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Abstract

This paper studies secure implementability (Saijo, T., T. Sjöstr̈om, and T.Yamato (2007) “Se-

cure Implementation,” Theoretical Economics 2, pp.203-229) in queueing problems. Our main result

shows that the social choice function satisfies strategy-proofness and strong non-bossiness (Saijo,

Sjöstr̈om, and Yamato, 2007), both of which are necessary for secure implementation, if and only

if it satisfies constancy on the domains that satisfy weak indifference introduced in this paper. This

result implies that only constant social choice functions are securely implementable on weakly indif-

ferent domains in queueing problems. Weak indifference is weaker than minimal richness (Fujinaka,

Y. and T. Wakayama (2008) “Secure Implementation in Economies with Indivisible Objects and

Money,” Economics Letters 100, pp.91-95). Our main result illustrates that secure implementation

is too difficult in queueing problems since many reasonable domains satisfy weak indifference, for

example, convex domains.
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1 Introduction

1.1 Background

In this paper, we consider the following situations: agents have to queue up to enjoy a service which can-

not be consumed by more than one agent simultaneously.1 Examples of such situations are the use of

large-scaled experimental installations, event sites, and so forth. Organ transplantation is another exam-

ple. In a queue, each agent has to wait her turn; waiting is a cost for her and such a cost can be described

as a unit waiting cost, that is, the cost of waiting for one agent to finish enjoying a service.2 Therefore,

the total waiting cost for each agent is calculated as follows: the number of agents preceding her times

her unit waiting cost. In this paper, we assume that monetary transfers among agents are allowed.3 In

fact, each agent has a linear utility function: her utility level is equal to her monetary transfers minus

her total waiting cost. In such environments, we study the problems of allocating positions in a queue to

agents with monetary transfers. These problems are calledqueueing problems.

In allocating positions in a queue to agents with monetary transfers, we adhere to several criteria.

For example, cost minimization is widely accepted. To achieve cost minimization, we need to know

each agent’s unit waiting cost which is private information to her. To make each agent reveal this private

information, we construct certain mechanisms. Mechanism design theory, especially implementation

theory, has studied which mechanisms are suitable for resolving such allocation problems.4

When we consider the structure of mechanisms, manipulability of agents is an important problem:

certain agents might manipulate the outcome of the mechanism in their favor. Such a manipulation might

induce a non-optimal outcome.Strategy-proofnessis a standard property for non-manipulability.5 This

property requires that the truthful revelation is a weakly dominant strategy for each agent in the direct

revelation mechanism associated with the social choice function. A social choice function is one that

associates an allocation with agents’ private information. This function characterizes certain optimal

outcome according to the information. A direct revelation mechanism associated with a social choice

function is a mechanism in which (i) the set of strategy profiles is equivalent to the domain of the function

and (ii) the game form is equivalent to the function.

Strategy-proofness is a desirable property but has a shortcoming: the strategy-proof mechanism

might have a Nash equilibrium which induces a non-optimal outcome. This problem is solved byse-

cure implementation (Saijo, Sj̈ostr̈om, and Yamato, 2007) which requires that there exists a mechanism

in which (i) each dominant strategy equilibrium induces an optimal allocation and (ii) each Nash equilib-

rium also induces an optimal allocation, that is, double implementation in dominant strategy equilibria

and Nash equilibria.6 This concept is considered to be a benchmark for constructing mechanisms which

1Mitra (2005) and Chun and Heo (2008) consider the situations in which there exist several services.
2Note that it is implicitly assumed that each agent has a constant unit waiting cost. Moreover, we assume that each agent’s

unit waiting cost might be different from other agents.
3Note that monetary transfers include not only financial transactions between any two agents but also discriminations of the

usage fee.
4Mechanism design theory consists of implementation theory and realization theory. See Jackson (2001, 2003) and Maskin

and Sj̈ostr̈om (2002) for implementation theory and Hurwicz and Reiter (2006) for realization theory.
5See Barber̀a (2010) for the relationship between strategy-proofness and implementation theory.
6See Mizukami and Wakayama (2007) and Saijo, Sjöstr̈om, and Yamato (2007) for dominant strategy implementation and

Maskin (1977), Repullo (1987), and Saijo (1988) for Nash implementation.
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work well in laboratory experiments.7 In certain environments, the possibility of secure implementation

is studied: voting environments (Saijo, Sjöstr̈om, and Yamato, 2007; Berga and Moreno, 2009), public

good economies (Saijo, Sjöstr̈om, and Yamato, 2007; Nishizaki, 2011), the problems of providing a di-

visible and private good with monetary transfers (Saijo, Sjöstr̈om, and Yamato, 2007; Kumar, 2009), the

problems of allocating indivisible and private goods with monetary transfers (Fujinaka and Wakayama,

2008), Shapley-Scarf housing markets (Fujinaka and Wakayama, 2011), and allotment economies with

single-peaked preferences (Bochet and Sakai, 2010).8 These studies illustrate how difficult it is to find

securely implementable social choice functions with desirable properties.

Queueing problems are special cases of sequencing problems in which certain agents might enjoy

a servicing time which is different from those of other agents.9 Moreover, sequencing problems are

special cases of quasi-linear environments. In the environments, Groves mechanisms (Groves, 1973) are

well-known for a class of direct revelation mechanisms which satisfy strategy-proofness and decision-

efficiency. 10 Decision-efficiency requires that the allocation assigned by the social choice function

maximizes total welfare of the group. It is also well-known that Groves mechanisms are the only direct

revelation mechanisms that satisfy strategy-proofness and decision-efficiency on the domains that satisfy

smooth connectedness (Holmström, 1979).11 Unfortunately, Green and Laffont (1979) show that Groves

mechanisms rarely satisfy budget-balance.12 Budget-balance requires that the social choice function

assigns an allocation in which there exists no monetary transfer from outside the group or wasted within

the group.13 Since the combination of decision-efficiency with budget-balance is equivalent to Pareto-

efficiency in quasi-linear environments, the above results show how difficult it is to construct strategy-

proof and Pareto-efficient direct revelation mechanisms.

Since queueing problems are special cases of quasi-linear environments, the same results as Holm-

ström (1979) hold in queueing problems.14 However, there exist strategy-proof and decision-efficient

mechanisms which satisfy more desirable properties including budget-balance in queueing problems

than in broader environments. In queueing problems, equally distributed pairwise pivotal rules (Suijs,

7See Cason, Saijo, Sjöstr̈om, and Yamato (2006) for experimental results on secure implementation.
8See also Saijo, Sjöstr̈om, and Yamato (2003) for theoretical results on secure implementation.
9The constancy of unit waiting costs assumed in queueing problems implies that all agents enjoy the same servicing time.

Scheduling problems are also special cases of sequencing problems. See Mendelson and Whang (1990), Suijs (1996), Mitra

(2002), Hain and Mitra (2004), Mishra and Rangarajan (2007), and Chun (2011) for sequencing problems and Moulin (2007,

2008) for scheduling problems.
10The pivotal mechanism (Clarke, 1971) and the second-price auction (Vickrey, 1961) are included in the class. See also

Groves and Loeb (1975) for Groves mechanisms and Tideman and Tullock (1976) and Moulin (1986) for the pivotal mechanism.
11See also Green and Laffont (1977), Walker (1978), and Suijs (1996) for the uniqueness of Groves mechanisms in term of

domain-richness condition. Moreover, see Hashimoto and Saitoh (2010) for a domain expansion of the pivotal mechanism and

Saitoh and Serizawa (2008) and Sakai (2008) for domain expansions of the second-price auction.
12Similar results are obtained by Groves and Ledyard (1977), Walker (1980), and Hurwicz and Walker (1990) in non-

excludable public good economies, Ohseto (2000) in the problems of allocating an indivisible good, and Schummer (2000)

in the problems of allocating heterogeneous indivisible goods. For domain-richness conditions for the existence of budget-

balanced Groves mechanisms, see Groves and Loeb (1975), Green and Laffont (1979), Laffont and Maskin (1980), Tian

(1996), and Liu and Tian (1999) in non-excludable public good economies and Mitra and Sen (2010) in the problems of

allocating heterogeneous indivisible goods.
13See Rob (1982) and Mitsui (1983) for the relationship between budget-balance and the number of agents.
14See also Dolan (1978) for a class of direct revelation mechanisms which satisfy strategy-proofness and decision-efficiency

in queueing problems.
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1996), which is a subclass of Groves mechanisms, satisfy budget-balance.15 Kayı and Ramaekers

(2010) show that equally distributed pairwise pivotal rules are the only direct revelation mechanisms that

satisfy strategy-proofness, decision-efficiency, budget-balance, and equal treatment of equals in queue-

ing problems.16 Equal treatment of equals requires that any two agents’ utility levels assigned by the

social choice function should be equal when they have an equal unit waiting cost. Moreover, Hashimoto

and Saitoh (2011) show the relationship between decision-efficiency and anonymity which is stronger

than equal treatment of equals in queueing problems.17 Anonymity requires that any two agents’

utility levels assigned by the social choice function should be exchanged when their unit waiting costs

are exchanged. On the other hand, Mitra and Mutuswami (2011) show that thek-pivotal mechanisms

(Mitra and Mutuswami, 2011) are the only direct revelation mechanisms that satisfy pairwise strategy-

proofness, decision-efficiency, equal treatment of equals, and weak linearity in queueing problems.18

Pairwise strategy-proofness is stronger than strategy-proofness but weaker than weak group strategy-

proofness.19 Weak linearity is a linearity property for monetary transfers.

1.2 Motivation

Unfortunately, almost all previous studies show negative results on secure implementation: there rarely

exists a non-trivial securely implementable social choice function. On the basis of these results, in-

vestigating which environment has a non-trivial securely implementable social choice function is an

interesting topic. In this paper, we conduct such an investigation into queueing problems.

It is well-known that there rarely exists a social choice function which satisfies strategy-proofness,

decision-efficiency, and budget-balance in quasi-linear environments. However, in queueing problems

which are special cases of quasi-linear environments, there exist social choice functions which satisfy the

above properties.20 This means that strategy-proofness in queueing problems is much weaker than in

broader environments. On the basis of this relationship, we study the possibility of secure implementation

in queueing problems since strategy-proofness is necessary for secure implementation.

15This name is given by Kayı and Ramaekers (2010). See Mitra (2001) for a characterization of a domain-richness condition

for the existence of direct revelation mechanisms that satisfy strategy-proofness, decision-efficiency, and budget-balance in

queueing problems.
16Kayı and Ramaekers (2010) also study certain properties of social choice correspondences which assign a non-empty set

of allocations. See also Maniquet (2003) and Chun (2006a) for studies of social choice correspondences and the Shapley value

in queueing problems. Note that equal treatment of equals can be replaced by symmetry in the result of Kayı and Ramaekers

(2010). Symmetry requires that the allocation that is constructed by exchanging the only two consumption bundles for agents

with an identical unit waiting cost in the allocation assigned by the social choice correspondence should be also assigned. By

definition, we know that there exists no social choice function that satisfies symmetry.
17By the results of Kayı and Ramaekers (2010) and Hashimoto and Saitoh (2011), we have an alternative characterization of

equally distributed pairwise pivotal rules. See Chun (2006b) for the relationship between decision-efficiency and envy-freeness

(Foley ,1967) which is stronger than anonymity in queueing problems.
18Thek-pivotal mechanism is equivalent to the pivotal mechanism whenk = n, wheren is the number of agents.
19Note that pairwise strategy-proofness is stronger than effective pairwise strategy-proofness (Serizawa, 2006).
20This fact is due to the linearity of utility functions.
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1.3 Related Literature

This paper is most closely related to the one written by Fujinaka and Wakayama (2008), that studies

the problems of allocating indivisible and private goods with monetary transfers.21 They show that

only constant social choice functions are securely implementable when the domain satisfies minimal

richness (Fujinaka and Wakayama, 2008). Since queueing problems are special cases of their ones, we

have the same constancy result in queueing problems if the domain satisfies minimal richness by their

result. However, there exist many reasonable domains that do not satisfy minimal richness in queueing

problems. This implies the possibility of the existence of non-constant securely implementable social

choice functions in queueing problems.

1.4 Our Result

Our main result shows that on many reasonable domains, only constant social choice functions satisfy

strategy-proofness and strong non-bossiness (Saijo, Sjöstr̈om, and Yamato, 2007), both of which are

necessary for secure implementation, in queueing problems. In fact, we show a constancy result on

the domains that satisfyweak indifference, a new domain-richness condition introduced in this paper.

Note that weak indifference is weaker than minimal richness which implies a constancy result on secure

implementation in broader environments.

This paper is organized according to the following sections. In Section 2, our model is introduced.

We define properties of social choice functions related to secure implementability in Section 3 and

domain-richness conditions in Section 4. Certain preliminary results on properties of social choice func-

tions are shown in Section 5. In Section 6, we show our main result. Section 7 concludes this paper.

Appendix shows the relationship between weak indifference and certain domain-richness conditions.

2 Model

We study the problems of allocating positions in a queue to agents with monetary transfers. LetI ≡
{1,. . . ,n} (n≥ 2) be a set ofagents. Let σ ≡ (σi)i∈I ∈ In be aqueue, where, for eachi ∈ I , σi is the

position for agent i in the queueσ and for eachi, j ∈ I with i 6= j, σi 6= σ j . Note that each position is

an indivisible and private good.

Each agent can consume the only one position with a positive or negative amount of money. For each

i ∈ I , let (σi ,ti) ∈ I×R be aconsumption bundle for agenti, whereti is amonetary transfer for agent

i. Let t ≡ (ti)i∈I ∈Rn be a profile of monetary transfers and(σ ,t) ∈ In×Rn be a profile of consumption

bundles, called anallocation. Let

Z≡
{

(σ ,t) ∈ In×Rn

∣∣∣∣∣ σ is a queue and∑
k∈I

tk ≤ 0

}

be the set offeasible allocations. 22

21See Svensson (1983) and Alkan, Demange, and Gale (1991) for the problems of allocating indivisible and private goods

with monetary transfers.
22In a feasible allocation, the sum of monetary transfers should be non-positive. Our results do not depend on this non-

positivity. This requirement is generically assumed in queueing problems.

4



Each agent has a linear utility function. For eachi ∈ I , let ci ∈ R++ ≡ {x ∈ R | x> 0} be aunit

waiting cost for agent i andCi ⊆ R++ be a set of unit waiting costs for agenti. For eachi ∈ I , let

u: I ×R×Ci →R be theutility function for agent i such that for each(σi ,ti) ∈ I ×R and eachci ∈Ci ,

u(σi ,ti ;ci)≡−(σi−1)ci + ti .

Let C≡∏i∈I Ci be thedomain andc≡ (ci)i∈I ∈C be a profile of unit waiting costs. For eachi ∈ I , let

c−i ≡ (c j) j 6=i ∈C−i ≡∏ j 6=i Cj be a profile of unit waiting costs for agents other than agenti.

An allocation is assigned by a social choice function for each profile of unit waiting costs. Let

f : C→ Z be asocial choice function. For eachc∈C, let (σ(c),t(c)) ∈ Z be the allocation associated

with the social choice functionf at the profile of unit waiting costsc and(σi(c),ti(c)) ∈ I ×R be the

consumption bundle for agenti ∈ I in the allocation(σ(c),t(c)).

Remark 1. Our model is a special case of the one presented by Fujinaka and Wakayama (2008). The

difference from their model is the number of each good and the existence of a “null” good. In our model,

the number of each position is equal to one and each agent necessarily consumes a position. On the other

hand, in their model, the number of each object is equal to or more than one and each agent does not

necessarily consume an object. There exists another difference in utility functions. In our model, each

agent’s valuation of a position decreases in the order and the marginal valuation is constant. On the other

hand, in their model, each agent’s valuation of an object is almost unrestrictive. This difference strongly

affects our results.

3 Properties of Social Choice Functions

Saijo, Sj̈ostr̈om, and Yamato (2007) introduce secure implementation which is identical with double

implementation in dominant strategy equilibria and Nash equilibria.23 They show that the social choice

function issecurely implementableif and only if it satisfiesstrategy-proofness, strong non-bossiness,

and theoutcome-rectangular property (Saijo, Sj̈ostr̈om, and Yamato, 2007).24 In this paper, we study

securely implementable social choice functions in queueing problems. Especially, we focus on social

choice functions which satisfy strategy-proofness and strong non-bossiness.

Strategy-proofness requires that the truthful revelation is a weakly dominant strategy for each agent

in the direct revelation mechanism associated with the social choice function.

Definition 1. The social choice functionf satisfiesstrategy-proofnessif and only if for eachc,c′ ∈C

and eachi ∈ I ,

−(σi(ci ,c
′
−i)−1)ci + ti(ci ,c

′
−i) ≥−(σi(c′i ,c

′
−i)−1)ci + ti(c′i ,c

′
−i).

23See Saijo, Sj̈ostr̈om, and Yamato (2007) for the definition of secure implementation.
24Strong non-bossiness is called non-bossiness in their paper. They characterize securely implementable social choice func-

tions by strategy-proofness and the rectangular property (Saijo, Sjöstr̈om, and Yamato, 2007) and show that the rectangular

property is equivalent to strong non-bossiness and the outcome-rectangular property. See Saijo, Sjöstr̈om, and Yamato (2007)

for the definitions of the rectangular property and the outcome-rectangular property and Mizukami and Wakayama (2008) for an

alternative characterization of securely implementable social choice functions in terms of a stronger version of Maskin mono-

tonicity (Maskin, 1977). See also Berga and Moreno (2009) for an alternative characterization of minmax rules in single-peaked

voting environments in terms of strong non-bossiness.
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Strong non-bossiness requires that each agent cannot change the outcome by her deviation while

maintaining her utility level in the direct revelation mechanism associated with the social choice function.

Definition 2 (Saijo, Sj̈ostr̈om, and Yamato, 2007). The social choice functionf satisfiesstrong non-

bossinessif and only if for eachc,c′ ∈C and eachi ∈ I , if

−(σi(ci ,c−i)−1)ci + ti(ci ,c−i) = −(σi(c′i ,c−i)−1)ci + ti(c′i ,c−i),

then

(σ(ci ,c−i),t(ci ,c−i)) = (σ(c′i ,c−i),t(c′i ,c−i)).

By definition, strong non-bossiness is stronger than non-bossiness (Satterthwaite and Sonnenschein,

1981). 25 This property is also stronger than quasi-strong non-bossiness (Mizukami and Wakayama,

2007; Saijo, Sj̈ostr̈om, and Yamato, 2007) which is necessary for dominant strategy implementation.26

Constancy requires that any revelations are not reflected on the outcome in the direct revelation

mechanism associated with the social choice function.

Definition 3. The social choice functionf satisfiesconstancyif and only if for eachc,c′ ∈C,

(σ(c),t(c)) = (σ(c′),t(c′)).

4 Domain-Richness

In the problems of allocating indivisible and private goods with monetary transfers, where each agent has

a quasi-linear utility function, Fujinaka and Wakayama (2008) show that if the domain satisfiesminimal

richness, then only constant social choice functions are securely implementable.

Definition 4 (Fujinaka and Wakayama, 2008). The domainC satisfiesminimal richness if and only if

for eachi ∈ I , eachc′i ,c
′′
i ∈Ci , eachσ ′i ,σ ′′i ∈ I , and eachT ∈ R, if

(σ ′′i −σ ′i )c′′i < T < (σ ′′i −σ ′i )c′i ,

then there existsci ∈Ci such that

(i) (σ ′′i −σ ′i )ci = T,

(ii) (σ ′′i −σi)ci ≤ (σ ′′i −σi)c′i for eachσi ∈ I \{σ ′i ,σ ′′i }.

Since our model is a special case of the one presented by Fujinaka and Wakayama (2008), only

constant social choice functions are securely implementable in our model if the domain satisfies minimal

richness by their result. However, Example 1 shows that many reasonable domains do not satisfy minimal

richness in our model.
25The social choice functionf satisfies non-bossiness if and only if for each c,c′ ∈ C and each i ∈ I , if

(σi(ci ,c−i),ti(ci ,c−i)) = (σi(c′i ,c−i),ti(c′i ,c−i)), then(σ(ci ,c−i),t(ci ,c−i)) = (σ(c′i ,c−i),t(c′i ,c−i)).
26The social choice functionf satisfiesquasi-strong non-bossinessif and only if for eachc,c′ ∈ C and eachi ∈ I ,

if −(σi(ci ,c′′−i)− 1)ci + ti(ci ,c′′−i) = −(σi(c′i ,c
′′
−i)− 1)ci + ti(c′i ,c

′′
−i) for eachc′′−i ∈ C−i , then (σ(ci ,c−i),t(ci ,c−i)) =

(σ(c′i ,c−i),t(c′i ,c−i)). Saijo, Sj̈ostr̈om, and Yamato (2007) call this property weak non-bossiness. Mizukami and Wakayama

(2007) and Saijo, Sjöstr̈om, and Yamato (2007) independently show that the social choice function is dominant strategy imple-

mentable if and only if it satisfies strategy-proofness and quasi-strong non-bossiness.
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Example 1. Let i ∈ I andCi = R++. Moreover, letc′i = 3, c′′i = 1, σ ′i = 1, σ ′′i = 2, andT = 2. In this

case, we have

(σ ′′i −σ ′i )c′′i = 1< T < 3 = (σ ′′i −σ ′i )c′i .

Let ci ∈Ci be such that(σ ′′i −σ ′i )ci = T, that is,ci = 2. This implies that condition (i) in Definition 4

holds. On the other hand, ifci = 2, then

(σ ′′i −σi)ci = −2>−3 = (σ ′′i −σi)c′i

for σi = 3. This implies that condition (ii) in Definition 4 does not hold.

Example 1 implies that there exist the other quasi-linear environments that Fujinaka and Wakayama

(2008) do not study, that is, we have the possibility of the existence of non-constant securely imple-

mentable social choice functions in certain quasi-linear environments. However, our main result implies

that on many reasonable domains, only constant social choice functions are securely implementable in

queueing problems. In fact, we show that if the domain satisfies the following condition, calledweak

indifference, then any social choice function satisfying strategy-proofness and strong non-bossiness also

satisfies constancy.

Definition 5. The domainC satisfiesweak indifference if and only if for eachi ∈ I , eachc′i ,c
′′
i ∈Ci ,

eachσ ′i ,σ ′′i ∈ I , and eachT ∈ R, if

(σ ′′i −σ ′i )c′′i < T < (σ ′′i −σ ′i )c′i ,

then there existsci ∈Ci such that

(σ ′′i −σ ′i )ci = T.

By definition, weak indifference is weaker than minimal richness. In our model, weak indifference

is equivalent to convexity.27 By bringing this relationship together with the result of Holmström (1979),

we know that weak indifference is stronger than smooth connectedness in our model. Moreover, we

know that smooth connectedness is stronger than convexity, that is, smooth connectedness is equivalent

to convexity in our model.28 This implies that in our model, weak indifference is also equivalent to

smooth connectedness.

Remark 2. Fujinaka and Wakayama (2008) show the possibility of the existence of non-constant se-

curely implementable social choice functions on the domains that satisfy monotonic closedness (Schum-

mer, 2000).29 In our model, there exists no monotonically closed domain except for the case ofn = 2

due to the linearity of utility functions.30

27See Appendix for the relationship between weak indifference and convexity.
28See Appendix for the relationship between smooth connectedness and convexity.
29In quasi-linear environments, Schummer (2000) shows a constancy result on bribe-proofness (Schummer, 2000) on mono-

tonically closed domains. Bribe-proofness is stronger than strategy-proofness. He also shows that only all-dictatorial (Schum-

mer, 2000) social choice functions satisfy bribe-proofness on smoothly connected domains. All-dictatorship requires that each

agent is actually a dictator on the range of the social choice function.
30See Appendix for the existence of monotonically closed domains and the relationship between weak indifference and

monotonic closedness in the case ofn = 2.
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5 Preliminary Results

In what follows, we show certain preliminary results on strategy-proofness in our model. Note that

all preliminary results are irrespective of domain-richness conditions. For simplicity of notation, let

σi ≡ σi(ci ,c−i), σ ′i ≡ σi(c′i ,c−i), σ ′′i ≡ σi(c′′i ,c−i) andti ≡ ti(ci ,c−i), t ′i ≡ ti(c′i ,c−i), t ′′i ≡ ti(c′′i ,c−i) for

eachc,c′ ∈C and eachi ∈ I .

Lemma 1 shows that each agent’s monetary transfer depends on her position in the queue if the social

choice function satisfies strategy-proofness.

Lemma 1. Suppose that the social choice functionf satisfiesstrategy-proofness. For eachc,c′ ∈C and

eachi ∈ I , if σi = σ ′i , thenti = t ′i .

Proof. Suppose, by contradiction, that there existc,c′ ∈C andi ∈ I such thatσi = σ ′i andti 6= t ′i . If ti < t ′i ,
then we have−(σi−1)ci + ti <−(σ ′i −1)ci + t ′i . This is a contradiction tostrategy-proofness. If ti > t ′i ,
then we have−(σi−1)c′i + ti >−(σ ′i −1)c′i + t ′i . This is also a contradiction tostrategy-proofness.

Remark 3. Lemma 1 corresponds to Claim 1 in Proposition 1 of Fujinaka and Wakayama (2008).

By Lemma 1, we know that for eachc,c′ ∈C and eachi ∈ I , if −(σi−1)ci + ti 6= −(σ ′i −1)ci + t ′i ,
thenσi 6= σ ′i when the social choice functionf satisfies strategy-proofness.

Lemma 2 shows that if there exists a unit waiting cost such that some two different consumption

bundles are indifferent in terms of utility level, then the position associated with the unit waiting cost is

in between the two positions if the social choice function satisfies strategy-proofness. In Lemma 2, we

use the following notation: for eachi ∈ I , eachci ∈Ci , each(σi ,ti) ∈ I ×R, and eachσ ′i ∈ I , let

ti(σ ′i ; (σi ,ti),ci) ≡ (σ ′i −σi)ci + ti .

This implies−(σi−1)ci + ti =−(σ ′i −1)ci + ti(σ ′i ; (σi ,ti),ci), that is,(σ ′i ,ti(σ ′i ; (σi ,ti),ci)) is indiffer-

ent to(σi ,ti) for agenti with ci .

Lemma 2. Suppose that the social choice functionf satisfiesstrategy-proofness. For eachc,c′ ∈ C

and eachi ∈ I , if σi < σ ′i and there existsc′′i ∈Ci such that−(σi −1)c′′i + ti = −(σ ′i −1)c′′i + t ′i , then

σi ≤ σ ′′i ≤ σ ′i .

Proof. Suppose, by contradiction, that there existc,c′ ∈C andi ∈ I such thatσi < σ ′i ,−(σi−1)c′′i + ti =
−(σ ′i −1)c′′i + t ′i for somec′′i ∈Ci , andσ ′′i < σi or σ ′i < σ ′′i .

We consider the case ofσ ′′i < σi . By the hypothesis, we have

c′′i =
t ′i − ti

σ ′i −σi
. (1)

By the definition ofti , we have

ci =
ti(σ ′i ; (σi ,ti),ci)− ti

σ ′i −σi
. (2)

By the definition ofti andstrategy-proofness, we have−(σ ′i −1)ci +t ′i <−(σ ′i −1)ci +ti(σ ′i ; (σi ,ti),ci),
that is,

t ′i < ti(σ ′i ; (σi ,ti),ci).31 (3)
31Note that the equality does not hold. If it holds, then we haveci = c′′i by (1) and (2). This implies thatf should be a

correspondence since we consider the case ofσ ′′i < σi .
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Figure 1: Proof of Lemma 2

By (1), (2), (3), andσi < σ ′i , we havec′′i < ci . Since we consider the case ofσ ′′i < σi , this implies

(σ ′′i −σi)c′′i + ti > (σ ′′i −σi)ci + ti , that is,

ti(σ ′′i ; (σi ,ti),ci) < ti(σ ′′i ; (σi ,ti),c′′i ). (4)

By the definition ofti andstrategy-proofness, we have−(σ ′′i −1)ci +t ′′i ≤−(σ ′′i −1)ci +ti(σ ′′i ; (σi ,ti),ci),
that is,

t ′′i ≤ ti(σ ′′i ; (σi ,ti),ci). (5)

Moreover, by the definition ofti andstrategy-proofness, we have−(σ ′′i −1)c′′i + t ′′i ≥−(σ ′′i −1)c′′i +
ti(σ ′′i ; (σi ,ti),c′′i ), that is,

ti(σ ′′i ; (σi ,ti),c′′i ) ≤ t ′′i . (6)

By (5) and (6), we haveti(σ ′′i ; (σi ,ti),c′′i ) ≤ ti(σ ′′i ; (σi ,ti),ci). This is a contradiction to (4) (see Figure

1).

Similarly, we have a contradiction tostrategy-proofnessin the case ofσ ′i < σ ′′i .

Remark 4. There exists no result of Fujinaka and Wakayama (2008) corresponding to Lemma 2. Lemma

2 strongly depends on the decreasingness of utility functions in positions, which is not assumed in their

model.

6 Main Result

By bringing preliminary results on strategy-proofness together with strong non-bossiness and weak in-

difference, we show our main result. In line with the previous section, for simplicity of notation, let

σi ≡σi(ci ,c−i), σ ′i ≡ σi(c′i ,c−i), σ ′′i ≡ σi(c′′i ,c−i), σ∗i ≡σi(c∗i ,c−i), σ∗∗i ≡σi(c∗∗i ,c−i) andti ≡ ti(ci ,c−i),
t ′i ≡ ti(c′i ,c−i), t ′′i ≡ ti(c′′i ,c−i), t∗i ≡ ti(c∗i ,c−i), t∗∗i ≡ ti(c∗∗i ,c−i) for eachc,c′ ∈C and eachi ∈ I .

Theorem. Suppose that the domainC satisfiesweak indifference. The social choice functionf satisfies

strategy-proofnessandstrong non-bossinessif and only if it satisfiesconstancy.

9
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Figure 2: Proof of Theorem

Proof. Since the “if” part is obvious, we only prove the “only if” part.

Let c,c′ ∈C. To prove(σ(c),t(c)) = (σ(c′),t(c′)), we firstly show

(σ(ci ,c−i),t(ci ,c−i)) = (σ(c′i ,c−i),t(c′i ,c−i))

for eachi ∈ I . Suppose, by contradiction, that there existsj ∈ I such that(σ(c j ,c− j),t(c j ,c− j)) 6=
(σ(c′j ,c− j),t(c′j ,c− j)). By strong non-bossiness, this implies−(σ j −1)c j + t j 6=−(σ ′j −1)c j + t ′j . By

strategy-proofness, this implies

−(σ j −1)c j + t j >−(σ ′j −1)c j + t ′j . (7)

By Lemma 1, this impliesσ j 6= σ ′j , that is,σ j < σ ′j or σ j > σ ′j . We consider the case ofσ j < σ ′j .
Since(σ(c j ,c− j),t(c j ,c− j)) 6= (σ(c′j ,c− j),t(c′j ,c− j)), bystrong non-bossiness, it also implies−(σ j−
1)c′j + t j 6= −(σ ′j −1)c′j + t ′j . By strategy-proofness, this implies

−(σ j −1)c′j + t j <−(σ ′j −1)c′j + t ′j . (8)

By (7) and (8), we have(σ ′j −σ j)c′j < t ′j − t j < (σ ′j −σ j)c j . SinceC satisfiesweak indifference, this

implies that there existsc′′j ∈Cj such that(σ ′j −σ j)c′′j = t ′j − t j , that is,

−(σ j −1)c′′j + t j = −(σ ′j −1)c′′j + t ′j . (9)

Since we consider the case ofσ j < σ ′j , by Lemma 2, this impliesσ j ≤ σ ′′j ≤ σ ′j . If σ ′′j = σ j , then, by (9)

andstrong non-bossiness, we haveσ j = σ ′j . This is a contradiction. Similarly, we have a contradiction

if σ ′′j = σ ′j . Therefore, we know

σ j < σ ′′j < σ ′j .

By applying the above argument to the left inequality repeatedly, we can findc∗j ,c
∗∗
j ∈ Cj such that

σ j < σ∗j and−(σ j −1)c∗∗j + t j = −(σ∗j −1)c∗∗j + t∗j , where there exists no position betweenσ j andσ∗j
induced by a unit waiting cost for agenti givenc− j since each position is indivisible (see Figure 2). In

this case, we haveσ∗∗j = σ j or σ∗∗j = σ∗j . By strong non-bossiness, these implyσ j = σ∗j . This is a

contradiction. Similarly, we have a contradiction in the case ofσ j > σ ′j .
Without loss of generality, leti = 1. Therefore, we have

(σ(c1,c−1),t(c1,c−1)) = (σ(c′1,c−1),t(c′1,c−1)). (10)

10



By the same argument stated above, we also have

(σ(c′1,c2,c−1,2),t(c′1,c2,c−1,2)) = (σ(c′1,c′2,c−1,2),t(c′1,c′2,c−1,2)), (11)

wherec−1,2 is a profile of unit waiting costs for agents other than agents1 and2. By (10) and (11),

we have(σ(c1,c2,c−1,2),t(c1,c2,c−1,2)) = (σ(c′1,c′2,c−1,2),t(c′1,c′2,c−1,2)). By sequentially replacing

c j by c′j for eachj 6= 1,2 in this manner, we finally prove(σ(c),t(c)) = (σ(c′),t(c′)).

Remark 5. Theorem does not depend on the finiteness of the number of positions, which is used to

prove Claim 3 in Proposition 1 of Fujinaka and Wakayama (2008). This difference arises from whether

Lemma 2 holds.

The above theorem is tight. Example 2 shows that if the domain does not satisfy weak indifference,

then there exist non-constant securely implementable social choice functions. Example 3 shows that

strategy-proofness is necessary for Theorem and Example 4 shows that strong non-bossiness is necessary

for Theorem.

Example 2. Suppose thatI = {1,2} andCi = R++ \{2} for eachi ∈ I . In this case, the domainC does

not satisfy weak indifference: if there existi ∈ I such thatc′i = 3, c′′i = 1, σ ′i = 1, andσ ′′i = 2 andT = 2,

then we have(σ ′′i −σ ′i )c′′i = 1< T < 3 = (σ ′′i −σ ′i )c′i and(σ ′′i −σ ′i )ci = ci 6= 2 = T for eachci ∈Ci .

Let f be the social choice function such that for eachc∈C,

((σ1(c),t1(c)),(σ2(c),t2(c))) =





((1,−1),(2,1)) if c1 > 2,

((2,1),(1,−1)) if c1 < 2.

We consider strategy-proofness. Letc,c′ ∈ C. If c1 > 2, then we have−(σ1(c1,c2)− 1)c1 +
t1(c1,c2) = −1 ≥ −(σ1(c′1,c2)− 1)c1 + t1(c′1,c2). If c1 < 2, then we have−(σ1(c1,c2)− 1)c1 +
t1(c1,c2) = −c1 + 1≥−(σ1(c′1,c2)−1)c1 + t1(c′1,c2). Since any allocation associated withf depends

only on agent 1’s unit waiting cost, these imply thatf satisfies strategy-proofness (see Figure 3).

We consider strong non-bossiness. By the argument about strategy-proofness, we know that any

allocation associated withf depends only on agent 1’s unit waiting cost and the hypothesis of strong

non-bossiness is realized only when agent 1’s consumption bundle does not change. These imply thatf

satisfies strong non-bossiness.

Example 3. Suppose thatI = {1,2} andCi = R++ for eachi ∈ I . In this case, the domainC satisfies

weak indifference sinceC satisfies convexity which is stronger than weak indifference.

Let f be the social choice function such that for eachc∈C,

((σ1(c),t1(c)),(σ2(c),t2(c))) =





((1,1),(2,−1)) if c1≥ 2,

((2,−1),(1,1)) if c1 < 2.

By the same argument as Example 2, we know thatf satisfies strong non-bossiness. We consider

strategy-proofness. Letc,c′ ∈C be such thatc1 < 2 andc′1 ≥ 2. In this case, we have−(σ1(c1,c′2)−
1)c1 + t1(c1,c′2) = −c1− 1< 1− (σ1(c′1,c′2)− 1)c1 + t1(c′1,c′2). This implies thatf does not satisfy

strategy-proofness (see Figure 3).
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Figure 3: Examples 2, 3, and 4

Example 4. Suppose thatI = {1,2} andCi = R++ for eachi ∈ I . By the same argument as Example 3,

we know that the domainC satisfies weak indifference.

Let f be the social choice function such that for eachc∈C,

((σ1(c),t1(c)),(σ2(c),t2(c))) =





((1,−1),(2,1)) if c1≥ 2,

((2,1),(1,−1)) if c1 < 2.

By the same argument as Example 2, we know thatf satisfies strategy-proofness. We consider strong

non-bossiness. Letc,c′ ∈C be such thatc1 = 2 andc′1 < 2. In this case, we have−(σ1(c1,c2)−1)c1 +
t1(c1,c2) = −1 = −(σ1(c′1,c2)−1)c1 + t1(c′1,c2) and

((σ1(c1,c2),t1(c1,c2)),(σ2(c1,c2),t2(c1,c2))) = ((1,−1),(1,1))

6= ((2,1),(1,−1))

= ((σ1(c′1,c2),t1(c′1,c2)),(σ2(c′1,c2),t2(c′1,c2))).

This implies thatf does not satisfy strong non-bossiness (see Figure 3).

Obviously, constant social choice functions are securely implementable. Therefore, by bringing

Theorem together with a characterization of securely implementable social choice functions by Saijo,

Sjöstr̈om, and Yamato (2007), we have the following constancy result on secure implementation.

Corollary 1. Suppose that the domain satisfiesweak indifference. The social choice function issecurely

implementableif and only if it satisfiesconstancy.

Remark 6. Example 3 also shows the relationship between strategy-proofness and Maskin monotonic-

ity on weakly indifferent domains: the social choice function defined in Example 3 does not satisfy

strategy-proofness but does satisfy Maskin monotonicity, that is, Maskin monotonicity is not stronger

than strategy-proofness. For eachi ∈ I , eachci ∈ Ci , and each(σi ,ti) ∈ I ×R, let L((σi ,ti),ci) ≡
{(σ ′i ,t ′i ) ∈ I ×R | − (σi −1)ci + ti ≥ −(σ ′i −1)ci + t ′i }. The social choice functionf satisfiesMaskin

monotonicity if and only if for eachc,c′ ∈C, if, for eachi ∈ I , L((σi(c),ti(c)),ci)⊆ L((σi(c),ti(c)),c′i),
then(σ(c),t(c)) = (σ(c′),t(c′)).

We show that the social choice functionf defined in Example 3 satisfies Maskin monotonicity. Let

c,c′ ∈C be such that for eachi ∈ I , L((σi(c),ti(c)),ci) ⊆ L((σi(c),ti(c)),c′i). Note that in our model,

12



L((σi ,ti),ci) ⊆ L((σi ,ti),c′i) implies (i) ci ≤ c′i if σi = 1, (ii) ci = c′i if σi ∈ I \{1,n}, and (iii) ci ≥ c′i if

σi = n. If c1≥ 2, then we have((σ1(c),t1(c)),(σ2(c),t2(c))) = ((1,1),(2,−1)). SinceL((1,1),c1) ⊆
L((1,1),c′1) impliesc1 ≤ c′1, we also have((σ1(c′),t1(c′)),(σ2(c′),t2(c′))) = ((1,1),(2,−1)), that is,

(σ(c),t(c)) = (σ(c′),t(c′)). If c1 < 2, then we have((σ1(c),t1(c)),(σ2(c),t2(c))) = ((2,−1),(1,1)).
SinceL((2,−1),c1) ⊆ L((2,−1),c′1) impliesc1≥ c′1, we also have((σ1(c′),t1(c′)),(σ2(c′),t2(c′))) =
((2,−1),(1,1)), that is,(σ(c),t(c)) = (σ(c′),t(c′)). These imply thatf satisfies Maskin monotonicity.

By Example 3, we know that Maskin monotonicity is not stronger than strategy-proofness ifn = 2.

This relationship holds even ifn≥ 3, that is, our main result is established by secure implementability

but not by Nash implementability.

Remark 7. Saijo (1987) shows the following constancy result on “Nash” implementation: the social

choice function satisfies Maskin monotonicity and dual dominance (Saijo, 1987) if and only if it satisfies

constancy.32 Obviously, the securely implementable social choice function satisfies dual dominance if

and only if it satisfies constancy. In line with such domination, Fujinaka and Wakayama (2008) show

the following constancy result on “secure” implementation: the securely implementable social choice

function satisfies non-dominance (Fujinaka and Wakayama, 2008) if and only if it satisfies constancy.33

Note that non-dominance is weaker than dual dominance.34 In our model, similar to the relationship

between minimal richness and weak indifference, we have a constancy result on secure implementation

by a weaker condition than non-dominance as follows: for each(σ ′,t ′),(σ ′′,t ′′) ∈ f (C), eachc′,c′′ ∈C

such that(σ(c′),t(c′)) = (σ ′,t ′) and(σ(c′′),t(c′′)) = (σ ′′,t ′′), and eachi ∈ I , if there exists noc′′′ ∈C

such thatL((σ ′i ,t ′i ),c′i) ⊆ L((σ ′i ,t ′i ),c′′′i ) andL((σ ′′i ,t ′′i ),c′′i ) ⊆ L((σ ′′i ,t ′′i ),c′′′i ), then there existsci ∈Ci

such that(σ ′′i −σ ′i )ci = t ′′i − t ′i .

7 Conclusion

This paper studies secure implementability in queueing problems. In the problems of allocating indi-

visible and private goods with monetary transfers, where each agent has a quasi-linear utility function,

Fujinaka and Wakayama (2008) show that if the domain satisfies minimal richness, then only constant

social choice functions are securely implementable. Since our model is a special case of their one, we

know that only constant social choice functions are securely implementable if the domain satisfies min-

imal richness by their results. However, many reasonable domains do not satisfy minimal richness in

our model. In this paper, we show that only constant social choice functions satisfy strategy-proofness

and strong non-bossiness, both of which are necessary for secure implementation, on weakly indifferent

domains which are less restrictive than minimally rich domains. Our main result implies that secure im-

32The social choice functionf satisfiesdual dominanceif and only if for each(σ ′,t ′),(σ ′′,t ′′)∈ f (C), there existc′,c′′,c′′′ ∈
C such that (i)(σ(c′),t(c′)) = (σ ′,t ′) and(σ(c′′),t(c′′)) = (σ ′′,t ′′) and (ii) for eachi ∈ I , L((σ ′i ,t

′
i ),c

′
i)⊆ L((σ ′i ,t

′
i ),c

′′′
i ) and

L((σ ′′i ,t ′′i ),c′′i )⊆ L((σ ′′i ,t ′′i ),c′′′i ).
33The social choice functionf satisfiesnon-dominanceif and only if for each(σ ′,t ′),(σ ′′,t ′′) ∈ f (C), eachc′,c′′ ∈C such

that(σ(c′),t(c′)) = (σ ′,t ′) and(σ(c′′),t(c′′)) = (σ ′′,t ′′), and eachi ∈ I , if there exists noc′′′ ∈C such thatL((σ ′i ,t
′
i ),c

′
i) ⊆

L((σ ′i ,t
′
i ),c

′′′
i ) andL((σ ′′i ,t ′′i ),c′′i )⊆ L((σ ′′i ,t ′′i ),c′′′i ), then there existsci ∈Ci such that (i)(σ ′′i −σ ′i )ci = t ′′i − t ′i and (ii) (σ ′′i −

σi)ci ≤ (σ ′′i −σi)c′i for eachσi ∈ I \{σ ′i ,σ ′′i }.
34See the supplementary note provided by Fujinaka and Wakayama (2008) for the relationship among dual dominance, non-

dominance, and secure implementability in the problems of allocating indivisible and private goods with monetary transfers.

This note is available online at:http://www.iser.osaka-u.ac.jp/library/dp/2007/DP0699N.pdf.
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plementation is too difficult in queueing problems since many reasonable domains satisfy weak indiffer-

ence, for example, convex domains. Moreover, by applying the observations of Cason, Saijo, Sjöstr̈om,

and Yamato (2006), our main result suggests that almost all strategy-proof direct revelation mechanisms

do not work well in queueing problems.

Our main result shows certain domain-richness conditions for the constancy of securely imple-

mentable social choice functions. On the other hand, it remains to show domain-richness conditions

for the existence of non-constant securely implementable social choice functions. However, our main

result implies that it is difficult to find such conditions that are reasonable in the economic sense.

Appendix: Relationship between Weak Indifference and Certain Domain-

Richness Conditions

In this paper, we introduce a new domain-richness condition, called weak indifference. By definition,

this condition is weaker than minimal richness. In what follows, we show a relationship among weak

indifference and certain domain-richness conditions other than minimal richness: convexity, smooth

connectedness, and monotonic closedness.

First, we consider the relationship between weak indifference and convexity.

Definition 6. The domainC satisfiesconvexity if and only if for eachi ∈ I , eachc′i ,c
′′
i ∈Ci , and each

λ ∈ [0,1], there existsci ∈Ci such that

ci = λc′i + (1−λ )c′′i .

Fact 1 shows that convexity is stronger than weak indifference in our model. Since this fact is

obvious, the proof is omitted.

Fact 1. If the domainC satisfiesconvexity, then it satisfiesweak indifference.

Fact 2 shows that weak indifference is stronger than convexity in our model.

Fact 2. If the domainC satisfiesweak indifference, then it satisfiesconvexity.

Proof. Let i ∈ I , c′i ,c
′′
i ∈Ci , andλ ∈ [0,1]. We consider the following two cases:λ = 0 or 1 andλ ∈

(0,1). If λ = 0 or 1, then we haveλc′i + (1−λ )c′′i ∈Ci sincec′i ,c
′′
i ∈Ci . If λ ∈ (0,1), then we consider

the following three subcases:c′i = c′′i , c′i < c′′i , andc′i > c′′i . If c′i = c′′i , then we also haveλc′i +(1−λ )c′′i ∈
Ci sincec′i ,c

′′
i ∈Ci . In what follows, we consider the subcases ofc′i < c′′i andc′i > c′′i whenλ ∈ (0,1).

Let σ ′i ,σ ′′i ∈ I andT ∈R be such thatσ ′i <σ ′′i and(σ ′′i −σ ′i ){λc′i +(1−λ )c′′i }= T. Sinceλ ∈ (0,1),
if c′i < c′′i , then we have

(σ ′′i −σ ′i )c′i = T
c′i

λc′i + (1−λ )c′′i
< T < T

c′′i
λc′i + (1−λ )c′′i

= (σ ′′i −σ ′i )c′′i .

SinceC satisfiesweak indifference, there existsci ∈Ci such that(σ ′′i −σ ′i )ci = T andci = λc′i + (1−
λ )c′′i . Similarly, we can show that there existsci ∈Ci such thatci = λc′i + (1−λ )c′′i if c′i > c′′i .

By Facts 1 and 2, we know that weak indifference is equivalent to convexity in our model. Next, we

consider the relationship between smooth connectedness and convexity.
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Definition 7. The domainC satisfiessmooth connectednessif and only if for eachi ∈ I and each

c′i ,c
′′
i ∈Ci , there existsv: I × [0,1]→ R such that for eachσi ∈ I ,

(i) there existscθ
i ∈Ci such thatv(σi ;θ ) = −(σi−1)cθ

i for eachθ ∈ [0,1],

(ii) v(σi ;0) = −(σi−1)c′i andv(σi ;1) = −(σi−1)c′′i ,

(iii) v(σi ; ·) is differentiable on[0,1], 35

(iv) there existsK ∈ R++ such that|∂v(σi ;θ )/∂θ | ≤ K for eachθ ∈ [0,1].

Holmstr̈om (1979) shows that convexity is stronger than smooth connectedness in quasi-linear envi-

ronments. Since our model is one of quasi-linear environments, this relationship also holds in our model.

Moreover, Fact 3 shows that smooth connectedness is stronger than convexity in our model.

Fact 3. If the domainC satisfiessmooth connectedness, then it satisfiesconvexity.

Proof. Let i ∈ I , c′i ,c
′′
i ∈Ci , andλ ∈ [0,1]. SinceC satisfiessmooth connectedness, there existsv: I ×

[0,1]→ R such that for eachσi ∈ I , (i) there existscθ
i ∈Ci such thatv(σi ;θ ) = −(σi −1)cθ

i for each

θ ∈ [0,1], (ii) v(σi ;0) = −(σi −1)c′i andv(σi ;1) = −(σi −1)c′′i , and (iii) v(σi ; ·) is differentiable on

[0,1]. Without loss of generality, we assumev(σi ;0)≤ v(σi ;1). Let σi ∈ I . By (ii), we have

λv(σi ;0) + (1−λ )v(σi ;1) = −(σi−1){λc′i + (1−λ )c′′i }. (12)

By (iii), we know thatv(σi ; ·) is continuous on[0,1]. This implies that

[v(σi ;0),v(σi ;1)] ⊆ v(σi ; [0,1]). (13)

By (12) and (13), there existsθ ∈ [0,1] such that

v(σi ;θ ) = −(σi−1){λc′i + (1−λ )c′′i }. (14)

By (i), there existscθ
i ∈Ci such that

v(σi ;θ ) = −(σi−1)cθ
i . (15)

By (14) and (15), we havecθ
i = λc′i + (1−λ )c′′i .

By Fact 3 and the result of Holmström (1979), we know that smooth connectedness is equivalent to

convexity in our model. According to the relationships stated above, we have the following corollary in

our model.

Corollary 2. The following statements are equivalent: (i) the domain satisfiesweak indifference, (ii)

the domain satisfiessmooth connectedness, and (iii) the domain satisfiesconvexity.

Finally, we consider the relationship between weak indifference and monotonic closedness.

Definition 8. The domainC satisfiesmonotonic closednessif and only if for eachi ∈ I , eachc′i ∈Ci ,

and eachσ ′i ∈ I , there existsci ∈Ci such that

(σ ′i −σi)ci < (σ ′i −σi)c′i for eachσi ∈ I \{σ ′i }.
35The existence of one-sided derivatives is assumed only at the endpoints.
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If n≥ 3, then many reasonable domains do not satisfy monotonic closedness in our model. Leti ∈ I

andCi = R++. Moreover, letc′i ∈Ci andσ ′i = 2. In this case, for eachci ∈Ci with ci ≥ c′i , there exists

σi ∈ I \ {2} such that(2−σi)ci ≥ (2−σi)c′i , that is,σi = 1. On the other hand, for eachci ∈Ci with

ci < c′i , there existsσi ∈ I \ {2} such that(2−σi)ci ≥ (2−σi)c′i , for example,σi = 3. In fact, Fact 4

shows that there exists no domain that satisfies monotonic closedness in our model whenn≥ 3. 36 Since

the proof of this fact is similar to the above argument, it is omitted.

Fact 4. Supposen≥ 3. There exists no domain that satisfiesmonotonic closedness.

Fact 4 implies that monotonic closedness is stronger than weak indifference in our model whenn≥ 3.

Moreover, this fact implies that weak indifference is not stronger than monotonic closedness in our model

whenn≥ 3. If n = 2, then many reasonable domains satisfy monotonic closedness in our model, for

example,C = R2
++. However, since such convex domains also satisfy weak indifference, only constant

social choice functions are securely implementable on the domains by Corollary 1.
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Cason, T., T. Saijo, T. Sjöstr̈om, and T.Yamato (2006) “Secure Implementation Experiments: Do

Strategy-Proof Mechanisms Really Work?”Games and Economic Behavior57, pp.206-235.

Chun, Y. (2006a) “A Pessimistic Approach to the Queueing Problem,”Mathematical Social Sciences51,

pp.171-181.

Chun, Y. (2006b) “No-Envy in Queueing Problems,”Economic Theory29, pp.151-162.

Chun, Y. (2011) “Consistency and Monotonicity in Sequencing Problems,”International Journal of

Game Theory40, pp.29-41.

Chun, Y. and E. J. Heo (2008) “Queueing Problems with Two Parallel Servers,”International Journal of

Economic Theory4, pp.299-315.

Clarke, E. H. (1971) “Multipart Pricing of Public Goods,”Public Choice11, pp.17-33.

Dolan, R. J. (1978) “Incentive Mechanisms for Priority Queuing Problems,”Bell Journal of Economics

9, pp.421-436.
36Fact 4 depends on the linearity of utility functions strongly.

16



Foley, D. (1967) “Resource Allocation and the Public Sector,” Yale Economic Essays 7, pp.45-98.

Fujinaka, Y. and T. Wakayama (2008) “Secure Implementation in Economies with Indivisible Objects

and Money,”Economics Letters100, pp.91-95.

Fujinaka, Y. and T. Wakayama (2011) “Secure Implementation in Shapley-Scarf Housing Markets,”

Economic Theory48, pp.147-169.

Green, J. and J. J. Laffont (1979)Incentives in Public Decision Making, North Holland.

Groves, T. (1973) “Incentives in Teams,”Econometrica41, pp.617-631.

Groves, T. and J. Ledyard (1977) “Some Limitations of Demand Revealing Processes,”Public Choice

29, pp.107-124.

Groves, T. and M. Loeb (1975) “Incentives and Public Inputs,”Journal of Public Economics4, pp.211-

226.

Hain, R. and M. Mitra (2004) “Simple Sequencing Problems with Interdependent Costs,”Games and

Economic Behavior48, pp.271-291.

Hashimoto, K. and H. Saitoh (2010) “Domain Expansion of the Pivotal Mechanism,”Social Choice and

Welfare34, pp.455-470.

Hashimoto, K. and H. Saitoh (2011) “Strategy-Proof and Anonymous Rule in Queueing Problems: A

Relationship between Equity and Efficiency,”Social Choice and Welfare, available online athttp:

//www.springerlink.com/content/th704g5706407n7h/.

Holmstr̈om, B. (1979) “Groves’ Scheme on Restricted Domains,”Econometrica47, pp.1137-1144.

Hurwicz, L. and M. Walker (1990) “On the Generic Nonoptimality of Dominant-Strategy Allocation

Mechanisms: A General Theorem That Includes Pure Exchange Economies,”Econometrica58,

pp.683-704.

Hurwicz, L. and S. Reiter (2006)Designing Economic Mechanisms, Cambridge University Press.

Jackson, M. O. (2001) “A Crash Course in Implementation Theory,”Social Choice and Welfare18,

pp.655-708.

Jackson, M. O. (2003) “Mechanism Theory,” inEncyclopedia of Life Support Systems, edited by U.

Derigs, EOLSS Publishers.

Kayı, C, . and E. Ramaekers (2010) “Characterizations of Pareto-Efficient, Fair, and Strategy-Proof Allo-

cation Rules in Queueing Problems,”Games and Economic Behavior68, pp.220-232.

Kumar, R. (2009) “Secure Implementation in Production Economies,” mimeo.

Laffont, J. J. and E. Maskin (1980) “A Differential Approach to Dominant Strategy,”Econometrica48,

pp.1507-1520.

17



Liu, L. and G. Tian (1999) “A Characterization of the Existence of Optimal Dominant Strategy Mecha-

nisms,”Review of Economic Design4, pp.205-218.

Maniquet, F. (2003) “A Characterization of the Shapley Value in Queueing Problems,”Journal of Eco-

nomic Theory109, pp.90-103.

Maskin, E. (1977) “Nash Equilibrium and Welfare Optimality,” mimeo, the revised version appeared in

Review of Economic Studies66 (1999) pp.23-38.

Maskin, E. and T. Sj̈ostr̈om (2002) “Implementation Theory,” inHandbook of Social Choice and Welfare,

edited by K. Arrow, A. Sen, and K. Suzumura, North Holland.

Mendelson, H. and S. Whang (1990) “Optimal incentive compatible priority pricing for M/M/1 queue,”

Operations Research38, pp.870-883.

Mishra, D. and B. Rangarajan (2007) “Cost Sharing in a Job Scheduling Problem,”Social Choice and

Welfare29, pp.369-382.

Mitra, M. (2001) “Mechanism Design in Queueing Problems,”Economic Theory17, pp.277-305.

Mitra, M. (2002) “Achieving the First Best in Sequencing Problems,”Review of Economic Design7,

pp.75-91.

Mitra, M. (2005) “Incomplete Information and Multiple Machine Queueing Problems,”European Jour-

nal of Operational Research165, pp.251-266.

Mitra, M. and A. Sen (2010) “Efficient Allocation of heterogeneous Commodities with Balanced Trans-

fers,” Social Choice and Welfare35, pp.29-48.

Mitra, M. and S. Mutuswami (2011) “Group Strategyproofness in Queueing Models,”Games and Eco-

nomic Behavior72, pp.242-254.

Mitsui, T. (1983) “Asymptotic Efficiency of the Pivotal Mechanism with General Project Space,”Journal

of Economic Theory, 31, pp.318-331.

Mizukami, H. and T. Wakayama (2007) “Dominant Strategy Implementation in Economic Environ-

ments,”Games and Economic Behavior60, pp.307-325.

Mizukami, H. and T. Wakayama (2008) “Secure Implementation: An Alternative Characterization,”

Working Paper No. 238, University of Toyama.

Moulin, H. (1986) “Characterization of the Pivotal Mechanism,”Journal of Public Economics31, pp.53-

78.

Moulin, H. (2007) “On Scheduling Fees to Prevent Merging, Splitting and Transferring of Jobs,”Math-

ematics of Operations Research32, pp.266-283.

Moulin, H. (2008) “Proportional Scheduling, Split-Proofness, and Merge-Proofness,”Games and Eco-

nomic Behavior63, pp.567-587.

18



Nishizaki, K. (2011) “Secure Implementation in Discrete and Excludable Public Good Economies,”

Osaka Economic Papers61, pp.48-56.

Ohseto, S. (2000) “Strategy-Proof and Efficient Allocation of an Indivisible Good on Finitely Restricted

Preference Domains,”International Journal of Game Theory29, pp.365-374.

Repullo, R. (1987) “A Simple Proof of Maskin’s Theorem on Nash-Implementation,”Social Choice and

Welfare4, pp.39-41.

Rob, R. (1982) “Asymptotic Efficiency of the Demand Revealing Mechanism,”Journal of Economic

Theory28, pp.207-220.

Saijo, T. (1987) “On Constant Maskin Monotonic Social Choice Functions,”Journal of Economic Theory

42, pp.382-386.

Saijo, T. (1988) “Strategy Space Reduction in Maskin’s Theorem: Sufficient Conditions for Nash Imple-

mentation,”Econometrica56, pp.693-700.

Saijo, T., T. Sj̈ostr̈om, and T.Yamato (2003) “Secure Implementation: Strategy-Proof Mechanisms Re-

considered,” RIETI Discussion Paper 03-E-019.

Saijo, T., T. Sj̈ostr̈om, and T.Yamato (2007) “Secure Implementation,”Theoretical Economics2, pp.203-

229.

Saitoh, H. and S. Serizawa (2008) “Vickrey Allocation Rule with Income Effect,”Economic Theory35,

pp.391-401.

Sakai, T. (2008) “Second Price Auctions on General Preference Domains: Two Characterizations,”Eco-

nomic Theory37, pp.347-356.

Satterthwaite, M. A. and H. Sonnenschein (1981) “Strategy-Proof Allocation Mechanisms at Differen-

tiable Points,”Review of Economic Studies48, pp.587-597.

Schummer, J. (2000) “Manipulation through Bribes,”Journal of Economic Theory91, pp.180-198.

Serizawa, S. (2006) “Pairwise Strategy-Proofness and Self-Enforcing Manipulation,”Social Choice and

Welfare26, pp.305-331.

Suijs, J. (1996) “On Incentive Compatibility and Budget Balancedness in Public Decision Making,”

Economic Design2, pp.193-209.

Svensson, L. G. (1983) “Large Indivisibles: An Analysis with Respect to Price Equilibrium and Fair-

ness,”Econometrica51, pp.939-954.

Tian, G. (1996) “On the Existence of Optimal Truth-Telling Dominant Mechanisms,”Economics Letters

53, pp.17-24.

Tideman, T. N. and G. Tullock (1976) “A New and Superior Process for Making Social Choices,”Journal

of Political Economy84, pp.1145-1159.

19



Vickrey, W. (1961) “Counterspeculation, Auctions, and Competitive Sealed Tenders,”Journal of Finance

16, pp.8-37.

Walker, M. (1978) “A Note on the Characterization of Mechanisms for the Revelation of Preferences,”

Econometrica46, pp.147-152.

Walker, M. (1980) “On the Nonexistence of a Dominant Strategy Mechanism for Making Optimal Public

Decisions,”Econometrica48, pp.1521-1540.

20


	no.245_dpcover_revised.pdf
	no.245←secure_queueing_paper120803.pdf

