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Abstract

A principal acquires information about a shock and then discloses it to
an agent. After the disclosure, the principal and agent each decide whether
to take costly preparatory actions that yield mutual benefits but only when
the shock strikes. The principal maximizes his expected payoff by ex ante
committing to the quality of his information, and the disclosure rule. We show
that even when the acquisition of perfect information is costless, the principal
may optimally acquire imperfect information when his own action eliminates
the agent’s incentive to take action against the risk.
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1 Introduction

Preparing for a variety of natural, social, and economic shocks is an important task
of every government. Many governments appropriate a large amount of money on
research into the forecasting of such natural shocks as hurricanes, snow storms and
other extreme weather conditions, earthquakes, epidemic outbreaks, and so on.'

Along with forecasting, a government’s strategies to prepare for those shocks
typically involve two forms of interventions. The first is a direct intervention that is
implemented at the government’s own cost. The second is an indirect intervention
that consists of raising public awareness of the risk of the shocks and advising the
public to take preparatory actions themselves. In the case of an epidemic outbreak,
for example, the direct interventions include stricter quarantine control, building
depressurized rooms at hospitals, increasing the stock of anti-virus medicines, and
so on. On the other hand, an indirect intervention consists of advice to the public
to receive vaccinations, avoid traveling and exercise hygiene practices. Likewise,
against earthquakes, direct interventions include enforcing stricter building codes
and reinforcing public buildings such as schools and highways, while indirect inter-
ventions include advice to the public to reinforce their own houses, prepare food
stocks, and purchase earthquake insurance. Unlike direct interventions, it is the
public themselves who bear the cost of the advised action.? The essential feature of
many of these preparatory actions is that they are specific investment in the sense
that they have value only when the shock strikes.

It is argued by some that the policy of spending much money on forecasting
shocks and at the same time advising the public to take preparatory measures
is inconsistent.?> One interpretation of this claim is as follows: If the accurate

forecasting of a shock is possible, then the public is led to think that timely direct

'For example, National Oceanic and Atmospheric Agency (NOAA) of the United States budgeted
more than $2,000 million on weather services and satellites. Its joint polar satellite system (JPSS),
which is used for mid-range weather forecasts, alone cost US$382 million in FY2010 (“NOAA
warns weather forecasts will suffer from budget cuts,” Washington Post 03/31/2011). As another
example, the US Geological Survey budgeted more than US$90 million for research into geologic

hazard assessments in FY2010.
2Skoufias (2003) discusses the strategies employed by households and public agencies to mitigate

the damages of economic crises and natural disasters. Some indirect interventions involve public
expenditure as in the case of subsidies for vaccination programs, or those for the installation of

solar panels.
3See Saito (2008).



interventions will save them costly efforts. On the other hand, from the point of
view of the government, indirect interventions are much less costly and the public’s
own action is often more effective in mitigating the damage.

The purpose of this paper is to provide a formal examination of the above logic
in a stylized model where a principal (government) acquires information and then
discloses it to an agent (the public). We present the possibility of strategic obscurity
by showing that the principal may find it optimal to acquire imperfect information
when the agent can free-ride on his effort. A more detailed description of the model
is as follows: Facing the risk of a shock, the principal chooses whether to acquire
information about the shock and if he does, what forecasting technology to use
to generate his information. The forecasting technology determines the quality
of his private information about the risk of the shock. The set of technologies
available to the principal contains the perfect technology that yields a perfectly
informative signal about the occurrence of the shock as well as a continuum of
imperfect technologies that yield a noisy signal about it. Choice of any technology
is costless. Upon acquiring information, the principal determines whether to take a
preparatory action, and at the same time advises the agent on whether he should
take a costly preparatory action. The preparatory actions yield mutual benefits only
when the shock strikes so that taking no action is dominant for both parties in the
event of no shock. In the event of a sure shock, on the other hand, we suppose that
the net benefits of the actions are such that the principal has a dominant strategy
of taking action, whereas the agent finds it optimal to take action if and only if
the principal does not. This creates the fundamental commitment problem for the
principal who is better off when the agent makes unilateral effort than when he takes
unilateral action himself.

We first show that when the prior probability of the shock is moderately high,
acquiring no information is better for the principal than acquiring perfect informa-
tion. When the prior probability is low, however, perfect information is superior
to no information. Our question hence is: Does the optimal policy entail imperfect
information even when the prior probability is low? To answer this question, we
consider a simple model with binary signals. As mentioned above, the principal first
chooses and commits to the forecasting technology and disclosure rule. Regardless
of the choice of the information technology, taking no action is a dominant strategy
for him when he observes the low-risk signal. Hence, the technology determines his

incentive only at the high-risk signal. When the technology is close to perfect, the



high-risk signal is a strong indicator of the occurrence of the shock, and forces the
principal to take action. This eliminates the incentive of the agent to take action,
and there exists no disclosure rule that induces action from him. On the other
hand, when the technology is sufficiently imperfect, the high-risk signal is a mild
indicator of the occurrence of the shock, and allows the principal to take no action
himself while making it incentive compatible for the agent to take action. In other
words, the imperfect information technology generates a signal that can be used as
a commitment device for the principal to implement the unilateral action by the
agent. When the marginal benefit of the agent’s unilateral action to the principal is
significantly larger than that of the principal’s own unilateral action to himself, we
show that the optimal policy indeed entails imperfect information, and also that the
optimal technology is the most accurate one that does not interfere with the prin-
cipal’s incentive to take no action at the high-risk signal. Furthermore, the optimal
disclosure rule pools advice in the sense that it advises the agent to take action at
the high-risk signal, and also at the low-risk signal with positive probability. We
further show that even if the principal must fully disclose his private signal, the
same imperfect information technology is optimal under the same payoff condition.
In this sense, we show that strategic obscurity results from information acquisition
and not from information disclosure.

The paper is organized as follows: After the discussion of the related literature
in the next section, we formulate a model of information acquisition and disclosure
in Section 3. Section 4 presents some preliminary analysis. Section 5 analyzes
the principal’s payoffs under the perfect information and no information policies.
Optimality of imperfect information is established in Section 6. We conclude in

Section 7 with a discussion.

2 Related Literature

Decision making in the face of a natural shock is a classical subject in both the
theoretical and empirical literature. Nelson and Winter (1964) study the weather
forecasting system that maximizes the welfare of its user who must decide whether
to take a protective action against rain. Howe and Cochrane (1974) study the
decision problem faced by authorities under a snow storm forecast. Their empirical
observation on the “reluctance on the part of snow removal authorities to be sensitive

to any but very severe forecasts in making operation decisions” is consistent with the



optimal policy in the current paper. Brookshire et al. (1985) show that the expected
utility hypothesis is a reasonable description of decision-making behavior facing a
low-probability, high-loss event of an earthquake. Lewis and Nickerson (1989) study
the interaction of self-insurance and public interventions against natural disasters.

Information acquisition and disclosure is an increasingly popular topic in the
theoretical literature. Combination of the following elements is a distinguishing
feature of the present model and has not been studied together to the best of our

knowledge.

e The principal commits ex ante to information acquisition and information

disclosure policies.*

e Information acquisition is costless.

e The principal has a continuous choice of information quality.’

Principal-agent models of information acquisition in the literature are divided
into two groups depending on who acquires information.® Cremer et al. (1998a,
b), Kessler (1998), Lewis and Sappington (1997), Szalay (2005, 2009), and Dai et
al. (2006) study the design of an optimal contract when an agent can privately in-
vest resources to acquire information either before or after the contract is signed.”
In these models, positive cost of information acquisition is a critical element that
determines the form of an optimal contract as well as the agent’s decision to become
informed. The second class of models assume information acquisition by the princi-
pal and examine whether ignorance helps the principal commit to some decision in
a subsequent interaction with the agent. Among others, Dewatripont and Maskin
(1995) show that simple contracts based on the limited observation of variables may
be superior to more complete contracts when renegotiation is possible, and Cremer
(1995) shows that the principal may choose to acquire no information about the
agent’s productivity in a dynamic model with adverse selection.® Like these models,

we assume that the principal acquires information and then plays a game against

*Matthews and Postlewaite (1985) study a model of sales where a seller tests the quality of his
good and then discloses it to a buyer.

®Szalay (2009) analyzes the continuous choice of information quality.

Information acquisition is also studied in a more abstract mechanism design setting as well as
in auctions.

"See also Lewis and Sappington (1993).

8Carrillo and Mariotti (2000) demonstrate strategic ignorance by a decision maker who has

time-inconsistent preferences.



the agent.” We show that even when complete ignorance cannot serve as a commit-
ment device, a variable degree of incomplete ignorance (i.e., acquisition of imperfect
information) may still be a useful commitment device.

The choice of signal quality in information disclosure problems is studied by
Lewis and Sappington (1994) and Bergemann and Pesendorfer (2007), who both
analyze a seller’s problem when he chooses the quality of buyers’ private signals.
In these models, hence, the player who controls the signal quality does not observe
the resulting information. Kamenica and Gentzkow (2011) study information ac-
quisition by a sender when the signal is publicly observable as in the case of full
disclosure in our model. When the sender has no action to take, they ask whether
or not acquisition of some information dominates no information.'® In contrast, our
focus is on the comparison between the acquisition of imperfect information and
that of perfect information when the sender of information also has an action to
take.

Finally, it is also possible to relate our finding to the literature on government
transparency, which asks whether disclosure of a government’s private information
induces inefficient coordination by the public and creates uninsurable risks. Our
conclusion points to the possibility that even full disclosure takes place, the con-
tent of information may be less than what is potentially available if information

acquisition is endogenous.'!

3 Model

There are a principal (player 1) and an agent (player 2) facing the risk of a shock.
The shock corresponds to one of the two states of the world w € Q@ = {0,1}: The
shock occurs in state w = 1 and does not in state w = 0. The prior probability of the
shock equals p = P(w = 1) € (0,1). Before the state is realized, each player i either
“takes action” (a; = 1) or not (a; = 0) against the shock. Denote by A4, = {0,1}
the set of actions of player 7. We suppose that actions are taken simultaneously

after the disclosure. The players’ payoffs depend on the action profile and the state.

°Lack of commitment by a mechanism designer is studied by Bester and Strausz (2000), and
Skreta (2006). Note that solicitation of agents’ private information is absent in our model.

ORadner and Stiglitz (1984) also discuss the suboptimality of no information in a single-person
decision-making problem.

"The literature originates with Hirschleifer (1971), and subsequent developments include Morris
and Shin (2002), Svensson (2006) and Walsh (2007).



Specifically, player i’s payoff under the action profile a = (a1, a2) in state w is given
by

vi(a,w) = u;i(a)w — ¢;a;.
Hence, the players benefit from the actions only when there is a shock (w = 1), but

incur the cost ¢; > 0 of taking action even when there is no shock. Let

d? = uy(1,0) — u1(0,0), d} =wui(1,1) —ui(0,1),
dy = up(0,1) — uz(0,0), ds =wua(1,1) —us(1,0),
m} =uy(0,1) —u1(0,0), my =uy(1,1) —uy(1,0)
m9 = u1(1,0) —u(0,0), m} =wuy(1,1) —uy(0,1).

d) is the marginal benefit of his own action a; 1 to the principal when it is

unilaterally taken, and d} is the marginal benefit of a; 1 when the agent also
chooses as = 1. m{ and m} are the marginal benefits of the agent’s action to the
principal when the principal himself chooses a; = 0 and a; = 1, respectively. d3,
d}, m9, and ml are the corresponding quantities for the agent. We also introduce
notation for the net benefits of one’s own and the other’s actions normalized by the

own cost of taking action as follows:

5?:%—1, 5}:%—1,
59 = ﬁ—;o— 1, 0b= 2— 1,
e
py =22, pup=22
Using this notation, we can express the simultaneous-move game played by the two
parties as:
as =10 ay =1
ar =0 0 —Cy
Gy : 0 0 (1)
ap =1 0 —C2
—c1 —c1
in the no shock state (w = 0), and
as =0 ar =1
a; =0 u2(0,0) u2(0,0) + c209
Gy : u1(0,0) u1(0,0) + c1p? (2)
a; =1 u2(0,0) + cop49 u2(0,0) + ¢2(63 + 1Y)
u1(0,0) + ¢167 u1(0,0) + ¢1 (6] + p9)




in the shock state (w = 1). We assume that

d>dl>e o >4 >0, (3)
dy>co>dy = 09 >0> 6], (4)
m)>d —c; & >, (5)

(3) and (4) show that the two players’ actions are strategic substitutes: The marginal
benefit of the own action is higher when it is unilateral. Furthermore, (3) says that
a; = 1 is a dominant action for the principal (player 1) in the event of a sure shock,
and (4) says that the agent (player 2)’s best response is to take action when the
principal does not, and vice versa, again in the shock state. (5) says that for the
principal, the marginal benefit of the agent’s unilateral action is higher than the net
marginal benefit of his own unilateral action. We also assume that

4 di

c2  C

59 > 4Y. (6)

In other words, when normalized by its cost, the agent’s unilateral action raises his
own utility more than the principal’s unilateral action raises his. This is a natural
assumption to make in view of the fact that the public’s own preparatory actions
are often small-scale but effective, whereas the government’s intervention is often
designed to protect the entire population of a region or a country and hence is costly.

When the principal chooses to acquire information, he observes signal € in a
finite set ©. His forecasting technology r determines the level of accuracy of 6 in a
sense made precise below. Let f, ,(€) denote the probability of signal € in state w
when the forecasting technology is r.

The timing of events is as follows. First, the principal chooses his forecasting
technology r and disclosure rule g, which determines his non-binding advice to the
agent as a function of the signal §. The agent observes both r and g. The principal
observes 6, and then discloses it to the agent in the form of advice to the agent
on whether or not he should take action. After the disclosure, both parties choose
actions simultaneously. Finally, the state is realized and the players receive payoffs.

The principal’s choice of an advice given the observation of 0 is expressed by
a disclosure rule g : © — [0,1]: ¢(0) is the probability that action ay = 1 is
advised to the agent when 6 is observed. The principal’s policy is a pair (r,g)
of his forecasting technology and disclosure rule. By the generalized revelation

principle of Myerson (1982), the present formulation that the disclosure takes the



form of advice to the agent is without loss of generality.'> We assume that the
policy (r, g) is chosen in advance and is publicly announced. Public observability of
the forecasting technology r is a reasonable assumption given that it usually entails
publicly observable activities such as launching a satellite, building a supercomputer
or a network of sensors, and so on. We also assume that the principal commits to his
disclosure rule g in the sense that for any signal 0, his advice is generated according
to the distribution (1 — g(f),g(f)) over Ay = {0,1}.13

To summarize, the principal with private signal € believes that game G, in (1)
and (2) is played with probability P(w | ), where the probability distribution P
depends on his forecasting technology r. On the other hand, the agent who received
the advice ay believes that game G, is played with probability P(w | a2), where the
probability distribution P now depends on the principal’s policy (r, g). Unless 6 is
publicly observable, hence, the two parties attach different probabilities to the two
games.

Given a policy (r,g), each player’s strategy is defined as follows. The principal’s
strategy o1 : © x Ay — {0, 1} chooses an action as a function of the observed signal
0 as well as the realization of his random advice to the agent. On the other hand,
the agent’s strategy o9 : {0,1} — {0,1} chooses an action as a function of the
principal’s advice. Denote by as the random variable representing the principal’s
advice to the agent. Then o1(f, a2) denotes the random variable representing the
principal’s action. Let o3 be the obedient strategy such that o3(az) = ag for any
ay € {0,1}. We denote by m;(o | r,g) player i’s ex ante expected payoff under the
strategy profile o = (01, 09) and the policy (r, g). Explicitly, they are given by

m(o|rg) = E[ul (01(0, 9), 02(0)) w — c107 (6, a2)], -

mo(o | T g) = E[UQ (01(0, 9),02(v9)) w — 0202(042)],

12 Alternatively, we could specify a disclosure rule as a pair of the message space Y and the
mapping g : ® — Y. For example, (g,Y) such that Y = © and g(f) = 0 corresponds to full
disclosure, (g,Y) such that Y = {0} corresponds to no disclosure. To be fully consistent with the
revelation principle, we would need to suppose that advice to the agent is a (randomly chosen) mixed
action. This, however, is not relevant in the present model and we adopt a simpler formulation

where the advice is a pure action even though it may be randomly generated.
13This is a standard assumption in the information revelation literature, and is most likely justified

for disclosure by a public sector, where adherence to the publicly announced rule is verifiable through
official documents. Randomization may be more difficult to justify, but it is assumed here to better
illustrate the point that our main finding on the optimality of imperfect information holds true
whether the disclosure rule is deterministic or not.



where the expectation is taken over the state w, the signal 8 as well as the random
advice ay. The strategy profile o is a (Bayes-Nash) equilibrium under (r,g) if m;(o |
r,g) > mi(oh,0j | r,g) for any o} and i # j.'* A policy (r,g) is incentive compatible if
there exists a strategy o1 of the principal such that (o, 03) is an equilibrium under
(r,g). For an incentive compatible policy (r, g), if o1 is understood, we simply write
mi(r, g) for the equilibrium payoff m;(o1, 0% | 7, g).

An incentive compatible policy (r, g) is optimal if there exists no other incentive
compatible policy that yields a strictly higher equilibrium payoff. In other words,
(r,g) is optimal if there exists o, such that o = (01,03) is an equilibrium under
(r,g), and for any policy (r',¢') under which ¢’ = (o7, 0%) is an equilibrium for
some o, we have

71—1(0- | Tag) Z 71—1(0-, | 'rlagl)'

4 Preliminary Analysis: Publicly Observable 6

As a benchmark, we first consider the equilibrium action profile when the signal
is publicly observable. We suppose in this section that the strategies o1 and oo of
both the principal and the agent are functions of # alone and are pure. Let the

technology r be given. When the signal is 6, the principal chooses a; = 1 if
E,ui(1,02(0)w | 0] — c1 > E, [u1(0,02(0))w | 6].

Upon simplification, we see that

fO,r(g) pﬁ%
< +—+ and o9(0
or(0)=1if § O ST 2(0)

50
fiom < 15 and 02(0) =

1, or

Since §{ < 0¥ by assumption, it follows that a; = 1 is a dominant action for the

1
principal if the likelihood ratio ﬁ?:gz; < %.

Conversely, a; = 0 is a dominant

action for the principal if the likelihood ratio > %. As for the agent, he chooses
ag = 1if
By g uz(o1(0), Dw | 0] — c2 > E, g [uz(o1(0),0)w | 0].

Equivalently, we have

fo.r(9) pd, —
< and 01(0) =1, or
oa(0) =1 if { [ = 1w 10)

@)
(0 59
Pl < 1% md i (9) =0

" Use of a stronger notion of equilibrium does not affect the conclusions of the paper.

10



Since 85 < 0 by assumption, the agent never chooses as = 1 when a; = 1. To sum-

marize, we can describe the equilibrium action profile as follows when 0 is publicly

observable:
( o for(®)  pdt
(0,0) if £o28 > ﬁo' 0
for(®0) o (P8 pd
S PN g AR

(L0 or (0.1) it 555 € (#5. ),

¢ Jor(0) pd
[ (1,0) if forl) < 2O,

This exercise shows that the likelihood ratio of the two states given the signal 6 is

what determines the equilibrium behavior at 6.

5 Optimal Policy with Imperfect Information

We now return to our original setup where the principal’s signal 6 is his private

information. In what follows, we suppose for concreteness that 6 is drawn from the

binary set © = {/, h} according to the following distribution conditional on w:'®

w=1lw=0
0=h|1-—1r r
0=/ T 1—7r

1
'3
and low risk signals, respectively, because r < % implies that the likelihood ratios

The forecasting technology r satisfies r € [0 ) We can interpret h and ¢ as high

are ordered as:

fO,r(h) < fO,r (ﬁ)
fl,r(h) fl,r(g).

Note that » = 0 corresponds to perfect information since w = 0 results in 8 = /, and

w =1 results in 6 = h.
Let us first suppose that the principal (player 1) acquires no information. In
this case, the equilibrium is determined by the prior probability alone. Since we can

identify ;;’:Ezg = 1 under no information, (8) implies that the equilibrium action is

15See Aoyagi (2013) for the analysis of a continuous signal model.

11



given by

( .o P09 -
(0,0) if 22 <1 & p< 3,
2
1 0
(0,1) it 2 <1< 22 wpe (% 9),
(01,09) = péf’ p5g) dy’ dy
(1,0) or (0,1) ﬂt%<1<ﬁ%@pe(%,%»
. p51
((1,0) if =5 > 1 ®p>%_

Since u1(1,0) — 1 < uy1(0,1) by (5), the principal is better off with (a;,a2) = (0,1)
than with (a1,a2) = (1,0). It follows that the optimal policy in the second case
above should have (a1,a2) = (0,1). Hence, the action profile under the optimal no
information policy is given by'6
0,0) ifp<$
(0, a2) = ¢ (0,1) if;—é <p< &

dr
(1,0) ifp> 5,
1
and the principal’s payoff is given by

pu1(0,0) if p < 2—?2).
m(o | rg) =< pui(0,1) if % <p<dg, 9)
2 1

pui(1,0) —c; ifp > .

1
Suppose next that the principal acquires perfect information r = 0. In this case,
the likelihood ratio %2 = 0 for & = h and = oo for 6 = £. Note from (8) that in
neither case, the agent (player 2) chooses as = 1 in equilibrium. It follows that an

incentive compatible policy must advise no action for any 0. Therefore, the action

profile under the perfect information policy is given by

(1,0) ifo=1,
(0,0) if0 =0,

(a1, ) =

and the principal’s ex ante expected equilibrium payoff equals

mi(o | r,g) = p{ui(1,0) — ¢} = 7). (10)

8When full implementation is an issue, the principal’s preferred choice may not always be im-

plemented. If the principal’s least preferred choice is implemented, (a1,a2) = (0,1) is chosen only

when p € (;—(12), ;—é). Accordingly, the region where no information dominates perfect information

in Figure 1 is smaller.

12



Intuitively, if the agent (player 2) knows that the principal (player 1) knows the
state, he will not choose as = 1 because he knows that the principal chooses a; = 1
in state 1. Since the principal advises no action at any 6, the optimal policy under
perfect information entails no disclosure. On the other hand, the above profile is
also equivalent to what happens when the principal acquires perfect information
and then fully discloses it to the agent.

Comparison of the principal’s payoff under no information in (9) and that un-
der perfect information in (10) is summarized in the following proposition and is

illustrated in Figure 1.

perfect information (7?)

no‘information

Figure 1: Principal (Player 1)’s payoffs under perfect information and no information

o
o
expected payoff to the principal than no information.

Proposition 1 a) Ifp < % orp > then perfect information yields the greater
2

b) Ifp € <C2 = ) , then no information yields the greater expected payoff than perfect

09 0
. d2. T4
information.

Intuitively, no information dominates perfect information if the prior p is in the
intermediate range so that under no information, the principal can commit to no
action and induce the agent to take action unilaterally. When p is above this range,

the shock is too likely for the principal to commit to no action, and when it is below

13



this range, the shock is too unlikely for the agent to take action even unilaterally. In
these cases, perfect information is better than no information. We can interpret the
observation in Proposition 1(b) as one expression of the value of strategic ignorance
mentioned in Section 2. Our focus in subsequent sections is hence on the case where
p is small so that complete ignorance is inferior to perfect information.

We are now ready to analyze imperfect information policies. In this case, we show
that the principal chooses his forecasting technology so as to control the likelihood
ratio of the two states given some signal realization. In particular, we show that he
uses a high-risk signal as a commitment device to implement (a1, a2) = (0,1).

Given the conclusion above, we assume in the remainder of this section that the

prior probability p of the shock state w = 1 is low and satisfies

Co pég
p< 2 o 2 o< (11)
d9 1—p

This in particular implies that under no information, the agent does not take action
even unilaterally.
For any technology r < %, taking no action a; = 0 is dominant for him at 6 = /¢

since

ford) _1=r o o) pi

fir(0) r l-p~ 1-p
where the first inequality follows from r < %, the second from (11), and the third
from (6).

Note that we can represent the disclosure rule g by a pair (y, z) where y, z €

[0,1] denote the probabilities that action ay = 1 is suggested for signals h and /,
respectively:
y if 0 =h,
9(0) = (12)
z if g ="4.
According to the classification in (8), we consider the following four possibilities

regarding the likelihood ratio at the high-risk signal § = h:'7
f O,T(h) . r

fl,r(h) 1-— r'

"The analysis is little affected if there exists a extremely high-risk signal §’ such that when

the principal observes #’, he cannot help taking action regardless of his forecasting technology:
for8)) _ pot
f1,7(8") 1-p

for any 7.

14



Case 1.

ps}
fO r(h') pé% 1-p
: < &S r< . 13
firth) S1=p T (13)
1-p

In this case, taking action a; = 1 is dominant for the principal at # = h by (8). On
the other hand, he cannot induce action as = 1 from the agent: If the agent learns

that 6 = /£, he will choose as = 0 since

0
forll) | o »%

fi.0(6) ~1l-p

and if he learns that 8 = h, he will again choose az = 0 since

fO,r(h) > pd%
fl,r(h) 1—p

It follows that for no signal realization, the agent will choose as = 0. This in turn

implies that no disclosure rule (12) induces ay = 1 if r satisfies (13). The maximum

payoff in this case hence is achieved under perfect information r = 0.

Case 2.
69
(h 50 2
foa()z p2 = ,rZ 1170. (14)
fir(h) = 1=p 1+%

In this case, the agent has no incentive to take action even unilaterally if he learns
that & = h. By the same logic as in the first case, he has no incentive to take action
if he learns that § = /. Hence, no disclosure rule (12) induces as = 1 if r satisfies
(14).

Case 3. 5 50
5! h 50 2 2
PO fO,r(h) <P T p51 cpe pdo_ (15)
L=p = fig(h) ~ 1-p 1+ 2 1+ 2
Case 4. 50 50
59 h 50 2 2
1p L ;o,rgh; < 1p N 1 550 <r< 1 Z(so _ (16)
P 1,r P 1+ % 1+ =

We will deal with these two cases simultaneously. In Case 4, the principal (player 1)
observing 6 = h chooses a1 = 0 and advises the agent (player 2) to choose as = 1.

Hence, when 6 = h, the action profile (a1,a2) = (0,1) is played with probability

15



one y = 1. In Case 3, on the other hand, the principal observing 6 = h chooses
a1 = 1 when the agent chooses as = 0, and chooses a; = 0 when the agent chooses
ay = 1. Hence, when @ = h, the probability g(h) = y with which action profile
(a1,a2) = (0,1) is played can be less than one, and (a1, a2) = (1,0) is played with
probability 1 — y. Hence,

[0,1] if (15) holds,

y € (17)
{1}  if (16) holds.

In both cases, the principal’s ex ante expected payoff under (r, g) is given by

m1(r,g) =p|(1=7) {u1(0, 1)y + {w (1,0) = 1} (1 = )}
+ 7 {u1(0,1)z + u1(0,0)(1L — 2)}|.
On the other hand, the agent’s incentive compatibility condition when advised to
take action is given by
uw(l,1)Pw=1,a1 =1]|aa=1)+u2(0,1) P(w=1,01 =0 | g = 1) — ¢

(18)
>ua(LO)P(w=1Log =0]az=1)+u(0,0) P (w=101 =1]|p =1)

The agent’s incentive compatibility condition when advised to take no action is

implied by (18) under (11). After some algebra, we see that (18) is equivalent to
0 0 l—-p
doy(l —r) + dyzr > 0 {yr +2z(1 —r)} (19)
We can hence write the principal’s optimization problem as:

max 71 (r,g) subject to z € [0,1], {(15) or (16)}, (17), and (19). (20)

r’y?'z

In what follows, we solve this maximization problem in two steps. First, we fix r
and solve for the optimal disclosure rule g = (y,2}) conditional on r. We then

solve for the optimal value of r.

*

Lemma 2 For any r satisfying (15) or (16), if gF = (y}, z) is the optimal disclo-

sure rule conditional on r, then

a) yr =1 so that ay =1 is suggested with probability one at 6 = h.

b) 2t = 2 = ¢ [0,1].

16



Proof. See the Appendix. =

The intuition behind Lemma 2 is as follows: For the first observation, when
6 = h and r satisfies (15) or (16), the agent has an incentive to take action when
the principal does not. When 6 = h, hence, the principal can induce as = 1
for free without violating the agent’s incentive conditions (18). As for the second
observation, the principal wants to induce as = 1 as much as possible even if § = /.
He does this by randomly advising as = 1 when 6 = £ to the extent that there is no
slackness in the agent’s incentive condition (18).

Let m1(r) = m(r,g;) be the principal’s payoff given r when the disclosure rule
is optimally chosen as in Lemma 2. The following proposition verifies that 7 (r)
is strictly decreasing in r and hence maximized when r is at the lower end of its
admissible range (15) or (16).

Proposition 3 If (r*,g*) is the optimal policy subject to (15) or (16), then r* =

1751

o 51 <3 Loand ¢* = gy«, where gy is as defined in Lemma 2.
_p

PI’OOf. VVG can readily verify that
p58
1 lfp

1—’]"1 _17‘

r(l—z) =

is increasing in r. Hence,

mi(r)=p {ul(O, 1) —mir(1 - z,’f)}

1
P51

is decreasing in r. Note also that r* = 51 < 1 since 1 5 < p62 <1 by (6) and
141
(11). =
The above proposition shows that the principal chooses r so that the likelihood
fO T( )

0 at signal @ = h is just at the critical level where he is indifferent between taking
action and not when as = 1. In other words, he would prefer a more accurate signal
so long as it does not interfere with his own incentive to take no action. Since the
likelihood ratio at # = h is proportional to r for r small, and the critical value %
is proportional to p for p small, it follows that the optimal imperfect information

technology r* is proportional to p when p is small. In particular, r* — 0 as p — 0.

Having identified the optimal imperfect information policy in Proposition 3, we
now identify the sufficient conditions under which it dominates the perfect informa-

tion policy and hence is globally optimal. For this, we consider an alternative policy
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(r*, g) that uses the same r* but advises as = 1 only when § = h and advises a; = 0
otherwise: § = (9,2) = (1,0). Note that (r*,g) is itself incentive compatible, and
hence that the principal’s payoff under the optimal policy (r*, ¢*) is strictly larger
than that under (r*, g):

m(r*) > m(r*, 9),
The following theorem presents a sufficient condition for (r*, g*) to dominate perfect
information by comparing the principal’s payoff under (r*, §) with that under perfect

information 70 = p {u(1,0) — ¢ }.

Theorem 4 Suppose that

0 0
231 my
—>2 & > 2. 21
50 2 i (21)

Then the imperfect information policy (r*, g*) in Proposition 3 dominates the perfect

information policy and is optimal.

Proof. Note that m(r*,§) > p{ui(1,0) — ¢;} if and only if
50
u(0,1) —mir* > uy(1,0) —¢; & <1 M—B.
1
This holds since r* < % and (21) is equivalent to % <1- Z—%. [
As noted above, any r satisfying (15) or (16) coupled with the disclosure rule
g = (y,2) = (1,0) is incentive compatible. This disclosure rule, on the other hand,
is equivalent to full disclosure of 6 since under full disclosure, the action profile
(a1,a2) = (0,1) is an equilibrium if and only if § = h by (8). Note also by (8)
that if r satisfies (16) with strict inequalities, then (ai,a2) = (0,1) is the unique
equilibrium when 6 = h. Since any such r also satisfies r < %, the same condition
(21) also ensures that (r,g) dominates perfect information. The corollary below

summarizes this observation.

Corollary 5 Suppose that (21) holds. Then there exists an equilibrium under the
full disclosure of 6 with the imperfect forecasting technology r* that dominates the

perfect information policy. Furthermore, for any r satisfying

) »y

1— 1—
7;? <r< 7268 : (22)
14 =% 1+ 1%

the full disclosure of @ with the imperfect forecasting technology r induces the unique

equilibrium that dominates the perfect information policy.
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The sufficient condition (21) is a strengthening of (5) and holds when the agent’s
unilateral action has a significantly larger impact on the principal’s payoff than his
own unilateral action. For example, suppose that the principal’s payoff is written
in the form:

ui(ay,a2) = kiay + kgas — ajas,

where the cross product term represents strategic substitution. Then the benefit of
the agent’s unilateral action for the principal equals m{ = u;(0,1) — u;(0,0) = ko,
and that of his own unilateral action equals d = u1(1,0) — u1(0,0) = k;. Hence,
(21) holds when ko > 2(k; — ¢1).

The above conclusion extends to alternative setups where the principal and the
agent move sequentially. Suppose first that the principal moves first. By choosing
a1 = 0, he reveals no additional information and hence can force ao = 1 on the
agent when r = r*. It follows that the imperfect information policy in Theorem 4
remains optimal under (21).

Suppose next that the agent moves first after the disclosure. In this case, if
U2(17 0) > u2(07 1) — C2,

then the agent has no incentive to take action under r = r* since then he can
force the principal to take action by taking no action himself.'® However, if the
principal adopts a less accurate forecasting technology r that satisfies (22), then
(a1,a2) = (0,1) can be implemented as a unique equilibrium when # = h even if
the agent is the first mover. Hence, the imperfect information policy (r, g;) for any

such r again dominates perfect information again under (21).'?

6 Conclusion

In a model of information acquisition and disclosure, we show that endogenous
information about the risk of a shock may be imperfect when the agent may free
ride on the principal’s preparation efforts. For a shock with moderately high prior

probability, the principal prefers no information to perfect information. On the

18See (8).

9One natural interpretation of the agent in our model is that they are in fact a continuum of
individuals. Under this interpretation, no single individual can influence the principal’s decision,
and the same conclusion as in the simultaneous setting holds even when those individuals move

before the principal.
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other hand, for a shock with small prior probability, the principal prefers perfect
information to no information, but the optimal policy may entail a strictly positive
degree of imperfection. Specifically, we show that the full disclosure of imperfect
information may outperform perfect information.

The model adopts an extreme assumption that a perfectly informative signal
is costlessly available to the principal. Of course, if acquisition of more accurate
information is more costly, then it only reinforces the main conclusion of the paper.
When acquisition of perfect information is technologically infeasible, the relevant
question is whether the optimal information is less precise than what is techno-
logically feasible. The answer naturally depends on the parameters, but the basic
intuition of the present analysis continues to be valid.

The scientific assessment of a risk is often very difficult to communicate to non-
experts. Furthermore, it is often observed that individuals overreact to a small
probability risk in some cases, and undermine a moderately high probability risk in
other cases. In this sense, the biggest challenge for the sender of information may
be to induce the right action from the receivers taking into account the imperfection
and bias in their information processing.?’ Theoretical investigation into such a

process would be an interesting topic of future research.

Appendix

Proof of Lemma 2. a) If r satisfies (16), then y* = 1 by (17). Suppose then that
r satisfies (15). Let (r,g) be any incentive compatible policy with g(h) < 1. We
show that (r,g) with

1 if0=h,

g(0) otherwise,

is also incentive compatible and yields a strictly higher payoff to the principal. By

our choice of r, we have
31 —y)(1 —r) > 7(1 —y)r. (23)

Add side-by-side (23) to the incentive compatibility condition (19) for (r,g). The

resulting inequality is the incentive compatibility condition for (r,g). That (r,g)

20Gee, for example, Eggers and Fischhoff (2004) and Fischhoff (1994, 2011) for the discussion of

communication strategies when the receivers have limited capabilities.
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yields a strictly higher payoff to the principal is implied by (5): u1(0,1) > uy(1,0) —

Ct.

b) The conclusion follows immediately once we substitute y = 1 into m(r, g), and

rewrite the optimization problem (20) with respect to z as:

max rm)z
z

1- 1 -
subject to z € [0, 1], and {—p(l -r)— 537“} 2<&(L—r)— L m
p p
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