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Abstract

This paper studies secure implementability (Saijo, T., ds&#)m, and T.Yamato (2007) “Se-
cure Implementation,” Theoretical Economics 2, pp.203-229) in queueing problems. Our main result
shows that the social choice function satisfies strategy-proofness and strong non-bossiness (Saijo,
Sjostivm, and Yamato, 2007), both of which are necessary for secure implementation, if and only
if it satisfies constancy on the domains that satisfy weak indifference introduced in this paper. This
result implies that only constant social choice functions are securely implementable on weakly indif-
ferent domains in queueing problems. Weak indifference is weaker than minimal richness (Fujinaka,
Y. and T. Wakayama (2008) “Secure Implementation in Economies with Indivisible Objects and
Money,” Economics Letters 100, pp.91-95). Our main result illustrates that secure implementation
is too difficult in queueing problems since many reasonable domains satisfy weak indifference, for
example, convex domains.
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1 Introduction

1.1 Background

In this paper, we consider the following situations: agents have to queue up to enjoy a service which can-
not be consumed by more than one agent simultaneotidixamples of such situations are the use of
large-scaled experimental installations, event sites, and so forth. Organ transplantation is another exam-
ple. In a queue, each agent has to wait her turn; waiting is a cost for her and such a cost can be described
as a unit waiting cost, that is, the cost of waiting for one agent to finish enjoying a seétviterefore,

the total waiting cost for each agent is calculated as follows: the number of agents preceding her times
her unit waiting cost. In this paper, we assume that monetary transfers among agents are allowed.

fact, each agent has a linear utility function: her utility level is equal to her monetary transfers minus
her total waiting cost. In such environments, we study the problems of allocating positions in a queue to
agents with monetary transfers. These problems are agliedeing problems

In allocating positions in a queue to agents with monetary transfers, we adhere to several criteria.
For example, cost minimization is widely accepted. To achieve cost minimization, we need to know
each agent’s unit waiting cost which is private information to her. To make each agent reveal this private
information, we construct certain mechanisms. Mechanism design theory, especially implementation
theory, has studied which mechanisms are suitable for resolving such allocation prdblems.

When we consider the structure of mechanisms, manipulability of agents is an important problem:
certain agents might manipulate the outcome of the mechanism in their favor. Such a manipulation might
induce a non-optimal outcom8trategy-proofnesss a standard property for non-manipulabil®yT his
property requires that the truthful revelation is a weakly dominant strategy for each agent in the direct
revelation mechanism associated with the social choice function. A social choice function is one that
associates an allocation with agents’ private information. This function characterizes certain optimal
outcome according to the information. A direct revelation mechanism associated with a social choice
function is a mechanism in which (i) the set of strategy profiles is equivalent to the domain of the function
and (ii) the game form is equivalent to the function.

Strategy-proofness is a desirable property but has a shortcoming: the strategy-proof mechanism
might have a Nash equilibrium which induces a non-optimal outcome. This problem is sohsed by
cure implementation (Saijo, Spsttvtm, and Yamato, 2007) which requires that there exists a mechanism
in which (i) each dominant strategy equilibrium induces an optimal allocation and (ii) each Nash equilib-
rium also induces an optimal allocation, that is, double implementation in dominant strategy equilibria
and Nash equilibrig® This concept is considered to be a benchmark for constructing mechanisms which

IMitra (2005) and Chun and Heo (2008) consider the situations in which there exist several services.

2Note that it is implicitly assumed that each agent has a constant unit waiting cost. Moreover, we assume that each agent’s
unit waiting cost might be different from other agents.

3Note that monetary transfers include not only financial transactions between any two agents but also discriminations of the
usage fee.

4Mechanism design theory consists of implementation theory and realization theory. See Jackson (2001, 2003) and Maskin
and Spstiom (2002) for implementation theory and Hurwicz and Reiter (2006) for realization theory.

5See Barber (2010) for the relationship between strategy-proofness and implementation theory.

6See Mizukami and Wakayama (2007) and Saijés8pm, and Yamato (2007) for dominant strategy implementation and
Maskin (1977), Repullo (1987), and Saijo (1988) for Nash implementation.



work well in laboratory experiment$.In certain environments, the possibility of secure implementation

is studied: voting environments (Saijo,08jfom, and Yamato, 2007; Berga and Moreno, 2009), public
good economies (Saijo, &jtom, and Yamato, 2007; Nishizaki, 2011), the problems of providing a di-
visible and private good with monetary transfers (Saijésfpm, and Yamato, 2007; Kumar, 2009), the
problems of allocating indivisible and private goods with monetary transfers (Fujinaka and Wakayama,
2008), Shapley-Scarf housing markets (Fujinaka and Wakayama, 2011), and allotment economies with
single-peaked preferences (Bochet and Sakai, 2610hese studies illustrate how difficult it is to find
securely implementable social choice functions with desirable properties.

Queueing problems are special cases of sequencing problems in which certain agents might enjoy
a servicing time which is different from those of other agerftsMoreover, sequencing problems are
special cases of quasi-linear environments. In the environments, Groves mechanisms (Groves, 1973) are
well-known for a class of direct revelation mechanisms which satisfy strategy-proofness and decision-
efficiency. 10 Decision-efficiency requires that the allocation assigned by the social choice function
maximizes total welfare of the group. It is also well-known that Groves mechanisms are the only direct
revelation mechanisms that satisfy strategy-proofness and decision-efficiency on the domains that satisfy
smooth connectedness (Holnistr, 1979).1! Unfortunately, Green and Laffont (1979) show that Groves
mechanisms rarely satisfy budget-balant®.Budget-balance requires that the social choice function
assigns an allocation in which there exists no monetary transfer from outside the group or wasted within
the group.® Since the combination of decision-efficiency with budget-balance is equivalent to Pareto-
efficiency in quasi-linear environments, the above results show how difficult it is to construct strategy-
proof and Pareto-efficient direct revelation mechanisms.

Since queueing problems are special cases of quasi-linear environments, the same results as Holm-
strom (1979) hold in queueing problem¥: However, there exist strategy-proof and decision-efficient
mechanisms which satisfy more desirable properties including budget-balance in queueing problems
than in broader environments. In queueing problems, equally distributed pairwise pivotal rules (Suijs,

’See Cason, Saijo, &tvm, and Yamato (2006) for experimental results on secure implementation.

8See also Saijo, BptiM, and Yamato (2003) for theoretical results on secure implementation.

9The constancy of unit waiting costs assumed in queueing problems implies that all agents enjoy the same servicing time.
Scheduling problems are also special cases of sequencing problems. See Mendelson and Whang (1990), Suijs (1996), Mitra
(2002), Hain and Mitra (2004), Mishra and Rangarajan (2007), and Chun (2011) for sequencing problems and Moulin (2007,
2008) for scheduling problems.

19The pivotal mechanism (Clarke, 1971) and the second-price auction (Vickrey, 1961) are included in the class. See also
Groves and Loeb (1975) for Groves mechanisms and Tideman and Tullock (1976) and Moulin (1986) for the pivotal mechanism.

11see also Green and Laffont (1977), Walker (1978), and Suijs (1996) for the uniqueness of Groves mechanisms in term of
domain-richness condition. Moreover, see Hashimoto and Saitoh (2010) for a domain expansion of the pivotal mechanism and
Saitoh and Serizawa (2008) and Sakai (2008) for domain expansions of the second-price auction.

12gimilar results are obtained by Groves and Ledyard (1977), Walker (1980), and Hurwicz and Walker (1990) in non-
excludable public good economies, Ohseto (2000) in the problems of allocating an indivisible good, and Schummer (2000)
in the problems of allocating heterogeneous indivisible goods. For domain-richness conditions for the existence of budget-
balanced Groves mechanisms, see Groves and Loeb (1975), Green and Laffont (1979), Laffont and Maskin (1980), Tian
(1996), and Liu and Tian (1999) in non-excludable public good economies and Mitra and Sen (2010) in the problems of
allocating heterogeneous indivisible goods.

135ee Rob (1982) and Mitsui (1983) for the relationship between budget-balance and the number of agents.

145ee also Dolan (1978) for a class of direct revelation mechanisms which satisfy strategy-proofness and decision-efficiency
in queueing problems.



1996), which is a subclass of Groves mechanisms, satisfy budget-bal&hdéayr and Ramaekers

(2010) show that equally distributed pairwise pivotal rules are the only direct revelation mechanisms that
satisfy strategy-proofness, decision-efficiency, budget-balance, and equal treatment of equals in queue-
ing problems.'® Equal treatment of equals requires that any two agents’ utility levels assigned by the
social choice function should be equal when they have an equal unit waiting cost. Moreover, Hashimoto
and Saitoh (2011) show the relationship between decision-efficiency and anonymity which is stronger
than equal treatment of equals in queueing probleffs. Anonymity requires that any two agents’

utility levels assigned by the social choice function should be exchanged when their unit waiting costs
are exchanged. On the other hand, Mitra and Mutuswami (2011) show thiafpitietal mechanisms

(Mitra and Mutuswami, 2011) are the only direct revelation mechanisms that satisfy pairwise strategy-
proofness, decision-efficiency, equal treatment of equals, and weak linearity in queueing prdflems.
Pairwise strategy-proofness is stronger than strategy-proofness but weaker than weak group strategy-
proofness!® Weak linearity is a linearity property for monetary transfers.

1.2 Motivation

Unfortunately, almost all previous studies show negative results on secure implementation: there rarely
exists a non-trivial securely implementable social choice function. On the basis of these results, in-
vestigating which environment has a non-trivial securely implementable social choice function is an
interesting topic. In this paper, we conduct such an investigation into queueing problems.

It is well-known that there rarely exists a social choice function which satisfies strategy-proofness,
decision-efficiency, and budget-balance in quasi-linear environments. However, in queueing problems
which are special cases of quasi-linear environments, there exist social choice functions which satisfy the
above properties?® This means that strategy-proofness in queueing problems is much weaker than in
broader environments. On the basis of this relationship, we study the possibility of secure implementation
in queueing problems since strategy-proofness is necessary for secure implementation.

15This name is given by Kayi and Ramaekers (2010). See Mitra (2001) for a characterization of a domain-richness condition
for the existence of direct revelation mechanisms that satisfy strategy-proofness, decision-efficiency, and budget-balance in
queueing problems.

16Kay| and Ramaekers (2010) also study certain properties of social choice correspondences which assign a non-empty set
of allocations. See also Maniquet (2003) and Chun (2006a) for studies of social choice correspondences and the Shapley value
in queueing problems. Note that equal treatment of equals can be replaced by symmetry in the result of Kayr and Ramaekers
(2010). Symmetry requires that the allocation that is constructed by exchanging the only two consumption bundles for agents
with an identical unit waiting cost in the allocation assigned by the social choice correspondence should be also assigned. By
definition, we know that there exists no social choice function that satisfies symmetry.

17By the results of Kayl and Ramaekers (2010) and Hashimoto and Saitoh (2011), we have an alternative characterization of
equally distributed pairwise pivotal rules. See Chun (2006b) for the relationship between decision-efficiency and envy-freeness
(Foley ,1967) which is stronger than anonymity in queueing problems.

18Thek-pivotal mechanism is equivalent to the pivotal mechanism vihem, wheren is the number of agents.

19Note that pairwise strategy-proofness is stronger than effective pairwise strategy-proofness (Serizawa, 2006).

20This fact is due to the linearity of utility functions.



1.3 Related Literature

This paper is most closely related to the one written by Fujinaka and Wakayama (2008), that studies
the problems of allocating indivisible and private goods with monetary transférg-hey show that

only constant social choice functions are securely implementable when the domain satisfies minimal
richness (Fujinaka and Wakayama, 2008). Since queueing problems are special cases of their ones, we
have the same constancy result in queueing problems if the domain satisfies minimal richness by their
result. However, there exist many reasonable domains that do not satisfy minimal richness in queueing
problems. This implies the possibility of the existence of non-constant securely implementable social
choice functions in queueing problems.

1.4 Our Result

Our main result shows that on many reasonable domains, only constant social choice functions satisfy
strategy-proofness and strong non-bossiness (Saipsti@n, and Yamato, 2007), both of which are
necessary for secure implementation, in queueing problems. In fact, we show a constancy result on
the domains that satisfiyeak indifference, a new domain-richness condition introduced in this paper.
Note that weak indifference is weaker than minimal richness which implies a constancy result on secure
implementation in broader environments.

This paper is organized according to the following sections. In Section 2, our model is introduced.
We define properties of social choice functions related to secure implementability in Section 3 and
domain-richness conditions in Section 4. Certain preliminary results on properties of social choice func-
tions are shown in Section 5. In Section 6, we show our main result. Section 7 concludes this paper.
Appendix shows the relationship between weak indifference and certain domain-richness conditions.

2 Model

We study the problems of allocating positions in a queue to agents with monetary transfets= Let
{1,...,n} (n> 2) be a set ohgents Let o = (0)ic € I" be agueue where, for each € I, g; is the
position for agenti in the queueo and for each, j € | with i # j, i # g;. Note that each position is
an indivisible and private good.

Each agent can consume the only one position with a positive or negative amount of money. For each
iel,let(ai,t) €1 xR be aconsumption bundle for agenti, wheret; is amonetary transfer for agent
i. Lett = (ti)ie) € R" be a profile of monetary transfers afwl,t) € I" x R" be a profile of consumption
bundles, called aallocation. Let

ZE{(G,t)EIan”

o is a queue andL'tk < 0}
kel

be the set ofeasible allocations 22

21See Svensson (1983) and Alkan, Demange, and Gale (1991) for the problems of allocating indivisible and private goods
with monetary transfers.

22|n a feasible allocation, the sum of monetary transfers should be non-positive. Our results do not depend on this non-
positivity. This requirement is generically assumed in queueing problems.
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Each agent has a linear utility function. For eachl, letci € R; = {x € R | x> 0} be aunit
waiting cost for agenti andC; C R, be a set of unit waiting costs for agantFor each € I, let
u: I xR x G — R be theutility function for agent i such that for eacha;,ti) € | x R and eaclt; € G,

u(aiti;c) = —(0gi — 1)c +t.

Let C = [ Ci be thedomain andc = (¢i)ic € C be a profile of unit waiting costs. For each I, let
c_i=(cj)jreCi= ;i Cj be a profile of unit waiting costs for agents other than agent

An allocation is assigned by a social choice function for each profile of unit waiting costs. Let
f: C — Z be asocial choice function For eactt € C, let (g(c),t(c)) € Z be the allocation associated
with the social choice functior at the profile of unit waiting costs and (gi(c),ti(c)) € | xR be the
consumption bundle for agent | in the allocationa(c),t(c)).

Remark 1. Our model is a special case of the one presented by Fujinaka and Wakayama (2008). The
difference from their model is the number of each good and the existence of a “null” good. In our model,
the number of each position is equal to one and each agent necessarily consumes a position. On the other
hand, in their model, the number of each object is equal to or more than one and each agent does not
necessarily consume an object. There exists another difference in utility functions. In our model, each
agent’s valuation of a position decreases in the order and the marginal valuation is constant. On the other
hand, in their model, each agent’s valuation of an object is almost unrestrictive. This difference strongly
affects our results.

3 Properties of Social Choice Functions

Saijo, Spstiom, and Yamato (2007) introduce secure implementation which is identical with double
implementation in dominant strategy equilibria and Nash equiliBfid@hey show that the social choice
function issecurely implementablef and only if it satisfiestrategy-proofness strong non-bossiness
and theoutcome-rectangular property (Saijo, Spstivm, and Yamato, 2007%* In this paper, we study
securely implementable social choice functions in queueing problems. Especially, we focus on social
choice functions which satisfy strategy-proofness and strong non-bossiness.

Strategy-proofness requires that the truthful revelation is a weakly dominant strategy for each agent
in the direct revelation mechanism associated with the social choice function.

Definition 1. The social choice functiof satisfiesstrategy-proofnessif and only if for eachc,c’ € C
and each € I,

—(ai(ci.cy) = Dei+ti(ei,.c'y) > —(ai(cf,¢y) — D)ei + e, cy).

233ee Saijo, Sistdm, and Yamato (2007) for the definition of secure implementation.

24strong non-hossiness is called non-bossiness in their paper. They characterize securely implementable social choice func-
tions by strategy-proofness and the rectangular property (Saijsti8pn, and Yamato, 2007) and show that the rectangular
property is equivalent to strong non-bossiness and the outcome-rectangular property. SeetSaijm,%nd Yamato (2007)
for the definitions of the rectangular property and the outcome-rectangular property and Mizukami and Wakayama (2008) for an
alternative characterization of securely implementable social choice functions in terms of a stronger version of Maskin mono-
tonicity (Maskin, 1977). See also Berga and Moreno (2009) for an alternative characterization of minmax rules in single-peaked
voting environments in terms of strong non-bossiness.



Strong non-bossiness requires that each agent cannot change the outcome by her deviation while
maintaining her utility level in the direct revelation mechanism associated with the social choice function.

Definition 2 (Saijo, Spstidm, and Yamato, 2007)The social choice functiori satisfiesstrong non-
bossinessf and only if for eachc,¢’ € C and each € I, if

—(ai(ci,ci) —1)c +ti(ci,c-i) = —(ai(c,c-i) — )& +ti(g,ci),

then
(o(ci,c-i).t(c,c-i)) = (o(cf,c-i),t(c,c=i)).

By definition, strong non-bossiness is stronger than non-bossiness (Satterthwaite and Sonnenschein,
1981). 2> This property is also stronger than quasi-strong non-bossiness (Mizukami and Wakayama,
2007; Saijo, Sjst®m, and Yamato, 2007) which is necessary for dominant strategy implement&tion.

Constancy requires that any revelations are not reflected on the outcome in the direct revelation
mechanism associated with the social choice function.

Definition 3. The social choice functiof satisfiesconstancyif and only if for eachc,c’ € C,

4 Domain-Richness

In the problems of allocating indivisible and private goods with monetary transfers, where each agent has
a quasi-linear utility function, Fujinaka and Wakayama (2008) show that if the domain satigfiezal
richness then only constant social choice functions are securely implementable.

Definition 4 (Fujinaka and Wakayama, 2008)he domairC satisfieaninimal richness if and only if
for eachi € 1, eachd], ¢’ € G, eachd/,d{” € I, and eaclT € R, if

(0 —a)d <T < (g - a)d,
then there exists; € G such that
() (o —of)ci=T,
(i) (0" —ai)ci < (g - ai)ci for eachai € 1\ {d], 0"}

Since our model is a special case of the one presented by Fujinaka and Wakayama (2008), only
constant social choice functions are securely implementable in our model if the domain satisfies minimal
richness by their result. However, Example 1 shows that many reasonable domains do not satisfy minimal
richness in our model.

25The social choice functionf satisfies non-bossinessif and only if for eachc,d € C and eachi ¢ I, if
(ai(ci,c-i).ti(ci,c-i)) = (Gi(ci,c-i) ti(c,c-i)), then(a (g, ci),t(ci,c-i)) = (o(ci,c-i).t(c,ci)).

26The social choice functiorf satisfiesquasi-strong non-bossinessf and only if for eachc,¢ € C and eachi € I,
if —(gi(ci,c”;) —1)c +t(c.c”y) = —(ai(c,c”;) — 1)c +ti(cf,c”;) for eachc”; € C_j, then (o(ci,c_i),t(ci,c_i)) =
(o(cf,c-i).t(cf,c_i)). Saijo, Spsttom, and Yamato (2007) call this property weak non-bossiness. Mizukami and Wakayama
(2007) and Saijo, ®stdm, and Yamato (2007) independently show that the social choice function is dominant strategy imple-
mentable if and only if it satisfies strategy-proofness and quasi-strong non-bossiness.



Example 1. Leti € | andC; = R . Moreover, lettf =3,c¢' =1, g/ =1, g’ = 2, andT = 2. In this
case, we have
(0 —0o)d' =1<T <3= (0 - 0)c.

Letc; € G be such thafg” — g/)c; = T, that is,¢; = 2. This implies that condition (i) in Definition 4
holds. On the other hand,df = 2, then

(0 —0i)ei = —2> -3= (0 — g))q
for g, = 3. This implies that condition (ii) in Definition 4 does not hold.

Example 1 implies that there exist the other quasi-linear environments that Fujinaka and Wakayama
(2008) do not study, that is, we have the possibility of the existence of non-constant securely imple-
mentable social choice functions in certain quasi-linear environments. However, our main result implies
that on many reasonable domains, only constant social choice functions are securely implementable in
gueueing problems. In fact, we show that if the domain satisfies the following condition, wedédd
indifference, then any social choice function satisfying strategy-proofness and strong non-bossiness also
satisfies constancy.

Definition 5. The domainC satisfiesweak indifferenceif and only if for eachi € I, eachc],c € G,
eacho/,0 €1, and eaclT € R, if

(0 —a)d <T < (g - a)d,
then there exists; € C; such that
(o —d/)ci=T.

By definition, weak indifference is weaker than minimal richness. In our model, weak indifference
is equivalent to convexity’’ By bringing this relationship together with the result of Holrbstr(1979),
we know that weak indifference is stronger than smooth connectedness in our model. Moreover, we
know that smooth connectedness is stronger than convexity, that is, smooth connectedness is equivalent
to convexity in our model?® This implies that in our model, weak indifference is also equivalent to
smooth connectedness.

Remark 2. Fujinaka and Wakayama (2008) show the possibility of the existence of non-constant se-
curely implementable social choice functions on the domains that satisfy monotonic closedness (Schum-
mer, 2000).2° In our model, there exists no monotonically closed domain except for the case @f

due to the linearity of utility functions°

27see Appendix for the relationship between weak indifference and convexity.

283ee Appendix for the relationship between smooth connectedness and convexity.

29|n quasi-linear environments, Schummer (2000) shows a constancy result on bribe-proofness (Schummer, 2000) on mono-
tonically closed domains. Bribe-proofness is stronger than strategy-proofness. He also shows that only all-dictatorial (Schum-
mer, 2000) social choice functions satisfy bribe-proofness on smoothly connected domains. All-dictatorship requires that each
agent is actually a dictator on the range of the social choice function.

30see Appendix for the existence of monotonically closed domains and the relationship between weak indifference and
monotonic closedness in the casenef 2.



5 Preliminary Results

In what follows, we show certain preliminary results on strategy-proofness in our model. Note that
all preliminary results are irrespective of domain-richness conditions. For simplicity of notation, let
o, = gi(c,ci), 0 = oi(d,c_i), 0 = gi(c¢,c_i) andti = ti(ci,c_i), t/ =ti(cf,c_i), t’ =ti(c,c_;) for
eachc,c € C and each € 1.

Lemma 1 shows that each agent’s monetary transfer depends on her position in the queue if the social
choice function satisfies strategy-proofness.

Lemma 1. Suppose that the social choice functibsatisfiesstrategy-proofnessor eachc,c’ € C and
eachi €1, if g; = g/, thent; =1t/.

Proof. Suppose, by contradiction, that there egjst € C andi € | such thao; = o] andt; #t/. If t; <t/,
then we have- (g — 1)ci +t < — (g —1)ci +t/. This is a contradiction tetrategy-proofness If t; > t/,
then we have-(g; —1)c/ +t > —(0{ — 1)/ +t/. This is also a contradiction &irategy-proofness []

Remark 3. Lemma 1 corresponds to Claim 1 in Proposition 1 of Fujinaka and Wakayama (2008).

By Lemma 1, we know that for eachc’ € C and each € 1, if —(g; —1)ci 4+t # — (0] — 1)ci +t,
thena; # g/ when the social choice functiohsatisfies strategy-proofness.

Lemma 2 shows that if there exists a unit waiting cost such that some two different consumption
bundles are indifferent in terms of utility level, then the position associated with the unit waiting cost is
in between the two positions if the social choice function satisfies strategy-proofness. In Lemma 2, we
use the following notation: for eadte I, eachc; € C;, each(a,ti) € | x R, and eaclo] € 1, let

ti(ai; (0it),6) = (6] — G)ci +ti.

This implies—(o0; —1)ci +ti = —(0/ — 1)ci + ti(0/; (0i,1i),¢i), thatis,(o], ti(o]; (0i,ti),ci) ) is indiffer-
ent to(a;,t) for agent with ;.

Lemma 2. Suppose that the social choice functibrsatisfiesstrategy-proofness For eachc,c’ € C
and eachi € 1, if g; < g/ and there exists] € C; such that—(g; —1)c/ +t = —(0/ — 1)c¢’ +t/, then
O—i S O-i// S O-i/.

Proof. Suppose, by contradiction, that there ekist € C andi € | such that; < ¢/, —(0i — 1)¢ 4+t =
—(g/ — 1)/’ +t/ for somec]’ € C;, andg” < gj or g/ < g".

We consider the case of’ < g;. By the hypothesis, we have
o — ti/ —1;
i O-i/ > .

(1)

By the definition oft;, we have
ti(o/;(ai,t),c) -t

G = n
g — o

(2)

By the definition off; andstrategy-proofnesswe have— (o — 1)ci +t/ < — (o —1)ci + ti(o]; (ai,ti),Ci),
that is,

t <ti(o;(at),c).>" (3)
3INote that the equality does not hold. If it holds, then we hgve: ¢/ by (1) and (2). This implies that should be a
correspondence since we consider the casg’of ;.
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Figure 1: Proof of Lemma 2

By (1), (2), (3), ando; < g/, we havec/ < ¢i. Since we consider the case @f < g;, this implies
(0 —0)d' +t > (g — agy)ci + 1, that is,

ti(g('; (a,t),6) < ti(g; (0i,),c). @

By the definition off; andstrategy-proofnesswe have- (g’ — 1)ci +t’ < — (g’ —1)ci + ti(a]’; (ai.ti),Ci),
that is,
t' <ti(qg;(a,t).c). (5)

Moreover, by the definition of; andstrategy-proofness we have— (o’ — 1)c/ +t/ > —(a/" — 1)c +
t(o";(oi,t),c), that is,
ti(a/; (ai,6),q) <t/". ©)

By (5) and (6), we have(d/’; (oi,ti),¢') < ti(d; (ai,ti),ci). This is a contradiction to (4) (see Figure
1).
Similarly, we have a contradiction &irategy-proofnessin the case ot/ < ¢. O

Remark 4. There exists no result of Fujinaka and Wakayama (2008) corresponding to Lemma 2. Lemma
2 strongly depends on the decreasingness of utility functions in positions, which is not assumed in their
model.

6 Main Result

By bringing preliminary results on strategy-proofness together with strong non-bossiness and weak in-
difference, we show our main result. In line with the previous section, for simplicity of notation, let
o =a(c,ci), 0 =a(d,c.i), 0’ =a(d,c.i), 0" =a(c,ci), o7 =a(c* c_i) andt =ti(c,ci),

t' =ti(c,ci), i =t(c¢’,c), tF =ti(c,c), t* =ti(c*,c_i) for eachc,c’ e Cand each € 1.

Theorem. Suppose that the domaihsatisfiesveak indifference The social choice functioh satisfies
strategy-proofnesandstrong non-bossines and only if it satisfiexonstancy



Figure 2: Proof of Theorem

Proof. Since the “if” part is obvious, we only prove the “only if” part.
Letc,c’ € C. To prove(o(c),t(c)) = (o(c),t(c')), we firstly show

(o(ci,c-i)t(c,ci)) = (o(cf,c-i),t(c,ci))

for eachi € I. Suppose, by contradiction, that there exigts | such that(o(cj,c_;),t(cj,c_j)) #
(o(cj,c-j).t(cj,c-j)). By strong non-bossinesshis implies—(oj — 1)cj +tj # — (0] — 1)cj +tj. By
strategy-proofnessthis implies

—(oj—1)cj+tj > — (0] — 1)cj + 1. (7)

By Lemma 1, this impliessj # o, that is, 0j < o or g; > 0j. We consider the case @fj < dj.
Since(a(cj,c-j),t(cj,c-j)) # (o(cj,c-j),t(c],c-j)), by strong non-bossinesst also implies—(gj —
1)cj +1tj # — (0] — 1)cj +t]. By strategy-proofness this implies

—(0j = 1)} +1) < —(0] = 1)c| + ;. (8)

By (7) and (8), we havéo| — gj)c; <t —tj < (0] — 0j)c;. SinceC satisfiesweak indifference this
implies that there exists € Cj such that o] — gj)cj =tj —t;, that s,

—(0j = 1)c{ +tj = — (0] = 1)c| + . 9)

Since we consider the case®f < o}, by Lemma 2, this implies; < g}’ < oj. If o]’ = 0}, then, by (9)
andstrong non-bossinesswe haveo; = oj. This is a contradiction. Similarly, we have a contradiction
if aj” = ojf. Therefore, we know

0j <0 <aj.

By applying the above argument to the left inequality repeatedly, we carcfimil € C; such that
g < gy and—(oj —1)cj* +tj = — (0] — 1)c* +t}, where there exists no position betwegrand o
induced by a unit waiting cost for ageingivenc_; since each position is indivisible (see Figure 2). In
this case, we have;* = oj or o{* = of". By strong non-bossinessthese implyoj = oj". This is a
contradiction. Similarly, we have a contradiction in the casejaf aj’.

Without loss of generality, lat= 1. Therefore, we have
(0(c1,c-1)t(c1,6-1)) = (0(¢h,0-1),t(ch.c 1)), (10)
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By the same argument stated above, we also have

(0(€h,C2,€1,2),t(C1,€2,C12)) = (0(CY,€,,C1,2),8(C1,C5,C12)), (11)

wherec_; ;> is a profile of unit waiting costs for agents other than agénasid2. By (10) and (11),
we have(o(cy,C2,C_1,2),t(c1,C2,6-1,2)) = (0(C},C),C-12),t(C},Ch,C_12)). By sequentially replacing
¢j by cj for eachj # 1,2in this manner, we finally provgo (c),t(c)) = (o(c'),t(c)). O

Remark 5. Theorem does not depend on the finiteness of the number of positions, which is used to
prove Claim 3 in Proposition 1 of Fujinaka and Wakayama (2008). This difference arises from whether
Lemma 2 holds.

The above theorem is tight. Example 2 shows that if the domain does not satisfy weak indifference,
then there exist non-constant securely implementable social choice functions. Example 3 shows that
strategy-proofness is necessary for Theorem and Example 4 shows that strong non-bossiness is necessary
for Theorem.

Example 2. Suppose thdt= {1, 2} andC, = R, \ {2} for eachi € |. In this case, the domaib does

not satisfy weak indifference: if there exist | such that] = 3,c¢’ =1, g/ = 1, andg” = 2andT = 2,

then we havéa” —g/)c/ =1<T <3= (0" — /)¢ and(g" — g{)ci = ¢ # 2 =T for eachc; € C..
Let f be the social choice function such that for eachC,

((13,-1),(2,2)) ifci>2,

((o1(c),ta(c)), (o2(c),t2(c))) = {((2,1),(1,1)) if c1 < 2.

We consider strategy-proofness. Let’ € C. If ¢; > 2, then we have-(o1(c1,c2) — 1)c1 +
ti(c1,¢2) = —1 > —(01(c},¢2) — 1)cy +t1(c),c2). If €1 < 2, then we have-(o1(cq,¢2) — 1)cq +
t1(c1,¢2) = —c1+1> —(01(c],c2) — 1)c1 +ta(c],c2). Since any allocation associated witllepends
only on agent 1's unit waiting cost, these imply tHatatisfies strategy-proofness (see Figure 3).

We consider strong non-bossiness. By the argument about strategy-proofness, we know that any
allocation associated with depends only on agent 1's unit waiting cost and the hypothesis of strong
non-bossiness is realized only when agent 1's consumption bundle does not change. These irhply that
satisfies strong non-bossiness.

Example 3. Suppose that = {1,2} andC; = R, for eachi € I. In this case, the domaid satisfies
weak indifference sinc€ satisfies convexity which is stronger than weak indifference.
Let f be the social choice function such that for eachC,

((1,2),(2,-1)) ifc>2,

((o1(c),t1(c)), (02(c),t2(c))) = {((21)(11)) if c1 < 2.

By the same argument as Example 2, we know thaatisfies strong non-bossiness. We consider
strategy-proofness. Letc’ € C be such that; < 2 andc] > 2. In this case, we have (o1(c1,¢,) —
1)c1+t1(c1,0,) = —c1 — 1 < 1— (01(c),¢,) —1)c1 +ta(cy,¢,). This implies thatf does not satisfy
strategy-proofness (see Figure 3).

11



Figure 3: Examples 2, 3, and 4

Example 4. Suppose thdt= {1,2} andC; = R, for eachi € |. By the same argument as Example 3,
we know that the domai@ satisfies weak indifference.
Let f be the social choice function such that for eachC,

((3,-1),(2,2)) ifcp>2,

((o1(c),ta(c)), (02(c),t2(€))) = {((2,1)7(1,1)) if c1 < 2.

By the same argument as Example 2, we know frestisfies strategy-proofness. We consider strong
non-bossiness. Letc’ € C be such that; = 2 andc; < 2. In this case, we have (o1(c1,¢2) — 1)1+
ti(cy,c2) = —1= —(01(c},c2) — 1)c1 +t1(c}, c2) and

((o1(c1,¢2),u(c1,€2)), (02(C1, C2), t2(C1,C2))) = ((1,-1),(1,1))
#((2,1),(1,-1))
= ((01(c},¢2),t1(c),€2)), (02(€1, C2) 12(C1, C2)) ).

This implies thatf does not satisfy strong non-bossiness (see Figure 3).

Obviously, constant social choice functions are securely implementable. Therefore, by bringing
Theorem together with a characterization of securely implementable social choice functions by Saijo,
Sjostivm, and Yamato (2007), we have the following constancy result on secure implementation.

Corollary 1. Suppose that the domain satisfiesak indifference The social choice function gecurely
implementabldf and only if it satisfiexonstancy

Remark 6. Example 3 also shows the relationship between strategy-proofness and Maskin monotonic-
ity on weakly indifferent domains: the social choice function defined in Example 3 does not satisfy
strategy-proofness but does satisfy Maskin monotonicity, that is, Maskin monotonicity is not stronger
than strategy-proofness. For eaich I, eachc € G, and each(gi,t) € | xR, let L((ai,t),c) =
{(d/,t) el xR | — (g — 1)+t > —(0{ —1)c +t}. The social choice functiof satisfiesMaskin
monotonicity if and only if for eachc, ¢’ € C, if, for eachi € I, L((gi(c),ti(c)),c) C L((ai(c).ti(c)),c)),
then(a(c),t(c)) = (a(c),t(c)).

We show that the social choice functidrdefined in Example 3 satisfies Maskin monotonicity. Let
c,c’ € C be such that for eache |, L((ai(c),ti(c)),ci) C L((ai(c),ti(c)),c/). Note that in our model,
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L((ai,t),c) CL((a,t),c) implies ()¢ < ¢ if gy =1, (i) ¢ = ¢ if gy €1\ {1,n}, and (jii) ¢; > ¢ if

g, = n. If c; > 2, then we havé(o1(c),t1(c)), (02(c),t2(c))) = ((1,1),(2,—1)). SinceL((1,1),c1) C

L((1,1),c;) impliescy < ¢/, we also havé (o1(c'),t1(c)), (02(c),t2(c'))) = ((1,1),(2,-1)), that is,

(a(c),t(c)) = (a(c),t(c)). If 1 < 2, then we havé(ai(c),ti(c)), (02(c).t2(c))) = ((2,—1),(1,1)).

SincelL((2,—1),¢1) CL((2,—1),c}) impliescy > ¢}, we also havé(o1(c'),t1(c)), (02(c),t2(c))) =

((2,-1),(1,2)), thatis,(o(c),t(c)) = (a(c'),t(c')). These imply thaf satisfies Maskin monotonicity.
By Example 3, we know that Maskin monotonicity is not stronger than strategy-proofrmess2f

This relationship holds even if > 3, that is, our main result is established by secure implementability

but not by Nash implementability.

Remark 7. Saijo (1987) shows the following constancy result on “Nash” implementation: the social
choice function satisfies Maskin monotonicity and dual dominance (Saijo, 1987) if and only if it satisfies
constancy3? Obviously, the securely implementable social choice function satisfies dual dominance if
and only if it satisfies constancy. In line with such domination, Fujinaka and Wakayama (2008) show
the following constancy result on “secure” implementation: the securely implementable social choice
function satisfies non-dominance (Fujinaka and Wakayama, 2008) if and only if it satisfies con$tancy.
Note that non-dominance is weaker than dual dominaftédn our model, similar to the relationship
between minimal richness and weak indifference, we have a constancy result on secure implementation
by a weaker condition than non-dominance as follows: for éakht’), (o”,t") € f(C), eachc’,c” € C

such thafo(c),t(c')) = (o’,t') and(o(c”),t(c”)) = (0”,t"), and eachi € |, if there exists n@” € C

such that.((d{,t/),c/) C L((d/,t/),¢") andL((q/.t"),c') C L((g.t"),c"), then there exists; € C;

such that g — o{)ci =t/ —t/.

7 Conclusion

This paper studies secure implementability in queueing problems. In the problems of allocating indi-
visible and private goods with monetary transfers, where each agent has a quasi-linear utility function,
Fujinaka and Wakayama (2008) show that if the domain satisfies minimal richness, then only constant
social choice functions are securely implementable. Since our model is a special case of their one, we
know that only constant social choice functions are securely implementable if the domain satisfies min-
imal richness by their results. However, many reasonable domains do not satisfy minimal richness in
our model. In this paper, we show that only constant social choice functions satisfy strategy-proofness
and strong non-bossiness, both of which are necessary for secure implementation, on weakly indifferent
domains which are less restrictive than minimally rich domains. Our main result implies that secure im-

32The social choice functioh satisfiesdual dominanceif and only if for each(¢”,t’), (o”,t") € f(C), there exist’,c”,c" €
Csuch that (i) o(c),t(c')) = (d’,t') and(a(c”),t(c”)) = (o”,t") and (i) for each € I, L((d},t/),c]) C L((d/,t]),¢") and
L((g".t").¢') S L((d.t"),d").

33The social choice functiofi satisfiesnon-dominanceif and only if for each(o”,t’), (o”,t") € f(C), eachd’,¢” € C such
that(o(c’),t(c')) = (o',t’) and(a(c”),t(c”)) = (0”,t”), and eachi € I, if there exists n&” € C such thatl((d,t/),c/) C
L((d,t)),¢") andL((g{",t]"),c") C L((a!",t{"),c"), then there exists € C; such that (i) g" — o/ )c; =t/ —t/ and (i) (g —
0))c < (0] — g)c for eachg; € 1\ {d,0]'}.

34See the supplementary note provided by Fujinaka and Wakayama (2008) for the relationship among dual dominance, non-
dominance, and secure implementability in the problems of allocating indivisible and private goods with monetary transfers.
This note is available online alittp: //www.iser.osaka-u.ac.jp/library/dp/2007/DP0699N.pdf.
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plementation is too difficult in queueing problems since many reasonable domains satisfy weak indiffer-
ence, for example, convex domains. Moreover, by applying the observations of Cason, 8atjonsj

and Yamato (2006), our main result suggests that almost all strategy-proof direct revelation mechanisms
do not work well in queueing problems.

Our main result shows certain domain-richness conditions for the constancy of securely imple-
mentable social choice functions. On the other hand, it remains to show domain-richness conditions
for the existence of non-constant securely implementable social choice functions. However, our main
result implies that it is difficult to find such conditions that are reasonable in the economic sense.

Appendix: Relationship between Weak Indifference and Certain Domain-
Richness Conditions

In this paper, we introduce a new domain-richness condition, called weak indifference. By definition,
this condition is weaker than minimal richness. In what follows, we show a relationship among weak
indifference and certain domain-richness conditions other than minimal richness: convexity, smooth
connectedness, and monotonic closedness.

First, we consider the relationship between weak indifference and convexity.

Definition 6. The domairC satisfiesconvexity if and only if for eachi € I, eachc,c € C;, and each
A € 10,1, there exists; € C; such that

G =Ac+(1-A)d.

Fact 1 shows that convexity is stronger than weak indifference in our model. Since this fact is
obvious, the proof is omitted.

Fact 1. If the domainC satisfieconvexity then it satisfiesveak indifference
Fact 2 shows that weak indifference is stronger than convexity in our model.
Fact 2. If the domainC satisfieaveak indifference then it satisfiegonvexity

Proof. Leti €1, c,c¢ € G, andA € [0,1]. We consider the following two cased:=0or1 andA €

(0,1). If A =0o0r1, thenwe havac + (1—-A)c’ € G sincec, ¢ € G. If A € (0,1), then we consider

the following three subcases:= ¢, ¢/ < ¢, andc] > ¢/’. If ¢/ = ¢/, then we also havac + (1-A)c/ €

G sincec],c’ € G. In what follows, we consider the subcasesof ¢ andc/ > ¢ whenA € (0,1).
Letd/,q €l andT € R be such that! < ¢ and(c" — o/ ){Ac[+(1—A)c'} =T. SinceA € (0,1),

if ¢ < ¢, then we have

C, CN 1 /!

gl =T G & (g —d)
(0 =g =Tsera—ne <" <Tagra—ane 9 ~9)

SinceC satisfiesveak indifference, there exists; € C; such thatg” — g/)ci = T andci = Ac 4 (1—
A)cl’. Similarly, we can show that there exists= C; such that; = Ac/ + (1—A)c/ if ¢ > ¢/’ O

By Facts 1 and 2, we know that weak indifference is equivalent to convexity in our model. Next, we
consider the relationship between smooth connectedness and convexity.
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Definition 7. The domainC satisfiessmooth connectednes# and only if for eachi € | and each
c

\,¢’ € G, there existw: | x [0,1] — R such that for eacls; €1,

(i) there existe? € G such thaw(a;; 8) = —(a; — 1)c? for eachd € [0, 1],
(i) v(0i;0) = —(0—1)c¢ andv(ai;1) = — (0, — 1)/,

(i) v(g;-) is differentiable or{0, 1], 3°

(iv) there existK € R, such thaidv(ai; 0) /96| <K for eachb € [0,1].

Holmstidm (1979) shows that convexity is stronger than smooth connectedness in quasi-linear envi-
ronments. Since our model is one of quasi-linear environments, this relationship also holds in our model.
Moreover, Fact 3 shows that smooth connectedness is stronger than convexity in our model.

Fact 3. If the domainC satisfiessmooth connectednesthen it satisfiegonvexity

Proof. Leti €1, ¢/,¢ € G, andA € [0,1]. SinceC satisfiessmooth connectednesshere existy: | x
[0,1 — R such that for eaclw; € 1, (i) there existx? € G such thaw(a;;8) = —(a; — 1)c? for each
0 € (0,1, (i) v(6;;0) = —(ai — 1)cf andv(oi;1) = —(ai — 1)/, and (iii) v(a;; ) is differentiable on
[0, 1. Without loss of generality, we assumi;i; 0) < v(agj; 1). Letg; € |. By (ii), we have

AV(6i;0) + (1-A)v(0;1) = — (i — D{Ac + (1-A)c'}. (12)
By (iii), we know thatv(ai; ) is continuous off0, 1]. This implies that
[v(ai;0),v(0i; 1)] € v(ai; [0, 1]). (13)
By (12) and (13), there exis8 e [0,1] such that
V(0;;0) = —(a = D{Aq+ (1-A)q'}. (14)
By (i), there existg? € C; such that
v(0i;8) = —(ai - 1)cf. (15)
By (14) and (15), we havef = Ac/ + (1—A)d/’. O

By Fact 3 and the result of Holméim (1979), we know that smooth connectedness is equivalent to
convexity in our model. According to the relationships stated above, we have the following corollary in
our model.

Corollary 2. The following statements are equivalent: (i) the domain satisfesk indifference (ii)
the domain satisfiesmooth connectednesand (iii) the domain satisfiesonvexity

Finally, we consider the relationship between weak indifference and monotonic closedness.

Definition 8. The domairC satisfiesmonotonic closednes# and only if for eachi € I, eachc] € G,
and eachu € 1, there existg; € C; such that

(0] —ai)ci < (0] — ai)c| for eacha; € |1\ {g7}.

35The existence of one-sided derivatives is assumed only at the endpoints.
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If n> 3, then many reasonable domains do not satisfy monotonic closedness in our model.l Let
andC; = R, . Moreover, lett] € C; andg] = 2. In this case, for eact) € C; with ¢; > ¢/, there exists
o € 1\ {2} such that(2— gi)ci > (2— gi)c], that is,0; = 1. On the other hand, for eache C; with
¢ < ¢, there existsg; € | \ {2} such that(2— agi)c; > (2— gj)c], for example,g; = 3. In fact, Fact 4
shows that there exists no domain that satisfies monotonic closedness in our modebwBeif Since
the proof of this fact is similar to the above argument, it is omitted.

Fact 4. Suppose > 3. There exists no domain that satisfiraenotonic closedness

Fact 4 implies that monotonic closedness is stronger than weak indifference in our modelwBen
Moreover, this fact implies that weak indifference is not stronger than monotonic closedness in our model
whenn > 3. If n= 2, then many reasonable domains satisfy monotonic closedness in our model, for
exampleC = R2 , . However, since such convex domains also satisfy weak indifference, only constant
social choice functions are securely implementable on the domains by Corollary 1.
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