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1 Introduction

Situations exist in which agents choose a subset from a set of objects. For example, existing
members of a club choose new members from a list of candidates, and city council members
choose public projects to carry out from a list. Barbera et al. (1991) model these situations
and axiomatically examine a rule (or a social choice function) that maps each preference profile
to a subset of objects. They first assume that agents’ preferences satisfy separability, which
requires that an object e is preferred to the null outcome if and only if any set of objects including
e is preferred to that set subtracting e. We refer to the class of separable preferences as the
separable domain. Barbera et al. (1991) establish that on the separable domain, a class of
rules called “voting by committees” satisfies “strategy-proofness” and “ontoness”, and only this
class satisfies those requirements. Strategy-proofness, which is one of the most frequently
employed properties for incentive compatibility, requires that no agent can be better off by
misrepresenting her true preference, whatever preferences other agents may have. Ontoness,
which is recognized as a minimal requirement for agent sovereignty, requires that any subset
of objects can be an outcome for some preference profile. Thus, their result is positive in the
sense that the class of voting by committees includes a variety of rules, all of which satisfy both
requirements. Their model and result are followed in various studies.®

The larger the domain of rules, the greater the variety of situations to which the results can be
applied. Thus, once we obtain a positive result on some domain, we wish to enlarge the domain
as long as the positive result holds. However, in this model, Gibbard (1973) and Satterthwaite’s
(1975) theorem implies that if the domain is unrestricted, no rule other than trivial ones such as
dictatorships satisfies strategy-proofness and ontoness. A natural question then arises: (i) how
large can the domain be while the class of voting by commitiees satisfies strategy-proofness and
ontoness? Because the class of voting by committees includes trivial rules such as dictatorships,
which satisfy both requirements on the unrestricted domain, this question is qualified as: (i*)
how large can the domain be while nontrivial voting by committees satisfies strategy-proofness
and ontoness? Barbera et al. (1991) themselves address this problem, and establish that
the separable domain is a maximal domain where voting by “no-vetoer” committees satisfies
strategy-proofness.? No-vetoer is a condition that excludes trivial rules such as dictatorships.
It says that no agent has a veto power, and this is sufficient for ontoness.?

Note that in the search for maximal domains, we need not restrict rules to a specific class
of rules such as voting by committees, a priori, because there may be other interesting rules.

Restricting rules to voting by committees in the search for maximal domains might make the

!See, for example, Shimomura (1996), Ju (2003, 2005), Berga et al. (2004, 2006), Barbera et al. (2005), and
Nehring and Puppe (2007).

In fact, the rule employed by Barbera et al. (1991) is voting by no-vetoer and “no-dummy” committees.
No-dummy is employed to make all agents’ sets of preferences equal. In this paper, we omit this condition
because we assume exogenously that all agents’ sets of preferences are the same. Similar types of the maximal
domain problem for various rules are studied by Serizawa (1995), Barbera et al. (1999), and Berga (2002) for the
generalized median voter scheme; Barbie et al. (2006) and Vorsatz (2008) for Borda’s rule; and Sanver (2009) for
the plurality rule.

3 No-vetoer is employed in various studies including Repullo (1987), Maskin (1999), and Berga and Serizawa
(2000).



maximal domains unnecessarily small. This is why we search for maximal domains without
restricting the rules to voting by committees. We generalize the above question (i*) as: (ii)
how large can the domain be while there exists a montrivial rule satisfying strategy-proofness
and ontoness? Berga and Serizawa (2000) study this general maximal domain problem (%) in
the model where the set of alternatives is a continuous line. Many authors study this type of
maximal domain problem in various models, including Ching and Serizawa (1998), Massé and
Neme (2001, 2004), Ehlers (2002), and Mizobuchi and Serizawa (2006). However, no author has
investigated the general maximal domain problem in the original multi-object choice model by
Barbera et al. (1991). In this paper, we establish that the separable domain is a mazximal domain
for the existence of rules satisfying strategy-proofness and no-vetoer. Although we seek a larger
domain than the separable domain by not assuming voting by committees, this result states that
they coincide. As we discuss the details in the Appendix, the general maximal domain problem
in the multi-object choice model requires us to develop a much more complex proof procedure
than in the previous literature.

The rest of this paper is organized as follows. Section 2 sets out the details of the model.
Section 3 states the main theorem. Section 4 notes some remaining questions and concludes.

The Appendix includes the proof for the main theorem.

2 Preliminaries

Let N = {1,--- ,n} be the set of agents (or voters). Assume n > 3.* A coalition is a subset I
of N, and let #I denote the number of agents in I. Let K = {1,--- ,k} be the set of objects.
Let Z denote the set of alternatives that are the vertices of a k-dimensional hypercube; that
is, Z = H’;:l Ze, where for all e € K, Z. = {0,1}. Given z € Z and e € K, z. = 0 represents
that the object e is not selected and z, = 1 represents that the object e is selected.® We endow

Z with the Li-norm. That is, for every y,z € Z,

k
ly =2l = lye — zl-
e=1

Given y, z € Z, the box containing y and z is defined as
Bly,z) ={z e Z:|ly — 2|l = [ly — || + |lx — 2[|}.

Preferences are complete, transitive, and asymmetric binary relations over Z. Generic
preferences without links to a specific agent are denoted by Fy, Pj, Py, and so on. Agent i’s
preferences are denoted by P;, P/, P, and so on. Let Dy denote the set of all preferences.
We call the n-tuple of sets of all preferences Df; the universal domain. Given Py € Dy, let
T7(Py) € Z be such that for all z € Z\{7(FRy)}, 7(Po) Poz. We call 7(Fp) the top for Py. A

“In the following investigation, we impose “no-vetoer” on rules. This property is not meaningful if there are
only two agents.

®Qur representation of an alternative follows Barbera et al. (1993), which studies a more general model than
ours.



preference profile is defined as P = (Py,..., P,) € D. Fori,j € N, let (P/,P_;) € D,
denote the preference profile obtained from P by replacing P; with P/, (P]” , P, P,{M}) € D
denote the profile obtained from (P, P—;) by replacing P; with P}, and so on. Given a coalition
I C N, let Pr € D#I denote a #I-tuple of preferences associated with I, and P_; € DZ_#[
denote an (n — #I)-tuple of preferences associated with N\I. Let 7(P) = (7(P1),..., 7(Py)),
which is the profile of tops associated with P. A domain is a subset D" of Df;. A rule (or
a social choice function) on a domain D" is defined as a function f : D" — Z. Note that we
implicitly deal with the case where the domains of all agents’ preferences can be considered as
the same.

“Separability” of preferences is usually defined as that for all e € K and all X C K\{e},
X U{e} X <= {e} Py@. By using the notions of alternative and box, this also can be

represented as follows.
Separability. For all y, z € Z such that y # z and y € B(z,7(F)), y P 2.

In the following investigation, we employ the latter representation of separability.® Let Dg
denote the set of separable preferences. We call D§ the separable domain.

We introduce several basic properties of a rule. The first prevents agents from gaining by
misrepresenting their true preferences. The second says that any alternative can be an outcome.
The third forbids the rule from giving any agent an extreme decisive power. The fourth forbids

the rule from giving any agent an extreme veto power.

Strategy-proofness. For all P € D", all i € N, and all P, € D\{F;}, f(P)PZ-f(f-’i,P,i) or
f(P) = f(By, Py).

Ontoness. For all z € Z, there exists P € D" such that f(P) = z.

No-dictator. There is no i € N such that for all P € D", f(P) = 7(F;).

No-vetoer. There isno z € Z, i € N, and P; € D such that for all P_; € D", f(P) # z.

If f fails strategy-proofness, f is said to be manipulable. Furthermore, we say that agent
i manipulates f at P via P; if f(P;, P_;) P; f(P). No-vetoer is equivalent to that for all i € N,
all z € Z, and all P; € D, there exists P_; € D" ! such that f(P) = z. Also note that no-vetoer
implies both ontoness and no-dictator.

Next, we introduce a class of rules, which Barbera et al. (1991) call “voting by committees”,

“winning” for an object e

that plays an important role in our paper. A coalition is said to be
if it has the power to have the object e selected. Voting by committees is a rule generated by
specifying the class of winning coalitions for each object. We assume that for each object, (1)
the empty coalition is not winning, (2) the set of all agents is winning, and (3) larger coalitions

have more power.

Set of winning coalitions W, C 2% for an object e € K. (1) @ ¢ W,, (2) N € W,, and (3)
for all I,I' € 2V such that I e W, and I C I, I' € W..

5The way to restrict preferences using box first appears in Barber et al. (1993), which studies a more general
model than ours. In the same multi-object choice model, Barbera et al. (2005) employ the representation of
separability using box.



Given We, let W, ={I € W, : for all i € I,I\{i} € W.}, which we call the set of minimal
winning coalitions associated with .. A winning coalition system is defined as W =
{We}’g:l- Voting by committees is a rule associated with a winning coalition system such that
each object e is selected in the outcome if and only if the set of agents whose top alternative

contains e belongs to the set of winning coalitions for e.

Voting by committees. There exists a winning coalition system W such that for all P € D"
and all e € K,
fe(P)=1 < {i € N:7.(P) =1} e W..

The following is the main result by Barbera et al. (1991).

Theorem 1 (Barbera et al., 1991). A rule on the separable domain satisfies strategy-proofness

and ontoness if and only if it is voting by committees.”

Immediately, we obtain the characterization result by using strategy-proofness and no-vetoer
on the separable domain as a corollary of Theorem 1, which must be a strict subset of the set
of voting by committees. The characterized rules are defined by a winning coalition system and
additionally satisfy (1) any sole agent cannot be a winning coalition, and (2) any coalition with

n — 1 members is a winning coalition.

Set of no-vetoer winning coalitions W, C 2V for an object e € K. (1) For all i € N, {i} ¢

We, (2) for all i € N, N\{i} € W,, and (3) for all I,I’ € 2V such that I € W, and I C I’,
I'eW..

Voting by no-vetoer committees. There exists a no-vetoer winning coalition system W such
that for all P € D" and all e € K,

fe(P)=1 < {ie N:7.(P) =1} € W,

Remark 1. A rule on the separable domain satisfies strategy-proofness and no-vetoer if and

only if it is voting by no-vetoer committees.

Because of Theorem 1, to show Remark 1, we only need to check that (i) voting by no-vetoer
committees is certain to satisfy no-vetoer, and (ii) if a rule is voting by committees but not
voting by no-vetoer committees, it violates no-vetoer. To see (i), by condition (1) of the sets of
no-vetoer winning coalitions, any agent ¢ solely does not have veto power against an alternative
z € K with z, = 0. Similarly, by condition (2), any agent ¢ solely cannot veto an alternative z
with z. = 1. To see (ii), if condition (1) for some e € K is violated, then an agent i has a veto
power to an alternative z with z. = 1. Similarly, if condition (2) is violated, an agent ¢ has veto

power against an alternative z with z, = 1.

"Barbera et al. (1991) note that Theorem 1 holds even on the additive domain, which is the domain of
preferences with additive numerical representations and is strictly smaller than the separable domain, without
any technical difficulty. See Barbera et al. (1991) for the precise definition of the additive preferences.



3 The Main Result

In this section, we first define the precise concept of the “maximal domain” following Ching and

Serizawa (1998), and then derive the main result.

Maximal domain D}, C D" for a list of properties. (1) There exists a rule on DY, satisfying
the properties, and (2) for any domain D" such that Dy; C D C Dy, no rule on D" satisfies the

same properties.

Note that, given a list of properties, there is a possibility that multiple maximal domains

exist. Now we can state the main theorem of this paper.
Theorem 2. The separable domain is a mazimal domain for strategy-proofness and no-vetoer.®

Note that there could be another maximal domain that does not contain the separable
domain for these properties. However, because separability in preferences is quite important
and considered in almost all articles studying this model, this result is at least one of the most
interesting maximal domain results for this model.

The proof for this theorem is decomposed into three major steps. As the proof consists of
several lemmas and substeps to maintain the generality and is complicated, we move it to the
Appendix. Here we provide the proof for the case of & = 2 and n = 3, which brings basic insight
of the general proof. After the proof, we briefly explain the relationship between proofs of this
and the general case.

First, we introduce a remark that plays an important role in the proof.

Remark 2. Let Dg C D C Dy. Suppose that a rule f : D" — Z satisfies strategy-proofness

and no-vetoer. Then there exists voting by no-vetoer committees g such that for all P € D%,

f(P)=g(P).

We obtain this remark immediately from Remark 1 and that f restricted on D§ must satisfy
strategy-proofness and no-vetoer.

When a specific preference Py is given beforehand, P; is employed to denote agent ¢’s pref-
erence such that P; = Fy unless mentioned otherwise. Given z € Z, let P € Dg be such that
T(Ff) = x.

Proof of Theorem 2 (k=2 and n =3 Case). Let D be such that Dg C D C Dy. Suppose, on
the contrary, that there is a rule f on D? satisfying strategy-proofness and no-vetoer. We derive
a contradiction.

Let Py € D\Dg. Without loss of generality, let 7(Py) = (1,1) = 7 and z = (0,0) Py (1,0) = y.
By Remark 2, there exists voting by no-vetoer committees g on Df”q such that for each P €D3,
g(P) = f(P). Let W be the winning coalition system associated with g. Note that by no-vetoer,
Wi =Wy ={I C N :#I =2}. Given x € Z, pick a preference P{ € Dg such that 7(FPf) = .

We also assume that 7 Pg z.

8By the same proof for Theorem 2, we immediately obtain the result that the separable domain is a unique
maximal domain including the additive domain for strategy-proofness and no-vetoer.



Step 1. Note that f(P{TLQ},P3z) = g(P{TLQ},PSZ) = 7. Thus, by strategy-proofness, we have (1)
f(P, P}, P})=r.

Step 2. Note that f(Pf, Py, P;) = g(Pf, Py, P;) =z and f(P],Py,P;) = g(P[,PJ,P}) =vy.
Consider the outcome of f(Pl,Py,P:f). If f(Pl,Py,P:f) = y, then agent 1 manipulates f
at (Pl,PQy , P5) via Pf, contradicting strategy-proofness. If f (151,P2y ,P{) = 7, then agent 1
manipulates f at (P], Py, P§) via ]51, contradicting strategy-proofness. Therefore, we have that
(2) (P, P}, P§) = Z\{y,7}. A

Step 3. By (1) and (2), agent 2 manipulates f at (P, Py, P§) via Pj, contradicting strategy-

proofness. O

The proof of the general case has the same structure as that of the special case above. In
the proof of the general case, we also fix a domain D" such that Dg C D C Dy and take
Pg € D\Dgs. Then we can take P@y and Py that have the same roles as those in the above simple
proof. By two major steps similar to Steps 1 and 2 above, an agent with PY finally has incentive
for manipulation, and we obtain a contradiction.

Finally in this section, we present an example illustrating that no-vetoer is indispensable for
the theorem. This example shows that a maximal domain for strategy-proofness, ontoness, and

no-dictator that includes the separable domain is strictly larger than the separable domain.

Example 1. Let N = {1,2,3} and K = {1,2}. Let Py € Dy be such that (0,0) Py (0,1) Py (1,1) Py (1,0),
and D = DgU{Fy}. Let Wy = {N}and Wy = {I C N : #I > 1}. Let f : D* — Z be the voting
by committees generated by W. Then f satisfies strategy-proofness, ontoness, and no-dictator

but does not satisfy no-vetoer.

By the structure of Wi, any agent can be a vetoer against alternatives with object 1 chosen.
No-dictator is obviously satisfied. Since f is voting by committees, by Theorem 1, ontoness is
satisfied and no agent with a separable preference has an incentive to misrepresent her preference.
If the preference of some agent, say agent 7, is By and she represents her true preference, then
by the structure of Wy, the outcome is (0,0) or (0,1). In the case of (0,0), which is agent i’s
top alternative 7'(]50), it is certain that she has no incentive for misrepresentation. In the case of
(0,1), by W, it follows that the top alternative of one of the other two agents is (0,1) or (1,1).
Then the outcome that agent ¢ can obtain by misrepresenting her preference is either (0,1) or
(1,1). Since she prefers (0,1) to (1,1), she has no incentive for misrepresentation. Hence f

satisfies strategy-proofness.

4 Concluding Remarks

In this paper, we have established that the separable domain is a maximal domain for the
properties of strategy-proofness and no-vetoer. We conclude the article by discussing three topics
relating to our result.

The first topic is a question on the uniqueness of maximal domains. Our result does not
exclude the possibility that there are other interesting maximal domains for the same properties.

When we model a situation, we make assumptions on preferences that are suitable for it. Unless



domains include a minimal variety of natural preferences, the results on the domains cannot be
applied to interesting situations and become meaningless. Although generally maximal domains
are not unique, a maximal domain including small and natural subdomains may be unique. For
instance, Barbera et al. (1991) show the uniqueness of a maximal domain that includes a subdo-

” 9 and on which voting by no-vetoer committees satisfies

main, called a “minimally rich domain
strategy-proofness.’® A domain D" is minimally rich if for any z € Z, there is a unique Py € D
such that 7(Fy) = z. In the model where the set of alternatives is a continuous line, without
restricting the class of rules a priori, Berga and Serizawa (2000) show the uniqueness of a maxi-
mal domain including a minimally rich domain for strategy-proofness and no-vetoer. Therefore,
the following is an interesting open question: is the separable domain a unique mazximal domain
including a minimally rich domain for strategy-proofness and no-vetoer?

The previous studies that obtain unique maximal domains without restricting the class of
rules a priori employ characterization results of rules satisfying lists of properties on subdomains.
For instance, in establishing the uniqueness of maximal domains, Berga and Serizawa (2000)
employ the fact that on a minimally rich domain, the class of rules called “generalized median
voter schemes” is a unique class of rules satisfying strategy-proofness and ontoness. Accordingly,
to establish the uniqueness of a maximal domain in the multi-object choice model, it is important
whether or not the class of voting by committees is the unique class of rules for strategy-proofness
on a minimally rich domain. However, as Example 2 below illustrates, strategy-proof rules on
a minimally rich domain are not necessarily voting by committees.!'’ Thus, we need to develop

new proof techniques to solve the above open question.

Example 2. Let N = {1,2} and K = {1,2}. Let the preferences P{*, P?, P{, and PP be such
that

(1,1) Bg* (1,0) Bs* (0, 1) B* (0,0),
(1,0) By (1,1) By (0,0) By’ (0,1),
(0,1) Py (0,0) Bg’ (1,1) Py (1,0),
and (0,0) PP (0,1) PP (0,1) RP (1,1)

Let D = {P!, PP, P, PP}. Then, D? is a minimally rich domain. Consider the rule f as
defined by the table below:

P PP P P
PA(1,1) (1,1) (1,1) (1,1)
PP | (1,1) (1,0) (1,1) (1,0)
PE | (1,1) (1,1) (0,1) (0,0)
PP | (1,1) (1,0) (0,0) (0,0)

9Barbera et al. (1991) refer to a “minimally rich domain” as just a “rich domain”.

'9This comes from Theorem 3 in Barbera et al. (1991).

"However, Example 2 does not exclude the possibility that rules satisfying strategy-proofness and no-vetoer on
a minimally rich domain are necessarily voting by committees.



where rows and columns denote the preferences of agents 1 and 2 respectively, and the cells
denote the outcomes for the corresponding preference profiles.

If f were voting by committees, then f(P{*, PY) = (1,1) and f(PP,Ps') = (1,1) imply
that the associated classes of winning coalitions are Wy = Wy = {WW C N : #W > 1}. This
contradicts f(PC, PP) = f(PF, PP) = (0,0). Thus, f is not voting by committees. However,

it satisfies strategy-proofness and ontoness.

The second topic is a question on the class of rules satisfying strategy-proofness and ontoness.
The characterization of such a class is an important theme and is investigated in various models
and by many authors. Example 2 above illustrates that a domain smaller than the separable
one admits rules that are not voting by committees. A question remains to be answered is what
will happen on larger domains. Although Theorem 1 implies that the restrictions of such rules
to the separable domain are voting by committees, it does not specify how such rules choose
outcomes for nonseparable preferences. In other words, the following question is still open:
1s there a rule satisfying strategy-proofness and ontoness on domains larger than the separable
domain other than voting by committees? The merit of our result is that we can obtain a
maximal domain without knowing the answer to this question once ontoness is strengthened to
no-vetoer. However, as we discussed in the first topic, the characterizations of rules and maximal
domains are closely related, and once we can answer the above question, it might help us to
obtain maximal domain results stronger than ours.

The third topic is on “tops-only” property of rules. Tops-onlyness states that a rule
uses only tops of preference profile to derive the outcome. Chatterji and Sen (2011) establish
a strong result that if a domain D satisfies “Property 17”7 defined below, any rule satisfying
strategy-proofness and unanimity on D is tops-only. A domain D satisfies Property 7™ if for
each P; € D, each a € Z\{7(F;)}, and each x € Z that is preferred to a for each preference in
D whose top is 7(P;)'2, there exists P; € D such that (i) @ = 7(P;) and (ii) for each y € Z such
that a P;y, x P;y. If Chatterji and Sen’s (2011) result could be applied to domains including
nonseparable preferences, the results of Barbera et al. (1991) would imply our maximal domain
result. However, as Example 3 below illustrates, it cannot be applied to domains including some

nonseparable preferences.

Example 3. Let k = 2. Let Py € D be a nonseparable preference such that (1,1) Py (0,0) Py (1,0) By (0, 1).
Let D="DgU {]50}. Then, this domain D does not satisfy Property T*. To see that, pick up By

as P;, and let a = (0,0). Then, only (1, 1) is preferred to a for each preference in D whose top

is 7(P;). Let x = (1,1). We show that there is no P; € D satisfying (i) and (ii) of Property T*

for P;, a and x. Suppose such P; € D exists. Then, (i) implies P; € Ds. Let y = (1,0). Then,

a Pyy, but by P; € Dg and 7(P;) = (0,0),y P; . This contradicts (i).

Because our result covers the domain D in Example 3, our result is independent of Chatterji
and Sen (2011) and Barbera et al. (1991). However, the following is an important open question:

1s there a domain that includes all separable preferences and that is not a tops-only domain, i.e.,

12To be precise, for each P; € D with 7(P}) = 7(P;), = P} a.



a domain, on which there is a rule satisfying strateqy-proofness and unanimity but not tops-

onlyness?

Appendix

In this Appendix, the proof of Theorem 2 is provided.
Let Dg C D C Dy. Suppose, on the contrary, that there is a rule f on D", satisfying
strategy-proofness and no-vetoer. We derive a contradiction. Let Py € D\Dg. Let 7 = T(Pg).
Let A= {(y,2) € Z% : y € B(z,7) and z Pyy}. Let A* = {(y,2) € A : forall (yf,2) €
A, |lz—7|| < |2’ —7]|}. A is the set of pairs for which Py violates the condition of separability.
A* is the set of pairs in A for which the distances between z and 7 are minimal. By By € D\Dg,
A # @, and so A* # @. We have the following lemma.

Lemma 1. There exists (y, z) € A* such that ||z — y|| = 1.

Lemma 1 is relatively straightforward and the proof is available in the supplementary note.'

Hereafter, let (y,z) € A* be such that ||z — y|| = 1. By relabeling coordinates, we have

where a € K is such that 2 <a < k.
Given b € K such that 1 < b < a, let 2 = (1,---,1,0,---,0,1,---,1). Note that 2! =y
——— ——
b a—b
and 2% = 7. Also note that since (y,z) € A* and ||z —y|| =1, 7 Pyz® ' Py --- Pya? Pyy.
Let E = Z\B(z,7). Since 7 = (1,---,1) and 2 = (0,---,0,1,--- , 1),
———

a

E={xe€Z :forsomeec{a+1, -k}, z.=0}.

Given z € B(z,7), let B} = {2’ € B(2,7) : 2/ Pyz} and B; = {2/ € B(z,7) : z Pya'}.

Given z € Z, let P§ € Dg be such that 7(FPf) = x. Assume that for all z € B(z,7) and all
t' € E, v P§a'. Assume that for all x € B(z,7) and all 2’ € E, x P{ 2/, and for all w € B(z,7)
such that wy = 1 and all w’ € B(z,7) such that w} = 0, w PJ w'. Assume that for all z € B(z, )
and all ' € E, 2 PJ ', and PJ and Py are equivalent over B(z,7)\{z}.14

By Remark 2, there exists a voting by no-vetoer committees g : D§ — Z such that for all
P e Di, f(P)=g(P). Let W be the no-vetoer winning coalition system associated with g.

The next two lemmas are frequently used in the following investigation.

Lemma 2. Let e € {2,---,a} and s < r. — 1. Let P € D" be such that for all i < s,
Py € {Py,P7}, and for all i > s+ 1, P, € {PY, P¢}. Let = f(P). Then for alll € {e,--- ,a},
x; = 0.

13The supplementary note is attached to the discussion paper version of this study (Hatsumi et al., 2013).

YGiven Z' C Z and Py € D, let 7(Po, Z') € Z' be such that for all z € Z'\{7(Py, Z")}, 7(Po, Z') Py x. Py is
separable over 7' if for all ¢, 2" € Z'\{7(Po,Z")}, v # 2’ and y' € B(2',7(P)) imply y' Po 2’. Note that since
(y,z) € A*, Py satisfies separability over B(z,7)\{z}.
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Proof of Lemma 2. Suppose, on the contrary, that there exists [ € {e,--- ,a} such that z; = 1.
Since f(P) = z, by the repeated use of strategy-proofness, f(P{”E1 S},P{SH’_._’H}) = z. Since
(Pﬂn_ﬁ}, P{st1,... ny) € D§, we have

Q(P{ml,“.’s}a P{s+1,~~-,n}) = f(P{gCL...,S}a P{s+1,~~-,n}) = .

Since s < r.—1<r, —1, {1,---,s} € W,. This contradicts g(Pf”1 8},P{s+1,...,n}) = x and
T = 1. ]

Lemma 3. Let j € N, P_; € D" ! | and z € B(z,7). Suppose that f(P],P_j) = x. Then (i)
f(P;, P_j) =z, or (ii) f(P;,P_;) € E and f(P;, P_;) Pyx.

Proof of Lemma 3. Note that Z = {z} U B}t U B, UFE.

If f (15], P_;) € B, then agent j manipulates f at (]33, P_;) via P], contradicting strategy-
proofness.

Suppose that f(P;, P_;) € Bf. Since Py and PJ are equivalent on B(z,7)\{z}, and since
x Py z implies B € B(z,7)\{z}, Py and PJ are equivalent on By. Thus, f(P;, P_;) € Bf
implies that j manipulates f at (P], P_;) via ]5J This contradicts strateqy-proofness.

Hence, f(Pj, P—;) = xor f(P;, P_j) € E. In the latter case, by strategy-proofness, f(Pj, P_j) Py x.

O

By relabeling agents, we have I = {1,--- ,q} € W;. Note that by condition (2) of the
no-vetoer winning coalition, 2 < ¢ < n — 1. Given e € {2,---,a}, let r. be such that I, =
{1,---,re} € We and I \{r.} € We. By relabeling coordinates, we have Iy C --- C I,. Then by
condition (2) of no-vetoer winning coalitions, 2 <ry < --- <7, <n— 1.

Let ¢ € {2,---,a} be such that z¢ Pyz and z Pyz¢~'. Let d be the maximal element of
{c,--- ,a} such that Iy = I.. Let r = r. (= r4) and 2* = 2%. Note that if I. = I,, i.c., if r. = 74,
then d = a and z* = 7, and that if I. C I, i.e., if ro < 14, then d < a, o* # 7, I4 € 1441, and
rq < rqy1. Note that x* Pz or x* = 2¢. Then by transitivity, «* Po z.

There are two cases, A and B. Case A is that Iy C I, i.e., ¢ < r. Case B is that I; C I,

i.e., r < q. We derive a contradiction in each of the two cases.

Case A. (I C 1y, i.e,qg<r.)
Step 1. f(Pp,. ,_13, PT,P? ) = 2.
We add a lemma and then prove this step.

Lemma 4. Let 0 < j < r—2. Let f(Pp.... j3, Pl P2p,) € B and F(Pa.... jy, PLiy . Por) Py z*.
Then z = f(p{l,---,j+1}7 P‘E—]‘+27"'77‘}7Pfld) € F and xpo x*.

Proof of Lemma 4. Since f(]?’{l’_,_ b P{Tj+17m b Pz Pyaz*,d < a, and strategy-proofness, x Py x*.
Suppose that € E, i.e., x € B(z,7). By x Pyz* and x* Py z, x Py z and so x # z. By x # z,
z € B(z,7)\{z}. Then since Py satisfies separability on B(z,7)\{z} and x Py z*, z* ¢ B(z, 7).
Since 7 = (1,-+------- ,1) and 2* = (1,---,1,0,---,0,1,--- ,1), and since = € B(z,7) imply
—_—

d a—d
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that for all e € {a +1,--- ,n}, z. = 1, it follows that for some e € {d+ 1,--- ,a}, ze = 1. On
the other hand, since d + 1 < e implies rg11 < 7e, ¥ = 74 < 1441 implies r < r. — 1. Thus, by

Lemma 2, z. = 0. This is a contradiction. Hence, x € E. O

Proof of Step 1. Suppose that f(lf’{L,., 11 B, Pfld) # z*. We derive a contradiction in three
substeps.

Substep 1-1. Since (PIZ,PfId) €Dl Iy e W, foralle e {1,---,d}, and Iy ¢ W, for all e €
{d+1,---,a}, we have f(P[,P?; )= g(Pf,P?; )=x". By first applying Lemma 3, and then
r —2 additional times either Lemma 3 or Lemma 4, we obtain that (i) f(Pp,... .1y, P, P?p ) =
z*, or (il) f(Pp,.. p—1y, B, PZp)) € Eand f(Pp .. ,—1y, P, P2 ) Pox™. Since we suppose that
f(Pq,.. p—1y, PT, P2} ) # a*, we have f(Ppy ... .1}, Pr,P?;,) € Eand f(PiL...,r_l}, Pr,P? ) Pyat.
Note that if d = a, then 2" = 7. This contradicts f(P ... ,_1}, P, Pfld) Pyx*. Thus d < a and
= £ T

Substep 1-2. Let d’ be the maximal element of {d + 1,--- ,a} such that Iy = I;q. Let
' = ry and # = z%. Note that if Ijy1 = I, iee., if rgp1 = 14, then d = a and 2/ =
7, and that if Iyyq C I, i.e., if rgyq < 1q, then d' < a, 2’ # 7 and 7y < rgy1. In this
substep, we show that (i) f(P{Tl,-n,r'}vP{Zr'+1,--~,n}) = 2/, (ii) f(P{L---,r’hP{Zwﬂ,...,n}) Pya', and
(iif) f(P{L...,T/},P{Zr,ﬂ,mm}) €E.

Since (P{Tl,m,r’}’ P{Zr’+1,~~~,n}) €D Iy ={1,---,r'} eWforallee {1,...,d'} and Iy ¢ Wk
foralle € {d +1,...,a}, f(P{Tl,---,r'}?P{ZrUrl,---,n}) = g(P{Tl,---,r’}’P{Zr’Jrl,---,n}) = /. Thus, we
have (i).

Let z = f(P{L_,,J/_l}, P{Zr’,---,n})' In this paragraph, we show x € E. Since
f(]f’{l’_._ 1) D7 Pfld) Py z*, by the repeated use of strategy-proofness, x Py z*. Thus z € B; U

E. Suppose that * € Bf.. Since Py satisfies separability on B, 7= (1,-eeeens ,1), and
z*=(1,---,1,0,---,0,1,--- ,1), x € BJ. implies that for some e € {d+1,--- ,a}, z. = 1. Let
—_——— ——
d a—d
e€{d+1,---,a} besuch that z. = 1. By d+1 < e, rg11 < 7. Thus, 7’ = ry = g1 implies

r" —1<r.— 1. Accordingly, by Lemma 2, x. = 0. This is a contradiction. Therefore, z € E.

Let ¢/ = f(P{L,.. 1 Pl ,n})' If y' = 2/, then by 2’ € B(z, 7) and the definition of P§, for
all 2/ € E, y P§ 2/. By x € E, this implies that agent " manipulates f at (P ... v_13, Pe . ,n})
via P,s. This contradicts strategy-proofness. Thus, 3y’ # 2'. By v’ # 2/, and the repeated use of
strategy-proofness to (i), we have (ii) f(P{L...,T/}, P{Zr’+1,~~~,n}) =y Py

Suppose that ¥ ¢ E. Then, by v # 2/, v € B(z,7)\{2'}. By ¢/ Pya/, ' # 7 and so
d'" < a. Note that since 2/ Pyz* and z* Py z, BY U {2’} C B(z,7)\{z}. Since Py is separable
on B(z,7)\{z}, it is separable on B, U {a/}. Thus by y' Pya’, 2’ ¢ B(y',7). Then since
T= (1, e ,1),and 2’ = (1,---,1,0,---,0,1,--- ,1), for some e € {d'+1,--- ,a}, we have

-

d’ a—d’
yo=1.Byd +1<e, rgi1 <re. Thus,” =ry <rgy1 <re, and so 7’ < r. — 1. Therefore, by
Lemma 2, 3, = 0. This is a contradiction. ThuAs, f(p{lf,,,rx}, P{ZT’—FI,.: ,n}) =y €E.
Su‘E)step 1-3. As we show in Substep 1-2, f(P.... v}, P{Zr/+1,~~,n}) Pyx' and
F(Pa oy Pei n}) € E. Similarly to Substep 1-1, we have d’ < a. Let d” be the maximal

element of {d'+1,--- ,a} such that Iy» = Iy 1. Let " = rgv and 2" = 2%, Then we can repeat
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the argument of Substep 1-2 by replacing r’ with r”, z* with 2/ and z” with /. As a result, we
obtain that f(]f’{L.._’T//}, P{Zr,,+17“_7n}) Py " and f(]s{l,---,r”kv P{Zr,,+1’m7n}) € E.

Repeat the argument. Then, finally, we have that f(P{1,~~-,ra—1}a P{Zru’._.’n}) € E. Note that
f(P{Tl,~~-,Ta}’Pfra+1,~-,n}) = g(P{TL._,’Ta},P{E’Ta+17_,.7n}) = 7. Thus by the repejated use of strategy-
proofness, f(P(i. ... r.}s P{Zr‘a+1,---,n}) = 7. Then agent r, manipulates f at (P.... r,—1}, P{Zrm._’n})
via P,,. This contradicts strategy-proofness. Hence, we have f(P{L.._ 1) D7 Pfld) =z*. [

Step 2. f(Pp,..,_1}, PY,P*; )=z or f(Py.. .1, P!, P? ) €E.
We add two lemmas, and then prove this step.

Lemma 5. Let 0 < j <1 — 2. Let f(P{L..,’j},P@+17.._7T71},P7§/,Pfld) = 2. Then
(1) f(P{l,---,jJrl}?Pfj_i_g,,..’f,‘_l}a PTy7 Pf[d) =z, 0r
(11) f(P{L J+1b P{ZjJrQ’m 1) Pﬁj, Pf]d) € FE and f(P{L G+1b P{Zj+27m 1) P;’, Pf[d) Pyz.

Proof of Lemma 5. Note that Z = {z}UB}tUB; UE. Letw = f(f’{L...,jH},P{Zj+27mm_1},Pﬁ/,Pfld).

(I) If z € B, then agent j+1 manipulates f at (P ... j113, P{Zj+2,---,r71}’ Pﬁ’,PfId) via P74,
which contradicts strategy-proofness.

(IT) Suppose that = € B. Then by the repeated use of strategy-proofness,
f(P{$1,...,j+A1}’P{Zj+2,...,r—1}vPfyvafId) = 2. Since # € B} and z Pyz°', we have z # z, 21 #
z, and x Py2°~!. Then since Py satisfies separability on B(z,7)\{z}, 2¢~! & B(z,7). Since
7= (1,0 1), 27t = (1,---,1,0,---,0,1,--- , 1), and x € B(z,7) implies that for all

—— ——

c—1 a—(c—1)
e€{a+1, - ,n}, x. =1, it follows that for some e € {c, -+ ,a}, ze =1. Let e € {¢, - ,a} be

such that z. = 1. Byc<e,r=r. <r.,and sor — 1 <r. — 1. Therefore, by Lemma 2, z. = 0.
This is a contradiction.

Hence, we obtain that x = z or x € E. In the latter case, by strategy-proofness, x Byz. O

Le{nma 6. Let1<j<r—2. SupApose that f(PA{L...,j},Pfj+1’...7r_1},P,y,PfId) € FE and
f(]?{lw“»j}’ P{Zj+1,---,r71}v P,%’,Pfjd) Fo Z Then f(P{1,~~-,j+1}’ P«{Zj+2,---,r71}’ P, Pfld) € I and
f(P{l, NERST P{Z‘.{.Z... =1} P7y7 Pf[d) PU 2

PT’(ZOf of Lemma 6. Let x = f(]s{l,.;, 1) P{zj+2,-~,r—1}7 P, Pfld)A. Since
f(P{L... ) P{Z].Jrl 1} PY, Pfld) Py z, by strategy-proofness, x Py z. Suppose that x ¢ E. Then
by z Py z, x € B;. Then, in the same way as in case (II) of Lemma 5, we obtain a contradiction.

O

Proof of Step 2. f(P{Zl r_l},Pry, Pz )= g(Pf1 r_l},Pry, P?; ) = z. By first applying Lemma
5, and then r — 2 additional times either Lemma 5 or Lemma 6, we obtain the statement of this

step. [

Step 3. Proof of Case A. By Step 1, we have (1) f(]f’{l’,,_’T,l},P[,be) = z*. By Step 2, we
have (2) f(]f’{17...7r_1},P,§/,Pf12) =z, or (3) f(ﬁ{lv,,,’,ﬂ_l},P,y,be) € E. In either (2) or (3), by
comparing with (1), agent r manipulates f at (]5{17.._’7«,1}, P! P? 1,) via PT, which contradicts

strategy-proofness. Il
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Case B. (I; C I, i.e., 7 < q.)

The argument of Case B is parallel to that of Case A, but for different points. Let h be the
maximal element of {d,--- ,a} such that I}, C Iy, i.e., 7, < ¢q. Let 2** = 2". Note that h = a
and z** = 7 if and only if r, < ¢, and that h < a and «** # 7 if and only if r, > ¢, and that if
Tq > q, Th < q¢ < Tpy1. Also note that z** ]30 z* or x** = x*. Thus =** Pg z.

Parallel to Steps 1 and 2, we can show Steps 4 and 5 below. Their precise proofs are available
in the supplementary note.'® Since the proof for Step 6 is slightly different from that for Step

3, we present it here.

Step 4. f(P{l,,,,,,_l},P{Tn,__g},pfh) = **,

Step 5. f(ﬁ{l,._,,r_l},Pf’n___’q},Pfh) =z or f(P{l,.A.,r_l},Pf’r’_._’q},Pfh) €E.

Step 6. Proof of Case B. By Step 4, we have (4) f( A{1,~~A~ ,r—l}anr7...7q}an[1) — 2. By

repeated use of strategy-proofness to (4), we have (5) f<{3{1»'“ﬂ“—1}7P;’P?r+1,---,q}7pfl1) €

{z € ? .z PYa**} U {z**}. By Step 5, we have (6) f(P{L...7,«_1},P{yr7“,7q},Pfh) = z, or

7 f(Py...,—1v,PY. ., P?,) € E. Note that by the definition of Py, 2** PY z and for all
{ ) ) } {’I" q} Il 0

y € E, z** PJy. Thus in either (6) or (7), by comparing (5), agent r manipulates f at
(15{17...7,_1}, P{yT q},Pfh) via PT, which contradicts strategy-proofness. O
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Supplementary note for “A maximal domain for strategy-proof

and no-vetoer rules in the multi-object choice model”

Kentaro Hatsumi* Dolors Berga'and Shigehiro Serizawat

This Version: February 26, 2013

In this supplementary note, we provide the proofs of Lemma 1 and Steps 4 and 5, which are

omitted in the main paper.
Lemma 1. There exists (y, z) € A* such that ||z — y|| = 1.

Proof of Lemma 1. Suppose, on the contrary, that for all (y,z) € A* ||z —y|| > 1. Let
(y,2) € A*. By ||z —y|| > 1, there is € B(z,7) such that ||z — z|| = 1, and y € B(z, 7). If
z Pyx, then © € B(z,7) implies (x,z) € A*, and so ||z — z|| = 1 contradicts the hypothesis. If
z Py z, then z Pyy implies = Pyy, and so y € B(x,7) implies (y,z) € A. Since x € B(z,7) and
||z — || =1 imply ||z — 7|| < ||z — 7|, this contradicts (y, z) € A*. O

Step 4. f(f?{l,.,,,r_l},P{Tnm’q},Pjh) —
We add a lemma and then prove this step.

Lemma 7. Let 1 < j < r—2. Let f(Pp.... j3, Plii1 gy P21,) € Band f(P{l,.A.. b Pliste ap P2r) By 2+

Then f(Pp... j+1}, Plivo. g PZn) € Eand f(Pp.. jiy, Pl gy P2p) Pox™.

Proof of Lemma 7. Let z = f(ﬁ{l,..,jﬂ},P{TjH,”_,q},ch). By f(P{L,..J},P{Tjﬂ’,,,’q},Pf,l) Py 2™,
x** # 1, and by strategy-proofness, x Py x**. By ™ # 7, h < a, and rj, < q < rpy1.

Suppose that = ¢ E, i.e., x € B(z,7). By z Pyz* and 2** B z, 2 Pyz and so z #* z.
By = # z, © € B(z,7)\{z}. Then since P, satisfies separability on B(z,7)\{z} and x Py z**,
™ ¢ B(xz,T). Since

T = (1, ......... ’1)’
ZU**—(l,"',l,O,' 0717 al)
——
h a—h
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and since © € B(z,7) imply that for all e € {a + 1, -+ ,n}, . = 1, it follows that for some
e€{h+1,---,a}, ze = 1. On the other hand, since h + 1 < e implies rp11 < re, ¢ < rpy1
implies ¢ <71, — 1. Thus, by Lemma 2, x. = 0. This is a contradiction. Hence, x € E. O

Proof of Step 4. Suppose that f (15{1,... -1y Pl gy P2p,) # 2. We derive a contradiction in
three substeps.

Substep 4-1. Since for all e € {1,--- ,h}, [; € W, and for alle € {h + 1,--- ,a},} I € W,
we have f(Pf,P?;) = g(Pj,P?;) = z**. By first applying Lemma 3, and then r — 2 ad-
ditional timeSAeither Lemma 3 or Step 7, we obtaiAn that (i) f(P{17--~7r—1}v]?{Tr,---,q}’Pfll) =
x** or (ii) f(P{17...7r_1},P{Th...’q},PfIl) € F and f(P{L._,,T_l},P{Tr’qu},PfIl)Po x**. Since we
suppose that f(]f’{l,...m_l},P{Tr,._.,g},Pfll) 4 2, we have f(p{1,~~~,7"—1}’P{Tr,---,q}>Pfh) c E

and f(P{l’._,,r,l},P{Trm q},Pfh)Pom**. Note that if h = a, then z** = 7. This contra-
dicts f(p{l,m,r—l}apﬂ... q},PfII)PO;U**, Thus h < a and 2™ # 7. By h < a, ¢ < rq and

rh < q < Thyl.
Substep 4-2. Let i’ be the maximal element of {h+1,--- ,a} such that Iy = I 1. Let ' = rp
and z** = z"'. Note that ' > ¢, that if I,1 = I, i.c., if 741 = q, then &/ = a and z**/ = 7,
and that if Ipq C I, i.e., if 71 < rg, then b < a, 2™ # 7 and rp < rpy1. In this substep,
we AShOW that (i) f(P{Tl777‘/}’P{ZT/+177n}) - «T**/, (ii) f(P{:l!:T/},P{ZT/“l‘lyyn}) PO w**,7 and (iii)
f(P{l,n-,r’}v P{ZT/JFL...’”}) SO

Since (P{Tl?‘,,VT/},P{ZT/H’,,W}) €D Iy ={1,--- , 7’} e W foralle € {1,...,h'} and Iy ¢ W,
foralle € {h' +1,...,a}, we have

(1) f(P{Tl, NEg S P{Zr’—i—l,n- ,n}) = g(P{?—l,m RSy P{Zr’+1,--~ ,n}) =z,

ALet T = f(P{l,--~,r'—1}7 P{Zﬁ,’m’n}). In this paragraph, we show x € E. Since )
f(P{L...,T_l},P{TT_. q},Pfh)Po x**, by the repeated use of strategy-proofness, © Pyx™. Thus
T € B;Q* U E. Suppose that x € B;;*. Since Py satisfies separability on B;Z* and

r € B}.. implies that for some e € {h +1,--- ,a}, 7. = 1. Let e € {h +1,--- ,a}be such that
ze=1. By h+1<e, rpi1 <re. Thus, 7’ =rp =rpyq implies v’ — 1 < r. — 1. Accordingly, by
Lemma 2, z. = 0. This is a contradiction. Therefore, x € E.

Let o = f(p{l,---n“’bP{Zr'+1,--~,n})' If y = a*, then by 2** € B(z,7) and the defini-
tion of F§, for all 2 € E, y P§z/. By z € E, this implies that agent " manipulates f at
(15{17.._77«/,1}, P{Zr,“”’n}) via P,,. This contradicts strategy-proofness. Thus, y' # z**'.

By ¢/ # 2™, and the repeated use of strategy-proofness to (i), we have (ii) f(lf’{l ) P{Zr,Jrl

! D kK]
y Pyx™.
Suppose that i & E. Then, by i/ # 2*, / € B(z,7)\{z**'}. By ¢/ Py ™', 2** # 7 and so

Tfr, < q,then h=a,and so {h+1,--- ,a} = @.



W < a. Note that since 2** Py z* and z* Py z, Bt U{z*'} C B(z,7)\{z}. Since P, is separable
on B(z,7)\{z}, it is separable on B.., U{z**'}. Thus by ¢/ Pyz*, ™' ¢ B(y',7). Then since

T = (17 ......... ,1)’
Hﬁ'**/ = (17 71707' 0717 71)7
———
h' a—h'
for some e € {h"+1,---,a}, y. = 1. By ¥ +1 <e, i1 < 71e. Thus, ' =rp < rpgg < 7,

and so " < r, — 1. Therefore, by Lemma 2, y, = 0. This is a contradiction. Therefore,
FP e vy Pliy,py) = Y € B ) )
Substep 4-3. As we show in Substep 4-2, f(Py ... ;1 P{er+1,... ’n}) Pyxz* and
F(Pp s P{Zr/+1,~~,n}) € E. Similarly to Substep 4-1, we have A’ < a. Let h” be the maximal
element of {A’ +1,--- ,a} such that I = Iyyi. Let ” = rpn and 2" = 2", Then we can
repeat the argument of Substep 4-2 by replacing v’ with 7”, 2** with 2™ and ™ with 2**.
As a result, we obtain that f(p{ly..,wu}, P{Zr”+1,~--,n}) Pz and f(p{l,m,T’”}’P{Zrﬂﬂ,---,n}) cE.
Repeat the argument. Then finally, we have that f(Pp.... r,—1}, P{me’n}) € E. Note that
f(P{Tl’_._M}, Pfra+1,---,n}) = g(Pf—l,---,ra}’ P{ZraH’_.’n}) = 7. Thus by the repejated use of strategy-
proo{ness, TP rads P{Zra+17"'7n}) = 7. Then agent r, manipulates f at (P{L.,.7“,1},P{Zrm.“7n})
via P,,. This contradicts strategy-proofness.
Hence, we have f(P{l’.._,r,l}, PT,PZ ) =a" O

Step 5. f(p{l,m,r—l}a P?T7...7q}7 Pfh) =z or f(P{l,-u,r—l]wPgn...’q}: Pjh) SN

We add two lemmas, and then prove this step.
Lemn}a 8. Let j € {0,--- ,r —2}. Let f(P{lw,j}7Pfj+1,.-v,7«_1}vPf}r,...,qppfh) = z. Then
(i) f(PA{l,m,j+1}7P{Zj+27...77»_1}a P{yr7...7q}v Pfll) =z, 0r R )
(i) f (P, j+13 Peiio. i1y P{yr,---,q}’Pfh) € Eand f(Pp,.. ji1, Priio. r1y P{yr,---,q}’ Pz ) Bz
Proof of Lemma 8.

Note that Z = {z} UBf UB, UE. Let z = f(P{lA,-~~,j+1}: P o1y P?r,---,q}’ Pz.).

(I) If z € B, then agent j + 1 manipulates f at (Pyy.... j113, Pfiio vy P{ynm’q}7 P?; ) via
P71, which contradicts strategy-proofness.

(IT) Suppose that = € BS. Then by the repeated use of strategy-proofness,
f(P{xl,---,jJrl}’P{ZjJrAQ,---,rfl}’P?r,---,q}’Pffl) = 2. Since € Bf and z Pya¢!, we have: = # z,
271 £ 2, and 2 Pyx°!. Then since Py satisfies separability on B(z,7)\{z}, 2~ & B(xz, 7).

Since

and x € B(z,7) implies that for all e € {a + 1,---,n}, z. = 1, it follows that for some
e€{e--,a},ze =1. Let e € {¢c, -+ ,a} be such that z. = 1. By ¢ <e, r = 1. < ¢, and so

r —1 <r.— 1. Therefore, by Lemma 2, zg = 0. This is a contradiction.



Hence, we obtain that z = z or x € E. In the latter case, by strategy-proofness, x 150 z. O

Lemma 9. Let j € {1,--- ,r—2}. Suppose that f(]a{L...’j}, Pty P{yr b P#;) € Eand
f(P{L »j}i P{Z]'Jrl,--- =1} PE/T,--- q}’ Pfll) PO < TheAn f(P{L J+1p P{Zj+2,--- =1} P?r,--- at’ Pfh) €
FE and f(P{L NESEY P%'FQ#“ r—1} P€r7... q}’ Pfh) PU z .

PT’(ZOf of Lemma 9. Let x = f(P{l’""jHl’ P{Zj—i—Q,m,r—l}’ P{yr’m’q}, Pz ASince
f(P{L,,_’j},P{ZjH r—l}?P?rm q},PfII)PO z, by strategy-proofness, ¥ Pyz. Suppose that x &
E. Then by z Py z, * € Bf. Then, in the same way as in case (II) of Step 8, we obtain a

contradiction. .

Proof of Step 5. By {1,--- ,q} e Wy and 2 <7, {r,--- ,q} € Wi. Thus

f(P{sz,T_l}, P{yﬁ_“’q}, Pz )= Q(P{Z1,-..,r—1}’ P{ynm’q}7 P?; ) = z. By first applying Lemma 8, and
then r — 2 additional times either Lemma 8 or Lemma 9, we obtain the statement of this step.
O
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