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1 Introduction

We examine the provision of a public good for the case in which there is strong com-

plementarity between the public good and a private good. An authentic example of our

problem is investment to improve the quality of Open Source Software (OSS), such as

Linux and Apache. Because OSS is usually provided free by developers of the software

on the web, it is available to everyone at the same quality at no cost. Thus, it can be

treated as a public good. OSS also has the nature of a complementary product for private

goods used by private agents. Improvement in the quality of Linux, for instance, bene-

fits the users of Linux-based computers. The relation between the qualities of Linux and

those of Linux-based computers/applications has the following important property. High-

quality computers/applications require Linux to be of similar quality. If the quality of

Linux is not sufficient, such computers/applications do not achieve optimum performance.

In other words, the quality of Linux functions as the maximum performance capacity of

Linux-based computers/applications. That is, the users benefit from high-quality Linux-

based computers/applications only if the quality of Linux is high.

In the presence of strong complementarity between public and private goods, as in

Linux and its applications, beneficiaries of the public good are likely to participate volun-

tarily in provision of the public good. For an individual to obtain substantial utility, it is

necessary to consume large quantities of both public and private goods. Thus, when the

public good is provided in sufficiently low quantities, an individual voluntarily produces

the public good using private goods rather than by free riding. The complementarity

between the public and the private goods may result in the participation of many individ-

uals in providing public goods. In fact, there are many projects for OSS; many engineers

voluntarily participate in the development of OSS, and many types of high-quality OSS

are provided.1 This situation concerning OSS seems different from that predicted by the

1See Lerner and Tirole (2002) for information on the development of OSS.
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standard theory of public goods, which states that the free-rider problem causes the un-

derprovision of a public good in comparison with the Pareto-efficient level of supply. In a

situation such as OSS development, the following questions arise. Who participates in the

public good provision? How is desirable allocation achieved by the many contributors?

To examine these questions, we construct the following theoretical model. There is

one public good and one private good. The private good is consumed by agents or is used

to provide the public good. Each agent has the technology and the resources (his/her

initial endowment of the private good) to provide the public good. The technology and

the resources for the public good may differ among agents. To capture the strong com-

plementarity between the private and public goods, all agents are assumed to have the

same Leontief utility function with respect to the consumption of the two goods. We

examine participation behavior using a voluntary participation game. The participation

game consists of two stages. In the first stage, all agents simultaneously choose whether

to participate in the provision of a public good. In the second stage, knowing the other

agents’ participation decisions, the agents who chose to participate simultaneously decide

their contribution to a public good, as in a voluntary contribution game (Bergstrom et

al., 1987).

We first show that voluntary participation and contribution to the public good at the

subgame-perfect Nash equilibrium of the participation game depend solely on an agent’s

initial endowment of the private good. The greater the initial endowment of the private

good that agents have, the more likely they are to participate and contribute to the public

good. Becoming a contributor does not depend on the efficiency of their technology for

production of the public good: even if an agent has more efficient technology than others,

he/she may choose not to contribute. We emphasize that our paper partially supports

the recent interesting empirical results of Bitzer and Geishecker (2010), who investigate

the question of who actually creates OSS. Using a sample with both contributors and

noncontributors to OSS projects, they investigate the view that it is mainly workers with
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high educational attainment that voluntarily contribute to OSS development. They find no

positive association whatsoever between formal education and the probability of voluntary

OSS contributions. They also find that the length of work hours is highly statistically

significant and has a negative impact on the probability of contributing voluntarily to

OSS projects. These two findings are related to one of our results: the determinant of

contribution to the provision of a public good is not related to the efficiency of agents’

contribution but to their initial endowments. Efficiency in our model is related to high

educational attainment in their empirical analysis, and initial endowment in our model is

negatively related to the length of work hours in their analysis. Based on the similarity

between the results in their study and ours, we believe that our model has the potential

to explain why someone voluntarily contributes to OSS development.

Second, we examine the Pareto efficiency of the equilibrium allocation in the voluntary

participation game. We introduce two criteria of feasibility of allocations, depending upon

whether the resource for providing the public good is transferable among agents. The

individually feasible allocation is defined such that for each agent, the initial endowment

of the private good covers consumption of the private good and contribution to the public

good. The socially feasible allocation is defined such that the aggregate initial endowment

of the private good in the economy covers the aggregate consumption of the private good

and the aggregate contribution to the public good. We show that while the equilibrium

allocation is Pareto efficient within the set of individually feasible allocations, it is not

necessarily so within the set of socially feasible allocations (we call this s-Pareto efficient).

We show that the allocation at the subgame-perfect Nash equilibrium of the voluntary

participation game is s-Pareto efficient if and only if only the agent with the most efficient

production technology is a contributor.

Third, we examine whether agents voluntarily redistribute the private good among

them so that the s-Pareto-efficient allocation is achieved. We extend the voluntary partic-

ipation game so that agents can transfer the private good, based on the model of Jackson
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and Wilkie (2005). We provide a sufficient condition under which voluntary transfer re-

sults in s-Pareto efficiency. The sufficient condition implies that contributors expected to

produce positive amounts of the public good can improve their utility levels if they can

transfer their endowments among them. In the context of OSS, money is considered a

transferable resource among engineers. Time can also be such a resource, and is usually

nontransferable. There may be a case in which time is transferable through the division

of roles among a group of engineers.2 Note that the above sufficient condition also implies

that the s-Pareto-efficient allocation is not necessarily achieved through voluntary transfer.

As an example, we examine the difficulty of achieving s-Pareto-efficient allocation through

voluntary transfer.

Related literature

This paper is closely related to the analysis of the voluntary participation problem

in a public good mechanism. Saijo and Yamato (1999) introduce a voluntary participa-

tion game and analyze the number of agents voluntarily participating in the public good

mechanism when they can freely decide to do so. In Saijo and Yamato’s (1999) model,

all agents are assumed to have the same Cobb–Douglas utility function.3 Healy (2010),

Furusawa and Konishi (2011), and Konishi and Shinohara (2012) investigate the voluntary

participation problem in other domains of utility functions. The main message of these

studies is that if participation in a public good mechanism is not coerced, every agent

has an incentive not to participate and to free ride the public good provided by partici-

pants. Thus, even if a mechanism is constructed to provide desirable allocations, such as

the Pareto-efficient allocation at its equilibrium, it is very difficult to provide all agents

with an incentive for voluntary participation. In contrast, Shinohara (2009, 2011) points

2We believe that transfers would also be easy in the following situation. Several agents in a group
must perform some duties in cooperation. That is, each agent needs to spend some time performing these
duties, spending his/her remaining time consuming the private good or producing the public good. In this
context, an agent’s initial remaining time is related to the initial endowment. A transfer of one agent’s
duty to another changes their remaining time.

3Saijo and Yamato (2010) extend their analysis to the cases in which agents have different Cobb–Douglas
utility functions or a quasilinear utility function.
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out that if there is a specific structure for a public good, the Pareto- efficient provision

is possible at a subgame-perfect Nash equilibrium in the voluntary participation game.

None of these studies has examined how strong complementarity between the private and

public goods affects the incentive for agents to participate.

This paper also contributes to the literature on OSS. Academic scholars have investi-

gated the hows and whys of OSS development (Lerner and Tirole, 2002; Johnson, 2002;

Franke and von Hippel, 2003; Lakhani and von Hippel, 2003; von Hippel and von Krogh,

2003; Bitzer and Schröder, 2005; Bitzer et al., 2007). In the existing literature, while

many empirical analyses have been conducted, there are only a few theoretical investiga-

tions using models of public good provision. Johnson (2002) investigates why developers

voluntarily provide OSS and how the voluntary development of OSS affects social welfare.

Basically, in his model, whether a developer voluntarily contributes to an OSS depends

on the relationship between the cost and benefit of development. Unlike us, he does not

explicitly model the strong complementarity between the private and public good, which

can be observed in many types of OSS. The results are quite different in the sense that

while Johnson (2002) explains the incentive for voluntary development according to the

benefit from the OSS and its development cost, we explain incentive by the amount of

resources held by a developer for developing an OSS.4 In this sense, our result is unique.

The remainder of this paper is organized as follows. Section 2 presents the basic model.

Section 3 presents the equilibrium analysis of the model. Section 4 investigates the welfare

property of the model and extends the basic model. Section 5 compares our result with

that of Saijo and Yamato (1999). Section 6 concludes.

4Myatt and Wallace (2002) and Bitzer and Schröder (2005) also examine the voluntary development
of OSS, from a theoretical viewpoint. They explain the incentive for voluntary development of an OSS in
terms of the relationship between the benefit and the development cost.
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2 Preliminaries

Consider an economy in which there are one private good and one public good. Let

N = {1, . . . , n} be a set of agents, with n ≥ 2. Every agent has a preference relation that

may be represented by a Leontief utility function. Let Ui(Y, xi) = min{Y, xi} be a utility

function of i ∈ N , in which Y represents the supply of the public good and xi is the private

good consumption of i ∈ N . Every agent i ∈ N has an initial endowment of wi > 0 of the

private good, but none of the public good. The public good is produced from the private

good. Suppose that i ∈ N pays pi units of the private good to produce one unit of the

public good: pi > 0 is the “price” of the public good. The lower pi is, the more efficient

agent i. Without loss of generality, we assume that p1 ≤ · · · ≤ pn. Let yi ∈ R+ be a

supply level of the public good produced by i ∈ N . Then the budget balance condition

of i ∈ N is xi + piyi = wi.
5 Let (y1. . . . , yn) ∈ Rn

+ be the profile of contributions to the

public good. The quantity of the public good produced in the economy is Y =
∑

j∈N yj .

We consider a situation in which there exists an opportunity for joint production of the

public good, and each agent can decide whether to participate in production. We consider

the following two-stage game. In the first stage, agents simultaneously decide whether

to participate in providing the public good (participation stage). In the second stage, all

agents know the others’ participation decisions, and simultaneously decide the quantity

of the public good to produce. The nonparticipants can free ride the public good. The

formal definition of the game is as follows.

Stage 1. Every agent i ∈ N chooses whether to participate, simultaneously with the

others.

Stage 2. Let P ⊆ N be a set of participants. Each i ∈ P decides the contribution yi,P ∈

R+, simultaneously with others. The level of the public good provided by the participants

is YP =
∑

j∈P yj,P . The payoff to i ∈ P is Ui(YP , wi−piyi,P ) = min{YP , wi−piyi,P }. The

5Note that we impose no condition on the order of (wi)i∈N .
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payoff to i ∈ N\P is Ui(YP , wi) = min{YP , wi}.

The two-stage public good provision game is known as the (voluntary) participation

game, introduced by Saijo and Yamato (1999).

3 A voluntary participation game: Equilibrium analysis

3.1 Nash equilibria in the second-stage game

We analyze the voluntary participation game by backward induction. We first solve the

second-stage game. Let P ⊆ N be a set of participants. Let y∗i,P : R+ → R+ be a best

response function of i ∈ P such that
∑

j∈P\{i} yj,P ∈ R+ 7→ y∗i,P (
∑

j∈P\{i} yj,P ) ∈ R+.

Then

y∗i,P

( ∑
j∈P\{i}

yj,P

)
=


wi −

∑
j∈P\{i} yj,P

1 + pi
if wi >

∑
j∈P\{i}

yj,P

0 otherwise

. (1)

By the definition of the (pure-strategy) Nash equilibrium, y∗P ≡ (y∗i,P )i∈P ∈ R#P
+ is a

Nash equilibrium of the second-stage game when P is a set of participants if and only if

y∗i,P = y∗i,P (
∑

j∈P\{i} y
∗
j,P ) for each i ∈ P . In the voluntary contribution game, a Nash

equilibrium is not necessarily an interior solution. Let C(P, y∗P ) ≡ {j ∈ N |y∗j,P > 0}: the

set of contributors, participants contributing to the public good, at y∗P .

Lemma 1 Let P ⊆ N be a set of participants. Let y∗P be a Nash equilibrium of the

voluntary contribution game. (i) Set C(P, y∗P ) is not empty.

(ii) For each i ∈ P

y∗i,P =


1

pi(1+
∑

j∈C(P,y∗
P

)(1/pj))

(
wi + wi

∑
j∈C(P,y∗P )

1
pj

−
∑

j∈C(P,y∗P )
wj

pj

)
if i ∈ C(P, y∗P )

0 otherwise
.

(iii)
∑
j∈P

y∗j,P =

∑
j∈C(P,y∗P )(wj/pj)

1 +
∑

j∈C(P,y∗P )(1/pj)
.

(iv) For each i ∈ P , y∗i,P > 0 if and only if wi >
∑
j∈P

y∗j,P .
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Proof. Suppose that C(P, y∗P ) = ∅. For each i ∈ P , if y∗j,P = 0 for each j ∈ P\{i},

then i ∈ P is made better off by providing wi/(1 + pi) units of the public good, which

contradicts that y∗P is a Nash equilibrium.

Note that
∑

j∈P y∗j,P =
∑

j∈C(P,y∗P ) y
∗
j,P and wj ≤

∑
j∈C(P,y∗P ) y

∗
j,P for each j /∈ C(P, y∗P ).

By (1)

y∗i,P =
wi −

∑
j∈C(P,y∗P )\{i} yj,P

1 + pi
or y∗i,P =

wi −
∑

j∈C(P,y∗P ) yj,P

1 + pi
+

y∗i,P
1 + pi

for each i ∈ C(P, y∗P ). Thus

y∗i,P =
wi

pi
− 1

pi

∑
j∈C(P,y∗P )

y∗j,P (2)

for each i ∈ C(P, y∗P ). Summarizing these conditions over i ∈ C(P, y∗P ) yields∑
j∈C(P,y∗P )

y∗j,P =
∑

j∈C(P,y∗P )

wj

pj
−

∑
j∈C(P,y∗P )

1

pj

∑
j∈C(P,y∗P )

y∗j,P .

Then ∑
j∈C(P,y∗P )

y∗j,P =

∑
j∈C(P,y∗P )(wj/pj)

1 +
∑

j∈C(P,y∗P )(1/pj)
(3)

Substituting (3) into (2), we obtain

y∗i,P =
1

pi(1 +
∑

j∈C(P,y∗P )(1/pj))

wi + wi

∑
j∈C(P,y∗P )

1

pj
−

∑
j∈C(P,y∗P )

wj

pj

 (4)

for each i ∈ C(P, y∗P ). By (4)

y∗i,P =
1

pi(1 +
∑

j∈C(P,y∗P )(1/pj))

wi

1 +
∑

j∈C(P,y∗P )

1

pj

−
∑

j∈C(P,y∗P )

wj

pj

 ,

which shows (iv). �

Lemma 2 Let P ⊆ N be a set of participants. Suppose that w = wi for each i ∈ P .

Then ∑
j∈C(P,y∗P )

y∗j,N =

∑
j∈C(P,y∗P )(1/pj)

1 +
∑

j∈C(P,y∗P )(1/pj)
w < w, (5)

which implies that C(P, y∗P ) = P .
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Proof. It is immediately seen from (3) that (5) holds. By (5) and (iv) in Lemma 1,

C(P, y∗P ) = P . �

A Nash equilibrium in the voluntary contribution game when P ⊆ N is a set of

participants is not necessarily an interior solution; every agent in P contributes a positive

amount of a public good at a Nash equilibrium. Whereas the Nash equilibrium for this

game is interior if every participant has the same initial endowment of the private good,

as Lemma 2 shows, it is not necessarily interior otherwise. We must note a possible case in

which an efficient agent makes a smaller contribution than an inefficient agent, depending

on the distribution of the initial endowments of the private good, as Example 1 shows.

Example 1 Let n = 2, with w1 < w2 and p1 < p2. If (1 + p2)w1 − w2 > 0

y∗1 =
(1 + p2)w1 − w2

p1 + p2 + p1p2
and y∗2 =

(1 + p1)w2 − w1

p1 + p2 + p1p2
, (6)

otherwise

y∗1 = 0 and y∗2 =
w2

1 + p2
.

When a Nash equilibrium is interior, by (6), we have

y∗1 − y∗2 =
(2 + p2)w1 − (2 + p1)w2

p1 + p2 + p1p2
.

This is negative if and only if w2 > (2 + p2)w1/(2 + p1) (> w1). There is a possibility

that the efficient provider, agent 1, provides fewer public goods than the other agents,

regardless of whether the Nash equilibrium is interior. �

From (4), we find that whether an agent becomes a contributor depends on the amount

of the initial endowment of the private good. The first fraction in (4) is always positive

because pi > 0 for any i. The sign of y∗i,P is, therefore, the same as that of the value

between the parentheses, which is increasing in wi. This means that if agent i with wi

provides a positive amount of the public good, so does agent k with wk(> wi).
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Proposition 1 For each P ⊆ N and each pair i, k ∈ P , if y∗i,P > 0 and wk ≥ wi, then

y∗k,P > 0.

Proof. If the value between the parentheses of y∗k,P is larger than that of y∗i,P , y
∗
k,P > 0.

The difference between the values is given aswk + wk

∑
j∈C(P,y∗P )

1

pj
−

∑
j∈C(P,y∗P )

wj

pj

−

wi + wi

∑
j∈C(P,y∗P )

1

pj
−

∑
j∈C(P,y∗P )

wj

pj


= (wk − wi)

1 + wk

∑
j∈C(P,y∗P )

1

pj

 .

The last equation is nonnegative when wk ≥ wi. The proposition holds. �

The value between the parentheses in (4) reflects the decision of agent i on whether to

contribute. The first fraction in (4) reflects the significance of the contribution from agent

i. As the value of pi decreases, the first fraction in (4) increases.

3.2 Who participates? Equilibrium analysis of the first stage

We examine the first-stage game induced by y∗P in Lemma 1 for each P ⊆ N .

We first provide basic properties of the set of contributors and the level of the public

good in Lemmas 3, 4, and 5. Lemma 3 shows that the level of the public good is the same

in the case in which the entire P ⊆ N is a set of participants and the case in which its

set of contributors C(P, y∗P ) is itself a set of participants: the noncontributors in P never

affect the decision of the contributors.

Lemma 3 For each P ⊆ N ,
∑

j∈P y∗j,P =
∑

j∈C(P,y∗P ) y
∗
j,C(P,y∗P ).

Proof. By Lemma 1, for each i ∈ C(P, y∗P ), y∗i,P depends on
∑

j∈C(P,y∗P )(1/pj) and∑
j∈C(P,y∗P )(wj/pj). These values do not change if C(P, y∗P ) is a set of participants. Thus,

y∗i,P = y∗i,C(P,y∗P ) for each i ∈ C(P, y∗P ). �
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Lemmas 4 and 5 show how the set of contributors and the level of the public good

change if the set of participants is expanded. Lemma 4 examines the effect of the expansion

by agent i such that wi >
∑

j∈P y∗j,P (influential agent), while Lemma 5 examines the

effects by agent i such that wi ≤
∑

j∈P y∗j,P (noninfluential agent).

Lemma 4 Let P ( N and let i ∈ N\P . Suppose that wi >
∑

j∈P y∗j,P . Then

(4.1) i ∈ C(P ∪ {i}, y∗P∪{i}),

(4.2)
∑

j∈P∪{i} y
∗
j,P∪{i} >

∑
j∈P y∗j,P , and

(4.3) C(P ∪ {i}, y∗P∪{i}) = C(P ∪ {i}, y∗P∪{i}) ∩ C(P, y∗P ) ∪ {i}.

The proof is in the appendix. Agent i such that wi >
∑

j∈P y∗j,P is influential on P

in the sense that i becomes a contributor and his/her participation increases the level

of the public good as (4.1) and (4.2) show. By (4.3), the noncontributors before the

participation of such an agent never become contributors after this participation: no

agents in P\C(P, y∗P ) change their behavior as a result of this participation.

Lemma 5 For each P ( N and each i ∈ N\P , if wi ≤
∑

j∈P y∗j,P , then i /∈ C(P ∪

{i}, y∗P∪{i}) and C(P ∪ {i}, y∗P∪{i}) = C(P, y∗P ).

The proof is in the appendix. By Lemma 5, no agent i such that wi ≤
∑

j∈P y∗j,P changes

the set of contributors and the level of the public good even if he/she participates in P .

Proposition 2 presents a condition under which each agent participates in public good

provision.

Proposition 2 For each P ( N and each i ∈ N\P , if wi >
∑

j∈P y∗j,P , then i is made

better off by joining P . Otherwise, i is indifferent between participation and nonpartici-

pation.
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Proof. By (4.1) and (4.2) of Lemma 4, wi >
∑

j∈P∪{i} y
∗
j,P∪{i} >

∑
j∈P y∗j,P for each

i ∈ N\P such that wi >
∑

j∈P y∗j,P . If such an agent i chooses to participate, his/her payoff

is
∑

j∈P∪{i} y
∗
j,P∪{i} and if he/she chooses not to participate, his/her payoff is

∑
j∈P y∗j,P .

By Lemma 5, i /∈ C(P ∪ {i}, y∗P∪{i}) and
∑

j∈P∪{i} y
∗
j,P∪{i} =

∑
j∈P y∗j,P for each

i ∈ N\P such that wi ≤
∑

j∈P y∗j,P . Thus, his/her payoff is wi, regardless of whether

he/she participates. �

Let P ( N . Let i /∈ P be such that wi >
∑

j∈P y∗j,P and let k /∈ P be such that

wk ≤
∑

j∈P y∗j,P . By Proposition 2 and (4.1) of Lemma 4, whereas i is willing to participate

and make a contribution, k is indifferent between participating and not participating.

Because i has a Leontief preference, he/she may be better off by increasing the level of

the public good. If i participates in P , he/she can contribute an adequate amount of

the private good in a way that increases the public good provision ((4.2) of Lemma 4).

Although k has the same preference, he/she cannot increase his/her payoff any further. If k

participates and contributes a positive amount, k is made worse off. Even if k participates,

he/she makes no contribution; thus, participating and not participating are equivalent for

k.

By the definition of a Nash equilibrium, P ⊆ N is a set of participants supported at a

Nash equilibrium if and only if (i) Ui(
∑

j∈P y∗j,P , wi − piy
∗
j,P ) ≥ Ui(

∑
j∈P\{i} y

∗
i,P\{i}, wi −

piy
∗
i,P\{i}) for each i ∈ P and (ii) Ui(

∑
j∈P y∗j,P , wi) ≥ Ui(

∑
j∈P∪{i} y

∗
i,P∪{i}, wi−piy

∗
i,P∪{i})

for each i ∈ N\P . Condition (i) means that no participant can be made better off by

deviating to nonparticipation and (ii) means that no nonparticipant can be made better

off by joining P . When agents have a Leontief preference, these conditions are equivalent

to (i’) and (ii’) in Proposition 3.

Proposition 3 For each P ⊆ N , P is a Nash equilibrium set of participants if and only

if (i’) wi >
∑

j∈P\{i} y
∗
j,P\{i} for each i ∈ C(P, y∗P ) and (ii’) wi ≤

∑
j∈P y∗j,P for each

i ∈ N\P .
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Proof. (sufficiency) By Proposition 2, no i ∈ C(P, y∗P ) and j ∈ N\P have an incentive

to change participation decisions. For each k ∈ P\C(P, y∗P ), y∗k,P = 0; hence, wk ≤∑
j∈P y∗j,P . Because C(P, y∗P ) = C(P\{k}, y∗P\{k}), then

∑
j∈P y∗j,P =

∑
j∈P\{k} y

∗
j,P\{k}.

Thus, k obtains a payoff wk irrespective of his/her participation decision.

(necessity) Suppose that there is i ∈ C(P, y∗P ) such that wi ≤
∑

j∈P\{i} y
∗
j,P\{i}. Be-

cause i ∈ C(P, y∗P ) implies that
∑

j∈P y∗j,P < wi, then
∑

j∈P y∗j,P < wi ≤
∑

j∈P\{i} y
∗
j,P\{i}.

Thus, i’s payoff if he/she participates,
∑

j∈P y∗j,P , is less than that if he/she does not par-

ticipate, wi. In conclusion, i is better off switching from participation to nonparticipation,

a contradiction. By Proposition 2, if there is i ∈ N\P such that wi >
∑

j∈P y∗j,P , then i

is better off participating, which is a contradiction. Thus, (i’) and (ii’) hold. �

By Proposition 3, to check whether P is a Nash equilibrium set of participants, it is

sufficient to check whether P ⊆ N satisfies (i’) and (ii’) in the proposition. By Propositions

2 and 3, if P ⊆ N is a Nash equilibrium set of participants, then every agent outside P

is indifferent between participating and not participating. Because of this indifference, a

Nash equilibrium set of participants may not be unique. Proposition 4 identifies all sets

of participants that are supported at a Nash equilibrium.

Proposition 4 For each P ⊆ N , P is a Nash equilibrium set of participants if and only

if C(N, y∗N ) ⊆ P ⊆ N .

The proof is in the appendix. In the voluntary participation game, there are generally

#{P |C(N, y∗N ) ⊆ P ⊆ N} subgame-perfect Nash equilibria because the second-stage game

has the unique Nash equilibrium for each (nonempty) set of participants. However, each

agent in N\C(N, y∗N ) is indifferent between participating and not participating and he/she

contributes nothing at the equilibria even if he/she participates. Thus, the allocation

supported at subgame-perfect Nash equilibria is unique.
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4 Welfare analysis

We discuss the welfare properties of the allocations attained at the subgame-perfect Nash

equilibria of the voluntary participation game. Some of the initial endowments are trans-

ferable among agents and others are not. For example, money, which is a resource for

development of OSS, is an example of transferable resources. We investigate whether the

equilibrium allocation is Pareto efficient in both cases.

We first consider the case of nontransferable endowments. Definition 1 provides con-

cepts of the feasible allocation and the Pareto efficiency in the economy in which agents

cannot transfer the private good to each other.

Definition 1 (i) An allocation (Y, (yi, xi)i∈N ) is individually feasible if wi ≥ piyi + xi for

each i ∈ N and Y =
∑

i∈N yi. (ii) An allocation (Y, (yi, xi)i∈N ) is Pareto efficient within

the set of individually feasible allocations—henceforth, i-Pareto efficient for short—if there

is no individually feasible allocation (Y ′, (y′i, x
′
i)i∈N ) such that Ui(Y

′, x′i) ≥ Ui(Y, xi) for

all i ∈ N with strict inequality for at least one i ∈ N .

Proposition 5 The allocation at the subgame-perfect Nash equilibria of the voluntary

participation game is i-Pareto efficient.

Proof. At the subgame-perfect Nash equilibria, the payoff of agent i is
∑

j∈C(N,y∗N ) y
∗
j,N

if i ∈ C(N, y∗N ) and wi if i ∈ N\C(N, y∗N ). First, no i ∈ N\C(N, y∗N ) is made better off

by the switch of allocations. By (iv) of Lemma 1, wi ≤
∑

j∈C(N,y∗N ) y
∗
j,N . To increase the

payoff to i ∈ N\C(N, y∗N ), it is necessary that i’s consumption of the private good increases

beyond wi. However, the consumption of the private good is at most wi within the set of

individually feasible allocations. Second, we show that if k ∈ C(N, y∗N ) is made better off,

then the other agent is made worse off. For k ∈ C(N, y∗N ),
∑

j∈C(N,y∗N ) y
∗
j,N = wk−pky

∗
k,N ,

where the right-hand side is k’s consumption of the private good. Because k has a Leontief

utility function, to improve his/her payoff, it is necessary to reduce his/her contribution of
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the public good, which induces an increase in the private good consumption of k, and other

agents increase their contribution of the public good more than the reduction. However,

the change of contribution of the others decreases their payoffs. In summary, no Pareto

improvement is possible. �

The welfare property of the subgame-perfect Nash equilibria is related to the result

of Kukushkin (1992). Using an abstract one-shot game, he characterizes a condition

for utility functions under which there is a Nash equilibrium with Pareto efficiency. The

Leontief utility functions satisfy his condition. However, he does not clarify the equilibrium

behavior (contribution and participation) of agents because his model is abstract and

does not examine a concrete model of a public good economy. Unlike the findings of

Kukushkin (1992), our result shows the behavior of each agent. For example, Proposition

1 shows that the participation decision of the agent depends solely on his/her initial

endowment of the private good; Proposition 5, together with Proposition 4, shows that

the partial participation of agents, not necessarily that of all agents, achieves the i-Pareto-

efficient allocation at the equilibrium of the voluntary participation game. In Saijo and

Yamato’s (1999, 2010) model, the i-Pareto-efficient allocation is achieved only if all agents

participate.

We next consider the case of transferable endowments. Definition 2 describes feasibility

and Pareto efficiency when agents can transfer their endowments to others.

Definition 2 (i) An allocation (Y, (yi, xi)i∈N ) is socially feasible if
∑

i∈N wi ≥
∑

i∈N (piyi + xi)

and Y =
∑

i∈N yi. (ii) An allocation (Y, (yi, xi)i∈N ) is Pareto efficient within the set of

socially feasible allocations—henceforth, s-Pareto efficient for short—if there is no socially

feasible allocation (Y ′, (y′i, x
′
i)i∈N ) such that Ui(Y

′, x′i) ≥ Ui(Y, xi) for all i ∈ N with strict

inequality for at least one i ∈ N .

We exemplify that the allocation at the subgame-perfect Nash equilibrium in the voluntary

participation game is not necessarily s-Pareto efficient.
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Example 1’ Let n = 2, with w1 < w2 and p1 < p2. Without transfers, by (6)

y∗1 =
(1 + p2)w1 − w2

p1 + p2 + p1p2
, y∗2 =

(1 + p1)w2 − w1

p1 + p2 + p1p2
, and

∑
i∈N

y∗i =
p1w2 + p2w1

p1 + p2 + p1p2
, (7)

if (1 + p2)w1 − w2 ≥ 0 and (1 + p1)w2 − w1 ≥ 0. We assume that the two equalities hold.

When agent 2 transfers his/her endowment of the private good by t ∈ [0, w2] to agent 1,

their ex post endowments of the private good are w′
1 = w1 + t and w′

2 = w2 − t. The ex

post level of the public good is

p1w2 + p2w1 + (p2 − p1)t

p1 + p2 + p1p2
,

if (1 + p2)w
′
1 −w′

2 ≥ 0 and (1 + p1)w
′
2 −w′

1 ≥ 0. For t ∈ [0, w2], only the latter inequality

can be binding. This is rewritten as

(1 + p1)w
′
2 − w′

1 = (1 + p1)w2 − w1 − (2 + p1)t ≥ 0 or t ≤ (1 + p1)w2 − w1

2 + p1
.

For t satisfying the inequality, the ex post level of the public good is increasing in t. The

maximum level of the public good is (w1 +w2)/(2 + p1), which is equivalent to the utility

levels of the two agents. Because
∑

j∈N y∗j < (w1 + w2)/(2 + p1), the allocation attained

by the transfer Pareto-dominates the allocation with (7).

The s-Pareto efficiency of the ex post allocation through the transfer can be easily

checked by Proposition 6 below. �

Proposition 6 provides a necessary and sufficient condition under which the volun-

tary participation game has a subgame-perfect Nash equilibrium that achieves s-Pareto

efficiency.

Proposition 6 Suppose that p1 < pj for each j ∈ N\{1}. Let (Y ∗, (y∗i , x
∗
i )i∈N ) be a

socially feasible allocation supported at a subgame-perfect Nash equilibrium of the volun-

tary participation game. Then, (Y ∗, (y∗i , x
∗
i )i∈N ) is s-Pareto efficient if and only if agent 1

is the only contributor.
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Proof. (sufficiency) At the equilibrium, x∗1 = w1 − p1y
∗
1 = y∗1 and x∗j = wj ≤ y∗1 for each

j ∈ N\{1}. Under these conditions, to increase the payoff of agent 1, it is necessary to

increase both agent 1’s consumption of the private good and the level of the public good

using the others’ initial endowments of the private good. However, these other agents are

made worse off because their consumption of the private good decreases.

(necessity) Suppose, to the contrary, that agent 1 is not the only contributor, which implies

that there is j ∈ N\{1} that is a contributor, y∗j > 0. Consider the following allocation

(Y ′, (y′i, x
′
i)i∈N ) such that Y ′ =

∑
i∈N y′i and for all k ∈ N

x′k =

x∗1 +
pj − p1

2
y∗j if k = 1

x∗k otherwise
and y′k =


y∗1 + y∗j +

pj − p1
2p1

y∗j if k = 1

0 if k = j

y∗k otherwise

. (8)

Because
∑

i∈{1,j}(x
′
i + piy

′
i) =

∑
i∈{1,j}(x

∗
i + piy

∗
i ), this allocation is socially feasible. Be-

cause Y ′ > Y ∗ and x′1 > x∗1, agent 1 is made better off by switching from (Y ∗, (y∗i , x
∗
i )i∈N )

to (Y ′, (y′i, x
′
i)i∈N ). Note that by this switch, the amount of the public good increases and

the consumption of the private good of agent k is the same for each k ∈ N\{1}. Thus, no

agent k ∈ N\{1} is made worse off by the switch. This is a contradiction. �

In the voluntary participation game, the endowment transfer between agents is not

allowed. Thus, even if an agent has an efficient technology (a low price), if he/she does

not have enough endowments of the private good, then he/she may not be a contributor.

There is a possibility that an efficient technology is not used to provide a public good

because of the lack of initial endowments. This possibility becomes a source of allocative

inefficiency.

By Proposition 6, the following question naturally comes to mind: is the s-Pareto-

efficient allocation achieved as an equilibrium of a game in which agents can freely transfer

their endowments to each other? We extend a voluntary participation game by allowing

the transfer of endowments among agents according to the endogenous-game approach
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of Jackson and Wilkie (2005) and examine cases in which s-Pareto-efficient allocation is

achieved through the transfer. A voluntary participation game with side payments is a

game in which there is a side payment stage among agents prior to the voluntary partici-

pation game. The formal statement of the game is as follows.

Definition 3 (A voluntary participation game with side payments) Let wi ≥ 0

be an initial endowment of the private good of agent i ∈ N . In the voluntary participation

game with side payments, each i ∈ N first simultaneously chooses ti ≡ (tij)j∈N ∈ Rn
+

such that tii = 0 and
∑

j∈N tij ≤ wi, where tij ≥ 0 represents the amount of the private

good transferred from i ∈ N to j ∈ N . At the end of this stage, each i ∈ N has

w′
i ≡ wi+

∑
j∈N\{i} (tji − tij). The second and third stages are equivalent to the voluntary

participation game when each i ∈ N has w′
i units of the private good at the start of the

participation decision.

We establish a sufficient condition under which the voluntary transfer of the private

good among agents achieves the s-Pareto-efficient allocation in a subgame-perfect Nash

equilibrium of the voluntary participation game with side payments.

Proposition 7 An s-Pareto-efficient allocation can be achieved at a subgame- perfect

Nash equilibrium of the voluntary participation game with side payments if

(n+ p1)wi >
∑
j∈N

wj >
n+ p1
1 + p2

wi for each i ∈ N\{1}. (9)

Proof. Let (Y e, (yej , x
e
j)j∈N ) be a feasible allocation such that

ye1 =

∑
j∈N wj

n+ p1
, yej = 0 for each j ∈ N\{1}, Y e = ye1,

and xej = Y e for all j ∈ N .

Let (teji)j,i∈N be a transfer scheme such that

teji =

{
wj − xej = wj − ye1 if j ̸= 1 and i = 1

0 if j ̸= 1 and i ̸= 1 or j = 1
.
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Given (teji)j,i∈N , each i ∈ N has we
i = (1 + p1)y

e
1 of the private good if i = 1 and we

i = ye1

otherwise at the beginning of the second-stage game and (Y e, (yej , x
e
j)j∈N ) is attained at

the equilibrium outcome of the second and third stages. By Proposition 6, because agent

1 is the only contributor at (Y e, (yej , x
e
j)j∈N ), it is s-Pareto efficient.

We show that the transfer scheme is feasible, which means that tej1 > 0 for each

j ∈ N\{1}, and it is supported at a subgame-perfect Nash equilibrium in the voluntary

participation game with side payments. Clearly, for each i ∈ N\{1}, tej1 > 0 if and only if

wi −
∑

j∈N wj

n+ p1
=

1

n+ p1

(n+ p1)wi −
∑
j∈N

wj

 > 0. (10)

We prove that no agent has an incentive to reduce their amount of transfer given the

transfers of the other agents. Now suppose that some agent j ∈ N\{1} reduces the level of

transfer tej1 by zj and allocates zj to the other n− 1 agents including agent j. Let (t′ji)i∈N

be such a transfer scheme of j: t′j1 = tej1 − zj ,
∑

i∈N\{1} t
′
ji = zj , and t′ji ≥ 0.6 Because j

has a Leontief utility function, j’s payoff when j deviates is at most the (aggregate) level

of the public good. We first identify the ceiling of j’s payoff by deviating, and second prove

that the ceiling of j’s payoff is no greater than ye1, which is j’s payoff before deviation.

The deviation by j may change the set of contributors C(N, y∗N ). Let Q be the changed

contributor set. By Lemma 1, for this changed set, the sum of the public good
∑

j∈Q y∗j,Q

is given as ∑
i∈Q

y∗i,Q =

∑
i∈Q(w

′
i/pi)

1 +
∑

i∈Q(1/pi)
,

where w′
1 = we

1− zj and w′
i = we

i + t′ji for each i ∈ N\{1}. Note that if agent i ∈ N\{1, j}

with t′ji > 0 does not contribute, agent j can increase the level of the public good by

ceasing to transfer t′ji to i and using it for provision of the public good. Thus, there is

room to increase the amount of the public good (or the ceiling of j’s payoff by deviating).

Therefore, every i ∈ N\{1, j} such that t′ji > 0 must be a contributor: i ∈ Q.
6By the formal definition of the transfer, t′jj = 0. However, by this proof, we interpret that t′jj =

zj −
∑

i∈N\{1,j} tji for notational brevity. Of course, t′jj ≥ 0 in this notation.
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First, suppose that agent 1 contributes. The sum of the public good is

∑
k∈Q

y∗k,Q =

(1 + p1)y
e
1 −

∑
k∈Q\{1} t

′
jk

p1
+

∑
k∈Q\{1}

ye1 + t′jk
pk

1 +
∑

k∈Q(1/pk)

= ye1 +

∑
k∈Q\{1}

(
1

pk
− 1

p1

)
t′jk

1 +
∑

k∈Q(1/pk)
≤ ye1

because 1/pk−1/p1 = (p1−pk)/(p1pk) ≤ 0. Thus, j cannot be made better off by changing

to t′j .

Second, suppose that agent 1 does not contribute. The level of the public good is

∑
k∈Q

y∗k,Q =

∑
k∈Q

ye1 + t′jk
pk

1 +
∑

k∈Q(1/pk)
.

Suppose that agent l has the lowest price among members of Q: pl = mini∈Q pi. Allocating

some of t′jk such that k ∈ N\{1, j, l} to agent l increases the level of the public good. By

gradually reducing the value of t′jk and allocating it to agent l, either agent k does not

contribute or the value of t′jk becomes zero. In the former situation, for the same reason

above, agent j receives the rest of it and expends it to make the public and private goods.

Therefore, t′jk = 0 for each k ∈ N\{1, j, l}. After the procedure, agent j allocates all of

zj to agent l. In this situation, there are two possibilities: (1) only agent l contributes, or

(2) all agents except 1 contribute.

Case (1). Given the reduction, if only agent l contributes, the level of the public good

is

yl,{l} =
(ye1 + zj)/pl
1 + 1/pl

=
ye1 + zj
1 + pl

.

This is smaller than ye1 if and only if zj < ply
e
1. Note that zj must satisfy zj ≤ wj − ye1

because tj1 = wj − ye1. If ply
e
1 is larger than wj − ye1, yl is smaller than ye1. The condition

is

ply
e
1 − (wj − ye1) > 0 or ye1 >

wj

1 + pl
.
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Case (2). Given the reduction, if all agents except agent 1 contribute, the total amount

of the public good is: ∑
k∈N

yk,Q =
ye1
∑

k∈N\{1} 1/pk + zj/pl

1 +
∑

k∈N\{1} 1/pk
.

This is smaller than ye1 if and only if zj < ply
e
1. This inequality is the same as that in the

first case.
∑

k∈N yk,N is smaller than ye1 if and only if ye1 > wj/(1 + pl).

From the discussion, we find that no agent j ∈ N\{1} has an incentive to reduce its

transfer if and only if

ye1 >
wj

1 + pl
or

∑
j∈N

wj >
n+ p1
1 + pl

wj ,

which is satisfied by (9) because p2 is the second- lowest value among (pi)i∈N . Trivially,

if j ∈ N\{1} increases transfer to agent 1 from tej1, then j’s payoff decreases. �

Condition (9) shows that if the sum of the initial endowments of the private good is

neither “too large” nor “too small,” then the voluntary transfer of the private good can

achieve the s-Pareto-efficient allocation. As we can see in (10), the upper bound of the

sum of the initial endowments of the private good guarantees that endowment transfer in

the proof is feasible. Without this condition, there is no agent except 1 that can transfer

sufficient of the private good, so that agent 1 is the only contributor and the s-Pareto-

efficient allocation is achieved. The lower bound of the sum of the initial endowments of

the private good prevents agents except agent 1 from deviating from the transfer scheme

transfer constructed in the proof. In particular, it plays an important role where an agent

transfers a large amount of the private good to agent 1. When such an agent ceases

the transfer to agent 1 and reallocates the goods, the set of contributors may change

drastically, which may in turn affect the supply of the public good. This case corresponds

to Cases (1) and (2) in the proof. In these cases, agent 1 ceases to contribute because

agent j deviates and ceases transferring the private good. Without this condition, the

supply of the public good may be increased following deviation, which implies that the

deviant is made better off by reducing the transfer to agent 1.
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Although condition (9) may appear to be restrictive, we must note the following as-

pects. First, some restriction for the initial distribution of the private good is needed for

the Pareto- improving transfer scheme to be supported at a subgame-perfect Nash equilib-

rium. If there is coercion to execute the transfer scheme, then it would be easier to obtain

the s-Pareto-efficient allocation through the transfer. In fact, as in the proof of Propo-

sition 6, it is possible to Pareto improve the outcome supported at the subgame-perfect

Nash equilibrium by transfer schemes. However, when there is no outside authority to

compel the transfer scheme and agents can freely transfer the initial endowments of the

private good, it is a problem whether agents will voluntarily execute the Pareto-improving

transfer scheme. The following example shows that if condition (9) is violated, the Pareto-

improving transfer scheme cannot be executed without coercion.

Example 2 Consider the case in which n = 2, p1 < p2, and (1+p2)w1 < w2. In this case,

without transfers, (Y ∗, (y∗i , x
∗
i )i∈N ) is attained at the subgame-perfect Nash equilibrium

Y ∗ =
∑
i∈N

y∗i , y∗1 = 0, y∗2 =
w2

1 + p2
, x∗1 = w1, and x∗2 =

w2

1 + p2
.

While the payoff to agent 2 is Y ∗, that to agent 1 is w1, which is smaller than Y ∗. To

achieve the s-Pareto-efficient allocation through the transfer, by Proposition 6 agent 2 must

transfer in such a way that agent 1 is the only contributor. Agent 1 is the only contributor

if and only if the transfer from agent 2 to agent 1 is at least ((1+p1)w2−w1)/(2+p1) > 0.7

Within the range of the transfer, the maximum payoff to agent 2 is (w1+w2)/(2+p1), which

can be obtained when he/she sets t21 = ((1 + p1)w2 −w1)/(2 + p1). If (w1 +w2)/(2 + p1)

is smaller than Y ∗, he/she does not transfer t21: he/she does not transfer if

w1 + w2

2 + p1
<

w2

1 + p2
or w1 <

1 + p1 − p2
1 + p2

w2.

7The ex post endowment of the private good of agent 1 is w′
1 = w1 + t21 and that of agent 2 is

w′
2 = w2 − t21. Agent 1 is the only contributor after the transfer only if w′

2 ≤ w′
1/(1 + p1). That is,

t21 ≥ ((1 + p1)w2 − w1)/(2 + p1). Note also that w2 > (1 + p2)w1 implies (1 + p1)w2 > w1.
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Note that the conditions p1 < p2, and (1 + p2)w1 < w2, w1 < (1 + p1 − p2)w2/(1 +

p2) are compatible; for example, (p1, p2, w1, w2) = (0.1, 1, 0.5, 20) satisfies all conditions.

Therefore, under the conditions, it is impossible to attain the s-Pareto-efficient allocation

even if agents can freely transfer the private good to each other. Furthermore, note that the

parameter values do not satisfy (9). However, Pareto improvement from (Y ∗, (y∗i , x
∗
i )i∈N )

is possible because we can find an allocation that Pareto dominates (Y ∗, (y∗i , x
∗
i )i∈N ) by

applying (8). Such a Pareto improvement can successfully be executed if there is coercion

to do so.

Second, (9) includes interesting cases. The first case is that every agent has the same

initial endowment of the private good. In this case, the voluntary endowment transfer of

the private good achieves a Pareto-efficient allocation because (9) holds in this situation.

Corollary 1 Suppose that wi = w > 0 for each i ∈ N . An s-Pareto-efficient allocation

can be achieved at a subgame-perfect Nash equilibrium of the voluntary participation

game with side payments.

The second case is more general than the first. This is a case in which every agent is a

contributor (without transfers). We can show that (9) implies that every agent contributes

to a positive level of the public good. From equation (4), we have the condition under

which every agent contributes to a positive amount of a public good

y∗i,N = wi + wi

∑
h∈N

1

ph
−
∑
h∈N

wh

ph
=

1 +
∑

h∈N\{i}

1

ph

wi −
∑

h∈N\{i}

wh

ph
> 0 for any i.

By Proposition 1, if y∗j,N > 0 such that j ∈ argmink∈N wk, then y∗i,N > 0 for each

i ∈ N\{j}. Differentiating y∗j,N with respect to pi (i ̸= 1), we have (wi − wj)/p
2
i . This is

nonnegative because wj has the lowest value among wk. This means that y∗j,N does not

increase even if we replace pi by p1. For all pi such that i ̸= 1, we replace pi by p1 and
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then the condition becomes

y∗j,N ≥
(
1 +

n− 1

p1

)
wj −

∑
h∈N\{j}

wh

p1
=

1

p1

(
(n+ p1)wj −

∑
h∈N

wh

)
> 0.

This is equivalent to the left-hand side of (9) in Proposition 7.

5 Discussion

One may conjecture that the strong complementarity between the private and public good

strengthens the incentive for voluntary contribution to the public good. We discuss how

strong complementarity affects the incentive to contribute voluntarily to the public good

by comparing our results with those of Saijo and Yamato (1999, 2010).

We introduce the notion of group efficiency by naturally extending the i-Pareto effi-

ciency in Definition 1: let P ⊆ N be a set of participants. (i) An allocation (Y, (yi, xi)i∈P )

is individually feasible for P if wi ≥ piyi + xi for each i ∈ P and Y =
∑

i∈P yi. (ii) An

allocation for P , (Y, (yi, xi)i∈P ), is group efficient within the set of individually feasible

allocations for P—henceforth, i-group efficient for P for short—if there is no individually

feasible allocation for P , (Y ′, (y′i, x
′
i)i∈P ), such that Ui(Y

′, x′i) ≥ Ui(Y, xi) for all i ∈ P

with strict inequality for at least one i ∈ P . For each set of participants, the second stage

of the voluntary participation game achieves i-group efficiency at a Nash equilibrium if

every agent has the same Leontief utility function.

Proposition 8 Suppose that every agent has the same Leontief utility function. For each

P ⊆ N , the voluntary contribution game when P is the set of agents achieves i-group-

efficient allocation for P at a Nash equilibrium.

We can illustrate Proposition 8 in a similar way to Proposition 5. At the Nash

equilibrium of the voluntary contribution game,
∑

j∈C(P,y∗P ) y
∗
j,P = wi − piy

∗
i,P for each

i ∈ C(P, y∗P ) and
∑

j∈C(P,y∗P ) y
∗
j,P ≥ wi for each i ∈ P\C(P, y∗P ). No i ∈ P\C(P, y∗P ) can

be made better off because wi is the maximum payoff that i can obtain. For i ∈ C(P, y∗P )
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to be made better off, other agents j ∈ P\{i} must increase their contribution to the

public good, which reduces j’s payoff.

Saijo and Yamato (1999, 2010) study the participation problem in the voluntary con-

tribution game. They use the same model as we do, except for agents’ utility functions.

In their model, agents have the Cobb–Douglas utility function and quasilinear function,

which have weaker complementarity between the private and the public goods than the

Leontief utility function. In their case, the equilibrium allocation of the voluntary con-

tribution game does not satisfy i-group efficiency for a set of participants, in particular

the set consisting of more than two participants. Saijo and Yamato (1999, 2010) show

that not all agents participate in the voluntary contribution to the public good and the

equilibrium allocation of the participation game is not i-Pareto efficient.

Their results are in contrast to ours. In the presence of the strong complementarity

modeled by the Leontief utility function, for each set of participants, the i-group-efficient

allocation is supported at a Nash equilibrium by Proposition 8 and the i-Pareto-efficient

allocation is attained at a subgame-perfect Nash equilibrium of the participation game by

Proposition 5. From the comparison, we can conclude that when the private good is not

transferable, the strong complementarity between the two goods provides such a strong

incentive to agents as to achieve the (i-)Pareto-efficient allocation at equilibria.

When the private good is transferable, the implication of our result is the same as that

of Saijo and Yamato (1999, 2010). As discussed in Section 4, the equilibrium allocation

is not s-Pareto efficient in the voluntary participation game without transfer, even in our

model. Strong complementarity cannot provide an incentive such that the equilibrium

allocation is (s-)Pareto efficient. In our model, there is the possibility that C(N, y∗N ) con-

sists of many agents. Then, many agents participate in the equilibrium. The participation

of many agents does not induce the (s-)Pareto efficiency of the equilibrium allocation.
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6 Conclusion

This paper examines the participation behavior and the allocative efficiency in the econ-

omy with a public good in the presence of the strong complementarity between the private

good and the public good. In our model, every agent has the same Leontief utility func-

tion with respect to the consumption of the private and the public goods. Agents can

differ in initial endowments of the private good and in production technology of the public

good. We first find that whether agents voluntarily participate in the public good provi-

sion depends solely on the initial endowment of the private good: the greater the initial

endowment of the private good that agents have, the more likely they are to participate

in the provision of the public good. Such a binary participation decision does not depend

on the efficiency of the production technology held by agents. Second, we examine the

efficiency of the equilibrium allocation of the voluntary participation game. We show that

while the equilibrium allocation is i-Pareto efficient, it is not necessarily s-Pareto efficient.

Third, we examine whether the voluntary transfer of the private good among agents can

achieve an s-Pareto-efficient allocation. We extend the voluntary participation game in

such a way that agents can freely exchange their endowments of the private good, based on

the model of Jackson and Wilkie (2005). We show that at the equilibrium in this model,

the voluntary transfer scheme does not always achieve s-Pareto efficiency. The reason

that the transfer scheme does not work is that the Pareto-improving transfer is always

possible, but in some cases, it is difficult to provide agents with an incentive to execute

such a transfer scheme. In this case, an outside authority such as a government is needed

to compel a Pareto-improving transfer scheme.

Our result is new in the sense that we explain the incentive for the voluntary devel-

opment of OSS in terms of the amount of endowment/resources a developer can invest

in OSS. Our result can be partially justified by the empirical analysis by Bitzer and

Geishecker (2010). We hope that our results will provide a new perspective on the study
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of the voluntary development of OSS.

Appendix

Proof of Lemma 4

(4.1) Consider a voluntary contribution game when P∪{i} is a set of participants. Suppose,

conversely, that y∗i,P∪{i} = 0. Then,
∑

j∈P∪{i} y
∗
j,P∪{i} ≥ wi. Consider the game in which

given y∗i,P∪{i} = 0, agents in P decide on their contributions, simultaneously. This is the

same situation as in the game when P is the set of participants. Thus, C(P ∪{i}, y∗P∪{i}) =

C(P, y∗P ) and wi >
∑

j∈P∪{i} y
∗
j,P∪{i} =

∑
j∈P y∗j,P . This is a contradiction.

(4.2) Let us denote B ≡ C(P ∪{i}, y∗P∪{i})∩C(P, y∗P ), C ≡ C(P, y∗P )\C(P ∪{i}, y∗P∪{i}),

and D ≡ C(P ∪ {i}, y∗P∪{i})\C(P, y∗P ). By Lemma 4, i ∈ D; hence, D is not empty.

Claim 1 It follows that

∑
l∈C

wl

pl

(
1 +

∑
k∈B

1

pk
+
∑
k∈D

1

pk

)
≤
∑
l∈C

1

pl

(∑
k∈B

wk

pk
+
∑
k∈D

wk

pk

)
(11)

and ∑
k∈D

wk

pk

(
1 +

∑
k∈B

1

pk

)
>
∑
k∈D

1

pk

∑
k∈B

wk

pk
. (12)

Proof of Claim 1. We first show (11). Because y∗l,P∪{i} = 0 for each l ∈ C, we have

wl ≤

∑
k∈C(P∪{i},y∗

P∪{i})
wk
pk

1 +
∑

k∈C(P∪{i},y∗
P∪{i})

1
pk

=

∑
k∈B

wk
pk

+
∑

k∈D
wk
pk

1 +
∑

k∈B
1
pk

+
∑

k∈D
1
pk

for each l ∈ C. By this condition

wl

pl
≤

∑
k∈B

wk
pk

+
∑

k∈D
wk
pk

pl(1 +
∑

k∈B
1
pk

+
∑

k∈D
1
pk
)

for each l ∈ C. Summarizing this condition over l ∈ C yields

∑
l∈C

wl

pl
≤
∑
l∈C

1

pl

( ∑
k∈B

wk
pk

+
∑

k∈D
wk
pk

1 +
∑

k∈B
1
pk

+
∑

k∈D
1
pk

)
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or ∑
l∈C

wl

pl

(
1 +

∑
k∈B

1

pk
+
∑
k∈D

1

pk

)
≤
∑
l∈C

1

pl

(∑
k∈B

wk

pk
+
∑
k∈D

wk

pk

)
.

Thus, we have (11).

Second, we show (12). When P∪{i} is a set of participants, every l ∈ D is a contributor;

hence

wl >

∑
k∈B

wk
pk

+
∑

k∈D
wk
pk

1 +
∑

k∈B
1
pk

+
∑

k∈D
1
pk

for each l ∈ D. Dividing this condition by pl for each l ∈ D, we obtain

wl

pl
>

∑
k∈B

wk
pk

+
∑

k∈D
wk
pk

pl(1 +
∑

k∈B
1
pk

+
∑

k∈D
1
pk
)
.

Summarizing this condition over i ∈ D, we have

∑
k∈D

wk

pk
>
∑
k∈D

1

pk

( ∑
k∈B

wk
pk

+
∑

k∈D
wk
pk

1 +
∑

k∈B
1
pk

+
∑

k∈D
1
pk

)

or ∑
k∈D

wk

pk

(
1 +

∑
k∈B

1

pk
+
∑
k∈D

1

pk

)
>
∑
k∈D

1

pk

(∑
k∈B

wk

pk
+
∑
k∈D

wk

pk

)
.

This is simplified as ∑
k∈D

wk

pk

(
1 +

∑
k∈B

1

pk

)
>
∑
k∈D

1

pk

∑
k∈B

wk

pk
.

Hence, (12) holds. (End of Proof of Claim 1)

The difference between
∑

k∈P∪{i} y
∗
k,P∪{i} and

∑
k∈P y∗k,P is

∑
k∈P∪{i}

y∗k,P∪{i} −
∑
k∈P

y∗k,P

=
1(

1 +
∑

k∈C(P∪{i},y∗
P∪{i})

1
pk

)(
1 +

∑
k∈C(P,y∗P )

1
pk

)
×

 ∑
k∈C(P∪{i},y∗

P∪{i})

wk

pk

1 +
∑

k∈C(P,y∗P )

1

pk

−
∑

k∈C(P,y∗P )

wk

pk

1 +
∑

k∈C(P∪{i},y∗
P∪{i})

1

pk




︸ ︷︷ ︸
(α)

.
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Note that C(P, y∗P ) = B ∪ C and C(P ∪ {i}, y∗P∪{i}) = B ∪ D. Thus

(α) =

(∑
k∈B

wk

pk
+
∑
k∈D

wk

pk

)(
1 +

∑
k∈B

1

pk
+
∑
k∈C

1

pk

)
−

(∑
k∈B

wk

pk
+
∑
k∈C

wk

pk

)(
1 +

∑
k∈B

1

pk
+
∑
k∈D

1

pk

)

=

(∑
k∈B

wk

pk

)(∑
k∈C

1

pk

)
+
∑
k∈D

wk

pk

(
1 +

∑
k∈B

1

pk
+
∑
k∈C

1

pk

)

−

(∑
k∈B

wk

pk

)(∑
k∈D

1

pk

)
−
∑
k∈C

wk

pk

(
1 +

∑
k∈B

1

pk
+
∑
k∈D

1

pk

)
.

By (11)

(α) ≥

(∑
k∈B

wk

pk

)(∑
k∈C

1

pk

)
+
∑
k∈D

wk

pk

(
1 +

∑
k∈B

1

pk
+
∑
k∈C

1

pk

)

−

(∑
k∈B

wk

pk

)(∑
k∈D

1

pk

)
−
∑
k∈C

1

pk

(∑
k∈B

wk

pk
+
∑
k∈D

wk

pk

)
.

=
∑
k∈D

wk

pk

(
1 +

∑
k∈B

1

pk

)
−

(∑
k∈B

wk

pk

)(∑
k∈D

1

pk

)
. (13)

By (12), we find that the left-hand-side value is larger than the right-hand-side one. That

is, we have (α) > 0. Thus,
∑

k∈P∪{i} y
∗
k,P∪{i} >

∑
k∈P y∗k,P . �

(4.3) By (4.1), C(P ∪ {i}, y∗P∪{i}) ∩C(P, y∗P ) ∪ {i} ⊆ C(P ∪ {i}, y∗P∪{i}). We show the

converse. Let j ∈ C(P ∪{i}, y∗P∪{i}). If j = i, then j ∈ C(P ∪{i}, y∗P∪{i})∩C(P, y∗P )∪{i},

trivially. We need to show that if j ̸= i, then j ∈ C(P, y∗P ). Suppose, conversely, that

j /∈ C(P, y∗P ). Then, because j ∈ C(P ∪ {i}, y∗P∪{i})\C(P, y∗P )

∑
k∈P∪{i}

y∗k,P∪{i} =

∑
k∈C(P∪{i},y∗

P∪{i})
wk
pk

1 +
∑

k∈C(P∪{i},y∗
P∪{i})

1
pk

< wj ≤
∑

k∈C(P,y∗P )
wk
pk

1 +
∑

k∈C(P,y∗P )
1
pk

=
∑
k∈P

y∗k,P ,

which contradicts (4.2).

Proof of Lemma 5.

We show the contrapositive. Let P ( N and i ∈ N\P . Suppose that i ∈ C(P ∪{i}, y∗P∪{i})

or C(P ∪ {i}, y∗P∪{i}) ̸= C(P, y∗P ). Suppose first that i /∈ C(P ∪ {i}, y∗P∪{i}) and C(P ∪

{i}, y∗P∪{i}) ̸= C(P, y∗P ). Because i /∈ C(P∪{i}, y∗P∪{i}), then y∗i,P∪{i} = 0. Given y∗i,P∪{i} =
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0, if agents in P simultaneously choose their contributions, then they choose y∗j,P for all

j ∈ P . Therefore, we must have C(P ∪ {i}, y∗P∪{i}) = C(P, y∗P ), which is a contradiction.

Such a case never occurs. Second, suppose that i ∈ C(P ∪ {i}, y∗P∪{i}). By (4), if i ∈

C(P ∪ {i}, y∗P∪{i}), then

y∗i,P∪{i} =
1

pi(1 +
∑

j∈C(P,y∗P )(1/pj))

wi

1 +
∑

j∈C(P,y∗P )\{i}

1

pj

−
∑

j∈C(P,y∗P )\{i}

wj

pj

 > 0.

By (iii) of Lemma 1,
∑

j∈P∪{i} y
∗
j,P∪{i} = (1+

∑
j∈C(P,y∗P )\{i}(1/pj))/

∑
j∈C(P,y∗P )\{i}(wj/pj).

Thus, wi >
∑

j∈P∪{i} y
∗
j,P∪{i}.

Proof of Proposition 4

For preparation of proof of Proposition 4, we show the following claim.

Claim 2 Sets N and C(N, y∗N ) are Nash equilibrium sets of participants in the voluntary

participation game.

Proof of Claim 2. We first show that N is a Nash equilibrium set of participants. Sup-

pose that wi ≤
∑

j∈N\{i} y
∗
j,N\{i} for some i ∈ C(N, y∗N ). Then, by Lemma 5, i /∈ C(N, y∗N ).

Thus, wi >
∑

j∈N\{i} y
∗
j,N\{i} for each i ∈ C(N, y∗N ). By Proposition 3, N is supported at a

Nash equilibrium. Next, we show that C(N, y∗N ) is a Nash equilibrium set of participants.

By Lemma 5, wi >
∑

j∈C(N,y∗N )\{i} y
∗
j,C(N,y∗N )\{i} for each i ∈ C(C(N, y∗N ), y∗C(N,y∗N )).

8 By

Lemma 3, wk ≤
∑

j∈N y∗j,N =
∑

j∈C(N,y∗N ) y
∗
j,C(N,y∗N ) for each k ∈ N\C(N, y∗N ). By Propo-

sition 3, C(N, y∗N ) is supported at a Nash equilibrium. (End of Proof of Claim 2)

(sufficiency) By Lemma 5, wi >
∑

j∈P\{i} y
∗
j,P\{i} for each i ∈ C(P, y∗P ). Before proving

that P satisfies (ii’) in Proposition 3, we show that C(N, y∗N ) = C(P, y∗P ). We show this

by applying Lemma 5 iteratively to each agent in P\C(N, y∗N ). Denote P\C(N, y∗N ) ≡

{k1, . . . , km} such that m ≥ 1.9 Because C(N, y∗N ) ⊆ P ⊆ N , then P\C(N, y∗N ) ⊆

8Trivially, C(C(N, y∗
N ), y∗

C(N,y∗
N

)) = C(N, y∗
N ).

9If P\C(N, y∗
N ) is empty, C(N, y∗

N ) = C(P, y∗
P ) trivially holds.
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N\C(N, y∗N ). Because by Claim 2, C(N, y∗N ) is supported at a Nash equilibrium, then

wj ≤
∑

j∈C(N,y∗N )

y∗j,C(N,y∗N ) for each j ∈ N\C(N, y∗N ). (14)

Hence, in particular, wj ≤
∑

j∈C(N,y∗N ) y
∗
j,C(N,y∗N ) for each j ∈ P\C(N, y∗N ). First, we

apply Lemma 5 to k1. Note that C(C(N, y∗N ), y∗C(N,y∗N )) = C(N, y∗N ). Because wk1 ≤∑
j∈C(N,y∗N ) y

∗
j,C(N,y∗N ), then by Lemma 5, k1 /∈ C(C(N, y∗N ) ∪ {k1}, y∗C(N,y∗N )∪{k1}) and

C(N, y∗N ) = C(C(N, y∗N ), y∗C(N,y∗N )) = C(C(N, y∗N ) ∪ {k1}, y∗C(N,y∗N )∪{k1}). Thus∑
j∈C(N,y∗N )

y∗j,C(N,y∗N ) =
∑

j∈C(N,y∗N )∪{k1}

y∗j,C(N,y∗N )∪{k1}. (15)

Second, we apply Lemma 5 to k2. By (15)

wk2 ≤
∑

j∈C(N,y∗N )

y∗j,C(N,y∗N ) =
∑

j∈C(N,y∗N )∪{k1}

y∗j,C(N,y∗N )∪{k1}.

Thus, by Lemma 5

C(C(N, y∗N ) ∪ {k1}, y∗C(N,y∗N )∪{k1}) = C(C(N, y∗N ) ∪ {k1, k2}, y∗C(N,y∗N )∪{k1,k2}).

By the iterative application of Lemma 5 to k3, . . . , km, we have

C(N, y∗N ) = C(C(N, y∗N ) ∪ {k1}, y∗C(N,y∗N )∪{k1}) = C(C(N, y∗N ) ∪ {k1, k2}, y∗C(N,y∗N )∪{k1,k2})

= · · · = C(P\{km}, y∗P\{km}) = C(P, y∗P ). (16)

By (16) and Lemma 3

∑
j∈C(N,y∗N )

y∗j,C(N,y∗N ) =
∑

j∈C(P,y∗)

y∗j,C(P,y∗P ) =
∑
j∈P

y∗j,P . (17)

Conditions (14) and (17) andN\P ⊆ N\C(N, y∗N ) imply that wj ≤
∑

j∈C(N,y∗N ) y
∗
j,C(N,y∗N ) =∑

j∈P y∗j,P for each j ∈ N\P , which is (ii’).

(necessity) It is trivial that P ⊆ N . We show that each Nash equilibrium set of

participants P satisfies C(N, y∗N ) ⊆ P . Suppose, conversely, that there exists a Nash
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equilibrium set of participants P that does not satisfy it. Then, there is i ∈ C(N, y∗N )\P ,

which implies
∑

j∈C(N,y∗N ) y
∗
j,C(N,y∗N ) =

∑
j∈N y∗j,N < wi ≤

∑
j∈P y∗j,P by Lemma 3. When

N = P , this inequality does not hold. We need to consider the case where P ̸= N .

Because P is supported at a Nash equilibrium, then
∑

j∈P y∗j,P ≥ wk for each k ∈ N\P .

Applying Lemma 5 to each agent in N\P iteratively in a similar way to the above, we have

C(P, y∗P ) = C(P∪{j}, y∗P∪{j}) = · · · = C(N\{l}, y∗N\{l}) = C(N, y∗N ), where j, l ∈ N\P .By

Lemma 3,
∑

j∈N y∗j =
∑

j∈C(N,y∗N ) y
∗
j,C(N,y∗N ) =

∑
j∈C(P,y∗P ) y

∗
j,C(P,y∗P ) =

∑
j∈P y∗j,P , which

is a contradiction.
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