,

G−(τn, τn+1; q)

d
= (τn+1 + τn)(τn+1 − τn − 4b)

−
2q2(1− q)τ3n+1

3 (q + (1− q)τn+1)
2 −

q2(1− q)τ3n

3 (q + (1− q)τn)
2 −

q2τn+1(τn+1 − 4b)

q + (1− q)τn+1
.

(i) A necessary and sufficient condition for an MPE with MPS {Tn}n=1,...,N isG+(τn, τn+1; q) ≥

0 and G−(τn, τn+1; q) ≤ 0 for n = 1, . . . , N − 1.

(ii) For any τn ∈ (0, 1) and q ∈ [0, 1), there exists τ(τn, q) and τ(τn, q) such thatG+(τn, τn+1; q) ≥

0 and G−(τn, τn+1; q) ≤ 0 if and only if τ(τn, q) ≤ τn+1 ≤ τ(τn, q).

(iii) For any τn ∈ (0, 1) and q ∈ [0, 1), G+(τn, τ(τn, q); q) = 0 and G−(τn, τ(τn, q); q) = 0.

(iv) For any τn ∈ (0, 1) and q ∈ [0, 1), 2b < τ(τn, q) ≤ τn + 4b ≤ τ(τn, q) and

q = 0 ⇔ τ(τn, q) = τn + 4b = τ(τn, q),

q > 0 ⇔ τ(τn, q) < τn + 4b < τ(τn, q).

The proposition shows that the equilibrium conditions are less stringent when q > 0 in that

the length of each partition only needs to be in some range. With more breathing room, we

can construct “more informative” equilibria. To see the intuition behind this result, consider an

equilibrium with two intervals, {[0, t1], (t1, 1]}. When q = 0, it is straightforward to compute

α(m0, r) = t1/2 and α(m1, r) = (t1 + 1)/2 regardless of r. At t = t1, the sender must be

indifferent between the two messages, i.e., his bliss point must be at the midpoint of α(m0, r)

and α(m1, r). Let b
′ denote the bias which satisfies

t1 + b′ =
1

2

(

t1
2
+

t1 + 1

2

)

⇔ b′ =
1− 2t1

4
.
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It is well known that the second interval must be exactly 4b longer than the first in this linear-

quadratic specification.

We now let q increase above zero and see how that changes the sender’s incentives. There

are two effects at work, which we call the information effect and the risk effect for expositional

clarity, depending on whether the receiver observes a correct signal or not. These effects are

absent when the receiver is uninformed (q = 0), and mark a key departure from the original CS

model.

First, suppose that the true state is t = t1, and also that the receiver happens to observe the

true state, i.e., r = t1 (though she does not know it for sure). If the sender reveals truthfully,

i.e., m = m0, the receiver’s private signal is consonant with the sender’s message, and the

receiver combines the two pieces of evidence to determine her action: the resultant action is

hence necessarily gravitated towards the true state t1 away from what the message indicates,

i.e., t1/2. If the sender chose to deviate and send m = m1, on the other hand, the receiver’s

reaction would totally be different, now that the sender’s message is dissonant with the receiver’s

signal. Under the presumption that the sender plays the equilibrium strategy, the receiver must

think that her signal is a noise and places zero weight in Bayesian updating: the resultant action

hence stays at (t1+1)/2 regardless of q. We refer to this as the information effect of the receiver’s

prior knowledge, which works to discipline the sender to be more truthful.

Second, suppose that the receiver observes r 6= t, in which case she (mistakenly) uses her

private signal with some positive probability. Given that τ1 > τ0, r ∈ τ1 is the more dominant

case. In this case, if the sender follows the equilibrium strategy, the receiver now ignores her signal

and deterministically chooses an action regardless of r; if he deviates, the receiver combines the

wrong signal with the message and hence produces a stochastic action. The stochastic nature

of the latter case introduces irrelevant noise into the receiver’s action, thereby reducing the

expected payoff. We refer to this as the risk effect which also works to discipline the sender to

be more truthful.8

With these two effects and the consequent asymmetric response, t = t1 is no longer on the

border. It is now strictly better for the sender with t = t1 to send m = m0, meaning that the

threshold can be “pushed further to the right.” Even with the same number of intervals, we

can construct a more informative equilibrium by having more equally divided intervals. We will

8Obviously, applying the same logic, the risk effect works in a way to make the deviation more attractive when
the receiver observes a wrong signal but that happens to fall into the right interval. In a typical MPE, however,
this is less likely to occur and its effect is usually dominated.
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formalize the above discussion in the next subsection.

3.4 Can more information facilitate communication?

We are now ready to address our main question of how a change in q affects the nature of

communication. We first establish that an increase in q per se enhances the payoffs of both

players. To this end, define V i(t; q), i = S,R, as player i’s ex ante expected payoff. Then, we

can obtain the following result.

Proposition 3
∂V i

∂q
> 0 for i = S,R.

This result is somewhat straightforward as it simply states that the players benefit from

having access to more information. What is more interesting is whether an increase in q can

afford a more efficient way of communication, or a more efficient configuration of the equilibrium

partition. To this end, it is convenient to associate each MPE explicitly with the information

accuracy q and denote it by an MPE-q. Given this, we define the following notions.

Definition 2 We say that:

(i) A partition t is more efficient than t′ at q if V i(t, q) > V i(t′, q) for i = S,R.

(ii) More information facilitates communication at (q, q′), q > q′, if for any MPE-q′ with t′,

there exists an MPE-q with a partition t which is more efficient than t′ at q′.

Given this, we can obtain the following result which is derived directly from Proposition 2.

Proposition 4 For any MPE-0 with t and any q > 0, t also constitutes an MPE-q. Furthermore,

more information facilitates communication at (q, 0) for any q > 0.

Remark 2 While we show the above result by comparing among the MPEs with the same

number of intervals, we can also easily construct an example where an increase in q results in

an increase in the maximum number of intervals. For instance, suppose that b = 0.25, in which

case the unique equilibrium is babbling when q = 0. This conclusion does not hold, however,

when q > 0. Since G+(0, 1) > 0 and G−(0, 1) < 0, for a sufficiently small t1 > 0, (0, t1, 1) also

satisfies G+(τn, τn+1) > 0 and G−(τn, τn+1) < 0 due to the continuity of G+ and G−. In other

words, there always exists an MPE-q, q > 0, with two intervals when b = 0.25.
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Proposition 4 establishes that more information facilitates communication at (q, 0) for any

q > 0, but does not show that more information monotonically facilitates communication. The

next question is thus whether this condition holds for any arbitrary pair (q, q′) for q > q′ > 0. To

do so, we need to identify the most efficient MPE-q (an MPE with the most efficient partition).

If τn < τn+1 holds for n = 1, . . . N − 1, the most efficient equilibrium requires τn = τ(τn, q)

for n = 1, . . . , N − 1 (Lemma 6 in the Appendix). Unfortunately, in our setting, τn < τn+1 is

violated in some MSE. See the following example:

Example 1 When b < 1
8 and q is sufficiently large, there exists an MPE with two intervals

where τ1 ≥ τ2. This is verified from the fact that G+(0.5, 0.5; q) > 0 holds for a sufficiently large

q.

However, it is verified that a partition of this kind never constitutes an MPE whenever q

is sufficiently small (Lemma 7 in the Appendix). Moreover, it is also verified that τ is strictly

decreasing in q whenever q is sufficiently small (Lemma 8 in the Appendix). From these facts, we

conclude that more information facilitates communication whenever we focus on the situation

where the accuracy is sufficiently low.

Proposition 5 There exists a q > 0 such that for any q ∈ (0, q] and q′ < q, more information

facilitates communication at (q, q′).

As a final note, we would like to present some counterexamples to show that the effect of the

receiver’s prior knowledge does not monotonically improve the quality of communication. Figure

1 focuses on MPEs which admit two intervals, and depicts the length of the first interval of the

most efficient MPE for different values of b. Since these lengths are below 0.5, they also directly

represent the efficiency level. The figure clearly shows that for b = 0.225 and b = 0.25, more

information results in a less efficient partition when q is sufficiently close to one. The reason for

this is that as q increases, the receiver’s signal becomes more accurate and more likely to fall

into the right interval. An increase in q thus makes the risk effect less relevant, which works as

the first-order effect. Since the risk effect is more salient when the bias is large, this first-order

effect eventually dominates and lowers the quality of communication as q approaches one.

It is important to note, however, that our focus is generally on the case where q is relatively

small because there is little point in communicating when the receiver already knows the true

state with sufficient precision. We can thus argue that in a class of situations where commu-

nication is relevant and beneficial, the effect of the receiver’s prior knowledge on the quality

11



of communication is largely positive, if the underlying information structure has a feature that

gives rise to the dual role of the sender’s message.

4 Conclusion

In this paper we analyze a cheap talk model with a partially informed receiver. In clear contrast

to the previous literature, we find that there is a case where the receiver’s prior knowledge

enhances the amount of information conveyed via cheap talk messages. This contrasting result

is mainly due to the structure of the receiver’s private information we assume. While we do not

intend to insist that the information structure of the current form is a necessary feature in this

class of problems, it provides an insight that the information structure matters for the impact

of the receiver’s information on the quality of communication. In future, it seems worthwhile

to explore more on this point, as to when and under what conditions the receiver’s information

facilitates communication.

Appendix

Proof of Proposition 1:

The proof closely follows that of Proposition 1 of Moreno de Barreda [4] and directly stems

from the following lemma.

Lemma 1 The width of an interval Ti in Difinition 1 is longer than or equal to 2b unless

inf Ti = 0.

Proof:

Suppose to the contrary that there exists an interval Ti such that

0 < inf Ti ≤ supTi < inf Ti + 2b.

We divide the situation into the following two cases: {inf Ti} /∈ Ti or {inf Ti} ∈ Ti.

We first consider the case of {inf Ti} /∈ Ti. In this case the point inf Ti belongs to another

interval, say Tj , and

inf Tj ≤ supTj = inf Ti < supTi

12



holds. Pick any two distinctive messages mi and mj such that

µt(mi) > 0 iff t ∈ Ti,

µt(mj) > 0 iff t ∈ Tj .

Then,

supTi > α(mi, r) > inf Ti ≥ α(mj , r)

holds for any r ∈ [0, 1]. This implies that

|inf Ti + b− α(mi, r)| < b ≤ |inf Ti + b− α(mj , r)|

holds for any r ∈ [0, 1]. However, this eliminates the sender’s incentive to send a message mj at

t = inf Ti. This is a contradiction.

Next, we consider the case of {inf Ti} ∈ Ti. In this case there exists an interval Tj such that

inf Tj < supTj = inf Ti ≤ supTj .

Pick any two distinctive messages mi and mj such that

µt(mi) > 0 iff t ∈ Ti,

µt(mj) > 0 iff t ∈ Tj .

Then,

supTi ≥ α(mi, r) ≥ inf Ti > α(mj , r)

holds for any r ∈ [0, 1]. This implies that

|inf Ti + b− α(mi, r)| < b < |inf Ti + b− α(mj , r)|

holds for any r ∈ [0, 1]. Then, there exists a sufficiently small ε > 0 such that {inf Ti − ε} ∈ Tj

and

|inf Ti − ε+ b− α(mi, r)| < |inf Ti − ε+ b− α(mj , r)|

holds. However, this eliminates the sender’s incentive to send a message mj at t = inf Ti − ε.

This is a contradiction.
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Proof of Proposition 2:

For t ∈ Tn,

∆(t; tn−1, tn, tn+1) =

−

(

t+ b−
tn+1 + tn

2

)2

−
q(1− q)

q + (1− q)τn+1

∫

r∈Tn+1

(

r −
tn+1 + tn

2

)

×

{

q

q + (1− q)τn+1
r − 2t− 2b+

[

2−
q

q + (1− q)τn+1

]

tn+1 + tn
2

}

dr

+

(

t+ b−
tn + tn−1

2

)2

+
q2

q + (1− q)τn

(

t−
tn + tn−1

2

){

−

[

2−
q

q + (1− q)τn

](

t−
tn + tn−1

2

)

− 2b

}

+
q(1− q)

q + (1− q)τn

∫

r∈Tn

(

r −
tn + tn−1

2

)

×

{

q

q + (1− q)τn
r − 2t− 2b+

[

2−
q

q + (1− q)τn

]

tn + tn−1

2

}

dr.

∂∆

∂t
= τn+1 + τn −

2q2

q + (1− q)τn

[(

2−
q

q + (1− q)τn

)(

t−
tn + tn−1

2

)

+ b

]

.

Then, if limt↑tn
∂∆
∂t

≥ 0, or equivalently

2q2b

q + (1− q)τn
≤ τn+1 + τn

{

1−
q2

q + (1− q)τn

[

2−
q

q + (1− q)τn

]}

(1)

holds, then ∂∆
∂t

≥ 0 for t ∈ Tn. Therefore, ∆(t; tn−1, tn, tn+1) ≤ 0 for t ∈ Tn if and only if

limt↑tn ∆(t; tn−1, tn, tn+1) ≤ 0. This is written as

G+(τn, τn+1) ≥ 0. (2)

Clearly, (2) is also a necessary condition. Here, we obtain the following results by direct calcu-

lation:
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Lemma 2 For any τn ∈ [0, 1] and τn+1,

∂2G+(τn, τn+1)

∂τ2n+1

> 0,

∂G+(τn, 0)

∂τn+1
< 0,

∂G+(τn, 2b)

∂τn+1
≥ 0,

G+(τn, 0) < 0,

G+(τn, 2b) < 0,

G+(τn, τn + 4b) ≥ 0, ”=” holds iff q = 0.

This lemma implies that for any τn ∈ [0, 1] and τn+1 ≥ 0, (2) holds if and only if τn+1 ≥ τ(τn, q)

where τ(τn, q) is defined as the unique solution τ̃ ∈ [0,∞) of G+(τn, τ̃ ) = 0. Moreover, τ(τn, q) ∈

(2b, τn + 4b] and τ(τn, q) = τn + 4b if and only if q = 0.

Since τn+1 ≥ 2b implies that (1) holds for any τn ≥ 0, (1) is redundant for any τn ∈ [0, 1] and

τn+1 ≥ τ(τn, q).

For t ∈ Tn+1,

∆(t; tn−1, tn, tn+1) =

−

(

t+ b−
tn+1 + tn

2

)2

−
q2

q + (1− q)τn+1

(

t−
tn+1 + tn

2

){

−

[

2−
q

q + (1− q)τn+1

](

t−
tn+1 + tn

2

)

− 2b

}

−
q(1− q)

q + (1− q)τn+1

∫

r∈Tn+1

(

r −
tn+1 + tn

2

)

×

{

q

q + (1− q)τn+1
r − 2t− 2b+

[

2−
q

q + (1− q)τn+1

]

tn+1 + tn
2

}

dr

+

(

t+ b−
tn + tn−1

2

)2

+
q(1− q)

q + (1− q)τn

∫

r∈Tn

(

r −
tn + tn−1

2

)

×

{

q

q + (1− q)τn
r − 2t− 2b+

[

2−
q

q + (1− q)τn

]

tn + tn−1

2

}

dr.

∂∆

∂t
= τn+1 + τn +

2q2

q + (1− q)τn+1

[(

2−
q

q + (1− q)τn+1

)(

t−
tn+1 + τn

2

)

+ b

]

> 0.
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Then, ∆(t; tn−1, tn, tn+1) ≥ 0 for t ∈ Tn+1 if and only if limt↓tn ∆(t; tn−1, tn, tn+1) ≥ 0. This is

written as

G−(τn, τn+1) ≤ 0. (3)

Clearly, (3) is also a necessary condition. Here, we obtain the following results by direct calcu-

lations:

Lemma 3 For any τn ∈ [0, 1] and τn+1 ≥ 0,9

∂3G−(τn, τn+1)

∂τ3n+1

≥ 0,

∂2G−(τn, 2b)

∂τ2n+1

> 0,

∂G−(τn, 2b)

∂τn+1
≤ 0,

lim
τn+1→∞

∂G−(τn, τn+1)

∂τn+1
> 0,

G−(τn, 2b) < 0,

G−(τn, τn + 4b) ≤ 0, ”=” holds iff q = 0.

This lemma implies that for any τn ∈ [0, 1] and τn+1 ≥ 2b, (3) holds if and only if τn+1 ≤

τ(τn, q) where τ(τn, q) is defined as the unique solution τ̃ ∈ [2b,∞) of G−(τn, τ̃ ) = 0. Moreover,

τ(τn, q) ≥ τn + 4b and the equality holds if and only if q = 0.

9The second inequality holds under the assumption that b < 0.5.

16



For t ∈ T/(Tn ∪ Tn+1),

∆(t; tn−1, tn, tn+1) =

−

(

t+ b−
tn+1 + tn

2

)2

−
q(1− q)

q + (1− q)τn+1

∫

r∈Tn+1

(

r −
tn+1 + tn

2

)

×

{

q

q + (1− q)τn+1
r − 2t− 2b+

[

2−
q

q + (1− q)τn+1

]

tn+1 + tn
2

}

dr

+

(

t+ b−
tn + tn−1

2

)2

+
q(1− q)

q + (1− q)τn

∫

r∈Tn

(

r −
tn + tn−1

2

)

×

{

q

q + (1− q)τn
r − 2t− 2b+

[

2−
q

q + (1− q)τn

]

tn + tn−1

2

}

dr.

Note that

∂∆

∂t
= τn+1 + τn > 0.

Then, ∆(t; tn−1, tn, tn+1) ≤ 0 for t ∈ Tn′ and n′ < n if and only if limt↑t
n′ ∆(t; tn−1, tn, tn+1) ≤ 0.

The latter holds if and only if limt↑tn−1
∆(t; tn−1, tn, tn+1) ≤ 0 since limt↑t

n′ ∆(t; tn−1, tn, tn+1) =

limt↓t
n′ ∆(t; tn−1, tn, tn+1) for n

′ < n− 1. It is verified that (3) assures this.

Similarly, ∆(t; tn−1, tn, tn+1) ≥ 0 for t ∈ Tn′ and n′ > n+1 if and only if limt↓t
n′ ∆(t; tn−1, tn, tn+1) ≥

0. The latter holds if and only if limt↓tn+1
∆(t; tn−1, tn, tn+1) ≥ 0 since limt↓t

n′ ∆(t; tn−1, tn, tn+1) =

limt↑t
n′ ∆(t; tn−1, tn, tn+1) for n

′ > n+ 1. It is verified that (2) assures this.

Proof of Proposition 3:

This proposition is obtained from the following lemma:

Lemma 4 V S(t; q) = −
N
∑

n=1

(1− q)(q + τn)τ
3
n

12 (q + (1− q)τn)
− b2 and V R(t; q) = −

N
∑

n=1

(1− q)(q + τn)τ
3
n

12 (q + (1− q)τn)

This lemma is in turn obtained by direct calculation.

Proof of Proposition 4:

This proposition is obtained from Proposition 2 and the following lemma:
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Lemma 5 Given t = (t0, . . . tN ), t′ = (t′0, . . . t
′
N ), and n̂ such that

• tn̂ > t′n̂,

• tn = t′n for n 6= n̂, and

• τn̂ < τn̂+1.

Then, t is more efficient than t′ under any q.

Proof:

We denote

M(τ, q)
d
= −

(q + τ)τ3

q + (1− q)τ
.

Then, it suffices to show that

M(τn, q) +M(τn+1, q)−M(τ ′n, q)−M(τ ′n+1, q) > 0.

It is verified that

∂

∂τ

(

∂M

∂q

)

< 0,

∂2

∂τ2

(

∂M

∂q

)

< 0.

These imply that

∂

∂q

[

M(τn, q) +M(τn+1, q)−M(τ ′n, q)−M(τ ′n+1, q)
]

> 0.

Combining this with the fact that

M(τn, 0) +M(τn+1, 0)−M(τ ′n, 0) −M(τ ′n+1, 0) > 0,

we obtain the lemma.

Proof of Proposition 5:

The proof is based on the following series of lemmas.

Lemma 6 Given b and q > 0. If t is the most efficient MPE and τn < τn+1 for n = 1, . . . , N−1,

then τn+1 = τ(τn, q) for n = 1, . . . , N − 1.
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Proof:

Suppose the contrary. Define n̂ such that

n̂
d
= min {n|τn+1 > τ(τn, q)} .

Then, n̂ = 1 or

τn̂ = τ(τn̂−1, q) < τ(τn̂−1, q).

Thus, we can find another MPE t′ where t′n̂ is slightly higher than tn̂, t
′
n = tn for n 6= n̂, and

the presupposition of Lemma 5 holds at n = n̂. Then the lemma is obtained from Lemma 5.

Lemma 7 There exists q̂ > 0 such that τ(τ, q) > τ for any τ ∈ (0, 1) and q ∈ [0, q̂].

Proof:

By Proposition 2, τ(τ, 0) = τ +4b > τ for any τ ∈ (0, 1). Then, there must exist q̂ > 0 such that

τ̂(τ, q) > τ for any τ ∈ (0, 1) and q ∈ [0, q̂].

Lemma 8 There exists q̌ > 0 such that
∂τ

∂q
< 0 for any τ ∈ (0, 1) and q ∈ (0, q̌].

Proof:

Since ∂G+

∂τn+1
> 0 for τn+1 > 2b, ∂G+

∂τn+1
|τn+1=τ(τn) > 0 by Lemma 2.

On the other hand,

1

q

∂G+

∂q
=

(

−q2 + (1− q)(2 − q)τn+1

)

τ3n+1

3 (q + (1− q)τn+1)
3 +

2
(

−q2 + (1− q)(2− q)τn
)

τ3n

3 (q + (1− q)τn)
3 +

(q + (2− q)τn) τn(τn + 4b)

(q + (1− q)τn)
2 .

Then, Lemma 2 implies

1

q

∂G+

∂q
|q=0,τn+1=τ(τn) =

2

3
τ(τn) +

4

3
τn + 2(τn + 4b)

>
2

3
2b+ 8b

=
28

3
b.

Therefore, there exists q̌ such that ∂G+

∂q
|τn+1=τ(τn) > 0 for any q ∈ (0, q̌].

We now return to the proof of Proposition 5. Letting q
d
= min{q̂, q̌}, the proposition then

follows from Lemmas 5, 6, 7, and 8.
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