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Investment timing with fixed and proportional costs of
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Michi NISHIHARA†, Takashi SHIBATA‡

Abstract

We develop a dynamic model in which a firm exercises an option to expand production

with cash balance and costly external funds. While related papers explain their results

only by numerical examples, we analytically prove the following results. In the presence of

only a proportional cost of external financing, the firm with more cash balance invests ear-

lier; however, the presence of both proportional and fixed costs leads to a non-monotonic

relation between the investment time and cash balance. The firm with more cash bal-

ance invests later to save a fixed cost, particularly when the cash balance is close to the

investment cost. Our results can potentially account for a variety of empirical results

concerning the relation between investment volume and financing constraints.

JEL Classifications Code: G13; G31; G32.

Keywords: Real options; investment timing; costly external financing; growth option;

optimal stopping.

1 Introduction

Modigliani and Miller (1958) showed that financing and investment decisions can be made

independently in a frictionless market. Since their seminal work, a wide range of literature

has focused on investigating financing and investment decisions in the presence of various

frictions.1 Recently, an increasing number of papers have analyzed investment timing

decisions under financial frictions in the real options framework.2

∗This version: 10 November, 2011.
†Corresponding Author. Graduate School of Economics, Osaka University, 1-7 Machikaneyama, Toyonaka,

Osaka 560-0043, Japan, E-mail: nishihara@econ.osaka-u.ac.jp, Phone: 81-6-6850-5242, Fax: 81-6-6850-5277
‡Graduate School of Social Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo

192-0397, Japan, E-mail: tshibata@tmu.ac.jp, Phone: 81-42-677-2310, Fax: 81-42-677-2298
1An incomplete list includes Fazzari, Hubbard, and Petersen (1988), Hoshi, Kashyap, and Scharfstein (1991),

Kaplan and Zingales (1997), Cleary (1999), Gomes (2001), and Hennessy and Whited (2005).
2For example, the literature examined the effects of liquidity constraints (Boyle and Guthrie (2003)),

shareholders-debtholders conflicts (Mauer and Sarkar (2005), Sundaresan and Wang (2007), Morellec and
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This paper investigates an investment timing decision with costs of external financing

in the following model. A firm owns an option to expand the scale of production by a fixed

rate, where the price of the output follows a stochastic process. The investment project is

financed with cash balance and costly external funds. The cash balance gradually increases

as the firm’s existent production generates cash flows even before its expansion. If the

firm waits for a sufficient level of cash balance, the project can be financed entirely with

the cash balance. Otherwise, the firm must rely partially on costly external financing.

Considering the trade-off, the firm determines the optimal financing and investment policy.

As in the standard real options literature (Dixit and Pindyck (1994)), our model

assumes the irreversibility and indivisibility of investing as frictions. In addition, our

model includes costs of external financing. The financing costs are regarded as one of

the most influential frictions (e.g., Altinkilic and Hansen (2000), Hennessy and Whited

(2007)). According to the pecking order hypothesis, asymmetric information problems

associated with external funding generate higher costs; therefore, managers prefer internal

over external finance (Myers (1984), Myers and Majluf (1984)). We examine the case with

only a proportional cost and the case with both fixed and proportional costs. The former

approximates investment by a large firm, whereas the latter approximates investment by

a small firm (Hennessy and Whited (2007)).

Before describing the results, we emphasize that our results are analytically proved.

Most of the related papers explain their results only by numerical examples for the reason

that the complexity of the models precludes analytic results (e.g., Boyle and Guthrie

(2003), Hirth and Uhrig-Homburg (2010a), Shibata and Nishihara (2012)). However, it

is more important to derive analytic results in more complicated models; the complexity

increases the possibility of computational errors and makes the parameter sensitivity

unclear. In this paper, unlike related papers, we analytically prove interesting properties

of the firm’s optimal financing and investment policy by employing similar techniques

to those developed in the mathematical finance literature (e.g., Broadie and Detemple

(1997), Detemple (2006)). This paper contributes to the literature by demonstrating how

to derive analytic results.

The results are summarized as follows. Costs of external financing reduce the option

value and discourage the investment compared with the case with no financing costs.

This result is consistent with the standard view from empirical and theoretical studies

concerning costly external financing (e.g., Hennessy, Levy, and Whited (2007)). When

costs of external financing are relatively low to the scale of the profit expansion, the firm

may invest partially with external financing. Otherwise, the firm always waits until the

cash balance reaches the investment cost so that the project can be financed entirely

with internal funds. In this case, the firm receives a higher profit from saving costs of

Schürhoff (2011)), manager-shareholders-debtholders conflicts (Shibata and Nishihara (2010)), and debt ca-

pacities (Shibata and Nishihara (2012)).
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external financing than a loss due to the distortion in investment timing. We derive a

clear condition that forces the firm to invest entirely with internal funds. The condition

is more likely to be satisfied in a situation involving a smaller-scale expansion, a lower

investment cost, higher financing costs, a smaller firm, and more cash balance.

Whether there is a fixed cost of external financing greatly affects the relation between

the investment time and cash balance. First, we explain the result in the case with only

a proportional cost. In the absence of fixed cost, the firm with more cash balance invests

earlier. The reasoning is as follows. An increase in the cash balance decreases the financing

cost proportionally; hence, it decreases the threshold price above which the firm expands

production partially with external financing. This monotonic relation is straightforwardly

consistent with the classical view of underinvestment due to financing constraints (e.g.,

Fazzari, Hubbard, and Petersen (1988), Hubbard (1998)). In this view, a firm’s invest-

ment volume has a monotonic relation with internal funds. This paper complements the

literature by analytically proving that, in the presence of only a proportional cost, more

internal funds accelerate investments in a dynamic model.3

Now, we consider the case with both fixed and proportional costs. A fixed cost, unlike

a proportional cost, plays a role in discouraging the investment by the firm with more

cash balance. The intuition is as follows. An increase in the cash balance decreases the

time until the cash balance reaches the investment cost. With a shorter waiting time, the

firm with more cash balance can invest entirely with internal funds and save a fixed cost.

This fixed cost effect is opposite to the proportional cost effect described in the previous

paragraph. The trade-off between the two effects determines the relation between the

investment time and cash balance. We derive the result that the firm with more cash

invests later if the cash balance is close to the investment cost. This non-monotonic

relation is inconsistent with the conventional view of underinvestment due to financing

constraints. However, our result can potentially explains empirical results against the

conventional view (e.g., Kaplan and Zingales (1997), Cleary, Povel, and Raith (2007)) in

terms of fixed and proportional costs of external financing.

The result is also consistent with recent papers in the real options literature. Boyle and

Guthrie (2003) showed that a firm with less cash balance may invest earlier to avoid the

risk of a cash shortfall. In their model, a liquidity constraint, rather than financing costs,

plays a role in leading the non-monotonic relation.4 Shibata and Nishihara (2012) concen-

trated on a debt capacity constraint instead of internal financing constraints and showed

that investment thresholds have a U-shaped relation with a debt capacity constraint.

Note that these related papers demonstrate the results only in numerical examples. We

complement the literature by analytically proving the non-monotonic relation between

3Milne and Robertson (1996) showed that investment increases with cash holdings in a dynamic dividend

and investment model. In the real options literature, Hirth and Uhrig-Homburg (2010a) and Nishihara and

Shibata (2010) also showed that the investment threshold decreases with internal funds.
4Hirth and Uhrig-Homburg (2010b) extended Boyle and Guthrie (2003) to a case with financing costs.

3



the investment time and cash balance due to fixed and proportional costs of external

financing.

The remainder of this paper is organized as follows. Section 2 presents the setup and

the result in the case without financing costs. Section 3 presents the results in the cases

with only a proportional cost as well as both fixed and proportional costs. Although the

price is assumed to be a geometric Brownian motion, we discuss how the results can be

extended in the case of geometric Lévy process. Section 4 presents numerical examples and

examines the comparative statics with respect to the price volatility. Section 5 concludes

the paper. All proofs appear in the appendix.

2 Preliminaries

2.1 Setup

Consider a risk-neutral firm that produces a commodity at a constant rate. The output

is sold at the market price X(t), which follows a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x, (1)

where B(t) denotes the standard Brownian motion defined in a probability space (Ω,F ,P)
and µ, σ(> 0) and x(> 0) are constants. For convergence, we assume that r > µ, where

r is a positive constant interest rate. Assume that the firm owns an option to expand

production to the fixed scale A(> 1) at any time. If the option is exercised at time τ , the

firm pays a fixed cost at time τ and receives an instantaneous cash flow AX(t) after time

τ . Assume that the investment cost is I(> 0) if the whole amount of the cost is internally

financed. If part of the investment cost is externally financed, the firm pays a proportional

cost C(≥ 0) and a fixed cost K(≥ 0) of external financing. The total investment cost is

expressed as I + Cmax(I − Y (τ), 0) + K1{Y (τ)<I}, where Y (τ) denotes cash balance at

time τ . Until the investment time τ , cash balance Y (t) follows

dY (t) = rY (t)dt+X(t)dt, (0 < t < τ) Y (0) = y, (2)

where y(≥ 0) is a constant. Boyle and Guthrie (2003) assume dynamics of cash balance

exogenously and consider an option to initiate a new project. In contrast, we relate cash

balance Y (t) to operating cash flows X(t) more directly and consider the option to expand

production. In the case of C = 0 and K = 0, the setup corresponds to a standard model

of the growth option. For a comprehensive list of typical situations fitting the standard

model, refer to Dixit and Pindyck (1994). Although the standard model presumes that

the firm needs no costs of external financing (otherwise, it has sufficient internal funds),

our model considers fixed and proportional costs of external financing. Unlike Boyle and
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Guthrie (2003), who concentrated on a liquidity constraint,5 we examine the effects of

financing costs on optimal investment timing.

Our assumption of costly external financing is justified as follows. In the pecking

order theory, a variety of agency and asymmetric information problems increase costs of

external financing, which leads to a preference for internal over external finance (Myers

(1984), Myers and Majluf (1984)). Practically, financing costs consist of a fixed cost

(which is independent of the issue size) and a variable cost (which depends on the issue

size). A fixed cost includes taxes, fees, and setup expenses. A variable cost increases with

the issue size primarily because more underwriting services are required for more funds

raised. In the standard view of the literature, a variable cost is convex with respect to the

issue size (e.g., Altinkilic and Hansen (2000)). Hennessy and Whited (2007) estimated

that proportional costs of equity financing are approximately 5% (10%) for large (small)

firms. They argued that a significant level of fixed costs of equity financing may exist

only for small firms, while the convexity is statistically insignificant for any firms. In

considering their results, as well as preserving tractability of the model, we examine two

cases: the case with only a proportional cost (Section 3.1) and the case with both fixed

and proportional costs (Section 3.2).

2.2 Case with no financing costs

As a benchmark, this section briefly describes the case of C = K = 0. The firm solves

the following problem:

sup
τ∈T

Ex[

∫ τ

0
e−rtX(t)dt+

∫ ∞

τ
e−rtX(t)dt− e−rτI], (3)

where T denotes the set of all stopping times and Ex[·] denotes the expectation conditional

on X(0) = x. In (3), τ represents the time to expand the scale of production. By the

strong Markov property of X(t), (3) can be easily reduced to

x

r − µ
+ sup

τ∈T
Ex[e−rτ

(
A− 1

r − µ
X(τ)− I

)
]︸ ︷︷ ︸

=:V0,0(x) the growth option value

,

where we denote the second term by V0,0(x). The standard argument (e.g., Dixit and

Pindyck (1994)) proves that

V0,0(x) =


(
(A− 1)x∗0,0

r − µ
− I

)(
x

x∗0,0

)β

(0 < x < x∗0,0)

(A− 1)x

r − µ
− I (x ≥ x∗0,0),

(4)

5Hirth and Uhrig-Homburg (2010b) extended Boyle and Guthrie (2003) by considering both a liquidity

constraint and financing costs.
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where β := 1/2 − µ/σ2 +
√

(µ/σ2 − 1/2)2 + 2r/σ2(> 1) is a positive characteristic root,

and x∗0,0 := β(r−µ)I/{(A−1)(β−1)} is the threshold price above which the firm expands

production.

3 Analytic Results

3.1 Case with a proportional cost

This subsection examines the case of C > 0 and K = 0. This assumption applies to

investments by large firms (Hennessy and Whited (2007)). In this case, the growth option

value, denoted by VC,0(x, y), is expressed as

VC,0(x, y) = sup
τ∈T

Ex,y[e−rτ

(
A− 1

r − µ
X(τ)− I − Cmax(I − Y (τ), 0)

)
], (5)

where where Ex,y[·] denotes the expectation conditional on (X(0), Y (0)) = (x, y). The

term Cmax(I−Y (τ), 0) means that a proportional cost is required when the firm is short

of cash balance. The standard argument proves that the exercise region of the option is

expressed as

SC,0 := {(x, y) ∈ R2
+ | V (x, y) = (A− 1)x/(r − µ)x− I − Cmax(I − y, 0)}. (6)

Now we analytically prove interesting properties of VC,0(x, y) and SC,0.

Consider the following problems as approximations of VC,0(x, y):

VU (x, y) := sup
τ∈T

Ex,y[e−rτ

(
A− 1

r − µ
X(τ)− I − C(I − Y (τ))

)
], (7)

and

VL(x, y) := sup
τ∈T

Ex[e−rτ

(
A− 1

r − µ
X(τ)− I − C(I − y)

)
]. (8)

By the strong Markov property of X(t), we can easily derive the closed-form solution of

(7) as follows: If A− C − 1 > 0, we have

VU (x, y) =


C

(
y +

x

r − µ

)
+

(
(A− 1− C)x∗U

r − µ
− (1 + C)I

)(
x

x∗U

)β

(0 < x1 < x∗U )

(A− 1)x

r − µ
− I − C(I − y) (x1 ≥ x∗U ),

(9)

where x∗U := β(r− µ)(1 +C)I/{(β − 1)(A−C − 1)} represents the threshold price above

which the firm expands production. Otherwise, VU (x, y) = C(x/(r − µ) + y) holds and

the growth option will be never exercised. Note that in both cases the exercise policy is

independent of Y (t). In (8), VL(x, y) is the same as (4) replaced I with I + C(I − y).

Then, the threshold price, denoted by x∗L(y), is equal to

x∗L(y) =
β(r − µ)(I + C(I − y))

(β − 1)(A− 1)
. (10)
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First, we show several properties of the option value VC,0(x, y). The following propo-

sition shows that VL(x, y) and VU (x, y) are closed-form bounds of VC,0(x, y).

Proposition 1 If y < I, VL(x, y) ≤ VC,0(x, y) ≤ VU (x, y) is satisfied. Otherwise,

VC,0(x, y) = V0,0(x, y) holds.

Next, we show several properties of the exercise region SC,0. It immediately follows

from Proposition 1 that SC,0 includes SI which is defined by

SI := {(x, y) ∈ R2
+ | x ≥ x∗0,0, y ≥ I}. (11)

Then, we examine the properties of TC,0 := SC,0 \ SI . We can show the following lemma

and proposition.

Lemma 1

Assume that A− C − 1 > 0. It holds that

0 ≤VC,0(x+∆, y)− VC,0(x, y) ≤
(A− 1)∆

r − µ
(12)

0 ≤VC,0(x, y +∆)− VC,0(x, y) ≤ C∆ (13)

for any positive constant ∆.

Proposition 2

Case (a): A− C − 1 > 0

The exercise region SC,0 is the disjoint union of SI and

TC,0 = {(x, y) ∈ R2
+ | x ≥ x∗C,0(y), y < I}, (14)

where x∗C,0(·) is a continuous and decreasing function satisfying

x∗L(y) ≤ x∗C,0(y) ≤ x∗U (15)

and

lim
y↑I

x∗C,0(y) = max

(
x∗0,0,

(C + 1)rI

A− C − 1

)
(16)

Case (b): A− C − 1 ≤ 0

The exercise region SC,0 is equal to SI , which means that TC,0 = ∅.

[Insert Figure 1 about here.]

Figure 1 illustrates the exercise region in each case.6 Note that the exercise region is

connected. The firm’s financing and investment policy can be classified into two different

types, depending on the relation between the scale of production expansion, A − 1, and

6In all figures in this paper, we set the axes in the same way as Boyle and Guthrie (2003) and Hirth and

Uhrig-Homburg (2010b) for comparison.
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a proportional cost of external financing, C. Consider Case (a) in which a proportional

cost is relatively low. The firm invests partially with external financing when the output

price, X(t), exceeds the threshold x∗C,0(Y (t)). Proposition 2 shows a monotonicity in the

threshold x∗C,0(Y (t)) with respect to cash balance Y (t). The reason is as follows. An

increase in Y (t) decreases a financing cost, C(I − Y (t)), which enables the firm to invest

earlier. Accordingly, the presence of the proportional cost of external financing leads to a

straightforward result that the firm with more cash balance invests earlier.

In Case (b), the firm always waits until the cash balance reaches the whole amount of

the investment cost. The reasoning is as follows. As long as Y (t) < I, the firm receives

cost savings of CX(t)dt + r(1 + C)Idt and loses (A − 1)X(t)dt by deferring investment

by an infinitesimally short period dt. If A−C − 1 ≤ 0, we have CX(t)dt+ r(1+C)Idt−
(A−1)X(t)dt > 0 for any X(t), which means that the cost saving effect always dominates

the loss. Then, the firm has no incentive to invest with external financing. Below, we

describe major determinants of entirely internal financing. Clearly, low financing costs and

much cash balance are the determinants. Since a small firm suffers from relatively higher

financing costs (Hennessy, Levy, and Whited (2007)), a small firm is more likely to invest

entirely with internal financing compared with a large firm. In addition, a small-scale

expansion with low investment cost increases the possibility of entirely internal financing.

For example, suppose that C = 0.1. While a large-scale investment with A = 1.5 and

I = 100 leads to Case (a), a small-scale investment with A = 1.1 and I = 20 leads to Case

(b).

It should be noted that we, unlike most of the related papers, analytically prove the

existence of continuous and decreasing thresholds x∗C,0(Y (t)). It is worth deriving the

analytic results in a complicated problem involving multiple state variables because the

complexity increases the possibility of computational errors. Although some of the tech-

niques used in the proof are enlightened by the mathematical finance literature (e.g.,

Broadie and Detemple (1997), Detemple (2006)), the proofs are newly developed in this

paper. While the mathematical finance studies analyzed the exercise regions of American

options that involve a multi-dimensional geometric Brownian motion7, the stochastic pro-

cess Y (t) in our model is not a geometric Brownian motion; instead, it is but defined by

(2). Furthermore, the payoff function of problem (5) is not convex, which makes the proofs

more difficult. This paper contributes to the literature from this technical viewpoint.

Proposition 2 shows that financing costs of external financing discourage the invest-

ment compared with the case with no financing costs. This is consistent with empirical

results (e.g., Hennessy, Levy, and Whited (2007)). The monotonic relation between the

investment time and cash balance is consistent with the conventional view of underinvest-

ment due to financing constraints. Indeed, many empirical and theoretical papers have

shown that a firm with less internal funds invests less than a firm with sufficient internal

7Nishihara (2011) showed the properties of multiple real options using similar techniques.
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funds (e.g., Fazzari, Hubbard, and Petersen (1988), Hubbard (1998)). Milne and Robert-

son (1996) examined a firm’s dynamic policy of dividend and investment; they showed

that the investment level increases with cash holdings. Similar results are seen in the real

options literature. Nishihara and Shibata (2010) showed that a firm delays the investment

when it must rely more heavily on debt financing than the optimal level of the leverage.

Hirth and Uhrig-Homburg (2010a) showed that the investment threshold is decreasing in

the firm’s liquid funds.

On the other hand, empirical findings against the monotonic relation between the

investment volume and internal funds have been identified (e.g., Kaplan and Zingales

(1997), Moyen (2004), Cleary, Povel, and Raith (2007)). These studies have shown that

having more internal funds does not necessarily increase the investment level. In the next

section, we will show that the inclusion of a fixed cost of external financing can lead to

the non-monotonic relation between the investment time and cash balance.

3.2 Case with fixed and proportional costs

This section examines the case of C > 0 and K > 0. In this case, the option value,

denoted by VC,K(x, y), is expressed as

VC,K(x, y) = sup
τ∈T

Ex,y[e−rτ

(
A− 1

r − µ
X(τ)− I − Cmax(I − Y (τ), 0)−K1{Y (τ)<I}

)
],

(17)

where 1{Y (τ)<I} denotes the defining function. Note that the exercise region of the option

is

SC,K := {(x, y) ∈ R2
+ | VC,K(x, y) = (A−1)x/(r−µ)−I−Cmax(I−y, 0)−K1{y<I}}. (18)

We can readily show the following proposition regarding the properties of VC,K(x, y).

Proposition 3 VC,0(x, y) − K ≤ VC,K(x, y) ≤ VC,0(x, y) is satisfied. If A − C − 1 ≤ 0,

VC,K(x, y) = VC,0(x, y) is satisfied. If y ≥ I, VC,K(x, y) = V0,0(x, y) is satisfied.

Next, we analytically prove the properties of the exercise region SC,0. Proposition 3

shows that SC,0 includes SI . Then, we concentrate on the properties of TC,K := SC,K \SI .

Proposition 4

Case (a-K): A− C −K/I − 1 > 0

The exercise region SC,K is the disjoint union of SI and TC,K satisfying

TC,K ⊂ TC,0 ∩ R+ × [0, I −K/(A− C − 1)), (19)

and

{(x, y) ∈ R2
+ | x ≥ x∗C+K/(I−y),0(y), y < I −K/(A− C − 1)} ⊂ TC,K , (20)

9



where x∗C+K/(I−y),0(y) denotes the threshold of problem (5) replaced C with C+K/(I−y).

In particular, there exist (x, y1) ∈ SC,K , (x, y2) /∈ SC,K , and (x, y3) ∈ SC,K satisfying

y1 < y2 < y3.

Case (b-K): A− C −K/I − 1 ≤ 0

The exercise region is equal to SI .

[Insert Figure 2 about here.]

Figure 2 illustrates the exercise region in each case. The firm defers the investment so

that the project can be financed entirely with internal funds if costs of external financing

are sufficiently high (Case (b-K)). Otherwise, the firm may invest partially with costly

external financing (Case (a-K)). A fixed cost K > 0 increases the possibility of Case (b-K)

by the additional term K/I and discourages the investment, compared with the case with

only a proportional cost. Similar to the case with only a proportional cost, a smaller-scale

expansion, a lower investment cost, higher financing costs, a smaller firm, and more cash

balance increase the possibility that the firm invests entirely with internal financing.

Below we explain Case (a-K) in which a fixed cost of external financing generates

quite a different result from that of Case (a) in Proposition 2. The key result is that

R+ × [I − K/(A − C − 1), I) is not included in the exercise region SC,K . Before cash

balance, Y (t), reaches the critical level, I−K/(A−C−1), the firm may expand the scale

of production for a sufficiently high price of the output. Once the cash balance reaches

the critical level prior to the investment, the firm always defers the investment until the

cash balance is equal to the whole amount of the investment cost.

A fixed cost provides a greater incentive for the firm with more cash balance to wait

and invest entirely with internal funds. Indeed, the firm with more cash balance can save

a fixed cost with a shorter deferment of the investment. On the other hand, there always

exists the proportional cost effect; an increase in cash balance reduces a proportional

cost of financing and increases the incentive to invest earlier. The two conflicting effects

determine the relation between the investment time and cash balance. Proposition 4 shows

that the fixed cost effect dominates the proportional cost effect when the cash balance is

sufficiently close to the investment cost. Consequently, contrary to the conventional view

(or the result in the case with only a proportional cost), the firm with more cash balance

invests later in the situation. As easily seen, the fixed cost effect is weak when the cash

balance is far from the investment cost. Thus, the presence of both fixed and proportional

costs leads to the non-monotonic relation between the investment time and cash balance.

Proposition 4 has the potential to explain the non-monotonic relation observed in

empirical studies (e.g., Kaplan and Zingales (1997), Cleary, Povel, and Raith (2007)), in

terms of fixed and proportional costs of external financing. This result is also consistent

with the following findings in the real options literature.8, Boyle and Guthrie (2003)

8Apart from dynamic investment models, Cleary, Povel, and Raith (2007) showed both theoretically and

empirically a U-shaped relation between the investment level and internal funds.
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showed that a firm with less cash balance may invest earlier to avoid the risk of a cash

shortfall. In their model, investment is possible only when a liquidity constraint is satisfied.

The liquidity constraint leads to a V-shaped relation between the investment threshold

and cash balance. Hirth and Uhrig-Homburg (2010b) extended Boyle and Guthrie (2003)

to a case involving financing costs and showed the possibility of a variety of relations.

Shibata and Nishihara (2012) showed that, in a dynamic investment and capital structure

model, investment thresholds have a U-shaped relation with a debt issuance constraint.

Although these papers explain their results only by numerical examples, we analytically

prove the non-monotonic relation between the investment time and cash balance.

3.3 The output price following a geometric Lévy process

The results obtained in the previous subsections hold true when the output price follows a

geometric Brownian motion, as well as when it follows a geometric Lévy process. The class

of geometric Lévy processes, unlike a geometric Brownian motion, includes processes with

jumps and can account for fat tails and skewness of probability distributions of the output

price. Assume that the output price X(t) := xeZ(t), where Z(t) is a Lévy process (i.e.,

a process with stationary independent increments), satisfies the convergence condition:

E1[X(t)] = eµt with µ < r. In the case with no financing costs, the results are seen in

Boyarchenko (2004). Although the problem precludes a closed-form solution of V0,0(x) and

x∗0,0, we still obtain an investment threshold as proved in Mordecki (2002). A difficulty in

extending the results in the previous subsections to the case of a geometric Lévy process

is that the generating operator of (X(t), Y (t)) includes the integrals corresponding to

the jumps (refer to (Øksendal and Sulem 2007)). However, we obtain the same relation,

Lf(x, y)− rf(x, y) ≤ 0 ⇔ x ≥ (C +1)rI/(A−C − 1), as in the case with no jumps using

the linearity of f(x, y) defined by (23). As a result, we can trace all the proofs of the

lemma and propositions in Sections 3.2 and 3.3. All technical details are omitted.

4 Numerical examples

As mentioned in Section 1, the main contribution of this paper is to analytically prove the

properties of the firm’s optimal financing and investment policy (Section 3). This section

supplements the analytic results by presenting the comparative statics results with respect

to the volatility σ in numerical examples. The base parameter values except for σ are set

as follows:

r = 0.07, µ = 0.03, I = 100, (X(0), Y (0)) = (10, 50), A = 1.5, C = 0.1,K = 1. (21)

Cases (a) and (a-K) are satisfied because A − C − K/I − 1 = 0.39 > 0 hold. In the

computation, we make a tri-nomial lattice model that approximates to a a geometric

Brownian motion (1), and we use a value function iteration algorithm.

11



[Insert Figure 3 about here.]

Figure 3 plots the exercise regions with varying levels of σ in the cases with only a

proportional cost and with both fixed and proportional costs. We can see from Figure

3 that a higher σ decreases the exercise regions in both cases. This implies that the

investment threshold and the option value increase with σ. Thus, the effect of the volatility

σ on the investment policy remains unchanged from that of the standard model with no

financing costs. In the upper panel of Figure 3, there is a gap between limy↑I x
∗
C,0(y) =

(C + 1)rI/(A − C − 1) and x∗0,0 for σ = 0.1, 0.15, whereas limy↑I x
∗
C,0(y) is equal to x∗0,0

for σ = 0.2, 0.25, 0.3. Since x∗0,0 is increasing with σ, a higher σ reduces a gap between

limy↑I x
∗
C,0(y) and x∗0,0 (cf. Propostion 2). In the lower panel of Figure 3, the boundary

of TC,K has an asymptote y = I −K/(A−C − 1). As proved in Propostion 4, the option

is not exercised for Y (t) ∈ [0, I −K/(A− C − 1)).

5 Conclusion

This paper investigated a firm’s option to expand the scale of production by a fixed rate.

We assumed that the project is financed with cash balance, which is increasing with time,

and external funds that may require proportional and fixed costs. We, unlike most of

the related papers, analytically proved the properties of the firm’s optimal financing and

investment policy. The results are summarized as follows.

Costs of external financing reduce the option value and discourage the investment

compared with the case with no financing costs. When costs of external financing are

relatively low to the scale of the profit expansion, the firm may invest partially with

external financing. Otherwise, the firm always waits until the cash balance reaches the

investment cost so that the project can be financed entirely with internal funds. The

entirely internal financing is likely to be adopted in a small-scale expansion by a small

firm with more cash balance. In the presence of only a proportional cost, the firm with

more cash balance invests earlier; however, the presence of both proportional and fixed

costs leads to a non-monotonic relation between the investment time and cash balance.

Our results can potentially account for ambiguous results in empirical studies regarding

the relation between investment volume and financing constraints.
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A Proof of Proposition 1

Since Y (t) monotonically increases from the initial value y, we have for y < I

I − Y (t) ≤ max(I − Y (t), 0) ≤ I − y

at any time t. This implies that VL(x, y) ≤ VC,0(x, y) ≤ VU (x, y) holds for y < I. Clearly

we have VC,0(x, y) = V0,0(x, y) for y > I.

B Proof of Lemma 1

First, we show (12). Note that E1[·] represents the expectation with X(t) starting from

X(0) = 1. For any positive constant ∆, we have

VC,0(x+∆, y)

= sup
τ∈T

E1[e−rτ

(
(A− 1)(x+∆)

r − µ
X(τ)− I − Cmax(I − erτy −

∫ τ

0
er(τ−s)(x+∆)X(s)ds, 0)

)
]

≤ sup
τ∈T

E1[e−rτ

(
(A− 1)x

r − µ
X(τ)− I − Cmax(I − erτy −

∫ τ

0
er(τ−s)xX(s)ds, 0)

+
(A− 1)∆

r − µ
X(τ) + C∆

∫ τ

0
er(τ−s)X(s)ds

)
]

≤ sup
τ∈T

E1[e−rτ

(
(A− 1)x

r − µ
X(τ)− I − Cmax(I − erτy −

∫ τ

0
er(τ−s)xX(s)ds, 0)

)
]︸ ︷︷ ︸

=VC,0(x,y)

+ sup
τ∈T

E1[e−rτ

(
(A− 1)∆

r − µ
X(τ) + C∆

∫ τ

0
er(τ−s)X(s)ds

)
]

=VC,0(x, y) + sup
τ∈T

E1[e−rτ

(
(A− 1)∆

r − µ
X(τ)

)
+ C∆

(∫ ∞

0
e−rsX(s)ds−

∫ ∞

τ
e−rsX(s)ds

)
]

=VC,0(x, y) +
C∆

r − µ
+

(A− 1− C)∆

r − µ
sup
τ∈T

E1[e−rτX(τ)]︸ ︷︷ ︸
=1

(22)

=VC,0(x, y) +
(A− 1)∆

r − µ
,

where in (22) supτ∈T E1[e−rτX(τ)] = 1 follows from µ < r.

Next, we show (13). For any positive constant ∆, we have

VC,0(x, y +∆)

= sup
τ∈T

Ex[e−rτ

(
(A− 1)

r − µ
X(τ)− I − Cmax(I − erτ (y +∆−

∫ τ

0
er(τ−s)X(s)ds, 0)

)
]

≤ sup
τ∈T

Ex[e−rτ

(
(A− 1)

r − µ
X(τ)− I − Cmax(I − erτy −

∫ τ

0
er(τ−s)X(s)ds, 0) + erτC∆

)
]

= sup
τ∈T

Ex[e−rτ

(
(A− 1)

r − µ
X(τ)− I − Cmax(I − erτy −

∫ τ

0
er(τ−s)X(s)ds, 0)

)
]︸ ︷︷ ︸

=VC,0(x,y)

+C∆

=VC,0(x, y) + C∆.
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C Proof of Proposition 2

First, consider the case of A − C − 1 > 0. Fix (x, y) ∈ TC,0 and (x′, y′) satisfying x ≤ x′

and y ≤ y′ < I. Using Lemma 1, we have

VC,0(x
′, y′) = VC,0(x

′, y′)− VC,0(x, y
′) + VC,0(x, y

′)− VC,0(x, y) + VC,0(x, y)

≤ (A− 1)(x′ − x)

r − µ
+ C(y′ − y) + VC,0(x, y)

=
(A− 1)(x′ − x)

r − µ
+ C(y′ − y) +

(A− 1)x

r − µ
− I − C(I − y)

=
(A− 1)x′

r − µ
− I − C(I − y′),

where the last inequality implies (x′, y′) ∈ TC,0. This proves that TC,0 is expressed as (14)

with the decreasing function x∗C,0(·). By Proposition 1, we immediately obtain inequality

(15).

Next, we will show (16). Clearly we have limy↑I x
∗
C,0(y) ≥ x∗0,0. Denote the payoff

function of problem (7) as

f(x, y) :=
(A− 1)x

r − µ
− I − C(I − y). (23)

We have

Lf(x, y)− rf(x, y) ≤ 0

⇔(A− 1)µx

r − µ
+ C(x+ ry)− r

(
(A− 1)x

r − µ
− I − C(I − y)

)
≤ 0

⇔x ≥ (C + 1)rI

A− C − 1
, (24)

where L denotes the generating operator of (X(t), Y (t)). Since the general theory of

optimal stopping ensures LVC,0(x, y) − rVC,0(x, y) ≤ 0 (refer to Peskir and Shiryaev

(2006)), by (24) f(x, y) is not equal to VC,0(x, y) for x < (C + 1)rI/(A − C − 1) and

y < I. In other words, the option is not exercised in the region {(x, y) ∈ R2
+ | x <

(C + 1)rI/(A−C − 1), y < I}. This proves that limy↑I x
∗
C,0(y) ≥ (C + 1)rI/(A−C − 1).

[Insert Figure 4 about here.]

Now, suppose that (C + 1)rI/(A − C − 1) ≤ x∗0,0 < limy↑I x
∗
C,0(y) (see Figure 4).

We can lead to contradiction as follows. Consider problem (7) with a finite maturity T .

Generally, the exercise region of an American option converges to the region Lf − rf ≤ 0,

where L is the generating operator and f is the payoff function, when the remaining

life of the option goes to zero (refer to Detemple (2006)). Then, because of (24), the

exercise region of problem (7) with a finite maturity T converges to {(x, y) ∈ R2
+ | x ≥

(C + 1)rI/(A − C − 1)} when T ↓ 0. Consider the exercise region of problem (5) for

a fixed x satisfying x∗0,0 < x < limy↑I x
∗
C,0(y) and y ↑ I. Note that τI := inf{t ≥ 0 |

14



X(t) ≥ x∗0,0, Y (t) ≥ I} converges to 0 as y ↑ I. Accordingly, the exercise region of the

problem (5) for the fixed x and y ↑ I converges to that of problem (7) with T ↓ 0. This

implies that limy↑I x
∗
C,0(y) = (C + 1)rI/(A − C − 1), which contradicts the assumption

of (C + 1)rI/(A − C − 1) < limy↑I x
∗
C,0(y). Similarly we can lead to contradiction if

x∗0,0 < (C + 1)rI/(A− C − 1) < limy↑I x
∗
C,0(y) is supposed. Thus, we complete the proof

of (16).

We can show the continuity of x∗C,0(·) as follows. By Lemma 1 we have the continuity of

VC,0(x, y). Since VC,0(x, y) and (A− 1)x/r − µ− I−Cmax(I−y, 0) are both continuous,

SC,0 is a closed set. Then, we have limϵ↓0(x
∗
C,0(y + ϵ), y + ϵ) ∈ SC,0, which leads to

limϵ↓0 x
∗
C,0(y + ϵ) ≥ x∗C,0(y). We have limϵ↓0 x

∗
C,0(y + ϵ) ≤ x∗C,0(y) because x∗C,0(·) is

decreasing. Thus, we obtain the right-continuity of x∗C,0(·). Now, suppose that there

exists y(< I) satisfying x∗C,0(y) < limϵ↓0 x
∗
C,0(y − ϵ). We can lead to contradiction as

the same method as the proof of (16). Consider the exercise region of problem (5) for

a fixed x satisfying x∗C,0(y) < x < limϵ↓0 x
∗
C,0(y − ϵ) and y − ϵ. Note that inf{t ≥ 0 |

X(t) ≥ x∗C,0(Y (t))} converges to 0 as ϵ ↓ 0. Then, the exercise region converges to that

of problem (7) with T ↓ 0. This implies that limϵ↓0 x
∗
C,0(y − ϵ) = (C + 1)rI/(A− C − 1),

which contradicts (C + 1)rI/(A−C − 1) ≤ x∗C,0(y) < limϵ↓0 x
∗
C,0(y − ϵ). Thus, we obtain

the left-continuity of x∗C,0(·).
Lastly, consider the case of A− C − 1 ≤ 0. In this case, we have for any (x, y) ∈ R2

+

Lf(x, y)− rf(x, y) = −(A− C − 1)x+ (C + 1)rI > 0,

where L is the generating operator of (X(t), Y (t)) and f(x, y) is defined by (23). Since

LVC,0(x, y)−rVC,0(x, y) ≤ 0 holds by the general theory of optimal stopping, f(x, y) does

not agree with VC,0(x, y). This implies that TC,0 = ∅ and SC,0 = SI .

D Proof of Proposition 3

By 0 ≤ K1{Y (t)<I} ≤ K we have VC,0(x, y)−K ≤ VC,K(x, y) ≤ VC,0(x, y). Suppose that

A− C − 1 ≤ 0. It follows from Proposition 2 and the optimality of VC,K(x, y) that

VC,0(x, y) = Ex,y[e−rτI

(
A− 1

r − µ
X(τI)− I

)
] (25)

≤ VC,K(x, y), (26)

where τI denotes the first hitting time to SI = {(x, y) ∈ R2
+ | x ≥ x∗0,0, y ≥ I}. Then, we

obtain VC,0(x, y) = VC,K(x, y). Clearly we have VC,K(x, y) = V0,0(x, y) for y ≥ I.
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E Proof of Proposition 4

First, suppose that A−C −K/I − 1 > 0. By Proposition 3 we have for any (x, y) ∈ TC,K

VC,0(x, y) ≤ VC,K(x, y) +K

=
(A− 1)x

r − µ
− I − C(I − y)−K +K

=
(A− 1)x

r − µ
− I − C(I − y),

where the last inequality implies (x, y) ∈ TC,0. This proves that TC,K ⊂ TC,0.

Fix any (x, y) ∈ R2
+ satisfying I −K/(A− C − 1) ≤ y < I. Consider the first hitting

time to SI , denoted by τI . Since Y (t) monotonically increases from the initial point

Y (0) = y, we have

VC,K(x, y) ≤ sup
τ∈T

Ex,y[e−rτ

(
A− 1

r − µ
X(τ)− I −

(
C +

K

I − y

)
max(I − Y (τ), 0)

)
]︸ ︷︷ ︸

=VC+K/(I−y),0(x,y)

= Ex,y[e−rτI

(
A− 1

r − µ
X(τI)− I

)
] (27)

≤ VC,K(x, y),

where by Proposition 2 we have (27) because of A − C − K/(I − y) − 1 ≤ 0. The last

inequality implies that (x, y) /∈ TC,K , which leads to TC,K ⊂ R+ × [0, I −K/(A−C − 1)).

This completes the proof of (19).

Next, fix any (x, y) ∈ R2
+ satisfying x ≥ x∗C+K/(I−y),0(y) and y < I −K/(A− 1− C).

Since Y (t) monotonically increases from the initial point Y (0) = y, we have

VC,K(x, y) ≤ sup
τ∈T

Ex,y[e−rτ

(
A− 1

r − µ
X(τ)− I −

(
C +

K

I − y

)
max(I − Y (τ), 0)

)
]︸ ︷︷ ︸

=VC+K/(I−y),0(x,y)

,

=
(A− 1)x

r − µ
− I −

(
C +

K

I − y

)
(I − y)

=
(A− 1)x

r − µ
− I − C(I − y)−K,

where the last inequality implies (x, y) ∈ TC,K , and, therefore, we obtain (20).

Lastly, consider the case of A− C −K/I − 1 ≤ 0. We use the same technique as the

proof of (19). Fix any (x, y) ∈ R2
+ satisfying y < I and denote by τI the first hitting time

to SI . Because Y (t) ≥ 0 holds for any time t, we have

VC,K(x, y) ≤ sup
τ∈T

Ex,y[e−rτ

(
A− 1

r − µ
X(τ)− I −

(
C +

K

I

)
max(I − Y (τ), 0)

)
]︸ ︷︷ ︸

=VC+K/I,0(x,y)

=Ex,y[e−rτI

(
A− 1

r − µ
X(τI)− I

)
] (28)

≤VC,K(x, y),
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where by Proposition 2 we have (28) because of A−C−K/I− 1 ≤ 0. The last inequality

proves that (x, y) /∈ TC,K , and, then, we have TC,K = ∅ and SC,K = SI .
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Figure 1: The exercise region in the case with only a proportional cost. The upper panel

illustrates Case (a) satisfying x∗
0,0 ≥ (C + 1)rI/(A−C − 1). The middle panel illustrates Case

(a) satisfying x∗
0,0 < (C + 1)rI/(A − C − 1). In this case, there is a gap between limy↑I x

∗
L(y)

and x∗
0,0. The lower panel illustrates Case (b).
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Figure 2: The exercise region in the case with both fixed and proportional costs. The upper

panel illustrates Case (a-K). The lower panel illustrates Case (b-K).
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Figure 3: The comparative statics with respect to the volatility σ. The upper and lower

panels illustrate the cases with only a proportional cost and both fixed and proportional costs,

respectively. The parameter values other than σ are set at the base case (21).
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Figure 4: The assumption of x∗

0,0 < limy↑I x
∗
C,0(y). The dot represents the initial point (x, y)

satisfying x∗
0,0 < x < limy↑I x

∗
C,0(y) and y ≈ I.

22


	no.223_dpcover.pdf
	no.223←1129-1.pdf

