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1 Introduction

The number of suppliers changes over the lifetime of a product market. Gort and Klepper

(1982) investigate 46 new products in the US from their initial introductions up to 1981.1

They characterize the evolution of markets as having five stages. In Stage 1, the number of

firms in the market is small. In Stage 2, the number drastically grows. In Stage 3, it reaches

a maximum. In Stage 4, there is a shakeout of firms, and the number rapidly decreases. In

Stage 5, the number stabilizes. The time pattern in the growth of the number of firms from

Stage 1 to Stage 3 is characterized as “S-shaped diffusion.”2

In the related theoretical literature, market diffusion from Stage 1 to Stage 3 is regarded

as resulting from intertemporal externalities, such as learning by doing (Jovanovic and Lach

(1989)), firms’ learning of the market demand (Rob (1991)), or intertemporal consumption

externalities (Vettas (2000) and Kitamura (2010)). In this literature, the number of producers

under free entry is socially insufficient over time.

The aim of this paper is to investigate market diffusion with oligopolistic interaction

among firms theoretically. The previous literature assumes that firms are atomistic price

takers whose production levels are exogenously determined. Although this assumption is in-

nocuous in explaining S-shaped diffusion, oligopolistic interaction may be a nonnegligible

element when we discuss entry regulation policy for new industries.

To explore the importance of oligopolistic interaction, we construct a model of market

diffusion following Kitamura (2010). In his model, the market grows because of intertem-

poral consumption externalities, and the market demand depends positively on the previous

period’s market size. His approach allows us to analyze the diffusion model with oligopolistic

interaction by comparing free-entry diffusion, in which the number of firms is determined by

the zero-profit condition, and socially optimal diffusion, in which the number of firms maxi-

1There are several papers on the growth of markets. See, for example, Klepper and Graddy (1990), Jovanovic
and Macdonald (1994), and Klepper (1997).

2S-shaped diffusion is not an isolated phenomenon. Empirical evidence shows that the interfirm and intrafirm
diffusion of new technology tends to be S-shaped: see the seminal work of Griliches (1957), Mansfield (1968),
and Stoneman (2002) for a survey of technological diffusion. In addition, the S-shaped interhousehold diffusion
is treated as a stylized fact in the marketing literature. For example, this phenomenon is observed in color
televisions (Karshenas and Stoneman (1992)), fax machines (Economides and Himmelberg (1995)), clothes
dryers (Krishnan, Bass, and Jain (1999)), and mobile phones (Gamboa and Otero (2009)).
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mizes social welfare.3 The novel dimension here is that not only the number of firms but also

the output per firm is endogenously determined.4

We demonstrate that the existence of oligopolistic interaction among firms does not play

an essential role in explaining S-shaped diffusion, however, more importantly, it is crucial in

considering entry regulation policy in new industries. First, we find that S-shaped diffusion

arises in free-entry equilibrium in our model with oligopolistic interaction. This result can

be explained using the logic in the previous literature. Therefore, this finding implies that the

assumption that firms are atomistic price takers does not play a crucial role in explaining the

fundamental mechanism of S-shaped diffusion.

Second, we have an inefficiency result that differs from the previous literature, in which

the number of firms under free entry is found to be inefficiently small over time. In our

model, in contrast, the nature of the inefficiency (i.e., too few firms or too many) depends on

the degree of market maturity: when the market is in the growing phase, the number of firms

under free entry is insufficient. However, as the market enters the mature phase, the number

of firms becomes excessive.

This result provides a new policy implication. According to the previous literature, entry

into markets should be encouraged over time. Based on our result, however, entry regula-

tions should be changed depending on the phase of market growth: entry should be initially

encouraged but eventually restricted.

To understand this result, we begin by considering the case where the output level is

exogenously determined, as in the previous literature. When the output level of each firm

is exogenous, new entry only leads to the demand shift effect; that is, new entry today in-

creases tomorrow’s demand because of intertemporal consumption externalities. This effect

can be regarded as the future benefit of increasing the current number of firms. The previ-

ous literature concludes that the number of firms under free entry is socially insufficient over

time because firms under free entry do not internalize the future benefit from intertemporal

3One of the important elements to develop in a model of market diffusion is demand structure. In the models
of Rob (1991) and Vettas (2000), the demand curve is a horizontal straight line, and we cannot examine the role
of oligopolistic interaction. In contrast, the demand curve is downward sloping in Kitamura (2010). This allows
us to analyze the model of diffusion with oligopolistic interaction.

4Bergemann and V̈alimäki (1997) analyze market diffusion with strategic behavior. In their model, firm
output is endogenously determined, but the number of firms is fixed exogenously.
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externalities when they enter the market.

In contrast, when oligopolistic interaction exists, as in our model, new entry today also

leads to a “business stealing effect”; that is, new entry causes existing firms to reduce their

output levels today. This effect can be regarded as the current loss of increasing the current

number of firms. Therefore, in our model, the socially optimal number of firms depends on

the magnitudes of the future benefit from demand shift and of the current loss from business

stealing. Since S-shaped diffusion arises when the demand shift effect is initially stronger but

eventually weaker, the number of firms under free entry is initially insufficient but eventually

excessive.

Our findings suggest that although it is useful to express the fundamental mechanism of

S-shaped diffusion via a framework in which firms are atomistic price takers, we need to

take into account the oligopolistic interaction among firms when applying the model to entry

regulation policy. Our analysis may especially apply to entry regulation policy when the

government in a developing country encourages or regulates new entry in infant industries,

which are already mature in developed countries and where an intertemporal consumption

externality is most likely to be observed. When we discuss the entry regulation policy in

such situations, the framework that ignores oligopolistic interaction may yield misleading

predictions.

This paper is related to the literature concerned with the Excess Entry Theorem.5 Mankiw

and Whinston (1986) show that the number of firms under free entry is socially excessive

because oligopolistic interaction leads to a business stealing effect. Our model can be inter-

preted as examining the social inefficiency of free entry from a dynamic perspective.

In addition, this paper is related to the literature concerned with intertemporal consump-

tion externalities. In a number of markets, demand may be positively related to past market

size. There are several reasons for this phenomenon.6 First, past market size may play an

important role in the market in the presence of network externalities.7 Second, past market

5There are a number of theoretical works on the Excess Entry Theorem. See, for example, Spence (1976),
Dixit and Stiglitz (1977), and Suzumura and Kiyono (1987). For recent works, see Ghosh and Morita (2007),
who analyze a vertical oligopoly model and show that free entry leads to a socially insufficient number of firms.

6One of the established literatures focuses on rational addiction, where a consumer’s utility is positively
related to the volume of his/her own past consumption (Becker and Murphy (1988)).

7See Katz and Shapiro (1994) for a survey. Goolsbee and Klenow (2002) empirically examine the impor-
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size may be a signal of popularity, and consumers often desire a popular product because

of the bandwagon effect, which is purely psychological.8 The existence of media reports

and advertisements informing consumers of past sales may support this hypothesis.9 Finally,

an increase in past market size may provide more information about product quality to con-

sumers.10

The rest of this paper is organized as follows. Section 2 sets up the model. Section

3 introduces a free-entry equilibrium and a socially optimal equilibrium. Section 4 analyzes

the social inefficiency of free-entry diffusion. Section 5 gives concluding remarks. The proofs

of all results are provided in the Appendix.

2 Model

This section develops the model, which follows Kitamura (2010). The new dimension here

is the oligopolistic interaction among firms: the output per firm is endogenously deter-

mined. This modeling strategy is designed to clarify the importance of oligopolistic inter-

action among firms.

We characterize the consumers’ behavior in 2.1 and the firms’ behavior under free entry

in 2.2. Then, we introduce the timing of the game in 2.3. We assume that time is discrete

and that the horizon is infinite. In this paper, it is also assumed that the market is a perishable

goods market or a service market in which the service fee is charged in every period.

tance of learning and network externalities in the diffusion of home computers. They find that people are more
likely to buy their first home computer in areas where a large fraction of households already own computers or
when a large share of their friends and family already own computers.

8See Leibenstein (1950), a seminal work on the bandwagon effect. Becker (1991) studies restaurant pricing
where consumer demand is positively related to market size. Biddle (1991) develops an empirical model of the
bandwagon effect and shows that the current demand is positively related to past demand levels.

9See, for example, Monteiro and Gonzalez (2003).
10See Caminal and Vives (1996), who theoretically analyze the importance of past market share as a signal of

product quality. Berndt, Pindyck, and Azoulay (2003) empirically examine the role of past sales in the demand
for pharmaceuticals. They find empirical evidence that the past sales of a drug have a positive effect on both
its value to consumers and its rate of diffusion at the brand level. See also Grinblatt, Keoharju, and Ikäheimo
(2008), who find that the purchases of neighbors influence a consumer’s purchases of automobiles.
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2.1 Consumers

There are a number of mass unit consumers for all periods. Each consumer has a different

preference for a product. Letθ be the type of consumer, which is stationary for all periods and

is uniformly distributed on the interval [0,1]. We also assume that the number of consumers is

a/b, wherea > 0,b > 0. The market size, defined as the number of consumers who purchase

the product, at periodt is denoted byQt. The consumers’ willingness to pay depends on

the previous period’s market size because of the intertemporal consumption externality. We

assume the following reservation price for consumers of typeθ at periodst = 1,2, ..., ut(θ):

Assumption 1.

ut(θ) = U(θ,Qt−1) = aθ + σ(Qt−1), (1)

whereσ(Qt−1) > 0 represents the intertemporal consumption externality and has the follow-

ing properties:σ(0) = 0, σ′(Qt−1) > 0, σ′′(Qt−1) < 0, σ′′′(Qt−1) > 0, limQt−1→0σ
′(Qt−1) = ∞,

and limQt−1→∞ σ
′(Qt−1) = 0.

From Assumption 1, it is easy to see that the intertemporal consumption externality has

the following two properties: it is strictly increasing in the previous market size; however, its

degree, or equivalently the benefit of the externality, is strictly decreasing. This assumption

guarantees that the market size converges to a finite number.

A consumer of typeθ payspt for the product and enjoys consumer surplus ofut(θ) − pt.

The consumer purchases the product if and only if the consumer surplus is nonnegative, i.e.,

ut(θ) − pt ≥ 0. Then, the inverse demand function at periodt, P(Qt−1,Qt), becomes:

P(Qt−1,Qt) =


a + σ(Qt−1) − bQt 0 ≤ Qt ≤ a

b,

0 Qt >
a
b,

(2)

for all t = 1,2, ..., and 0≤ Qt−1 ≤ a/b. It is easy to see that the inverse demand is a strictly

increasing function of the previous period’s market size but a strictly decreasing function of

the current period’s market size.11

11In the models of Rob (1991) and Vettas (2000), the demand is perfectly elastic: the demand curve is a
horizontal straight line. This demand structure does not allow us to analyze the role of oligopolistic interaction,
where firms compete in quantities. In contrast, the downward-sloping demand here allows us to introduce
oligopolistic interaction to the model of market diffusion.
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2.2 Firms under Free Entry

Firms under free entry are identical. In contrast to Kitamura (2010), firms in this paper

compete in quantities, and the output per firm is endogenously determined. For every period,

there are incumbents and a large (infinite) number of potential entrants. When potential

entrants decide to enter the market, entry must incur a setup costf > 0, which is the initial

investment in purchases such as machines. We assume that machines are perfectly durable

and can be operated in an environment of constant returns to scale for all periods. Letc > 0

be the marginal production cost,i > 0 be a constant interest rate, andβ ≡ 1/(1+ i) denote the

discount factor.

2.3 Timing

For each period, a period game consists of a two-stage game, as follows:

1. Stage 1: Entry Decision

In Stage 1, potential entrants decide whether to enter the market or not.12 If they enter

the market with setup costf , they compete with incumbents in Stage 2 and earn profits.

If they do not, their profits for the period are zero. LetNt be the number of incumbents

at periodt and letnt be the number of new entrants in Stage 1 of periodt. By definition,

we havent = Nt −Nt−1 for all t = 1,2, .... Assuming thatN0 = 0, we haveNt =
∑t
τ=1 nτ.

If the demand is small and the fixed cost is high or the discount factor is low, then entry

may not occur in the first period. The following assumption guarantees first-period

entry:

Assumption 2.
(a− c)2

4b
> (1− β) f . (3)

Assumption 2 implies that the number of new entrants in the first period is at least 1,

i.e., N1 ≥ 1. If inequality (3) does not hold, then first-period entry is not profitable and

12In the models of Rob (1991) and Vettas (2000), the incumbent decides whether or not to exit the market
because of demand uncertainty. In contrast, exit never occurs here because there is no demand uncertainty, as
in Kitamura (2010).
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does not occur. Since this condition holds for all following periods, the entry never

occurs.

2. Stage 2: Production

In Stage 2, firms in the market compete in quantities to maximize operation profits for

the period. We assume that the equilibrium in this stage is symmetric. Letqi
t be the

equilibrium output of firmi at periodt. We also definept as the equilibrium price in

periodt andπi
t = [pt − c]qi

t as the equilibrium operation profits of firmi in periodt.

3 Equilibrium

This section provides the characterization of free-entry equilibrium and socially optimal equi-

librium. We first characterize the post-entry equilibrium at periodt given the number of in-

cumbentsNt−1 and the number of new entrantsnt in 3.1. Then, we characterize free-entry

equilibrium and show that free-entry diffusion becomes S-shaped in 3.2. Finally, we charac-

terize socially optimal diffusion in 3.3.

3.1 Post-Entry Equilibrium

Given the number of firms in Stage 1, firms in Stage 2 compete in quantities and choose

their output levels to maximize their profits for the period,πi
t.

13 The post-entry equilibrium is

determined by the market clearing condition, the firms’ profit-maximizing behavior, and the

symmetry property. Now, we define the post-entry equilibrium as follows:

Definition 1. GivenNt−1 andnt, the post-entry equilibrium consists of sequences{Qt, pt,qi
t}

that simultaneously satisfy the following conditions:

1. Firm output is symmetric for allt = 1,2, ...:

qi
t = qt for all i. (4)

13This implies that when firms choose their output levels, they do not take into account the entry of new firms
in future periods. In other words, firms play the stage game Nash equilibrium at each period. Although it would
be more realistic to assume that firms take future entry into account, the analysis would become considerably
more complicated.
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2. The market clears for allt = 1,2, ...:

Qt = Ntqt. (5)

3. The market price is determined by the inverse demand for allt = 1,2, ...:

pt = P
(
Qt−1,Qt

)
. (6)

4. Each firm’s output is the best responses to other firms’ outputs for allt = 1,2, ...:

qi
t = arg max

qi
t≥0

[
P
(
Nt−1qt−1, (Nt − 1)qt + qi

t

)
− c

]
qi

t for all i. (7)

According to the above definition, we identify the properties of the post-entry stage equi-

librium. From equation (2) and equilibrium conditions (4)–(7), the output per firm becomes:

qt =
1

Nt + 1
a + σ(Nt−1qt−1) − c

b
. (8)

Then, we obtain the post-entry equilibrium price and operation profits per firm, respectively:

pt = c +
(a + σ(Nt−1qt−1) − c)

Nt + 1
, (9)

and

πt =
1

(Nt + 1)2
(a + σ(Nt−1qt−1) − c)2

b
. (10)

It is easy to see that the post-entry equilibrium has the standard properties of the Cournot–

Nash equilibrium under linear demand and constant marginal cost. For the convenience of the

analysis in the following sections, we summarize these properties of post-entry equilibrium

as follows:

Lemma 1. The post-entry equilibrium has the following properties:

1. Aggregate output is strictly increasing in the number of firms and is bounded:

∂Ntqt

∂Nt
> 0 and lim

Nt→∞
Ntqt =

a + σ(Nt−1qt−1) − c
b

. (11)

2. Output per firm is strictly decreasing in the number of firms and converges to zero:

∂qt

∂Nt
< 0 and lim

Nt→∞
qt = 0. (12)
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3. Equilibrium prices (operation profits per firm) are strictly decreasing in the number of

firms and converge to the marginal cost (zero):

∂pt

∂Nt
< 0, lim

Nt→∞
pt = c and

∂πt

∂Nt
< 0, lim

Nt→∞
πt = 0. (13)

One of the significant properties of the post-entry equilibrium is that the entry generates

an externality effect called a business stealing effect; that is, the new entry decreases the

incumbents’ output levels. As proved in Mankiw and Whinston (1986), this effect makes

the free-entry equilibrium socially excessive in the static model. In the previous literature on

market diffusion, the output per firm is exogenously determined under free entry. Therefore,

the second property of Lemma 1 does not hold. This leads to different welfare implications

for market diffusion.

3.2 Free-Entry Diffusion

In this subsection, we first characterize the free-entry diffusion in 3.2.1 given the post-entry

equilibrium outcome derived in 3.1. Then, we examine the time pattern of free-entry diffusion

and show that it becomes S-shaped by using the logic in the previous literature in 3.2.2.

3.2.1 Characterization of free-entry equilibrium

Let ne
t be the free-entry equilibrium number of new entrants at periodt, and letNe

t be the

free-entry equilibrium number of firms at periodt. For simplicity, we treatN as a continuous

variable. We defineR(Nt−1,nt) as the discounted sum of future operation profits at period

t, which is composed of the direct operation profits at periodt and the discounted future

operation profits,14 i.e.:

R(Nt−1,nt) = πt + βR(Nt,nt+1), (14)

for all t = 1,2, .... In Stage 1 of each period, potential entrants enter the market as long as

the present value of net profits is positive, i.e.,R(Nt−1,nt) > f . Therefore, in each period, the

number of new entrants satisfies the zero-profit condition, defined as follows:15

14Because entrants and incumbents in Stage 2 are symmetric at each period, and the horizon is infinite, they
have the same present value of their future revenue streams.

15One of the important factors for the existence of market diffusion is that the horizon is infinite. When the
horizon is infinite, the zero-profit condition holds with a positive number of entrants at each period. In contrast,
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Definition 2. Given the post-entry equilibrium outcome, the free-entry equilibrium consists

of the sequence{ne
t }∞0 , which satisfies the zero-profit condition for all periods, i.e.:

f ≥ R(Ne
t−1,n

e
t ), with equality ifne

t > 0. (15)

According to the above definition, the properties of the free-entry equilibrium under the

transition process are identified. From the zero-profit condition (15), the operation profits in

the free-entry equilibrium becomeπe
t = (1− β) f for each period. In addition, from equations

(9) and (10), the price in the free-entry equilibrium becomespe
t = c +

√
(1− β)b f for all

periods. These properties imply that both the equilibrium profits and the equilibrium price

are constant. By substituting equation (10) into the zero-profit condition (15), the market

diffusion under free-entry equilibrium is summarized as follows:

Proposition 1. Let Ne be the number of firms in the steady state under the free-entry equi-

librium. Suppose thatNe
0 = 0. Then, for allt = 1,2, ..., there exists a uniquene

t > 0 that

satisfies (15), while the free-entry equilibrium output per firm,qe
t , and number of firms satisfy

the following conditions:

1. The output per firm is constant over time:

qe
t =

√
(1− β) f

b
, for all t = 1,2, .... (16)

2. The number of firms is an increasing function of the number in the previous period:

Ne
t =

a + σ
(
Ne

t−1

√
(1−β) f

b

)
− c

√
(1− β)b f

− 1, for all t = 1,2, ..., (17)

and it satisfiesNe
t ∈ [0,Ne] for all t = 1,2, ..., and monotonicity,Ne

0 = 0 andNe
t → Ne

ast → ∞.

Proof. See Appendix.

if the horizon is finite, then incumbents and entrants are not symmetric. To hold the zero-profit condition, the
entrants need to achieve higher profits than the incumbents, and the number of incumbents should decrease.
Therefore, under a finite horizon, the zero-profit condition does not lead to a positive number of entrants at each
period.
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Q.E.D.

The dynamic system of equation (17) is summarized in Figure 1. Figure 1 shows that

we haveσ′(Ne
√

(1− β) f /
√

b)/b < 1 in the steady state.16 This indicates that the number of

firms under free entry does not reach the steady state as long as the degree of consumption

externality is strong enough.

The constant values of equilibrium output, profits per firm, and equilibrium price have

several implications. First, the time pattern of the free-entry equilibrium number of firms

coincides with that of the aggregate output. In addition, the constant equilibrium price implies

that the firms under free entry act as if they were price takers whose output levels were

exogenously determined. Therefore, the free-entry equilibrium, in this paper, basically has

the same properties as in the previous literature on market diffusion.

3.2.2 S-shaped market diffusion

We now examine the time pattern of free-entry diffusion and show that it becomes S-shaped

(initially convex and eventually concave) when the externality effect is initially strong enough.

Note that the degree of consumption externality decreases as the market size increases. This

makes the number of firms under free entry monotonically converge to the steady state, and

the time pattern eventually becomes concave. Therefore, the time pattern of free-entry diffu-

sion becomes S-shaped if and only if the number of new entrants initially increases.

Note that in free-entry diffusion, the numbers of firms in the first and second periods are

Ne
1 = [a−c]/

√
(1− β)b f −1 andNe

2 = [a+σ(Ne
1qe

1)−c]/
√

(1− β)b f −1, respectively. While

the former does not depend on the consumption externality, the latter does. This implies that

the strong degree of consumption externality leads to the high market growth from Period 1

to Period 2 and the convex time pattern of market diffusion in the early periods:

Proposition 2. The time pattern of free-entry diffusion becomes S-shaped if and only if:

a− c−
√

(1− β)b f < σ
(a− c− √

(1− β)b f

b

)
. (18)

Proof. See Appendix.

16Note that by differentiating (17) with respect toNe
t−1, we have∂Ne

t /∂Ne
t−1 = σ′(Ne

t−1

√
(1− β) f /

√
b)/b.
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Q.E.D.

From inequality (18) and the properties ofσ(·), it is easy to see that the initial convexity

of the free-entry diffusion is observed in the environment of small values of initial market

size. This follows from the low market demand, low discount factor, and high production and

setup costs. In addition, given these parameters, the strong consumption externality effect

contributes to the initial convexity of free-entry diffusion. From Figure 1, it is obvious that the

free-entry diffusion has a convex time pattern provided thatσ′(Ne
t−1

√
(1− β) f /

√
b)/b > 1.

Therefore, we conclude that the S-shaped diffusion is observed for low initial market size and

a strong consumption externality effect.

The mechanism of the initial convexity of free-entry diffusion, explained above, is the

same as that in Vettas (2000) and Kitamura (2010), in which firms are small atomistic price

takers. Therefore, our result implies that the oligopolistic interaction does not play an essen-

tial role in explaining the fundamental mechanism of S-shaped diffusion.

3.3 Socially Optimal Diffusion

A social planner sets the number of firms to maximize the social welfare, given the post-

entry equilibrium outcome derived in 3.1. Letno
t be the number of new entrants andNo

t be

the number of firms set by the planner at periodt, and letqo
t be the output per firm under

socially optimal planning at periodt. Now, we define the socially optimal equilibrium as

follows:

Definition 3. Given the post-entry equilibrium outcome, socially optimal planning satisfies

the following Bellman equation:

V(No
t−1) = max

no
t ≥0

∫ (No
t−1+no

t )qo
t

0
[a+σ(No

t−1q
o
t−1)−bQ]dQ−(No

t−1+no
t )q

o
t c−no

t f +βV(No
t−1+no

t ), (19)

subject to equation (8).

The interpretation of equation (19) is as follows. The present value of the sum of future

welfare is current welfare plus the discounted next-period value of the sum of future welfare.
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Note that the social planner is unable to control directly the output per firm in Stage 2 (post-

entry stage) but is able to do so indirectly by controlling the number of firms.17 We now

characterize the socially optimal equilibrium as follows:

Proposition 3. Suppose thatNo
0 = 0. Then, the optimal diffusion path satisfies the following

second-order difference equation:

f = R(No
t−1,n

o
t )

+ [po
t − c]No

t

∂qo
t

∂nt

+ βσ′(No
t qo

t )
[
qo

t + No
t

∂qo
t

∂nt

]
No

t+1q
o
t+1

+ β[po
t+1 − c]No

t+1

[∂qo
t+1

∂Nt
− ∂qo

t+1

∂nt+1

]
,

(20)

whereR(Nt−1,nt) = πt + β f .

Equation (20) shows that the marginal expansion cost is equal to the marginal social

benefit, which is composed of four elements. The first term on the right-hand side of equation

(20) is the present value of future operation profits. The second term is welfare loss from the

business stealing effect, which is captured as∂qo
t /∂nt: the new entry reduces the current

output per firm. This term is regarded as the current loss: increasing current entry reduces

the social welfare. The third term is the future benefit from the demand shift effect, in which

an increase in the number of firms directly raises demand in the subsequent period. The last

term is the future benefit following the business creating effect,∂qo
t+1/∂Nt − ∂qo

t+1/∂nt+1: the

new entry indirectly raises the output per firm in the subsequent period through the demand

shift effect.

The last three terms represent the intertemporal trade-off. The current loss gives the

planner an incentive to restrict the number of firms. However, the planner has a competing

incentive to raise the number of firms because of future benefits. The optimal planning is

determined by the magnitudes of these losses and benefits.18

17Therefore, this equilibrium is interpreted as the second-best equilibrium rather than the first-best equilib-
rium, in which the planner would be able to control directly the output per firm. If that were the case, the
first-best equilibrium number of firms would be 1 because of economies of scale.

18In socially optimal diffusion, in contrast to free-entry diffusion, the number of firms in the first period
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Note that the new dimension here beyond the previous literature is the existence of the

intertemporal trade-off in the optimal planning. This trade-off has not been addressed in

the previous literature concerned with market diffusion. In past works, the business stealing

effect and business creating effect are not considered, although there exists a benefit from

internalizing intertemporal externalities, which are engines of the market growth.19

4 Social Inefficiency and Time Dependence

This section analyzes the social inefficiency of free-entry diffusion by comparison with so-

cially optimal diffusion. Note that the only difference between free-entry diffusion and so-

cially optimal diffusion is whether the intertemporal trade-off exists or not. We first explore

the social inefficiency of free-entry diffusion when the market is in the growing phase in 4.1.

Then, we examine the case when the market is in the mature phase in 4.2.

4.1 Social Inefficiency in the Growing Phase

To begin the analysis, we rewrite equation (20). Let the current loss of increasing the number

of firms at periodt be µ(No
t−1,N

o
t ), and let the future benefit of increasing the number of

firms at periodt beλ(No
t−1,N

o
t ,N

o
t+1). Then, we rewrite equation (20) with the linear demand

function as follows:

(1− β) f = π(No
t−1,N

o
t ) − µ(No

t−1,N
o
t ) + λ(No

t−1,N
o
t ,N

o
t+1), (21)

where

π(Nt−1,Nt) =
1

(Nt + 1)2
(a + σ(Nt−1qt−1) − c)2

b
, (22)

µ(Nt−1,Nt) =
Nt

Nt + 1
π(Nt−1,Nt), (23)

λ(Nt−1,Nt,Nt+1) =
βσ′(Ntqt)

b
Nt+1qt+1

Ntqt

Nt+1 + 2
Nt+1 + 1

µ(Nt−1,Nt). (24)

depends on, and is positively related to, the degree of intertemporal consumption externality. Therefore, the
strong externality effect leads to an initially large number of new entrants in socially optimal diffusion. This
makes the S-shaped time pattern more difficult to obtain than in free-entry diffusion.

19Since the output per firm is exogenously determined in this literature,∂qo
t /∂nt = 0 and∂qo

t /∂Nt−1 = 0 for
all t = 1,2, .... It is easy to see that the business stealing effect and the business creating effect in equation (20)
are absent, but the future benefit from the demand shift effect still exists.

14



Note that the free-entry diffusion satisfies (1− β) f = π(Ne
t−1,N

e
t ) for all t = 1,2, .... There-

fore, the difference in the number of firms depends on the magnitude of the current loss,

µ(No
t−1,N

o
t ), and the magnitude of the future benefit,λ(No

t−1,N
o
t ,N

o
t+1), which depends on the

demand shift effect and the business creating effect.

Furthermore, the future benefit at periodt is determined by the degree of discounting,β,

the degree of consumption externality,σ′(No
t qo

t ), the growth rate of the market size, [No
t+1q

o
t+1−

No
t qo

t ]/N
o
t qo

t , and the number of firms at periodt + 1, No
t+1. By comparing equations (23) and

(24), it is seen that future benefits are produced by a higher discount factor, a stronger degree

of consumption externality, higher market growth, and a smaller number of firms. In this

environment, free entry leads to a socially insufficient number of firms:

Proposition 4. Suppose thatµ(No
t−1,N

o
t ) ≷ λ(No

t−1,N
o
t ,N

o
t+1), i.e.:

1 ≷
βσ′(No

t qo
t )

b

No
t+1q

o
t+1

No
t qo

t

No
t+1 + 2

No
t+1 + 1

. (25)

Then, for allNe
t−1 R No

t−1, we haveNe
t ≷ No

t .

Proof. See Appendix.

Q.E.D.

Note that we haveNe
0 = No

0 = 0. Therefore, Proposition 4 implies that, at Period 1, the

free-entry equilibrium number of firms becomes socially insufficient, Ne
1 < No

1, when the

future benefit is larger than the current loss,µ(No
0,N

o
1) < λ(No

0,N
o
1,N

o
2).

In addition, by interpreting Proposition 4 differently, we see that the free-entry equilib-

rium number of firms is more likely to be socially insufficient at early periods. At early

periods, (a) the degree of consumption externality is strong,20 (b) the growth rate of the mar-

ket size is high,21 and (c) the number of firms is small. Therefore, we conclude that the

free-entry equilibrium number of firms tends to be socially insufficient when the market is in

the growing phase.

20Note that the right-hand side of (25) is larger than 1 as long asβσ′(No
t qo

t )/b ≥ 1.
21Note that insufficient entrants appear even ifβσ′(No

t qo
t )/b < 1. This occurs if the growth rate of the market

is high enough and the number of firms is small enough.
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4.2 Social Inefficiency in the Mature Phase

Next, we turn to the analysis of the mature phase. LetNo denote the steady-state number of

firms in the socially optimal diffusion that satisfiesNo
t = No

t+1 = No. Then, in the steady state,

we can rewrite equations (21)–(24) as follows:

(1− β) f = π(No) − µ(No) + λ(No), (26)

where

π(N) =
(a + σ(Nq) − c)2

(N + 1)2b
, (27)

µ(N) =
N

N + 1
π(N), (28)

λ(N) =
βσ′(Nq)

b
N + 2
N + 1

µ(N). (29)

Note that (1−β) f = π(Ne) holds in free-entry diffusion. Thus, as in the analysis of the growing

phase, the difference in the number of firms depends on the magnitudes of the current loss,

µ(No), and future benefit,λ(No). As the market becomes mature, the degree of consumption

externality and the growth rate of the market size become lower, and the number of firms

operating in the market increases. Compared with the growing phase, these changes in the

market environment lower the magnitude of the future benefit relative to the current loss,

i.e., λ(No
t−1,N

o
t ,N

o
t+1)/µ(No

t−1,N
o
t ) ≥ λ(No)/µ(No).22 More importantly, the following lemma

shows that the future benefit becomes smaller than the current loss in the steady state:

Lemma 2. In the steady state, the future benefit becomes smaller than the current loss, i.e.,

µ(No) > λ(No). More precisely, we have:

1 >
βσ′(Noqo)

b
No + 2
No + 1

. (31)

Proof. See Appendix.

22By comparing equations (24) and (29), it is easy to see that:

λ(No
t−1,N

o
t ,N

o
t+1)

µ(No
t−1,N

o
t )

=
βσ′(No

t qo
t )

b

No
t+1qo

t+1

No
t qo

t

No
t+1 + 2

No
t+1 + 1

≥ βσ′(Noqo)
b

No + 2
No + 1

=
λ(No)
µ(No)

, (30)

becauseσ′′(·) < 0, ∂Ntqt/∂Nt > 0, andNo
t ≤ No

t+1 ≤ No.
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Q.E.D.

Lemma 2 implies that, in the steady state, the social benefit of increasing the number of

firms, π(N) − µ(N) + λ(N), becomes smaller than the private benefit of firms entering the

market,π(N). Therefore, it is optimal for the social planner to slow down the rate of new

firms entering as the market becomes mature. The following proposition shows that, in the

steady state, the socially optimal number of firms is smaller than the free-entry equilibrium

number of firms:

Proposition 5. In the mature phase (steady state), the free-entry equilibrium number of firms

is socially excessive, i.e.,Ne > No.

Proof. See Appendix.

Q.E.D.

From Propositions 4 and 5, we conclude that the free-entry equilibrium number of firms

tends to be initially insufficient but eventually excessive. This is in contrast to the results of

previous studies, where the number of firms in the free-entry diffusion is socially insufficient

over time. Table 1 and Figure 2 present a numerical example in which the number of firms

under free entry is initially insufficient but eventually excessive.23

The result in this section implies that oligopolistic interaction between firms can be an

important factor for the discussion of entry regulation policy in new industries. According to

the previous literature, since the number of firms in free-entry diffusion is socially insufficient

over time, encouraging entry is a desirable policy regardless of the phase of market growth. In

contrast, this paper provides a different policy implication. The entry regulation policy should

be changed depending on the phase of market growth: entry should be initially encouraged

but eventually discouraged.

5 Concluding Remarks

This paper models market diffusion in the presence of oligopolistic interaction. In contrast to

the previous literature on market diffusion, not only the number of new entrants but also the
23In this example, the steady state of the socially optimal diffusion path is locally saddle stable.
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output per firm is endogenously determined by the oligopolistic interaction. In this setting,

we explore the social inefficiency of free-entry diffusion.

The major result reported here is that the social inefficiency of free-entry diffusion de-

pends on the time period. The free-entry equilibrium number of firms tends to be initially

insufficient but eventually excessive. This result is in contrast to the previous literature not

only on market diffusion, where the free-entry equilibrium is found to be socially insufficient

over time, but also on the Excess Entry Theorem, where free entry is found to be socially

excessive in the static model.

These results provide important policy implications for entry regulations in new indus-

tries. The entry regulation policy needs to be changed depending on the time and the degree

of market growth: entry should be initially encouraged but eventually discouraged. It is pos-

sible to improve social welfare by giving subsidies to early entrants but taxing late entrants

without violating intertemporally balanced budget constraints.24

There are several issues that require future research. First, as the number of firms becomes

stable, there is a possibility of market restructuring. A stable number of firms may generate

collusion between firms. Another instance of market restructuring is horizontal mergers. If

there exist cost synergies, market maturity may lead to horizontal mergers, which reduce

the number of firms and improve welfare (see Davidson and Mukherjee (2007)). This may

explain the shakeout of firms corresponding to Stage 3 to Stage 5 in Gort and Klepper (1982).

Second, there is concern about whether or not our results hold under other intertemporal

externalities. Although we use only intertemporal consumption externalities in our model, we

predict that our results would hold even in the presence of other intertemporal externalities.

Finally, there is concern about the generality of our results. Our results are obtained in terms

of a parametric example; however, they may apply in a more general setting. We hope that

our study helps researchers to address these issues.

24The optimal subsidy or tax is equal to the difference between the right-hand side of equation (15) and the
right-hand side of equation (20), that is, equal to the last three terms of equation (20). If these terms are positive
(negative), then subsides (tax) should be given (imposed).
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Appendix

Proof of Proposition 1

We first guess thatne
t > 0 for all Ne

t−1 ∈ [0,Ne). Then,R(Ne
t−1,n

e
t ) = f for all Ne

t−1 ∈ [0,Ne).

By solving (1− β) f = π(Ne
t−1,N

e
t ) with respect toNe

t , we have:

Ne
t = N(Ne

t−1) =
a + σ(Ne

t−1q
e
t−1) − c√

(1− β)b f
− 1, (32)

for all t = 1,2, .... Together with equation (8), we obtain equations (16) and (17). From

the properties ofσ(·), we haveNe
1 = N(Ne

0) = [a − c]/
√

(1− β)b f − 1 > 0, N′(Ne
t−1) > 0,

N′′(Ne
t−1) < 0, limNe

t−1→0 N′(Ne
t−1) = ∞, and limNe

t−1→∞ N′(Ne
t−1) = 0. Therefore,N(Ne

t−1)

crosses theNe
t = Ne

t−1 line only once, and there is a unique steady state,Ne. We finally verify

thatne
t > 0. From Figure 1, it is easy to see that we havene

t > 0 for all Ne
t−1 ∈ [0,Ne).

Q.E.D.

Proof of Proposition 2

From Figure 1, the time pattern of free entry eventually becomes concave. Therefore, it

becomes S-shaped if and only if 2Ne
1 < Ne

2. From equation (17), we obtain inequality (26).

Q.E.D.

Proof of Proposition 4

We prove the first case. Let 1> βσ′(No
t qo

t )
b

No
t+1qo

t+1
No

t qo
t

No
t+1+2

No
t+1+1 andNe

t−1 ≥ No
t−1. Suppose in negation that

Ne
t ≤ No

t . Then, from the properties ofπ(Nt−1,Nt), we would have the following inequalities:

π(Ne
t−1,N

e
t ) ≥ π(Ne

t−1,N
o
t ) ≥ π(No

t−1,N
o
t ). (33)

Becauseπ(Ne
t−1,N

e
t ) = (1− β) f in the free-entry equilibrium, we haveπ(No

t−1,N
o
t ) ≤ (1− β) f .

This is a contradiction to equation (20) becauseµ(No
t−1,N

o
t ) > λ(No

t−1,N
o
t ,N

o
t+1). In the same

way, we can prove the second case.

Q.E.D.
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Proof of Lemma 2

Suppose in negation that:

1 ≤ βσ′(Noqo)
b

No + 2
No + 1

. (34)

Then, we would have the following inequalities:

Noqo ≤ βσ′(Noqo)Noqo

b
No + 2
No + 1

<
σ(Noqo)

b
No + 2
No + 1

, (35)

where the last inequality follows from the properties ofσ(·). By substitutingqo = (a +

σ(Noqo) − c)/(b(No + 1)) into inequality (35), we have

Noqo <
σ(Noqo)

b
No + 2
No + 1

⇔ No

[
a + σ(Noqo) − c

b(No + 1)

]
<
σ(Noqo)

b
No + 2
No + 1

(36)

⇔ No[a− c]
2

< σ(Noqo). (37)

By using inequality (37), we have:

π(No) =
(a + σ(Noqo) − c)2

b(No + 1)2
>

(a + No[a−c]
2 − c)2

b(No + 1)2
=

[
No + 2
No + 1

]2 (a− c)2

4b
>

(a− c)2

4b
. (38)

Note that inequality (34) implies thatµ(No) ≤ λ(No). Then, together with inequality (38) and

Assumption 2 (inequality (3)), we have:

π(No) − µ(No) + λ(No) >
(a− c)2

4b
> (1− β) f . (39)

However, this contradicts the equilibrium condition (26). Therefore, inequality (31) holds.

Q.E.D.

Proof of Proposition 5

As mentioned in Subsection 3.2, we haveσ′(Neqe)/b < 1 in the steady state of free-entry

diffusion. Hence, we assume thatNe > N̂, whereN̂ is such thatσ′(N̂q̂)/b = 1. To begin the

proof of Proposition 5, we have the following lemma:

Lemma 3. Let Q(N) = Nq. Then, forN ∈ (N̂,∞),

1. Q′(N)→ 0 andQ(N)→ m ∈ (0,∞) asN→ ∞.

2. π(N) is strictly decreasing inN and approaches zero asN becomes larger:π′(N) < 0

and limN→∞ π(N) = 0.
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Proof of Lemma 3

1. By differentiatingQ(N) with respect toN, we have:

Q′(N) =
[1 − N

N+1]q(N)

1− N
N+1

σ′(Q(N))
b

> 0, (40)

for N ∈ (N̂,∞). It is easy to see thatQ′(N)→ 0 asN→ ∞. Then, by using L’Ĥopital’s

rule, we obtain:

lim
N→∞

Q(N) = lim
N→∞

{a + σ(Q(N)) − c
b

+
σ′(Q(N))NQ′(N)

b

}

= lim
N→∞

{a + σ(Q(N)) − c
b

}
+ lim

N→∞

{σ′(Q(N))
b

[1 − N
N+1]Q(N)

1− N
N+1

σ′(Q(N))
b

}

= lim
N→∞

{[a + σ(Q(N)) − c
b

][
1 +

σ′(Q(N))
b

[1 − N
N+1] N

N+1

1− N
N+1

σ′(Q(N))
b

]}

= lim
N→∞

{a + σ(Q(N)) − c
b

}
.

(41)

Sinceσ(·) satisfies the Inada condition, anda > b, there exists a uniquem ∈ (0,∞)

such thatm = [a + σ(m) − c]/b.

2. By the properties ofQ(N), it is easy to see thatπ(N) → 0 asN → ∞. Next, we show

thatπ(N) is strictly decreasing inN. By differentiatingπ(N), we have:

π′(N) = −2π(N)[b− σ′(Nq)]
N[b− σ′(Nq)] + b

< 0, (42)

for N ∈ (N̂,∞). Thus,π(N) is strictly decreasing inN.

This completes the proof of Lemma 3.

Q.E.D.

Now, we turn to the proof of Proposition 5. Suppose in negation thatNe ≤ No. Then,

becauseπ(N) is strictly decreasing inN ∈ (N̂,∞) by Lemma 3, we have the following in-

equality:

π(Ne) ≥ π(No). (43)

SinceNe satisfiesπ(Ne) = (1−β) f , we haveπ(No) ≤ (1−β) f . However, this is a contradiction

to (26) becauseµ(No) > λ(No) by Lemma 2. Therefore, we haveNe > No.

Q.E.D.
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Figure 2 

The optimal and the free-entry equilibrium paths for 
8,a = 0.5,b = 5,c = 18,f = 0.97,β = 0.5
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Time Optimal Path Free-entry Path 

period 0 0 0 

period 1 20.68957495 4.773502692 

period 2 48.58768294 30.49189952 

period 3 71.5955845 69.77412988 

period 4 86.02806271 103.1004422 

period 5 93.94248156 124.2976272 

period 6 98.00723622 136.0106333 

period 7 100.0294918 142.054915 

period 8 101.0202103 145.0721357 

period 9 101.5019707 146.5542658 

period 10 101.7353969 147.2766772 

period 11 101.8483019 147.6274666 
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