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Abstract 

This paper empirically studied the relative risk aversion (RRA) implied from the options and historical 

returns of the Nikkei 225 index around the 2007-2008 subprime loan crisis. The extended use of Japanese option 

data and an estimation method of physical density are innovations introduced in this study. The RRA are 

typically downward sloping across the options’ moneyness but show a clear U-shape and become negative 

around the at-the-money (ATM) level. Also, the RRA level decreases substantially during the crisis. Previous 

studies have explained these anomalies as the result of a change in the investor mix or a mispricing of options. 
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1. Introduction 

This paper chiefly aims to empirically study the relative risk aversion (RRA) of a representative 

stock market investor in Japan to determine how the subprime loan crisis affected risk aversion. In 

particular, the study examined the shape of the risk-neutral density derived from a cross section of Nikkei 

225 options data from 2006 to 2010 and its relationship to a real-world density, derived from a time series 

of historical returns. The relationship between risk-neutral and real-world densities, as proposed by Ait-

Sahalia and Lo (2000) and Jackwerth (2000), is then used as a basis to estimate the implied risk aversion 

measure. I found that the average RRA level rose in response to major financial events and when the 

crisis began to build up. However, it fell below the pre-crisis level when the Lehman shock hit the 

Japanese stock market.  In the post-crisis period, the RRA rose again but not as high as the pre-crisis level.  

Previous studies that used option prices to derive empirical risk aversion measures can be divided 

into two broad groups. The first group assumes a representative agent’s utility function in the form of 

power and exponential functions that have one parameter as a constant relative risk aversion measure. 

Studies in this group usually begin with an estimation of risk-neutral density from option prices, and then 

use risk aversion coefficients as risk preference adjustments to derive real-world densities, for example, 

Liu et al. (2007), Bliss and Panigirtzoglou (2004), and Anagnou et al. (2002). The risk aversion measures 

can then be estimated conveniently using a closed-form solution based on the assumed utility function. 

However, the estimated risk aversion measures are either time-invariant or constant across price levels of 

the underlying assets because of the pre-assumed utility function.  

The second group of studies does not specify a representative agent’s utility functional form, but 

rather derives a risk aversion measure directly from the relationship between risk-neutral and real-world 

densities, such as Ait-Sahalia and Lo (2000) and Jackwerth (2000). The risk aversion measure estimated 

in this group is flexible and time-variant, which may reflect the current aggregate risk aversion better than 

the measures estimated from the first group. However, the estimated risk aversion measures generally 

form a U-shape curve across the values of the underlying assets and turn negative for certain asset prices. 

This paper can be categorized into the latter group. The risk aversion measures of the Japanese 

stock market shows a downward sloping trend across a range of underlying indexes; however, they also 

show a U-shape pattern and partially fall into the negative region. This ill-behaved risk aversion measure 

contradicts the economic theory that a representative agent is risk averse and has a concave utility 
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function. Jackwerth (2000) offers a credible explanation for this behavior: the options used to derive risk-

neutral densities are mispriced. The results of Ait-Sahalia et al. (2001) and Bondarenko (2003) as well 

support this mispricing explanation. 

This paper further aims to propose a simple approach to solving a dilemma in the estimation of 

real-world density between the validity of a stationary assumption and the reliability of estimated 

parameters. Real-world density estimation usually requires a long historical return series for the 

identification of reliable distribution parameters. However, risk-neutral density parameters are estimated 

from a cross section of option data at a single point in time. Ideally, data of the same period should be 

used to estimate both risk-neutral and real-world densities to derive an exact implied risk aversion 

measure. Moreover, the use of a long past sampling period implies that the return series is stationary over 

the entire period, a questionable assumption in the real world. In addition, a non-overlapping series of 

return should be used in density estimation to avoid the autocorrelation problem. With a 30-day target 

horizon, one year data will provide only 12 non-overlapping monthly return observations. This leads to a 

dilemma of whether to use a non-overlapping-return series observed over a long period or employ 

overlapping returns from the shortest possible sampling period but subject to the autocorrelation problem. 

To address this dilemma, I apply a parametric rather than a non-parametric method to reduce the 

amount of data required for reliable parameter estimation. Moreover, instead of using a target multi-

period return series, a single-period model is used to forecast multi-period distribution parameters. In 

particular, I estimate real-world density using GARCH models both with and without leverage effects.  

The GARCH(1,1) model is used for non-leverage and the Glosten−Jagannathan−Runkle [GJR(1,1)] 

model (Glosten et al., 1993) for leverage situations. Daily Nikkei 225 returns were used for parameter 

estimation of a daily GARCH(1,1) or GJR(1,1) model, and then the 30-day-ahead conditional mean and 

variance of the distribution were forecasted using the estimation model. Therefore, with only past-one-

year data, the number of returns increased to around 250 observations. The multi-period conditional mean 

and variance are estimated based on the simple law of expectations that does not alter the properties of the 

assumed model.  

According to the likelihood ratio test proposed by Berkowitz (2001), in which the same GARCH 

model specification with both normal and Student’s t innovation distributions are compared, models with 

normally distributed innovations are better ex-ante forecasts of realized returns density. This contradicts 
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the common belief that in comparison with the normal distribution the Student’s t distribution is preferred 

in modeling equity returns because the t distribution has a fat-tailed property 

For risk-neutral density estimation, I also chose a parametric rather than a non-parametric method. 

Ait-Sahalia and Lo (2000) and Ait-Sahalia et al. (2001) used pooled cross sections of option data for the 

observation period to non-parametrically estimate risk-neutral density. However, as Bliss and 

Panigirtzoglou (2004) pointed out, pooling cross sections of options data over the observation period 

implies that risk-neutral density is stationary across periods, which is a questionable assumption because 

the Nikkei 225 varied substantially during the sampling period and the number of available strikes used in 

estimation changes every observation day. Even if the stationary assumption is satisfied, Rosenberg and 

Engle (2002) suggested that the obtained risk-neutral density is an average of risk-neutral density over the 

observation period, not the risk-neutral density that reflects the current preference of the representative 

agent.  

I used three different models to estimate risk-neutral density: the Heston (1993) density, the 

generalized beta density of the second kind (GB2), and a mixture of two lognormal densities (MLN). 

Though these three models produce similar results, the MLN density is prone to producing erratic RRA 

functions, although it is a direct extension of the basic Black-Scholes option pricing models. The Heston 

density is a representative of the stochastic volatility models in option pricing but requires complex 

numerical integration. The GB2 density has a flexible function form, but this, as well, sometimes 

produces erratic results. However, this paper does not aim to determine which risk-neutral density model 

is the best. 

Section 2 discusses the estimation method in detail. Section 3 then describes the data and section 4 

presents an empirical estimation of the results. Finally, I conclude in section 5. 

 

2. Methodology 

2.1. Risk Aversion Measures 

This study builds on the assumptions that there exist a representative investor who is rational and 

risk averse or has a concave utility function, and other general characteristics such as a complete and 

frictionless market. With these assumptions, Ait-Sahalia and Lo (2000) showed that market-wide or 
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aggregate risk-neutral density ݍ௧ሺ்ܵሻ  and the real-world density ݌௧ሺ்ܵሻ  are related through the 

representative investor’s utility function Uሺ்ܵሻ as follows:  

௧ሺ்ܵሻݍ

௧ሺ்ܵሻ݌
ൌ ߣ

ܷᇱሺ்ܵሻ

ܷᇱሺܵ௧ሻ
ൌ  ௧ሺ்ܵሻߦ

where	ܵ௧ is the current price and ்ܵ the end-of-period price of the underlying asset; ߦ௧ሺ்ܵሻ	is a pricing 

kernel function, and ߣ a constant independent of the price level of the underlying asset,	்ܵ. Jackwerth 

(2000) and Ait-Sahalia and Lo (2000) further illustrated that instead of using a utility function to derive a 

risk-aversion measure, which requires knowledge of the ߣ value, the pricing kernel can be written as 

௧ᇱሺ்ܵሻߦ ൌ ߣ
ܷᇱᇱሺ்ܵሻ

ܷᇱሺܵ௧ሻ
. 

Then, the Arrow-Pratt relative risk aversion measure can be derived from 

.      (1) 

To obtain the Arrow-Pratt relative risk aversion measure ܴܴܣ௧ሺ்ܵሻ defined above, the risk-neutral 

density ݍ௧ሺ்ܵሻ and the real-world density ݌௧ሺ்ܵሻ need to be estimated. This risk aversion measure is also 

called option-implied risk aversion because the estimation of risk-neutral density is usually based on 

observed option data. Note that it is also possible for a researcher to predefine the ܴܴܣ௧ሺ்ܵሻ function and 

one of the two densities, and then derive the remaining density.  In other words, knowledge of any two of 

the elements 	ܴܴܣ௧ሺ்ܵሻ, ݍ௧ሺ்ܵሻ, and ݌௧ሺ்ܵሻ enables the researcher to estimate the remaining element. 

For example, to derive the risk aversion function ܴܴܣ௧ሺ்ܵሻ, Jackwerth (2000) fitted option-implied 

volatility to the volatility from his model to derive risk-neutral density ݍ௧ሺ்ܵሻ and used a Gaussian kernel 

to estimate the real-world density ݌௧ሺ்ܵሻ. Ait-Sahalia and Lo (2000) used a non-parametric model with a 

Gaussian kernel to estimate both the risk-neutral density ݍ௧ሺ்ܵሻ and the real-world density ݌௧ሺ்ܵሻ. On the 

other hand, Bliss and Panigirtzoglou (2004) aimed to derive the implied real-world density ݌௧ሺ்ܵሻ based 

on predefined models of the risk neutral density ݍ௧ሺ்ܵሻ and the risk aversion function. 

 

2.2. Risk-Neutral Density Estimation 

I used three different parametric models to estimate risk-neural density: the Heston (1993) density, 

the GB2, and a mixture of two lognormal densities (MLN). 

RRAݐሺܵܶሻ ൌ െܵܶ
ܷ′′ ሺܵܶሻ

ܷ′ሺܵܶሻ
ൌ െܵܶ

′ݐߦ ሺܵܶሻ

ሺܵܶሻݐߦ
ൌ ܵܶ ቈ

′ݐ݌ ሺܵܶሻ

ሺܵܶሻݐ݌
െ
′ݐݍ ሺܵܶሻ

ሺܵܶሻݐݍ
቉
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With regard to the Heston (1993) density, I followed the method applied by Gatheral (2006). Under 

the Heston density, stock prices ܵ௧ follow the process:   

݀ܵ௧ ൌ ݐ௧ܵ௧݀ߤ ൅ ඥݒ௧ܵ௧ܼ݀ଵ, 

௧ݒ݀ ൌ െߣ	ሺݒ௧ െ 	ݐ݀	ሻݒ̅ ൅  ,௧ܼ݀ଶݒඥߟ	

〈ܼ݀ଵ ܼ݀ଶ〉 ൌ   ݐ݀ߩ

 

where ݒ௧ is the conditional variance at time t and ߣ is the speed of reversion of ݒ௧ to its long-term mean ̅ݒ. 

The return density under Heston can be written as 

      
 (2) 

 

where 	 ௜ܺ  is the exercise price of the option, ߮  is an integral variable, and ߗሺ߮, ߬ሻ  and ߖሺ߮, ߬ሻ  are 

functions of the model parameters ߠு௘௦௧,௧. For details of the parameters and the derivation of the model, 

refer to Gatheral (2006) or to the original work, Heston (1993). It should be noted that since risk neutral 

densities are estimated for each observation date, the parameter set ߠு௘௦௧,௧ implies that the parameters are 

dependent on time t. However, for simplicity, the subscript t is omitted in the distribution parameters. 

  With regard to the GB2 introduced by Bookstaber and MacDonald (1987), I follow the estimation 

method used by Liu et al. (2007). The GB2 density is defined as 

 
(3) 
 

where ீߠ஻ଶ,௧ ൌ ሺܽ, ܾ, ,݌ ሻݍ  are the parameters of the distribution and ܤሺ݌, ሻݍ  is a beta function with 

parameters ݌ and ݍ. Risk neutrality imposes a condition that the forward price of the underlying asset 

should be equal to 

 
. 

The two-lognormal-density mixture, as well, follows the Liu et al. (2007) method, defined as 

(4) 
 

where ߠெ௅ே,௧ ൌ ሺܨଵ, ,ଶܨ ,ଵߪ ,ଶߪ ௅ே௝,௧ߠ ሻ is a set of distribution parameters andݓ , j = 1 to 2 is a set of 

parameters associated with the individual lognormal density ௅݂ே௝,௧ defined as  

ݐݏ݁ܪ݂ ൫ݐ, ݅ܺ หݐݏ݁ܪߠ ൯ݐ, ൌ
1
ߨ2

න ݀߮ ∙ expሼߗሺ߮, ߬ሻ̅ݒ ൅ ,ሺ߮ߖ ߬ሻݒ െ ݅߮logሺܺ݅/ܵݐሻሽ
∞

െ∞

൫ݐ,2ܤܩ݂ ݅ܺ หݐ,2ܤܩߠ൯ ൌ
ܽ ݅ܺ

െ1݌ܽ

,݌ሺܤ݌ܾܽ ሻሾ1ݍ ൅ ሺ ݅ܺ/ܾሻܽሿ݌൅ݍ
, ݅ܺ ൐ 0

߬,ݐܨ ൌ
݌ሺܤܾ ൅ 1/ܽ, ݍ െ 1/ܽሻ

,݌ሺܤ ሻݍ

൫ݐ,ܰܮܯ݂ ݅ܺ หݐ,ܰܮܯߠ൯ ൌ ݓ ൫ݐ,1ܰܮ݂ ݅ܺ หݐ,1ܰܮߠ൯ ൅ ሺ1 െ ሻݓ ൫ݐ,2ܰܮ݂ ݅ܺ หݐ,2ܰܮߠ൯ 
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A European call option under each assumed risk-neutral density is computed as follows: 

 (5) 

where ܥ௧,௜
ఏ೘,೟ሺ ௜ܺ, ߬ሻ is a theoretical European call option price at strike ௜ܺ with time to maturity ߬ ൌ ܶ െ  ݐ

computed under the assumed density models ௠݂,௧൫்ܵ|ߠ௠,௧൯ with m equal to Hest in (2), GB2 in (3), and 

MLN in (4), given the set of parameters ߠ௠,௧. ݎ௙,௧ is the risk-free rate and ்ܵ is the price of the underlying 

asset at maturity date ܶ. All assumed densities ௠݂,௧൫்ܵ|ߠ௠,௧൯ in (5) satisfied the relationship found by 

Ross (1976), Breeden and Litzenberger (1978), and Banz and Miller (1978):  

.  

A closed-form solution for the theoretical option prices in (5) under the Heston density in (2) is 

based on Gatheral (2006), whereas the GB2 density in (3) and the MLN density in (4) are based on Liu et 

al. (2007). 

The least-squares method is used to estimate the parameters of densities in (2), (3), and (4) by 

minimizing the sum of the squared differences between the theoretical price ܥ௧,௜
ఏ೘,೟ሺ ௜ܺ, ߬ሻ and the observed 

market price ܥ௧,௜
௠௞௧ሺ ௜ܺ, ߬ሻ at all strike prices ௜ܺ according to the equation 

. 

Previous studies that estimated risk-neutral density using Nikkei 225 option data include Nakamura 

and Shiratsuka (1999) and Shiratsuka (2001) which used the finite difference method documented in 

Breeden and Litzenberger (1978) and Neuhaus (1995).  

Ait-Sahalia and Lo (2000) applied a non-parametric method to estimate risk-neutral density, but 

their method is subject to the following assumption: the representative investor’s preference is constant 

across the observation periods, and the derived risk-neutral density reflects the average density over 

݆ܰܮ݂ ൫ݐ, ݅ܺ ห݆ܰܮߠ ൯ݐ, 	ൌ 	
1

݅ܺට22ߪ݆ߨ
൭െ݌ݔ݁

ൣ݈݊ ݅ܺ െ ܨ݆݈݊ ൅ 2߬൧ߪ0.5݆
2

2߬ߪ2݆
൱.

݅,ݐܥ
݉ߠ ݐ, ሺ ݅ܺ , ߬ሻ ൌ ݎ൫݂݌ݔ݁ ൯න߬ݐ, ሺܵܶ െ ݅ܺሻ൅݂݉ ൯ݐ,݉ߠ൫ܵܶหݐ,

∞

0
݀ܵܶ

݂݉ ൯ݐ,݉ߠ൫ܵܶหݐ, ൌ
݅,ݐܥ2߲

݉ߠ ݐ, ሺ ݅ܺ , ߬ሻ

߲ ݅ܺ
2 ቮ

ܺ݅ൌܵܶ

ݐ,݉ߠ൫ݐݍݏ݈
∗ , ߬൯ ൌ min

ߠ
෍ቂݐܥ,݅

݉ߠ ݐ, ሺ ݅ܺ , ߬ሻ െ ݅,ݐܥ
ݐ݇݉ ሺ ݅ܺ , ߬ሻቃ

2
ܰ

݅
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multiple periods rather than the current period density, as highlighted by Bliss and Panigirtzoglou (2004) 

and Rosenberg and Engle (2002).  

A parametric approach offers many candidate models to choose from.  Previous studies seem to be 

in favor of a variation of the spline functions estimation, a mixture of the lognormal density, the 

generalized beta density, and the Heston (1993) density. Examples of relevant studies are Shackleton et al. 

(2010), Liu et al. (2007), Moodley (2005), Anagnou et al. (2002), and Melick and Thomas (1997). 

For comparability with previous studies, I chose Heston as a representative risk-neutral density 

based on the stochastic volatility model. A mixture of two lognormal densities should be more flexible 

than one lognormal density, while a mixture of three lognormal densities requires a larger cross section of 

option data for reliable parameter estimation. The GB2 is relatively quick to estimate compared with the 

other two models, with Heston being the most time-consuming. 

 

2.3. Real-World Density Estimation 

Ideally, estimation of real-world density should use the shortest possible observation period of past 

returns because risk-neutral density can be estimated with a cross section of option data for the current 

observation period. However, estimation of real-world density generally requires the use of a long period 

of observed past returns, which in turn may not reflect the true distribution of assets at the current 

observation date. Consequently, risk aversion measures derived from risk-neutral and real-world densities 

based on different observation periods may be inaccurate. 

Any researcher can increase the sample of observed returns by using an overlapping-returns series. 

However, the overlapping-returns series would be plagued by autocorrelation problems that would, in 

turn, result in unreliable parameter estimation. To estimate reliable real-world density parameters using 

the shortest possible observation period, I use a daily parametric model to forecast multi-period 

distribution parameters. Therefore, a daily returns series can be used in model parameter estimation that, 

in turn, results in an instant increase in observation data with a minimum autocorrelation problem. 

Specifically, I use a three-step estimation process summarized as follows. 

1. Estimate GARCH(1,1) and GJR (1, 1) model parameters based on a daily returns series over 

the past one year from the current observation date. 

2. Select the model with the lowest AIC statistic. 
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3. Use estimated parameters of the selected model to forecast multi-period distribution 

parameters matching the target maturity horizon of risk-neutral density. 

In the first step, daily stock returns are assumed to follow either a symmetric GARCH(1,1) model 

or an asymmetric GARCH model, proposed by Glosten et al. (1993), known as GJR (1, 1). Under the 

GJR (1, 1) model, the daily returns of the Nikkei 225 index follow the process: 

௧ݎ ൌ ௧ߤ ൅ ݄௧
ଵ/ଶݖ௧, ,௧~݅݅݀ሺ0,1ሻݖ

 

(6) 

where ݎ௧ is the daily return ln	ሺܵ௧/ܵ௧ିଵሻ at time t, ݄௧ is the conditional variance at time t, and ݀௧ିଵ is an 

asymmetric dummy variable. The innovation process ݖ௧ is assumed to follow either a normal distribution 

or a standardized Student’s t distribution. Under step 1, parameters ߱, ,ଵߙ  and the degree of ߚ ଶ, andߙ

freedom ߭ in the case of a t distribution were estimated. The GARCH(1,1) model is a restricted version of  

(6) with the coefficient of leverage term ߙଶ	equal to zero. ߤ௧	is assumed to be constant, or it follows the 

first-order autoregressive [AR (1)] process that is automatically selected according to the AIC statistic 

criterion in step 2. 

 Under step 1, a total of eight models are estimated. Four models are estimated under each 

assumed distribution of ݖ௧; GJR(1,1) with AR(1), GJR(1,1) without AR1, GARCH(1,1) with AR(1) and 

GARCH(1,1) without AR(1). An AIC statistic is then used to select the most appropriate model under 

each assumed distribution. 

 Next, the estimated parameters of the selected model are used to forecast the next single-period 

conditional mean ߤ௧	ା	ଵ
ሺଵሻ 	and variance ݄௧	ା	ଵ

ሺଵሻ . The single-period conditional mean and variance of period 

t+2 are then forecasted based on ߤ௧	ା	ଵ
ሺଵሻ  and ݄௧	ା	ଵ

ሺଵሻ . The process is repeated until the forecast period reaches 

the target horizon, in this case, 30 days ahead. All of the 30-single-period-forecasts are then summed to 

obtain the multi-period conditional mean ்ߤ	ି	௧
ሺଷ଴ሻ 	ൌ 	∑ ௜	ା	௧ߤ

ሺଵሻଶଽ
௜	ୀ	ଵ  and the conditional variance ்݄	ି	௧

ሺଷ଴ሻ 	ൌ

	∑ ݄௧	ା	௜
ሺଵሻଶଽ

௜	ୀ	ଵ . The relationship between single-period and multi-period parameters is based on the 

properties of expectation. 

  

 

ݐ݄ ൌ ߱ ൅ ሺ1ߙ ൅ െ1ݐߝെ1ሻݐ2݀ߙ
2 ൅ െ1ݐ݄ߚ with െ1ݐ݀ ൌ 1 if െ1ݐݎ ൏ ,ߤ otherwise െ1ݐ݀ ൌ 0 
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3. Data 

This study applies the Nikkei 225 from December 2005 to December 2010 as it represents the broad 

index of the Japanese stock market.  Option data on the Nikkei 225 index, obtained from NEEDS-

FinancialQUEST2.0, are used to estimate risk-neutral density. Nikkei 225 options are European-style 

options that can be exercised on the second Friday of the expiration month. The settlement price is based 

on special quotation (SQ) calculated from the total opening prices of each component stock of the Nikkei 

225 on the business day following the last trading day. Strike prices are multiples of ¥500 intervals based 

on the Nikkei 225, but for the nearest three expiration months the strike prices are multiples of ¥250 

intervals. On any trading day, strike prices were set such that 17 strike prices were available for any 

maturity month, eight below and eight above the at-the-money (ATM) strike price.  Of a total of 7,155 

call and put options at the end of each month during the sampling period, only 4,223 options, or around 

60%, passed the screening process.  

The screening process began by eliminating options with maturities less than seven days. Then, for 

each day, the pair of ATM call and put options with the least difference in the closing transaction prices 

was identified for each maturity. If a pair could not be identified, the options in that maturity were 

entirely disregarded. During this step, an implied forward index level, ݐܨ,߬ , was calculated based on the 

closing transaction prices of ATM call and put options from the relationship described in Ait-Sahalia and 

Lo (2000), 

, (7) 

where ݎ௙,௧ is the risk-free rate, which is an average of both buying and selling rates of new issues of three-

month certificate of deposits (CDs). ߬ is the remaining time-to-maturity of the options, and ܥ௧,஺்ெ and 

௧ܲ,஺்ெ are the prices of ATM call and put options, respectively.	 ஺்ܺெ is the ATM strike price. 

  For maturities that ATM options were identified, only options with existing closing bid and ask 

prices and ask prices within two times the bid prices were retained. Next, mid-prices were calculated for 

all options. The risk-neutral densities estimated were based on out-of-the-money options that have more 

liquidity than in-the-money options and, hence, are less subject to pricing error. Out-of-the-money puts 

were converted to calls using the put-call parity. Only options data that implied volatility could be 

estimated and only values less than 200% per year were retained. Table 1 shows summary statistics of the 

߬,ݐܨ ൌ ܯܶܣ,ݐܥ൯൫߬ݐ,݂ݎ൫݌ݔ݁ െ ൯ܯܶܣ,ݐܲ ൅  ܯܶܣܺ
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screened options for 61 months, from the end of December 2005 to the end of December 2010. Only 

4,223 options, or around 60% of the total, passed the screening process; of these, 41% were out-of-the-

money call and 59% were out-of-the-money put data. An ATM option is defined as a call option with 

strike price directly below the implied forward index level estimated from (7). By definition, this option is 

regarded as an in-the-money call option. Consequently, the call price implied from out-of-the-money put 

price was used instead of the real in-the-money call price at ATM strike. 

[Table 1 around here] 

 

Real-world densities were also estimated at the end of every month from December 2005 to 

December 2010. The estimation window was one year prior to each end-of-month date. For example, a 

real-world density estimated on the last trading day of December 2005 requires one-year daily Nikkei 225 

data from December 2004. Non-overlapping one-month empirical RRA measures are then derived using 

the estimated real-world and risk-neutral densities.  

 

4. Empirical Results 

4.1. Real-World Density Estimation 

At the end of each month from December 2005 to December 2010, two real-world densities with 

normal and t-distributed innovations were estimated based on the selected models either GARCH(1,1) or 

GJR (1, 1) using (6). Parameters were estimated from the daily returns series from one year before the 

observation date. The estimation used AIC statistic as a basis to automatically select among  four 

candidate models, either a constant mean or AR(1) conditional mean GJR(1,1) or GARCH(1,1), 

separately for assumed normal and t-distributed innovations. Table 2 shows average AIC statistics of the 

four candidate models as well as how many times each model was selected during an observation period. 

Models with the lowest AIC statistic were selected separately under each assumed distribution of 

innovations, with Panel (a) showing the results for Student’s t distribution and Panel (b) for the normal 

distribution. 

[Table 2 around here] 

The observation periods were divided into three sub-periods, the pre-crisis period from December 

2005 to June 2007, the crisis period from July 2007 to March 2009, and the post-crisis period from April 
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2009 to December 2010. I divided the periods based on the observed movement of the Nikkei 225 index. 

Although the Lehman shock actually hit the Japanese stock market in October 2008, the Nikkei 225 

continuously declined from July 2007 and did not pick up until April 2009.  

It should be noted that the numbers presented in Table 2 are the average AIC statistics of an 

observation period. The statistics for any observation month can be quite different from the numbers 

shown in Table 2.  To provide a meaningful conclusion, Table 2 shows, in parentheses, how many times 

each model achieved the lowest AIC statistic and was selected in an observation period. Regardless of the 

assumed distribution and observation periods, symmetric GARCH(1,1) models dominated GJR(1,1) 

models with leverage effects, which were not selected at all. 

Under the Student’s t-distributed innovation assumption in Panel (a), the GARCH(1,1) model with a 

constant mean but without a leverage term was the dominant model, and was selected 56 times out of 61 

observations. The GARCH(1,1) model with conditional mean AR(1) was selected three times in the pre-

crisis period and two times in the post-crisis period. 

Under the normal innovation assumption, the symmetric GARCH(1,1) model with a constant mean 

was selected 59 times out of 61 observations. The GARCH(1,1) with conditional mean AR(1) was 

selected once during the pre-crisis period, in September 2009, and once during the post-crisis period, in 

November 2010. 

Table 3 shows averages of the estimated parameters under the GARCH(1,1) models by observation 

period.  Numbers in parenthesis are average robust standard errors of each coefficient. The numbers in the 

AR(1) coefficient ߶ column are averages of applicable sampling dates only.  N/A indicates that models 

with the coefficients were not selected at all during the observation period. Again, it should be noted that 

average estimated coefficients and standard errors can be used only as reference values for the average 

magnitude of each observation period.  An inference about the statistical significance of coefficients 

should not be made because the estimated coefficients on any observation date may be considerably 

different from the number shown in Table 3. 

[Table 3 around here] 

 

While practitioners often use AIC statistics as a tool for model selection, it cannot be used 

rigorously to compare models across different distribution assumptions of innovation series. To compare 
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between the assumptions under normal and Student’s t-distributed innovation, I used the likelihood ratio 

(LR) statistic in Berkowitz (2001), which provides a reliable test of the entire distribution even with a 

small sample size of forecasted distributions. I could compare the Berkowitz LR statistic across different 

estimated densities because it is robust against the functional form of densities.   

Nevertheless, it should be noted here that the Berkowitz LR statistic is conceptually different from 

the AIC statistic.  The AIC statistic indicates how well a model fits a given data set, but the Berkowitz LR 

statistic shows how well a model predicts future realization. It can be seen from Table 2 that the 

GARCH(1,1) with a constant mean is the dominant model under both the assumed distributions. 

Consequently, to estimate the Berkowitz LR statistic, I only took samples from an observation date when 

the constant mean GARCH(1,1) model was simultaneously selected under both normal and t-distributed 

innovations. The final observation inputs for the Berkowitz LR statistic is reduced to only 55 observations 

under this setting. 

According to Berkowitz (2001), an ex-ante forecasted density function is considered appropriate if 

the following transformed variable, ݖ௧, is iid N (0, 1): 

 
  (8) 

where ݂ሺݑሻ  is an ex-ante forecasted density function of the realization	ݕ௧ . In this study, ݕ௧  is the 

realization of the 30-days-ahead Nikkei 225 index level, which is the actual index level on observation 

day t + 30. On every end-of-month date t, the ݖ௧ value is calculated and then the series ݖଵ, ,ଶݖ … ,  ே overݖ

the entire observation period is used to estimate the following AR (1) model with a constant mean and 

variance: 

.  (9) 

 The maximum-likelihood estimated ̂ߤ,  ො are used to calculate the log-likelihood valueߩ ොଶ, andߪ

of (9). The likelihood ratio test statistic can now be given with a restricted likelihood value obtained by 

setting ߤ ൌ 	0, ଶߪ ൌ 	1,	and	ߩ	 ൌ 	0. Specifically, the Berkowitz LR statistic is in the form 

. (10) 

ݐݖ ൌ Фെ1 ቈන ݂ሺݑሻ݀ݑ
ݐݕ

െ∞
቉

zݐ െ ߤ ൌ െ1ݐሺzߩ െ ሻߤ ൅ ݐ߳  

LR ൌ െ2ሾܮሺ0,1,0ሻ െ ,ߤሺ̂ܮ ,ො2ߪ ොሻሿߩ
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Table 4 shows the Berkowitz LR statistic and log-likelihood values obtained from the real-world 

density under the constant mean GARCH(1,1) model with the assumption of normal and Student’s t-

distributed innovations. The LR statistics show that a real-world density under normally distributed 

innovations is appropriate to forecast a 30-days-ahead density of Nikkei 225 returns.  The p-value of a 

Student’s t-distributed innovations model implies that the model was rejected at a 1% significance level. 

This finding contradicts the general assumption that the Student’s t distribution is a more appropriate 

choice than the normal distribution to model equity returns because of its fat-tail property. 

[Table 4 about here] 

  

4.2. Risk-Neutral Density Estimation 

At the end of each observation month, a cross section of the options data that passed the screening 

process described in section 3 was used to estimate the 30-days-ahead risk-neutral density. An option 

series with a maturity nearest to േ15 days from 30 days to maturity is used as a proxy for 30-day maturity 

options. However, if two option series were within േ15 days from 30 days to maturity, risk-neutral 

densities were estimated from both near-term and next-term option series and then interpolated in the 

same manner as the Chicago Board Options Exchange (CBOE) does for the VIX index. Before 

interpolation, each density is normalized by the respective implied forward level, ܨ௧,ఛ. 

The number of available strikes must meet the minimum strikes requirement of each density model 

to ensure the estimation of density parameters. Because Heston’s (1993) density has five parameters, I set 

the required minimum number of strikes equal to eight. The GB2 has four parameters with one parameter 

restricted to be equal to the forward index level under risk neutrality. The minimum number of strikes for 

the GB2 density was set to seven. Because the mixture of two lognormal densities has five parameters, 

the minimum number of strikes required was set to 10. However, if the minimum number of strikes for 

the Heston and GB2 densities were not attained, the cross section option data of the previous trading day 

were used instead. The mixture of two lognormal densities reduced to a lognormal density with a 

minimum strike requirement of five. If any of the models did not pass the minimum strike requirement, 

all models used the same previous trading day data. 
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4.3. Risk-Aversion Measure Estimation 

With both the risk-neutral density ݍ௧ሺ்ܵሻ  and the real-world density ݌௧ሺ்ܵሻ , the relative risk 

aversion measure RRA௧ሺ்ܵሻ on each observation month can be estimated using (1). The following results 

include only RRA measures that are calculated based on real-world density under the normally distributed 

innovations assumption as suggested by Berkowitz’s LR statistics. All RRA measures based on three 

different models of risk-neutral densities specified in section 2.2 are presented. 

The RRA measures defined by (1) were estimated only over the observable strike ranges on each 

month end. Consequently, RRA measures are defined over a different domain of underlying assets. To 

compare the RRA measures across observation periods, I normalized the domain by using moneyness 

defined as a ratio of strike ௜ܺ 	 ൌ 	 ்ܵ  to the forward index level ܨ௧,ఛ  instead of the gross level of the 

underlying index.  

Figure 1 shows the commonly observed 30-days-ahead option-implied risk-neutral densities and 

the matching horizon real-world density estimated from the GARCH(1,1) model with normal innovation. 

The three models of risk-neutral density include the Heston (1993) density, the GB2, and a mixture of two 

lognormal densities. The upper rows of Panels (a), (b), and (c) show three typical shapes of densities 

found during the pre-crisis period, the crisis period, and the post-crisis period, respectively. The lower 

rows indicate the associated relative risk aversion functions ܴܴܣ௧ሺ ௜ܺሻ estimated from each pair of real-

world and risk-neutral densities using (1). 

[Figure 1 around here] 

 

During the pre-crisis period, from December 2005 to June 2007, the mode of real-world densities 

(labeled RWD-N) is located to the right of the mode of risk-neutral densities (labeled Hest, GB2, and 

MLN). A well-behaved downward sloping RRA function in line with economic theory can be observed 

when the mode of the real-world density is located further to the right and higher than the mode of the 

risk-neutral density [Panel (a), left]. A U-shaped pattern can be observed around the ATM level as found 

in previous studies, for example, Jackwerth (2000) and Ait-Sahalia and Lo (2000). The RRA function 

exhibits a sharp U-shaped curve when the mode of the real-world density falls below and approaches the 

mode of the risk-neutral density [Panel (a), middle]. When news about the subprime mortgage crisis in 
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the U.S. began to emerge in 2007, the mode of the real-world density moved toward the left of the mode 

of risk-neutral density, resulting in steep downward sloping RRA functions with sharp U-shape curves 

[Panel (a), right].  The RRA functions also partially become negative around ATM levels. 

In the crisis period, risk-neutral densities become more left skewed, showing expectations of 

further decline in asset prices in the future. The relationships between real-world and risk-neutral 

densities are the opposite of those in the pre-crisis period. All the modes of real-world densities across the 

observation months are located to the left of the risk-neutral densities’ modes. The same downward 

sloping RRA function and U-shaped curve around the ATM level can be observed, but the RRA function 

turned more negative than the pre-crisis level. The steep downward sloping RRA function can be 

observed when the modes of both real-world and risk-neutral densities are close to each other [Panel (b), 

left].  When the mode of the real-world density fell below those of risk-neutral densities, sharp U-shaped 

curves are observed again [Panel (b), middle]. When the Lehman shock hit the Japanese market in 

October 2008, an obvious upward sloping risk aversion function implied a perverse risk preference of the 

representative investor [Panel (b), right]. In other words, the representative investor became risk seeking 

instead of risk averse.  

During the post-crisis period, the mode of real-world density began to move right toward the mode 

of risk-neutral density. A downward sloping risk aversion function is observed, and the RRA function 

becomes less negative around the ATM level. In late 2009, the relationship between real-world density 

and risk-neutral densities was similar to the crisis period [Panel (c), left]. In the beginning of 2010, the 

RRA function around the ATM level began to recover and shift into the positive region when the mode of 

real-world density moved toward the right of the mode of risk-neutral densities [Panel (c), middle]. 

However, the RRA function around the ATM level fell back a little into the negative region and remained 

around -5 till the end of December 2010 [Panel (c), right]. 

All of the sub-periods show that the RRA functions, on average, are downward sloping in line with 

economic theory. However, the functions sometimes show a sharp U-shaped curve, partially become 

negative, and then increase with the level of expected asset prices in the future. These three anomalies 

suggest that the standard assumptions in economic theory may be wrong and representative investors may 

not be rational or may have a convex utility function. However, as pointed out in Jackwerth (2000), the 

standard assumptions may hold true, but the investors’ expectation about future asset prices may not be 



17 

 

accurate. The wrong expectation of future returns results in mispricing of options, which in turn distort 

the estimation of risk-neutral densities. 

Bliss and Panigirtzoglou (2004) explained that the risk preference of the representative investor 

might actually change during a period of high volatility of underlying assets. The mix of market 

participants changed because investors with greater risk aversion left the market during the high volatile 

period. However, I found that Jackwerth’s (2000) option mispricing interpretation might be a more 

plausible explanation. Figure 2 shows the effective strike range introduced by Andersen et al. (2011) to 

measure the coverage of options used to compute the volatility index (VIX). The effective range on any 

observation date ݐ is defined as 

, (11) 

where	ߪෝ஻ௌ,௧	is the Black-Scholes implied volatility of ATM options and ܨ௧,ఛ is the forward price level of 

the underlying asset. ଵܺ,௧ and 	ܺ௡,௧ are, respectively, the lowest and highest strikes observed. The effective 

range can be considered as the range of highest and lowest returns at the future date, T. 

 [Figure 2 around here] 

 

The square shaded area in Figure 2 indicates the crisis period. The minus region represents the 

coverage of out-of-the-money put data as ଵܺ ൏ -௧,ఛ. The positive region shows the coverage of out-of-theܨ

money call data. Notice how the effective range of out-of-the-money put reduced to nearly zero when the 

Lehman shock hit the Japanese market in October 2008, during which daily returns varied from +13% to 

−13%. Options are subject to a high degree of mispricing during such a volatile period. The cross section 

of options data used in the risk-neutral density estimation of October 2008 observations was from the 

previous two trading days, and not the precise last trading day of the month. The estimation failed to 

obtain valid parameters from the data of the previous day and the last trading day because of a lack of 

valid options data. 

Figure 3 shows the average relative risk aversion measures ܴܴܣሺ ௜ܺሻ at each level of moneyness, 

defined by ௜ܺ/ܨ௧. The range of moneyness was limited to 0.90−1.05 levels, which are available ranges 

shared by all sub-sampling periods. Results for the pre-crisis, crisis, and post-crisis periods are shown in 

ݐܴܧ ൌ ቈ
݈݊൫ ൯߬,ݐܨ/ݐ,1ܺ

ܶ√ݐ,ܵܤොߪ
,
݈݊൫ܺ݊,ݐܨ/ݐ,߬൯

ܶ√ݐ,ܵܤොߪ
቉
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Panels (a), (b), and (c), respectively. Across all observation periods, the RRA function shows a U-shaped 

pattern around the ATM level, as in Jackwerth (2000). Figure 3 also confirms the findings in Figure 1 that 

on average the RRA functions were positive during the pre-crisis period [Panel (a)], become negative 

during the crisis period [Panel (b)], and recover a little in the post-crisis period [Panel (c)]. 

 [Figure 3 around here] 

 

The U-shape pattern found in Figures 1 and 3 suggest that, after the prices of the underlying asset 

increase to a certain level, the representative investor’s risk aversion level again increases. Instead of 

welcoming the higher returns from rising asset prices, the representative investor prefers lower returns. 

As Jackwerth (2000) suggested, the U-shape pattern and negative risk aversion may be the result of 

option mispricing. Bondarenko (2003) studied the anomaly of the so-called overpriced puts puzzle of 

S&P 500 put options and explained that excessive weighting by investors of the probability of negative 

S&P 500 returns results in biased subjective future returns density and, hence, a biased risk-neutral 

distribution. Jackwerth (2000) and Ait-Sahalia et al. (2001) showed that an option trading strategy can 

earn positive returns, which supports the mispricing explanation. 

 

4.4. Relative Risk Aversion Over Time 

To study the structure of risk aversion over time, the definition of relative risk aversion in (1) is 

modified. On each observation month t, I calculate the sample average of ܴܴܣ௧ሺ ௜ܺሻ across levels of strike 

prices 	 ௜ܺ  to obtain a representative relative risk aversion level തതതതതതത௧ܣܴܴ	 . Table 5 shows the average 

 regardless of the risk-neutral density	തതതതതതത௧,ܣܴܴ	over various observation periods. The average levels of	തതതതതത௧ܣܴܴ

model, decreased during the crisis period and recovered in the post-crisis period.  

[Table 5 around here] 

 

Figure 4 shows the movement of relative risk aversion , ,തതതതതത௧ܣܴܴ	  over the observation periods 

together with Nikkei 225 index levels and returns, as well as effective strike ranges. The shaded area 

represents the crisis period. Figure 4 suggests that the RRA function fluctuates over time. During the pre-

crisis period, the ܴܴܣതതതതതത௧	moves around 5 to 20 points. During the crisis period,  it varies substantially from 
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a peak of approximately 28 points in September 2007 to approximately −2 points in September 2008. The 

September 2007 peak may be the result of bankruptcies of distressed financial institutions in the U.S. and 

Europe. In the post-crisis period, ܴܴܣതതതതതത௧ rose again, but not until 2010, when it began to recover to the pre-

crisis level. 

One finding from Figure 4 is in contrast to the general belief that the risk aversion level will 

skyrocket when an external shock hits the stock market the hardest. The risk aversion level bottomed out 

in September 2008 when Lehman Brothers filed for bankruptcy protection on September 15, and the 

Nikkei 225 closed 5% lower than the previous day. Even in October 2008, when the Daiwa Life 

Assurance bankruptcy sent the Nikkei 225 index down 10% in one day, the RRA measure was still well 

below the non-crisis level. The change in investor mix explanation provided by Bliss and Panigirtzoglou 

(2004) can also be applied to this anomaly. Only investors with a high degree of risk tolerance remained 

in the market, and those with a higher risk aversion left the market during the highly volatile period. 

Although their explanation is rational and perhaps accurate, they did not formally test this hypothesis. 

Nevertheless, option mispricing is a more plausible explanation, as evident from the lower panel of Figure 

4, which shows the effective range of out-of-the-money put options contracted substantially during 

September and October 2008. With highly volatile underlying assets, options are subject to a high degree 

of mispricing. 

 [Figure 4 around here] 

 

5.  Conclusion 

This study extends previous studies on option-implied risk-neutral density in the Japanese market 

by making use of additional information from a real-world density data to derive a relative risk aversion 

measure. 

A simple approach that uses a daily model to estimate multi-period distribution parameters worked 

well in deriving real-world density, as evidenced by the likelihood ratio test of Berkowitz (2001). 

However, contrary to the assumption that the Student’s t distribution models stock returns better, the 

Berkowitz LR test suggested a model with normally distributed innovations. With regard to risk-neutral 

density estimations, three different models produced similar results. However, the GB2 and MLN density 

models, though flexible and easy to estimate, are prone to producing erratic RRA functions, while the 



20 

 

Heston model involves complex estimation but is less likely to produce an erratic result. I suggest the use 

of a model that fits the available data on hand. An objective selection from these three candidate models 

is beyond the scope of this paper.  

 In general, the relative risk aversion in the Japanese market shows downward sloping 

characteristics consistent with the economic theory that the representative agent is risk averse. However, 

the market also shares the ill-behaved risk aversion function as documented in previous S&P 500 studies. 

Through an examination of density shapes and the associated RRA function patterns, I showed that the 

desired relationship between the real-world and risk-neutral densities occurs when the mode of the real-

world density	݌௧ሺ்ܵሻ stays further to the right and higher than the mode of the risk-neutral density	ݍ௧ሺ்ܵሻ. 

U-shape and partially negative patterns are also observed in the Japanese market when RRA 

measures at each price level of the underlying assets were averaged across observation periods, similar to 

Jackwerth (2000). The RRA curves stayed in the negative region at almost all levels of moneyness during 

the crisis period, but recovered in the post-crisis period. 

 On each observation date, the market-wide level of relative risk aversion measure	ܴܴܣതതതതതതത௧, which 

is an average of ܴܴܣ௧ሺ ௜ܺሻ across price levels of underlying assets, showed that risk aversion levels 

dropped below the normal level during a market turmoil characterized by high-return volatility. Previous 

literature preferred the option mispricing explanation for both the U shape and the sinking RRA level 

during the crisis period, and showed that a simple option trading strategy can result in abnormal positive 

returns. I agree with the mispricing explanation, particularly for the bottomed-out phenomenon, as 

evident from a very volatile effective strike range of a cross section of option data. However, whether 

some arbitragers could exploit a constant mispricing of options and correct the prices is arguable. Further 

research on the mispricing explanation is needed in the Japanese market. 
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Table 1: Summary statistic of Nikkei 225 options 

 

Options 

before 

screening 

Options 

after 

screening 

Average 

before 

screening 

Average  

after 

screening 

Minimum Maximum 

OTM call 3,731 2,512 61  41  23 77 

OTM put 3,424 1,711 56  28  13 63 

Total 7,155 4,223 117  69    

Out-of-the-money is abbreviated as OTM.  Options before and after screening refer to the total number of options before 

and after the screening process at the end of the month from December 2005 to December 2010 (61 months).  Averages 

before and after screening refer to the average numbers of options before and after the screening process on each 

observation. Minimum and maximum are the minimum and maximum number of options that passed the screening 

process on each observation. 
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Table 2: Average AIC statistics for candidate models of each sampling period  

Panel (a): Average AIC statistics for 

Student’s t distribution models 

With leverage 

GJR(1,1) 

Without leverage 

GARCH(1,1) 

AR mean Constant mean AR mean Constant mean 

Full  20051230 : 20101230      1,432.49       1,429.58         1,422.39     1,419.42  

  (0) (0) (5) (56) 

Before  20051230 : 20070629      1,569.16       1,566.74         1,557.54     1,555.37  

  (0) (0) (3) (16) 

Crisis  20070731 : 20090331      1,409.25       1,406.35         1,397.42     1,394.31  

  (0) (0) (0) (21) 

After  20090430 : 20101230      1,332.08       1,328.70         1,325.08     1,321.52  

  (0) (0) (2) (19) 

 

Panel (b): Average AIC statistics for 

normal distribution models 

With leverage 

GJR(1,1) 

Without leverage 

GARCH(1,1) 

AR mean Constant mean AR mean Constant mean 

Full  20051230 : 20101230   1,429.57    1,426.62       1,417.72       1,412.66  

  (0) (0) (2) (59) 

Before  20051230 : 20070629   1,566.46    1,563.96       1,553.94       1,544.86  

  (0) (0) (0) (19) 

Crisis  20070731 : 20090331   1,405.14    1,402.23       1,389.64       1,387.22  

  (0) (0) (1) (20) 

After  20090430 : 20101230   1,330.16    1,326.75       1,322.54       1,318.48  

  (0) (0) (1) (20) 

For each observation period, a model with the lowest AIC statistic is used to estimate parameters of real-world 

density. Enclosed in parentheses is the number of times each model achieved the lowest AIC statistic and was 

selected during an observation period. 
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Table 3: Average of estimated parameters for each sampling period 

          Panel (a): GARCH(1,1)  - Student’s t distributed innovations 
Observation period 

 ߭ ߚ ଵߙ ߱ *߶ ௧ߤ
Start End 

Full 20051230 : 20101230 0.0003 -0.0210 1.05e-05 0.0980 0.8627 75.9110 

    (1.99e-05) (0.0004) (2.68e-07) (2.11e-03) (0.0188) (0.3468) 

Before 20051230 : 20070629 0.0012 -0.0223 3.25e-06 0.0822 0.8974 83.6669 

    (1.99e-05) (0.0002) (5.27e-08) (7.91e-04) (0.0131) (0.1137) 

Crisis 20070731 : 20090331 -0.0004 N/A  8.03e-06 0.1052 0.8745 30.2719 

    (2.48e-05)  (2.10e-07) (2.61e-03) (0.0181) (0.1836) 

After 20090430 : 20101230 0.0002 -0.0189 1.96e-05 0.1050 0.8196 114.5328 

    (1.49e-05) (0.0007) (5.20e-07) (2.80e-03) (0.0246) (0.7208) 

 

       Panel (b):GARCH(1,1) – normally distributed innovations 
Observation period 

 ߚ ଵߙ ߱ *߶ ௧ߤ
Start End 

Full 20051230 : 20101230 0.0002 -0.0352 1.14e-05 0.1096 0.8448 

    (1.33e-05) (0.0007) (1.91e-07) (1.96e-03) (0.0134) 

Before 20051230 : 20070629 0.0012 N/A  4.07e-06 0.0904 0.8821 

    (1.49e-05)   (3.60e-08) (1.60e-03) (0.0103) 

Crisis 20070731 : 20090331 -0.0005 -0.0648 9.67e-06 0.1276 0.8405 

    (1.64e-05) (0.0013) (2.21e-07) (3.01e-03) (0.0206) 

After 20090430 : 20101230 0.0002 -0.0056 1.98e-05 0.1089 0.8153 

    (8.71e-06) (0.0001) (3.01e-07) (1.23e-03) (0.0089) 

* Average of applicable observations only. 

The GARCH(1,1) model is estimated using (6). The mean parameter is ߤ௧, which is automatically selected to be a 

constant mean or an AR(1) mean based on AIC statistics.  If the AR(1) model is selected ߤ௧ ൌ 	ܿ	 ൅  ܿ ଵ, where	ି	௧ݎ߶	

is a constant, ߶ is a first-order autoregressive coefficient and ݎ௧ିଵ is the lag of the current return.  The constant mean 

model implies ߶	 ൌ 	0. ߱ is a constant of the conditional variance equation, ߚ is the coefficient of conditional 

variance ߪ௧ିଵ
ଶ  and ߙଵ is the coefficient of squared innovation of the previous period ߝ௧ିଵ

ଶ .  In the case of Student’s t-

distributed innovations, the degree of freedom ߭ is an additional parameter. Numbers in parentheses are average 

standard errors of coefficients. 
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Table 4: Berkowitz likelihood ratio test of real-world density models 

   Berkowitz likelihood ratio statistics of GARCH(1,1) with constant mean for full observation period 
t-distributed innovations Normally-distributed innovations 

Berkowitz LR statistics 11.4686 4.3561 

p-value (0.0094) (0.2255) 

  

LL unrestricted -61.5825 -65.5777 

LL restricted -55.8482 -63.3996 

Berkowitz LR statistics are calculated using (10) and distributed as chi-squared with three degrees of freedom with a null 

hypothesis that the series of transformed variable ݖ௧  in (8) are independent with zero mean and unit variance. LL 

unrestricted is a maximized log-likelihood value from model (9) without restriction and LL restricted is a maximized 

log-likelihood value under model (9) with the restrictions ߤ	 ൌ 	0, ଶߪ ൌ 	1, and	ߩ	 ൌ 	0.   

 
Table 5: Average ࡭ࡾࡾതതതതതത࢚ based on real-world density with normally distributed innovations 

  Observation period Risk-neutral density models 

Start End Heston GB2 MLN 

Full 20051230 : 20101230 Ave 10.0338 11.0699 11.1104 

Min -2.4926 -1.4471 -1.7866 

Max 27.8457 28.4419 28.1556 

Before 20051230 : 20070629 Ave 13.1501 14.2775 14.3218 

Min 4.8355 7.1520 5.4612 

Max 20.3776 21.3791 22.3255 

   

Crisis 20070731 : 20090331 Ave 7.8271 8.6873 8.4533 

Min -2.4926 -1.4471 -1.7866 

Max 27.8457 28.4419 28.1556 

   

After 20090430 : 20101230 Ave 9.4210 10.5503 10.8619 

Min 2.2752 3.4242 3.3852 

Max 19.8608 20.8870 20.6085 

The numbers under each column labeled Heston, GB2, and MLN are average levels of ܴܴܣതതതതതത௧ across observation periods 

under the assumed risk-neutral density models. ܴܴܣതതതതതത௧ is a sample average of ܴܴܣ௧ሺ ௜ܺሻ across levels of moneyness defined 

as ௜ܺ/ܨ௧	 for each observation month t. 
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