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Abstract: We specify a stochastic economy-climate model, adapting Nord-
haus’ deterministic economy-climate model by allowing for Weitzman-type
stochasticity. We show that, under expected power utility, the model is
fragile to heavy-tailed distributional assumptions and we derive necessary
and sufficient conditions on the utility function to avoid fragility. We solve
our stochastic economy-climate model for two cases with compatible pairs of
utility functions and heavy-tailed distributional assumptions. We further de-
velop and implement a procedure to learn the input parameters of our model
and show that the model thus specified produces robust optimal policies.
The numerical results indicate that higher levels of uncertainty lead to less
abatement and consumption, and to more investment.
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1 Introduction

An economist, when asked to model decision making under risk or uncer-
tainty for normative purposes, would typically work within the expected
utility framework with constant relative risk aversion (that is, power util-
ity). A statistician, on the other hand, would model economic catastrophes
through probability distributions with heavy tails. Unfortunately, expected
power utility is fragile with respect to heavy-tailed distributional assump-
tions: expected utility may fail to exist or it may imply conclusions that are
‘incredible’.

Economists have long been aware of this tension between the expected
utility paradigm and distributional assumptions (Menger, 1934), and the
discussions in Arrow (1974), Ryan (1974), and Fishburn (1976) deal explicitly
with the trade-off between the richness of the class of utility functions and the
generality of the permitted distributional assumptions. Compelling examples
in Geweke (2001) corroborate the fragility of the existence of expected power
utility with respect to minor changes in distributional assumptions.

The combination of heavy-tailed distributions and the power utility fam-
ily may not only imply infinite expected utility, but also infinite expected
marginal utility, and hence, via the intertemporal marginal rate of substi-
tution (the pricing kernel), lead to unacceptable conclusions in cost-benefit
analyses. For example, with heavy-tailed log-consumption and power utility,
the representative agent should postpone any unit of current consumption
to mitigate future catastrophes. The latter aspect was recently emphasized
by Weitzman (2009) in the context of catastrophic climate change. Weitz-
man also argues that attempts to avoid this unacceptable conclusion will
necessarily be non-robust.

In this paper we study the question of how to conduct expected util-
ity analysis in the presence of catastrophic risks, in the context of extreme
climate change. Our paper is built on four beliefs, which will recur in our
analysis:

Catastrophic risks are important. To study risks that can lead to catas-
trophe is important in many areas, e.g., financial distress, traffic accidents,
dike bursts, killer asteroids, nuclear power plant disasters, and extreme cli-
mate change. Such low-probability high-impact events should not be ignored
in cost-benefit analyses for policy making.

A good model ‘in the center’ is not necessarily good ‘at the edges’. Models
are approximations, not truths, and approximations may not work well if we
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move too far away from the point of approximation. In our context, the
widely adopted family of power utility functions, often appropriate when
one considers large inputs remote from zero, may not work well for decision
making under heavy-tailed risks with non-negligible support beyond the usual
domain of inputs.

The price to reduce catastrophic risk is finite. Are we willing to spend
everything to avoid children being killed at a dangerous street? Or dikes to
burst? Or a power plant to explode? Or a killer asteroid to hit the Earth? Or
climate to change rapidly? No, we are not. To assume the opposite (that a
society would be willing to offer all of its current wealth to avoid or mitigate
catastrophic risks) is not credible, not even from a normative perspective. In
our context, there is a limit to the amount of current consumption that the
representative agent is willing to give up in order to obtain one additional
certain unit of future consumption, no matter how extreme and irreversible
climate change may be. In other words: the expected pricing kernel is finite.

Light-tailed risks may result in heavy-tailed risk. When x is normally dis-
tributed (light tails) then 1/x has no moments (heavy tails). Also, when x is
normally distributed then ex has finite moments, but when x follows a Stu-
dent distribution then ex has no moments. In the context of extreme climate
change: temperature has fluctuations but one would not expect heavy tails
in its distribution. This does not, however, imply that functions of tempera-
ture cannot have heavy tails. For example, it may well be reasonable to use
heavy-tailed distributional assumptions to model future (log) consumption.

There is an important literature on stochastic economy-climate models
(see, for example, Keller et al., 2004, Mastrandrea and Schneider, 2004,
and the references therein). The integrated assessment models of climate
economics are, however, predominantly deterministic and rarely incorporate
catastrophic risk (Ackerman et al., 2010). To allow for uncertainty and ex-
treme climate change, we start by specifying a stochastic economy-climate
model, adapting Nordhaus’ (2008) deterministic dynamic integrated climate
and economy (DICE) model by allowing for stochasticity in the spirit of
Weitzman (2009). We show formally that, under expected power utility, the
model is indeed fragile to heavy-tailed distributional assumptions, and we
derive necessary and sufficient conditions on the utility function to avoid
fragility, thus ensuring that expected utility and expected marginal utility
(hence the expected pricing kernel) are finite, also under heavy-tailed distri-
butional assumptions.

Next, we solve a two-period version of the model, first with power utility
and light-tailed distributional assumptions. Since the assumption of expected
power utility is incompatible with heavy-tailed distributional assumptions,
we then restrict attention to utility functions that satisfy the derived compat-
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ibility conditions, and solve our stochastic economy-climate model with the
well-known exponential utility function and also with the less well-known
(but more suitable) ‘Pareto utility’ function, under both light-tailed and
heavy-tailed distributional assumptions.

Completing the resulting model requires specifying a number of model
parameters as inputs. These parameters cannot ‘simply’ be determined by
conventional statistical inference based on historical data. We discuss how
to set the model parameters in a process towards agreement, using experts’
priors on parameter values, and learning about parameters from resulting
optimal model output. The key to this learning and agreement process is
the translation of model parameters that are relatively difficult to interpret
into quantities that allow a more straightforward interpretation. Contrary
to Weitzman’s (2009) claim, we find that our optimal policies thus derived
are quite robust with respect to minor and reasonable changes to the input
parameters. This means that the policymaker is not left empty-handed when
it comes to cost-benefit analyses under catastrophic risk.

Our numerical analysis indicates that allowing for heavy-tailed distri-
butional assumptions in extreme climate change modeling, inducing both
heavy-tailed downside risk and heavy-tailed upward potential, leads to a re-
duction of current abatement and consumption and to an increase in current
investment, when compared to a deterministic analysis. The increase in cur-
rent investment may be interpreted via precautionary savings. While the
differences are clearly visible, they are not unlimited.

The paper is organized as follows. In Section 2 we propose a simplified
version of Nordhaus’ economy-climate model. In Section 3 we introduce un-
certainty in the spirit of Weitzman. This is the first new feature added to
the Nordhaus model. Section 4 discusses expected (marginal) utility and
uncertainty in a more general setting, deriving results on the trade-off be-
tween permitted distributional assumptions and the existence of expected
(marginal) utility. In Section 5 we specialize the model to two periods only,
and add a second new feature to the Nordhaus model: scrap value functions.
In Section 6, we present (partial) results for power utility, which is incom-
patible with heavy tails, and for exponential and ‘Pareto’ utility, which are
compatible with heavy tails. Section 7 discusses how to learn the parameters
of our model and calibrate policy using information such as the probability
of catastrophe, and reports on robustness tests. Section 8 concludes. There
are two appendices: Appendix A provides the Kuhn-Tucker conditions and
Appendix B contains proofs of the propositions.
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2 Nordhaus simplified

Our framework is a simple economy-climate model in the spirit of Nordhaus
and Yang (1996) and Nordhaus (2008). Everybody works. In period t, the
labor force Lt together with the capital stock Kt generate GDP Yt through
a Cobb-Douglas production function

Yt = AtK
γ
t L

1−γ
t (0 < γ < 1),

where At represents technological efficiency and γ is the elasticity of capital.
Capital is accumulated through

Kt+1 = (1− δ)Kt + It (0 < δ < 1),

where It denotes investment and δ is the depreciation rate of capital. Pro-
duction generates carbon dioxide (CO2) emissions Et:

Et = σt(1− µt)Yt,

where σt denotes the emissions-to-output ratio for CO2, and µt is the abate-
ment fraction for CO2. The associated CO2 concentration Mt accumulates
through

Mt+1 = (1− ϕ)Mt + Et (0 < ϕ < 1),

where ϕ is the depreciation rate of CO2 (rate of removal from the atmo-
sphere). Temperature Ht develops according to

Ht+1 = η0 + η1Ht + η2 log(Mt+1) (η1 > 0, η2 > 0).

In each period t, the fraction of GDP not spent on abatement or ‘damage’ is
either consumed (Ct) or invested (It) along the budget constraint

(1− ωt)dtYt = Ct + It.

The temperature-impact function dt depends only on temperature and satis-
fies 0 < dt ≤ d̄t, where d̄t represents the optimal temperature for the economy.
Deviations from the optimal temperature cause damage. We specify dt as

dt =
d̄t

1 + ξH2
t

(ξ > 0).

For very high and very low temperatures dt approaches zero. The optimal
value of dt occurs at Ht = 0 (the temperature in 1900, as in Nordhaus) when
dt = d̄t. Hence, ‘net’ output dtYt is a fraction, not of Yt as in Nordhaus, but
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of d̄tYt, the output achievable under optimal climate conditions. A fraction
ωt of dtYt is spent on abatement, and we specify the abatement cost fraction
as

ωt = ψtµ
θ
t (θ > 1).

If µt increases then so does ωt, and a larger fraction of GDP will be spent
on abatement. These equations capture the essence of the Nordhaus (2008)
DICE model.

The model includes stock variables Lt, Kt, Mt, and Ht, fractions ωt and
µt, and scale variables At, dt, σt, and ψt, all measured at the beginning of
period t; and flow variables Yt, Ct, It, and Et, all measured in period t (not
in year t). Notice that Lt is a stock, not a flow. As in Nordhaus (2008) one
period is ten years. We choose the exogenous variables such that Lt > 0,
At > 0, σt > 0, and 0 < ψt < 1. The policy variables must satisfy

Ct ≥ 0, It ≥ 0, 0 ≤ µt ≤ 1. (1)

With these restrictions all variables will have the correct signs and all frac-
tions will lie between zero and one.

Given a utility function U we define welfare in period t as

Wt = LtU(Ct/Lt).

If the policy maker has an infinite horizon, then he/she will maximize total
discounted welfare,

W =
∞∑
t=0

Wt

(1 + ρ)t
(0 < ρ < 1),

where ρ denotes the discount rate. Letting x denote per capita consumption,
the utility function U(x) is assumed to be defined and strictly concave for
all x > 0. There are many such functions, but a popular choice is

U(x) =
x1−α − 1

1− α
(α > 0), (2)

where α denotes the elasticity of marginal utility of consumption. This is the
so-called power function. Many authors, including Nordhaus (2008), select
this function and choose α = 2 in which case U(x) = 1− 1/x. Also popular
is α = 1; see Kelly and Kolstad (1999) and Stern (2007).

Our interest is in maximizing welfareW with respect to the policy bundles
(Ct, It, µt) for t = 0, 1, 2, . . . . We choose the exogenous variables Lt, At, σt,
and ψt as in Nordhaus (2008), and we let d̄t ≡ 1 and α = 2. Calibrating the
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Table 1: Comparison of stocks in Nordhaus (DICE) and our (SICE) models
2005 2055 2105 2155

DICE SICE DICE SICE DICE SICE DICE SICE
K 137 137 353 354 707 711 1317 1324
M 809 809 1048 988 1270 1233 1428 1430
H 0.7 0.7 1.8 1.5 2.7 2.4 3.3 3.2

parameters and initial values (presented in our background document, see
Ikefuji et al., 2011b), our GAMS code1 produces optimal values over sixty
periods that are very close to the values obtained in Nordhaus, as shown in
Table 1. Hence it appears that our simplified version of the DICE model
(hereafter, SICE = simplified DICE) works as well as the original version.

3 Enter Weitzman and uncertainty

Weitzman (2009) recently noted, in a highly stylized setting, that heavy-
tailed uncertainty and power utility are incompatible, since this combination
of uncertainty and preferences implies an infinite expected pricing kernel. In
order to avoid this, Weitzman introduces a lower bound on consumption. He
then argues that this lower bound is related to a parameter that resembles
the value of a statistical life, and proves that the expected pricing kernel
approaches infinity as the value of this parameter approaches infinity (the
‘dismal theorem’). Weitzman further argues that this ‘VSL-like’ parameter
is hard to know, and interprets this result as follows:

“. . . reasonable attempts to constrict the length or the heaviness
of the ‘bad’ tail (or to modify the utility function) still can leave
us with uncomfortably big numbers whose exact value depends
non-robustly upon artificial constraints or parameters that we
really do not understand.” (Weitzman, 2009, p. 11)

We agree with Weitzman that incompatible pairs of utility functions and
distribution functions exist, in the sense that the expected pricing kernel
or other important policy variables become infinite. In fact, we derive in
Section 4 necessary and sufficient conditions on the utility functions for the
expected pricing kernel to exist, also under heavy tails. But we object to the
dismal theorem for two reasons. As we demonstrate formally in Section 4
and numerically in Section 6, the dismal theorem is based on an incompat-
ible (invalid) model specification; it is avoided when the economic model

1Available at http://www.janmagnus.nl/items/risk.pdf
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(utility function) is compatible with the statistical model (heavy tails). Fur-
thermore, as we show in Section 7, more effort can be made to know an
input parameter that is ‘hard to know’, and we develop and implement a
learning-and-agreement procedure for precisely this purpose.

We introduce uncertainty in the simplified Nordhaus model in aWeitzman-
like manner. There is much uncertainty in the economics of climate change
(Manne and Richels, 1992; Nordhaus, 1994; Weitzman, 2009). There is model
uncertainty, parameter uncertainty, and uncertainty about the possible re-
duction of parametric variability over time (updating); see Kelly and Kolstad
(1999) and Leach (2007). We model uncertainty through stochasticity. In
the literature, stochasticity is typically introduced through the damage func-
tion (Roughgarden and Schneider, 1999; Mastrandrea and Schneider, 2004)
or through a random shock in temperature (Kelly and Kolstad, 1999; Leach,
2007). We follow this literature by introducing stochasticity through the
temperature-impact function dt, more precisely through d̄t, the impact un-
der optimal temperature. We are uncertain about the optimal temperature,
because we are uncertain about the correctness of the functional form of dt,
about the values of the parameters, and about the underlying temperature
equation. We capture these three sources of uncertainty by writing

d̄t = e−τ2/2 eτϵt ,

where ϵt denotes a random error with mean zero and variance one. This
implies that ‘net GDP’ is given by

dtYt =
e−τ2/2Zt

1 + ξH2
t

, Zt = AtK
γ
t L

1−γ
t eτϵt , (3)

so that random noise enters the Cobb-Douglas production function in the
usual ‘linear’ way when we write log(Zt/Lt) = logAt + γ log(Kt/Lt) + τϵt.

Introducing uncertainty in this way is in the spirit of Weitzman and it is
convenient for our purpose. An alternative, possibly more intuitive, specifi-
cation is to let stochasticity enter through a random multiplicative shock in
temperature, by setting d̄t = 1 and randomizing the parameter ξ. This leads
to an alternative specification of the temperature-impact function,

daltt =
[
1 + uξH2

t

]−1
, u = eτ

2/2e−τϵt ,

as opposed to our original specification dt = [u(1 + ξH2
t )]

−1
. For our analysis,

large values of u are relevant. For large u we have approximately daltt ≈
[uξH2

t ]
−1
, whose behavior is similar to dt. Hence, for our purpose the two

specifications are conceptually equal.
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If ϵt follows a normal distribution N(0, 1), then the moments of d̄t exist,
and we have E(d̄t) = 1 and var(d̄t) = eτ

2 − 1. Since the distribution of
d̄t is heavily skewed, more uncertainty (higher τ) implies more probability
mass of d̄t close to zero, and a higher probability of damage. If, however,
we move only one step away from the normal distribution and assume that
ϵt follows a Student distribution with any (finite) degrees of freedom, then
the expectation is infinite (Geweke, 2001). This fact predicts that expected
welfare may be very sensitive to distributional assumptions: random noise
with finite moments (Student distribution) may turn into random variables
without moments (d̄t, dtYt).

We need sensible values for the uncertainty parameter τ . The stochastic-
ity, as given in (3), captures uncertainty about GDP that is due to uncertainty
about climate change. Historical variation in GDP may therefore serve as
an initial upper bound proxy for τ . Barro (2009) calibrates the standard
deviation of log GDP to a value of 0.02 on an annual basis. Over a 10-
year horizon this would correspond to about 0.06, under normality. Barro,
however, only considers rich (OECD) countries, which means that for our
purposes this value needs to be scaled up. In addition to the value of τ we
need to consider the question whether or not the uncertainty introduced is
indeed heavy-tailed. A (partial) answer to this question is contained in a re-
cent paper by Ursúa (2010) who claims that the growth rate of GDP indeed
features heavy tails.
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Figure 1: Density of d̄t for τ = 0.1, 0.3, and 0.7
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In Figure 1 we plot the density of d̄t for three values of τ : 0.1, 0.3, and 0.7,
both when ϵt follows a N(0, 1) distribution (solid line) and when ϵt =

√
4/5u,

where u follows a Student distribution (as adopted in Weitzman, 2009) with
10 degrees of freedom (which implies a ‘tail index’ that is broadly consistent
with the empirical analysis in Ursúa, 2010). Notice that E(ϵt) = 0 and
var(ϵt) = 1 in both cases. When τ = 0.1, we see that almost 100% of the
distribution of d̄t lies in the interval (0.5, 2.0), both for the N(0, 1) distribution
and for the t(10) distribution. When τ = 0.3, 97.8% (97.2% for the Student
distribution) lies in the interval (0.5, 2.0); and, when τ = 0.7, only 64.9%
(67.2% for the Student distribution) lies in this interval. We conclude that
τ = 0.7 may serve as a credible upper bound for the uncertainty range, and
hence we report our results for τ = 0.0, 0.3, 0.5, and 0.7.

4 Expected utility and heavy tails

Since the axiomatization of expected utility (EU) by Von Neumann and Mor-
genstern (1944) and Savage (1954), numerous objections have been raised
against it. Most of these relate to empirical evidence that the behavior of
agents under risk and uncertainty does not agree with EU. Despite important
developments in non-expected utility theory, EU remains the dominant nor-
mative decision theory (Broome, 1991; Sims, 2001), and the current paper
stays within the framework of EU. Our results presented below corroborate
the fact that expected utility theory may reliably provide normatively ap-
pealing results, also in the presence of catastrophic risks.

We formulate our decision under uncertainty problem in Savage (1954)
style, independent of the specific model considered in this paper, so that the
results in this section are generally applicable. We fix a set S of states of
nature and we let A denote a σ-algebra of subsets of S. One state is the true
state. We also fix a set C of consequences (outcomes, consumption) endowed
with a σ-algebra F . Since we are only interested in monetary outcomes, we
may take C = R+. A decision alternative (policy bundle) X is a measurable
mapping from S to C, so that X−1(A) ∈ A for all events A ∈ F . We assume
that the class of all decision alternatives X is endowed with a preference
order ⪰.

Definition 4.1 We say that expected utility (EU) holds if there exists a
measurable and strictly increasing function U : C → R on the space of conse-
quences, referred to as the utility function, and a probability measure P on A,
such that the preference order ⪰ on X is represented by a functional V of the
form X 7→

∫
S U(X(s)) dP = V (X). Thus, the decision alternative X ∈ X is

preferred to the decision alternative Y ∈ X if, and only if, V (X) ≥ V (Y ).
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In the Von Neumann and Morgenstern (1944) framework, utility U is
subjective, whereas the probability measure P associated with A is objective
and known beforehand (decision under risk). In the more general framework
of Savage (1954) adopted here, the probability measure itself can be, but
need not be, subjective (decision under uncertainty).

Definition 4.2 We say that a risk ϵ : S → R is heavy-tailed to the left
(right) under P if its moment-generating function is infinite: E (eγϵ) = ∞
for any γ < 0 (γ > 0).

Examples of heavy-tailed risks are the Student, lognormal, and Pareto
distributions. Heavy-tailed risks provide appropriate mathematical models
for low-probability high-impact events, such as environmental catastrophes.

Proposition 4.1 If EU is to discriminate univocally among all possible al-
ternative outcome distributions, the utility function must be bounded.

Proposition 4.1 states that the EU functional is finite for all outcome
distributions if, and only if, the utility function is bounded. Moreover, the
axiomatization of EU is valid for all outcome distributions if, and only if,
the utility function is bounded. The implications are non-trivial: bounded-
ness of the utility function must hold not just in exotic situations but also
in more familiar and economically relevant settings involving high levels of
uncertainty. (See Moscadelli, 2004, regarding operational risk.)

In what follows we do not require the utility function to be bounded. We
simply assume that the class of feasible outcome distributions is restricted
(though the restriction may be void) in such a way that the utility function
permits discrimination among them. Only a combination of utility function
and outcome distribution that leads to finite expected utility is covered by
the axiomatic justification of EU. Recall that RRA(x) = −xU ′′(x)/U ′(x) and
ARA(x) = −U ′′(x)/U ′(x), and let

α∗ = inf
x>0

RRA(x), β∗ = sup
x>0

ARA(x).

Now consider a representative agent with time-additive EU preferences and
time-preference parameter ρ > 0. We normalize (without loss of generality)
the agent’s consumption by setting C0 = 1, and we define the pricing kernel
(intertemporal marginal rate of substitution) as

P (C∗
1) =

U ′(C∗
1)

(1 + ρ)U ′(1)
, (4)
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where C∗
1 is optimal consumption at t = 1. Consumption C1 is commonly re-

stricted to a budget-feasible consumption set which is subject to uncertainty
(ϵ1). We assume that the budget restriction takes the general form

C∗
1(ϵ1) ≤ B exp(Aϵ1), B,A > 0, (5)

which need not be best-possible. (In our economy-climate model of Section 2,
B = e−τ2/2Y1/(1 + ξH2

1 ) and A = τ .) The expectation E(P ) represents the
amount of consumption in period 0 that the representative agent is willing
to give up in order to obtain one additional certain unit of consumption in
period 1.

The following result states that the expectation of the pricing kernel is
finite for all outcome distributions whenever the concavity index (Arrow-
Pratt index, index of absolute risk aversion) ARA(x) is bounded.

Proposition 4.2 Assume that EU holds and that the budget feasibility re-
striction (5) applies.
(a) If α∗ > 0 and ϵ1 is heavy-tailed to the left under P, then E(P ) = ∞;
(b) If β∗ <∞ and α∗ = 0, then E(P ) <∞ for any ϵ1.

If the EU maximizer has decreasing absolute risk aversion and increasing
relative risk aversion, as is commonly assumed, a complete and elegant char-
acterization of boundedness of the expected pricing kernel can be obtained,
as follows.

Proposition 4.3 Assume that EU holds and that the budget feasibility re-
striction (5) applies. Assume furthermore that RRA(x) exists and is non-
negative and non-decreasing for all x ≥ 0 and that ARA(x) is non-increasing
for all x > 0. Then, E(P ) <∞ for any ϵ1 if and only if

∫ γ

0
ARA(x) dx <∞

for some γ > 0.

Notice that, when
∫ γ

0
ARA(x) dx = ∞ for some γ > 0, both α∗ > 0

and α∗ = 0 can hold. If α∗ > 0 then we do not need the full force of
Proposition 4.3; it is sufficient that ϵ1 is heavy-tailed to the left. Then
E(P ) = ∞ by Proposition 4.2(a). If α∗ = 0 then heavy-tailedness alone is
not sufficient, but we can always find an ϵ1 such that E(P ) = ∞. When∫ γ

0
ARA(x) dx = ∞ then β∗ = ∞. But when

∫ γ

0
ARA(x) dx < ∞, both

β∗ <∞ and β∗ = ∞ can occur.
The above propositions provide necessary and sufficient conditions on the

utility function to ensure that expected utility and expected marginal utility
(hence the expected pricing kernel) are finite, also in the presence of heavy
tails. These compatibility results are generally applicable to standard multi-
period welfare maximization problems. The importance of the results lies in
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the fact that (i) if expected utility is infinite, the axiomatic justification of
EU is not valid, and (ii) if the expected pricing kernel is infinite, then the
amount of consumption in period 0 which the representative agent is willing
to give up in order to obtain one additional certain unit of consumption in
period 1 is infinite, which is not credible.

5 A two-period model

In Sections 2–4 we assumed an infinite horizon. We now specialize to two
periods. The two-period model captures the essence of our problem while
remaining numerically tractable in the presence of uncertainty.

If the policy maker has a (finite) T -period policy horizon, then we write
welfare as

W =
T−1∑
t=0

LtU(xt)

(1 + ρ)t
+

1

(1 + ρ)T

∞∑
t=0

LT+tU(xT+t)

(1 + ρ)t
,

where xt = Ct/Lt denotes per capita consumption in period t. If {x∗t} denotes
the optimal path for {xt}, then we define the scrap value as

ST =
∞∑
t=0

LT+tU(x
∗
T+t)

(1 + ρ)t
.

Maximizing W is then equivalent to maximizing

T−1∑
t=0

LtU(xt)

(1 + ρ)t
+

ST

(1 + ρ)T
.

The scrap value ST will depend on the state variables at time T , in particular
KT and MT , and this functional relationship is the scrap value function:
ST = S(KT ,MT ). If T is large we may ignore the scrap value ST because of
the large discount factor (1 + ρ)T . But if T is small, then we need to model
ST explicitly, thus emphasizing the fact that the policy maker has the double
objective of maximizing discounted welfare over a finite number of periods
T , while also leaving a reasonable economy for the next policy maker, based
on the remaining capital stock and CO2 concentration.

The simplest approximation to ST is the linear function

ST = ν0 + ν1KT − ν2MT (ν1 > 0, ν2 > 0), (6)

where ν1 and ν2 denote the scrap prices of capital and pollution at the be-
ginning of period T . This scrap value function captures the idea that the
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next government will be happier if there is more capital and less pollution
at the beginning of its policy period. But the linear scrap value function has
some problems. We shall therefore introduce nonlinear scrap value functions,
whose specific form depends on the form of the utility function; see our back-
ground document Ikefuji et al. (2011b) for further details on our treatment
of scrap value functions.

The simplest version of the model occurs when T = 2 in which case we
have only two periods. We can write welfare in this case as

W = W (µ0, C0, µ1, C1, ϵ1) = W0 +
W1

1 + ρ
+

S2

(1 + ρ)2
.

The policy restrictions (1) are explicitly imposed, so that we maximize a
restriction of expected welfare; see Appendix A. Randomness results from
d1 only, because the temperature-impact d0 at the beginning of period 0 is
known to us (we set d̄0 = 1, equal to its expectation), and d2 at the end of
period 1 does not appear in the welfare function. Hence, the only source of
randomness is caused by the error ϵ1. The policy maker has to choose the
policy bundles (C0, I0, µ0) at the beginning of period 0 and (C1, I1, µ1) at the
beginning of period 1 that will maximize expected welfare.

Realizing that at the beginning of period 1 the temperature-impact d1
is observed based on the realization of ϵ1, the policy maker will maximize
expected welfare in three steps as follows. First, he/she maximizes welfare
W = W (µ0, C0, µ1, C1, ϵ1) with respect to (µ1, C1) conditional on (µ0, C0, ϵ1)
and under the restriction (1). This gives (µ∗

1, C
∗
1) and concentrated welfare

W ∗(µ0, C0, ϵ1) = W (µ0, C0, µ
∗
1, C

∗
1 , ϵ1).

Then the expectation W (µ0, C0) = E (W ∗(µ0, C0, ϵ1)) is computed, if it ex-
ists. Finally, W is maximized with respect to (µ0, C0).

6 Compatibility

We now have a simplified Nordhaus model with Weitzman-type uncertainty
in a two-period framework. In Table 2 we present the optimal values of
the policy and other selected variables obtained from maximizing expected
welfare. (Our background document contains the complete tables.) The
results allow for uncertainty, consider the short run (two periods) rather
than the long run (sixty periods), and also take scrap values into account.

We need values for the exogenous variables Lt, At, σt, and ψt; these
are given in our background document. We note that Y0 = 556.67 and
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d0 = 0.9985 are constant over different scenarios and functions, and that the
values of µ0, C0, I0, E0, ω0, K1, M1, and H1 are optimal values. In contrast,
µ1, C1, I1, Y1, E1, ω1, d1, K2, M2, and H2 are optimal functions of ϵ1. What
we present in the tables are their expectations.

We consider three utility functions (power, exponential, Pareto) and two
distributions (normal, Student). First, power utility as given in (2) for α = 2:
U(x) = 1 − 1/x. The following proposition states that if the random errors
ϵt are generated by a normal N(0, 1) distribution, then the expectation of
welfare exists for power utility, but if we move one step away from normality
and assume a Student distribution with any finite degrees of freedom, then
the expectation does not exist. It illustrates the consequences of violating
the conditions of Proposition 4.1.

Proposition 6.1 With power utility, expected welfare exists under normal-
ity but not under a Student distribution.

It follows that the much-used power utility function is incompatible with
expected utility theory with heavy tails, not because utility theory itself is
at fault but because power utility is inappropriate when tails are heavy.

Motivated by the conditions derived in Section 4 and by the fundamental
insight that the economic model and the statistical model must be compat-
ible, and because we wish to leave distributional assumptions unrestricted
at this stage, we consider two alternative utility functions: the exponential
function and the ‘Pareto’ function. Other choices are permitted but may
require restrictions on distributional assumptions. The exponential utility
function is given by

U(x) = 1− e−βx (β > 0) (7)

with ARA(x) = β and RRA(x) = βx, and the Pareto utility function by

U(x) = 1−
(

λ

x+ λ

)k

(k > 0, λ > 0) (8)

with ARA(x) = (k + 1)/(x + λ) and RRA(x) = (k + 1)x/(x + λ). The
Pareto function was proposed in Ikefuji et al. (2011a), where it is also shown
that this function enjoys a combination of appealing properties especially
relevant in heavy-tailed risk analysis. We choose the parameters as follows:
exponential function (β = 25), and Pareto function (k = 1.5, λ = 0.02).
This choice of parameters is determined by the point x∗, where we want the
three utility functions to be close. Suppose we want the functions to be close
at x∗ = 0.08, which is approximately the value of C0/L0 and C1/L1. Then,
given that α = 2, we find β = 2/x∗ = 25, and, for any k > 1, λ = (k−1)x∗/2.
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The power function is unbounded from below, hence violates the con-
ditions of Proposition 4.1, and has constant and positive RRA, hence vio-
lates the conditions of Proposition 4.3. Both the exponential and the Pareto
function are bounded from above and below, hence satisfy the conditions of
Proposition 4.1. The exponential function has constant and positive ARA,
hence satisfies the conditions of Proposition 4.3, while the RRA is unbounded
for large x. In contrast, the RRA in the Pareto function is bounded between
0 and k+1, and it further satisfies RRA(0) = 0 and ARA(0) <∞, hence sat-
isfies the conditions of Proposition 4.3. Notice that the fact that RRA(0) = 0
(as is the case for the exponential and the Pareto utility functions) does not
imply that the representative agent is risk-neutral at x = 0. In particular,
we have ARA(0) = β for the exponential function and ARA(0) = (k + 1)/λ
for the Pareto function.

6.1 Results for power utility

The first panel of Table 2 gives the results for power utility. For τ = 0 there
is no uncertainty. For τ > 0 there is uncertainty, and all policy variables
are affected when τ increases. More uncertainty results in less abatement,
less consumption, and more investment in period 0, and to more abatement,
consumption, and investment in period 1. In period 1, the changes in abate-
ment and consumption are negligible. The increase in I0 with τ can be
explained by precautionary savings. The restriction on I1 can be viewed as
a penalty for negative investment. To avoid this penalty, the policy maker
can increase the budget in period 1 by investing more in period 0. As the
amount of uncertainty increases, the probability of negative investment in-
creases, ceteris paribus. In response, the policy maker increases investment
at the expense of abatement and consumption in period 0. The increase in
I0 leads to higher output in period 1, which explains the increases in I1, K2,
M2, and H2. The decrease in µ0 leads to higher emissions in period 0, and
increases carbon concentration and temperature in period 1. An additional
reason why investment in period 1 increases with uncertainty is that positive
shocks translate into possibly unlimited upward shocks in I1, but negative
shocks will never cause I1 to drop below zero.

6.2 Results for exponential and Pareto utility

Turning now to the alternative utility functions, we first maximize (determin-
istic, hence τ = 0) welfare over sixty periods (600 years) for both exponential
and Pareto utility. A selection of the resulting optimal values is shown in
Table 3. When we compare the results with those in Table 1, we see that the
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Table 3: Comparison of stocks in Exponential and Pareto models
2005 2055 2105 2155

Expo Pareto Expo Pareto Expo Pareto Expo Pareto
K 137 137 286 343 388 666 456 1220
M 809 809 1012 993 1328 1258 1727 1512
H 0.7 0.7 1.6 1.5 2.6 2.5 3.7 3.3

optimal stock values from the Pareto function closely resemble the optimal
stock values from the power function, but not those from the exponential
function. In contrast to power and Pareto, where RRA flattens out, the
RRA for the exponential distribution continues to increase, and hence the
growth rate of marginal utility continues to increase as well. As x increases,
consumption will therefore increase, and investment and abatement will de-
crease. As a result, C/Y is relatively large for exponential utility. The low
growth rate of capital (for exponential utility) leads to a low growth rate
of output. However, since more consumption leads to less abatement, the
growth rate of CO2 concentration is high even when the amount of produc-
tion is low. Consequently,M and H are high compared to power and Pareto.
When x < x∗, RRA (Pareto) is close to RRA (exponential), so that more is
consumed and less invested when the Pareto function is used instead of the
power function. But when x > x∗, RRA (Pareto) is close to RRA (power).
The optimal path of K is slightly lower and the optimal paths of M and H
are slightly higher for Pareto than for power utility.

Since exponential utility is calibrated to be close to power utility at
x = x∗, the two-period results for the two utility functions do not differ
greatly; see the second panel of Table 2. This is especially true for τ = 0,
where only the abatement fraction µ is higher for exponential utility, and
therefore temperature H is lower. When τ increases, I0 increases less and
I1 increases more for exponential than for power. Moreover, as the uncer-
tainty parameter τ increases, M2 does not change much in the exponential
case, while it increases in the power case. The effect of uncertainty on the
marginal scrap values is therefore larger in the exponential case than in the
power case. As in the first panel (power utility), more uncertainty results in
less abatement, less consumption, and more investment in period 0, and to
more abatement, and investment in period 1.

Suppose next that the underlying distribution has heavier tails: Student
instead of normal. Under power utility, expected welfare does not exist any
more. But under bounded utility, expected welfare always exists. Although
the effect of the excess kurtosis on expected welfare is large and discontinuous,
the effect on the optimal values is relatively small. This is good, because the
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Student distribution with 10 degrees of freedom is in fact quite close to the
normal distribution as Figure 1 reveals, and hence it would be unreasonable if
a ‘small’ change in distributional assumptions would lead to a large possibly
‘discontinuous’ change in optimal policies.

All variables move in the same direction as before when τ increases. No-
tice that some variables (C1, I1, and K2) have infinite expectations even
though expected welfare is finite. This is no surprise because these variables
are unbounded and depend on d̄1 = e−τ2/2eτϵ1 . When ϵ1 follows a Student
distribution, E(d̄1) = ∞ and this property carries over to the other three
variables.

Finally we consider the third utility function, Pareto utility. The optimal
values are presented in the third panel of Table 2. We would expect that
Pareto and power are relatively close in the observed data range. This is
indeed the case as a comparison of the first and third panels reveals. There
is little difference between the two panels in the case of no uncertainty, and
also when τ increases. The effect of excess kurtosis is again small, as it should
be.

Figure 2: µ∗
1 as a function of ϵ1: Pareto versus power utility

The important difference between power and Pareto utility is only re-
vealed when low levels of per capita consumption become relevant, that is,
in near-catastrophe cases. This is clarified in Figure 2, where we present µ∗

1

as a function of ϵ1 for τ = 0.3. The expected value of µ∗
1 is 0.1141 for power
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utility under normality (first panel), and 0.1135 for Pareto utility under ei-
ther normality or Student(10) (third panel). This is not very different. But
for values of ϵ1 further away from 0 the difference is large.

7 Learning, agreement and robustness

7.1 Learning and agreement

To complete the model we need to specify our input parameters. We now
show, in a stylized setting, how this can be achieved in a process towards
agreement, using experts’ priors. The key to this learning and agreement
process is the translation of model parameters that are relatively difficult
to interpretinto quantities that allow a more straightforward interpretation,
hence are easier to specify.

Our parameters cannot be estimated using conventional methods and
historical data, but experts will have prior ideas about these parameters.
Different experts will have different priors. Model output can be generated
on the basis of various priors. Then, in an iterative procedure, one learns
about the parameter values from experts’ opinions and model output, and
an agreeable intersection of model parameters may be reached.

input 2

in
p
u
t 

1

output 2

o
u
tp

u
t 1

Figure 3: The decision making process

This process is illustrated in Figure 3. In the left panel, we visualize the
contributions of two experts. One expert states that the value of input 2
should be bounded as indicated by the two vertical lines. The other expert
provides a lower and upper bound for the value of input 1, depending on
the value of input 2. The horizontally-shaded area gives the combinations
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of inputs that are acceptable to both experts. The right panel is more com-
plicated. We first visualize the contributions of two policy makers regarding
two output variables. This is the vertically-shaded area, giving the combi-
nations of outputs that are acceptable to both policy makers. Next we map
the left panel onto the right panel. For every acceptable combination of in-
puts the model provides one combination of outputs, that is, one point in
the right panel. The horizontally-shaded area in the right panel is the image
of the horizontally-shaded area in the left panel. We now have two areas in
the right panel: the vertically-shaded area and the horizontally-shaded area.
If the two areas do not intersect, then the experts and policy makers must
adjust their priors in an iterative process of learning. Once the areas do in-
tersect, agreement is possible. The black triangle then contains all points for
which both inputs and outputs are acceptable. Agreement must be reached
on the three policy variables (µ0, C0, I0), and we recall that expected welfare
is maximized in three steps as described at the end of Section 5, yielding the
optimal policy (µ∗

0, C
∗
0 , I

∗
0 ).

7.1.1 Inputs

Our analysis requires prior beliefs about various inputs, in particular: form of
the utility function (Pareto or otherwise), degree of risk-aversion (k, λ), dis-
count rate (ρ), form of the distribution (Student or otherwise), and volatility
(τ). If agreement is to be reached, then the policy makers must be willing to
adjust their individual priors on each of these inputs, based on the experts’
opinions and the generated output.

We want a distribution which allows heavy tails (Ursúa, 2010), such as
the Student distribution (Weitzman, 2009). Given our treatment of stochas-
ticity, power utility is not compatible with the Student distribution, because
the required expectations don’t exist. Also, exponential utility has the disad-
vantage that RRA increases without bound. Pareto utility provides a useful
compromise: it exhibits exponential-like features when per capita consump-
tion is small, and power-like features otherwise (Ikefuji et al., 2011a). We
therefore confine ourselves to Pareto utility, assume that ϵ1 follows a Student
distribution, and take the following parameter values as our benchmark:

k = 1.5, λ = 0.02 τ = 0.3, df = 10, ρ = 0.1605.

Note that the value of λ is linked to k through λ = 0.04(k− 1), as explained
in Section 6. Priors regarding risk aversion are based on our background
document. The symbol df denotes the degrees of freedom in the Student
distribution, and the discount rate of 0.1605 per decade corresponds to an
annual discount rate of 0.015.
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Table 4: Parameter calibration based on Pareto utility and Student distri-
bution

Agreement Robustness
a b c d e f g

Parameter values
τ 0.3 0.3 0.5 0.3 0.5 0.7 0.5
df 10 25 10 10 25 10 10
k 1.5 1.5 1.5 2.0 1.5 1.5 2.0
Policy instruments, beginning of period 0
µ0 0.0910 0.0910 0.0888 0.1192 0.0887 0.0861 0.1163
C0 424.33 424.31 413.71 438.01 413.50 400.67 427.56
I0 131.46 131.47 142.08 117.73 142.29 155.12 128.19
Capital stock and expectations
K1 179.23 179.25 189.86 165.50 190.06 202.89 175.96
µ1 0.1135 0.1135 0.1154 0.1604 0.1154 0.1175 0.1655
H2 1.0413 1.0413 1.0429 1.0309 1.0430 1.0449 1.0323
Probabilities of catastrophe πℓ
πa 5.0E−03 3.3E−03 5.2E−02 5.1E−03 5.3E−02 1.4E−01 5.2E−02
πb 2.3E−05 5.9E−07 1.4E−03 2.6E−05 5.5E−04 1.2E−02 1.5E−03
πc 2.5E−07 5.0E−11 2.8E−05 2.6E−07 8.2E−07 4.9E−04 3.0E−05
Values of statistical subsistence Vℓ = VSSℓ/C0

Va 2.8E+01 2.9E+01 4.8E+00 2.4E+01 4.1E+00 2.9E+00 4.1E+00
Vb 1.3E+04 2.8E+05 3.1E+02 1.1E+04 5.3E+02 5.2E+01 2.6E+02
Vc 1.9E+06 4.2E+09 2.0E+04 1.6E+06 3.6E+05 1.4E+03 1.7E+04

Our benchmark is column a in Table 4. The model outputs are within
credible bounds: policy variables at the beginning of period 0 (µ0, C0, I0);
stock variables at the beginning of period 1 (K1 and also M1 = 834.42 and
H1 = 0.8845); and expectations (E(µ1), E(H2), and also E(M2) = 869.38). If
we consider temperature H2 as a function of ϵ1 we find relatively low volatil-
ity in comparison to the confidence intervals proposed by the IPCC (2007,
Chapter 10). The reason for this is twofold. First, the IPCC determines con-
fidence intervals by considering multiple deterministic climate models, not a
single stochastic one as we do. Second and more importantly, the IPCC con-
fidence intervals are based on non-mitigation scenarios, while our model takes
policy effects into account. For both reasons, the volatility in temperature
found by the IPCC is higher than what we find.
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7.1.2 Outputs

In addition to the ‘direct’ outputs of our model we also have ‘derived’ out-
puts, in particular the probability of catastrophe. These derived outputs are
functions of the direct outputs and they represent important policy variables
on which prior information is available. Hence, they also require agreement.

We propose to define catastrophe as the event C∗
1 ≤ C for some given

value C > 0. The probability of catastrophe is then given by π = Pr(C∗
1 ≤

C). We shall consider three different values of C: Ca, Cb, and Cc, corre-
sponding to three levels of catastrophe, labeled A, B, and C. Catastrophe
A occurs when 20% of the world population live in extreme poverty, and
catastrophes B and C occur when 50% and 80% of the world population
live in extreme poverty, respectively. The definitions and priors proposed in
this subsection are based on background material provided in Ikefuji et al.
(2011b).

We must agree on acceptable values for the probability π of catastrophe.
We have studied acceptable risks in various situations, and we conclude that
an acceptable probability for an economy-climate catastrophe in the next
10-year period is in the range 10−5–10−6. Given the definition of catastrophe
we propose: πa = 0.1, πb = 0.001, and πc = 0.00001 as reasonable values.

In the benchmark model we find πa = 0.005, πb = 0.00002, and πc =
0.0000003, which is much lower than the acceptable values. Given the asso-
ciated costs, it seems unnatural that policies would be chosen that mitigate
the probability of a global economy-climate catastrophe far beyond accept-
able levels. What can we do about this? One possibility is to make the tails
heavier or lighter, that is, to adjust the degrees of freedom. If we set df = 25
then π becomes even smaller. In general, π becomes smaller as the tails
become lighter (df increases), as one would expect. For df = ∞ (the nor-
mal distribution) we find πa = 2.3E−03, πb = 5.3E−10, and πc = 1.5E−24.
Interestingly, the policy variables are hardly affected (column b), not even
when df = 200 or df = ∞. If we set df = 3, which is the minimum value
where var(ϵ1) exists, then πa = 0.008, a little higher than for df = 10, but
not enough. So, adjusting the degrees of freedom hardly changes the results.

Perhaps the fact that the heaviness of the tail (degrees of freedom) has
little effect on the optimal policy is caused by the Pareto utility function.
Maybe this function does not distinguish well between different tails? In
fact, this is not so. It follows from Figure 1 (and Section 6) that τ has much
more impact than df. Hence the Pareto function does distinguish between
different tails.

Perhaps we should then adjust the value of τ . In our benchmark we set
τ = 0.3 as a reasonable starting point. We could revise τ upwards. We
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argued in Section 3 and Figure 1 that τ = 0.7 is an upper bound to the
volatility. Let us therefore consider the case τ = 0.5. A larger value of τ
means more volatility and hence one would expect less consumption and more
investment. This is indeed what happens (column c). Also, the probabilities
are affected and are now much closer to our prior ideas.

We can also adjust the curvature k (and λ). If k increases, then agents
become less risk-averse and, as expected, there is more consumption and less
investment (column d). The probabilities are not much different from our
benchmark in a, but the values of µ0 and µ1 are very high and the capital
stock accumulation rate is only 1.9% per year, which is too low.

Finally, we could adjust the discount rate ρ. This is an important issue
(see, for example, Gollier, 2002, 2008, and the references therein), with pos-
sibly significant (yet not ‘discontinuous’) impact on the optimal policies. It
is, however, beyond the scope of this study.

Based on these comparisons it seems that policy c should be recom-
mended. There is, however, one other derived output which is often dis-
cussed, namely the value of statistical life. If we agree on the definition of
catastrophe, then we can also define the ‘value of a statistical subsistence’
(VSS) as the amount of consumption in period 0 that the government is
willing to trade off in order to change the probability of catastrophe; see
Ikefuji et al. (2011b) for further details. The VSS is similar to the value
of statistical life (VSL), except that it refers to the condition of just having
enough food to stay alive (more than $1/day) rather than to life. We pro-
pose VSSa = C0, VSSb = 10C0, and VSSc = 100C0 as reasonable orders of
magnitude. The VSS (and the VSL) is a difficult concept to measure, and
the VSS priors (Ikefuji et al., 2011b) may be unreliable. As such it should
not carry too much weight as a derived output. Still we notice that the VSSs
of our preferred policy c are much closer to our reasonable values than the
VSSs in columns a, b, and d.

7.2 Robustness

If we believe that column c is the best, then we should do some further ro-
bustness checks, starting from column c rather than column a. We have done
extensive robustness checks and some representative results of this analysis
is reported in columns e–g of Table 4; see Ikefuji et al. (2011b) for further
results. If we adjust the degrees of freedom (column e), then not much hap-
pens. There is little to choose between columns c and e. The optimal policy
(µ∗

0, C
∗
0 , I

∗
0 ) is hardly affected, which is a good thing, because it means that

our policy is not too sensitive to changes in the heaviness of the tail (degrees
of freedom). In column f we consider τ = 0.7. Here the probabilities of
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catastrophe seem to be too large. For example, we have πc = 0.0005 and it is
doubtful if the government would find this acceptable. The choice of volatil-
ity τ does, however, affect the policy, and hence is important. In column g
we adjust the curvature of the Pareto utility function. The probabilities are
hardly affected but there will be more consumption, less investment, and in
particular more (perhaps too much) abatement. On the basis of these and
other robustness checks we conclude that policy c is robust against small
changes in the underlying assumptions and parameter values.

8 Concluding remarks

Our strategy in this paper has been to specify a stochastic economy-climate
model, building on Nordhaus’ deterministic economy-climate model while al-
lowing for Weitzman-type stochasticity. We show that, under expected power
utility, the model is fragile with respect to distributional assumptions. Based
on general results regarding the relationship between the richness of the class
of utility functions and the generality of the permitted distributional assump-
tions, we restrict ourselves to utility functions that are compatible with our
distributional assumptions. Thus we avoid the unacceptable conclusion that
society should sacrifice an unlimited amount of consumption to reduce the
probability of catastrophic climate change by even a small amount. After
reaching agreement on the model parameters, a sensitivity analysis shows
that our completed model and the resulting optimal policies are quite robust
and sensibly sensitive.

The fragility of the model under expected power utility to heavy-tailed
distributional assumptions is not unexpected. Weitzman (2009) summarizes
this fragility and the perceived non-existence of a robust solution in a ‘dis-
mal theorem’. While we agree with Weitzman that incompatible pairs of
utility functions and distribution functions exist, our objections to the dis-
mal theorem are twofold. First, the result is implied by using an incompat-
ible (invalid) model specification. A key ingredient in Weitzman’s model is
the power utility function. This popular utility function is characterized by
constant relative risk aversion (CRRA). The assumption of CRRA, hence
RRA(0) > 0, is not appropriate when dealing with extremely low levels of
consumption, and it is exactly the behavior at these low consumption levels
that leads to the dismal theorem. As we have demonstrated formally in Sec-
tion 4 and numerically in Section 6, Weitzman’s result is avoided when the
economic model (utility function) is compatible with the statistical model
(heavy tails).

Second, more effort can be made to know an input parameter that is ‘hard
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to know’, and we have described a (stylized) learning-and-agreement proce-
dure for precisely this purpose in Section 7. Although it is difficult to state
upper and lower bounds for the ‘VSL-like’ input parameter of Weitzman,
we can still obtain reasonable constraints on difficult-to-know parameters of
interest indirectly. The economic model translates the parameter of interest
into output variables with an easier interpretation (such as the optimal poli-
cies and the probability of catastrophe). Bounds on these output variables,
together with the economic model, imply bounds on the input parameter of
interest.

Much of the analysis in our paper is not limited to extreme climate change.
A similar analysis could apply in other policy making settings involving catas-
trophic risks, such as the development of new financial incentive schemes to
mitigate the risk of extreme systemic failures and resulting financial economic
crises, or policies concerning medical risks (pandemic flu and vaccination
risks).

Let us finally admit four limitations of our paper, and indicate possi-
ble generalizations. First, in Section 6 we have focussed our attention on
bounded utility functions, so as to avoid having to restrict distributional
assumptions. In general, one could assume more structure on stochasticity
(yet still allow for heavy tails) and broaden the constraints on utility. In
particular, unbounded utility (such as HARA with 0 < α ≤ 1) is also per-
mitted under additional assumptions on stochasticity. Second, for simplicity
and clarity of presentation, we have restricted our numerical analysis to only
two periods. Conceptually, much of our analysis will remain intact when
considering more than two periods. Third, to account for the fact that the
policy maker has the double objective of maximizing current consumption,
while also leaving a reasonable economy for the next policy maker, we have
used scrap values in our analysis. We ignore, however, stochasticity in the
scrap value function after the second period. The development of a numer-
ically tractable economy-climate model with multi-period stochasticity and
stochasticity in scrap values after the last period is a subject for further
research. Finally, the equations making up our stochastic economy-climate
model are of a simple and stylized nature, and each one of them, including the
specification of stochasticity, leaves room for generalizations and extensions.
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Appendices

A Kuhn-Tucker conditions under positive in-

vestment

Consider the economy-climate model of Section 2 in a two-period set-up. Let
U be a general well-behaved utility function and let S(1) and S(2) be general
well-behaved scrap value functions. At the beginning of period 1 our welfare
function, conditional on (C0, µ0, ϵ1), is

W = L1U(C1/L1) + ν1S
(1)(K2)− ν2S

(2)(M2).

We have four constraints: C1 ≥ 0, I1 ≥ 0, µ1 ≥ 0, and µ1 ≤ 1, but only
two of these can be binding as we shall see. Hence, we define the Lagrangian
L = L(C1, µ1) as

L = L1U(C1/L1) + ν1S
(1)(K2)− ν2S

(2)(M2) + κ1I1 + κ2(1− µ1),

and we find
∂L
∂C1

= U ′(C1/L1)− (ν1g1 + κ1)

and
∂L
∂µ1

=
(
−(ν1g1 + κ1)ψ1θµ

θ−1
1 d1 + ν2g2σ1

)
Y1 − κ2,

where

g1 = g1(C1, µ1) =
∂S(1)(K2)

∂K2

, g2 = g2(µ1) =
∂S(2)(M2)

∂M2

.

This leads to the Kuhn-Tucker conditions:

κ1 = U ′(C1/L1)− ν1g1 ≥ 0,

I1 = (1− ψ1µ
θ
1)d1Y1 − C1 ≥ 0,

and

κ2 =
(
−U ′(C1/L1)ψ1θµ

θ−1
1 d1 + ν2g2σ1

)
Y1 ≥ 0,

µ1 ≤ 1,

together with the slackness conditions κ1I1 = 0 and κ2(1− µ1) = 0.
Under the assumption that I1 > 0 we have κ1 = 0 and we distinguish

between two cases, as follows.
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Case (1): κ2 > 0. We have µ1 = 1 and g2 = g2(1), and we solve two equations
in two unknowns:

U ′(C1/L1) = ν1g1, g1 = g1(C1, 1),

under the restrictions:

C1

(1− ψ1)Y1
≤ d1 <

ν2g2σ1
ν1g1ψ1θ

.

Case (2): κ2 = 0. We solve four equations in four unknowns:

U ′(C1/L1) = ν1g1, µθ−1
1 d1 =

ν2g2σ1
ν1g1ψ1θ

,

g1 = g1(C1, µ1), g2 = g2(µ1),

under the restrictions:

C1 ≤ (1− ψ1µ
θ
1)d1Y1, µ1 ≤ 1.

The following two points are worth noting. First, we see that the restrictions
µ1 ≥ 0 and C1 ≥ 0 are automatically satisfied, so that they do not need to
be imposed. Second, we see that U ′(C1/L1) = ν1g1 in both cases. This fact
will be used in the proof of Proposition 6.1.

B Proofs of the propositions

Proof of Proposition 4.1: See Menger (1934, p. 468) in the context of St.
Petersburg-type lotteries, and also Arrow (1974) and Gilboa (2009, pp. 108-
109). Menger (implicitly) assumes boundedness from below and demon-
strates that boundedness from above should hold, and it is straightforward
to generalize his result to an a priori unrestricted setting.

Proof of Proposition 4.2: Let α∗ > 0. The EU maximizer is then more
risk-averse in the sense of Arrow-Pratt than an agent with power (CRRA)
utility of index α∗. It follows from (4) that

P ′(C∗
1)

P (C∗
1)

=
U ′′(C∗

1)

U ′(C∗
1)

= −ARA(C∗
1).
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Since ARA(x) = RRA(x)/x ≥ α∗/x, we then have

E(P ) =
1

1 + ρ
E exp

(
−
∫ 1

C∗
1

d logP (x)

)
=

1

1 + ρ
E exp

(∫ 1

C∗
1

ARA(x) dx

)

≥ 1

1 + ρ

∫
C∗

1≤1

exp

(∫ 1

C∗
1

(α∗/x) dx

)
dF (ϵ1)

=
1

1 + ρ

∫
C∗

1≤1

(C∗
1)

−α∗
dF (ϵ1) ≥

B−α∗

1

1 + ρ

∫
C∗

1≤1

e−τα∗ϵ1 dF (ϵ1) = ∞,

with

B1 =
e−τ2/2Y1
1 + ξH2

1

,

using (5) and the fact that ϵ1 is heavy-tailed to the left. This proves part (a).
Intuitively, if agent 1 is more risk-averse in the sense of Arrow-Pratt than
agent 2, and if it is optimal to postpone all consumption for agent 2, then
this will also be optimal for agent 1.

Next let α∗ = 0 and β∗ < ∞. The EU maximizer is then less risk-averse
in the sense of Arrow-Pratt than an agent with exponential (CARA) utility
of index β∗. Since α∗ = 0, we have 0 ≤ ARA(x) ≤ β∗ and hence

E(P ) =

∫
C∗

1≤1

P dF (ϵ1) +

∫
C∗

1>1

P dF (ϵ1)

≤ 1

1 + ρ

∫
C∗

1≤1

exp

(∫ 1

C∗
1

β∗ dx

)
dF (ϵ1)

+
1

1 + ρ

∫
C∗

1>1

exp

(
−
∫ C∗

1

1

ARA(x) dx

)
dF (ϵ1)

≤ eβ
∗
Pr(C∗

1 ≤ 1) + Pr(C∗
1 > 1)

1 + ρ
<∞.

Proof of Proposition 4.3: To prove the ‘only if’ part, we assume that∫ γ

0
ARA(x) dx is infinite for every γ > 0, and then show that there exist

(S,A,P) and ϵ1 defined on it such that E(P ) = ∞. We note that β∗ = ∞.
Define a function g : (0, 1] → [1,∞) by

g(y) = exp

(∫ 1

y

ARA(x) dx

)
.

Then,

E(P ) ≥ 1

1 + ρ

∫
C∗

1≤1

g(min(C∗
1 , 1)) dF (ϵ1).
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Recall from (5) that C∗
1 ≤ B1e

τϵ1 , and let ϵ∗1 be such that B1e
τϵ∗1 = 1, so that

0 < B1e
τϵ∗1 ≤ 1 if and only if ϵ1 ≤ ϵ∗1. Define u : (−∞,∞) → [0,∞) by

u(ϵ1) =

{
g(B1e

τϵ1)− 1 if ϵ1 ≤ ϵ∗1,

0 if ϵ1 > ϵ∗1.

Since ARA(1) > 0, g is monotonically decreasing and we obtain∫
C∗

1≤1

g(min(C∗
1 , 1)) dF (ϵ1) ≥

∫
ϵ1≤ϵ∗1

g(B1e
τϵ1) dF (ϵ1)

=

∫
ϵ1≤ϵ∗1

(u+ 1) dF (ϵ1) = E(u) + Pr(ϵ1 ≤ ϵ∗1).

Strict monotonicity of g implies its invertibility. Hence we can choose u to
be any non-negative random variable whose expectation does not exist (for
example, the absolute value of a Cauchy distribution), and then define ϵ1
through B1e

τϵ1 = g−1(u+ 1). With such a choice of ϵ1 we have E(P ) = ∞.
To prove the ‘if’-part we assume that

∫ γ

0
ARA(x) dx is finite. This implies

that
∫ 1

0
ARA(x) dx is finite, so that

E(P ) =
1

1 + ρ

∫
C∗

1≤1

exp

(∫ 1

C∗
1

ARA(x) dx

)
dF (ϵ1)

+
1

1 + ρ

∫
C∗

1>1

exp

(
−
∫ C∗

1

1

ARA(x) dx

)
dF (ϵ1)

≤ Pr(C∗
1 ≤ 1)

1 + ρ
exp

(∫ 1

0

ARA(x) dx

)
+

Pr(C∗
1 > 1)

1 + ρ
<∞,

using the fact that α∗ = RRA(0) = 0.

Proof of Proposition 6.1: We shall prove the proposition both for the
linear scrap and the non-linear scrap case. In both cases the inequality
constraints (1) are imposed. Since

d1Y1 = B1e
τϵ1 , B1 =

e−τ2/2Y1
1 + ξH2

1

,

we obtain
C∗

1 ≤ C∗
1 + I∗1 = (1− ω∗

1)d1Y1 ≤ B1e
τϵ1 , (9)

I∗1 ≤ C∗
1 + I∗1 ≤ B1e

τϵ1 ,

(1− δ)K1 ≤ K∗
2 ≤ (1− δ)K1 +B1e

τϵ1 ,
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and
M∗

2 ≤ (1− ϕ)M1 + σ1Y1.

We distinguish between three cases.

Linear scrap under normality. Linear scrap implies that S(1)(K2) = K2 and
S(2)(M2) = M2. Since E(eτϵ1) exists under normality, it follows that C∗

1 , I
∗
1 ,

K∗
2 , and M

∗
2 all have finite expectations, and therefore that E(W ∗) exists if

and only E(1/C∗
1) exists. For notational convenience we do not distinguish

between the random variable ϵ1 and its realization. With this slight abuse of
notation, we write

E(1/C∗
1) =

∫ ∞

−∞
(1/C∗

1) dF (ϵ1) =

∫
I∗1=0

(1/C∗
1) dF (ϵ1) +

∫
I∗1>0

(1/C∗
1) dF (ϵ1)

= (1/B1)

∫
I∗1=0

e−τϵ1

1− ω∗
1

dF (ϵ1) +

∫
I∗1>0

(1/C∗
1) dF (ϵ1)

≤ 1

(1− ψ1)B1

E(e−τϵ1) +

∫
I∗1>0

(1/C∗
1) dF (ϵ1).

Since E(e−τϵ1) is finite, it suffices to show that
∫
I∗1>0

(1/C∗
1) dF (ϵ1) is finite.

Now, it follows from Appendix A that, under the assumption that I∗1 > 0,
U ′(C∗

1/L1) = L2
1/C

∗
1
2 = ν1g

∗
1 = ν1, because g

∗
1 = 1. Hence,∫

I∗1>0

(1/C∗
1) dF (ϵ1) =

ν
1/2
1

L1

Pr(I∗1 > 0) ≤ ν
1/2
1

L1

<∞.

Nonlinear scrap under normality. Nonlinear scrap implies that

S(1)(K2) = −K0

p

(
K2

K0

)−p

, S(2)(M2) =
M0

q

(
M2

M0

)q

where p > 0 and q > 1. Since

(K∗
2)

−p ≤ ((1− δ)K1)
−p

and
(M∗

2 )
q ≤ ((1− ϕ)M1 + σ1Y1)

q ,

we see that E(W ∗) exists if and only E(1/C∗
1) exists. As in the linear scrap

case, it suffices to show that
∫
I∗1>0

(1/C∗
1) dF (ϵ1) is finite. Since

g1 = g1(K2) =
∂S(1)(K2)

∂K2

=

(
K0

K2

)p+1

,
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it follows from Appendix A that, under the assumption that I∗1 > 0,

U ′(C∗
1/L1) = L2

1/C
∗
1
2 = ν1g

∗
1 = ν1

(
K0

K∗
2

)p+1

≤ ν1

(
K0

(1− δ)K1

)p+1

,

and hence that∫
I∗1>0

(1/C∗
1) dF (ϵ1) ≤

ν
1/2
1

L1

(
K0

(1− δ)K1

)(p+1)/2

<∞.

Student distribution. From (9) we have 1/C∗
1 ≥ e−τϵ1/B1. Under a Student

distribution, the right-hand side has no finite expectation, and hence the
left-hand side has no finite expectation either. In the non-linear scrap case,
this is sufficient to prove the non-existence of E(W ∗) because S(1)(K∗

2) and
S(2)(M∗

2 ) are both bounded. In the linear scrap case, M∗
2 is bounded, but

K∗
2 is not. Now, since

C∗
1 ≤ B1e

τϵ1 , K∗
2 ≤ (1− δ)K1 +B1e

τϵ1 ,

we obtain

L1(1−L1/C
∗
1)+ν1K

∗
2 ≤ L1−(L2

1/B1) e
−τϵ1 +ν1(1−δ)K1+ν1B1e

τϵ1 ≡ G(ϵ1).

Since G is monotonically increasing from −∞ to +∞, there exists a unique
ϵ∗1 defined by G(ϵ∗1) = 0. Hence, G(ϵ1) ≤ 0 for all ϵ1 ≤ ϵ∗1 and

E |(L1(1− L1/C
∗
1) + ν1K

∗
2)| ≥

∫
ϵ1≤ϵ∗1

|G(ϵ1)| dF (ϵ1)

≥ −L1 − ν1(1− δ)K1 + (L2
1/B1)

∫
ϵ1≤ϵ∗1

e−τϵ1 dF (ϵ1)− ν1B1e
τϵ∗1 = ∞.
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