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This paper investigates a principal-agent model in which an owner (principal) opti-
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real value of development cost. We show that high exploration cost can lead to a pooling

policy not contingent on project type. Further, and more notably, we show that, in the
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the owner and improving social welfare.
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1 Introduction

The real options approach has become an increasingly standard framework for investment

timing decisions in corporate finance (e.g., (Dixit and Pindyck 1994)). Although the early

literature on real options (e.g., (Dixit 1989, McDonald and Siegel 1986)) considers investment

decisions by a monopolist, more recent studies have investigated the problem of several firms

competing in the same market from a game theoretic approach. For instance, (Grenadier

1996, Weeds 2002) derive equilibrium in real options timing games, and (Grenadier 2002)

investigates equilibrium investment strategies of firms in a Cournot–Nash framework.

While these studies have focused on strategic interactions among rival firms, (Grenadier

and Wang 2005) investigated investment timing in a decentralized firm where the owner (prin-

cipal) delegates the investment decision to a manager (agent) who holds private information by

combining real options theory and incentive theory. In most modern corporations, for example,

shareholders delegate investment decisions to managers, thereby taking advantage of their spe-

cial skills and expertise. In their model, asymmetric information changes the investment policy

from the first-best case because the owner designs a contract to provide a bonus-incentive for

the manager to truthfully reveal private information.1

Previous studies assume that a manager observes real project value with no costs immedi-

ately after a contract is made; however, in most real investing, a manager gathers information

about the type of project by exploratory investment which has a high cost.2 This exploration

cost is especially high in the following cases. The first example is a resource extraction project,

which has been the main application of the real options analysis (e.g., (Paddock, Siegel, and

Smith 1988) among others). The exploration stage involves seismic and drilling activity to ob-

tain information on the quantities of natural resource reserves, as well as the costs of extracting

them. It depends on the exploration results whether the manager proceeds to development

investment such as construction of platforms and drilling of production wells.

Another example is an R&D program with learning (e.g., (Childs, Ott, and Triantis 1998,

Perlitz, Peske, and Schrank 1999)). An R&D project frequently comprises multiple phases.

1(Nishihara and Shibata 2008, Shibata 2009) extend (Grenadier and Wang 2005) to a case with an audit

mechanism. (Shibata and Nishihara 2010) extends (Grenadier and Wang 2005) to a context of the dynamic

investment and capital structure. On the other hand, (Morellec and Schürhoff 2009) investigates a real options

signaling model rather than the screening model. (Grenadier and Malenko 2010) investigates the real options

signaling game in a more general framework.
2In incentive theory, (Crémer and Khalil 1992, Crémer, Khalil, and Rochet 1998a, Crémer, Khalil, and

Rochet 1998b, Kessler 1998, Laffont and Martimort 2002) investigate how cost of gathering information affects

the optimal incentive mechanism. For example, (Crémer and Khalil 1992, Crémer, Khalil, and Rochet 1998a,

Crémer, Khalil, and Rochet 1998b) show that high cost of information leads to a contract which provides no

incentive for an agent to accumulate information.

2



In each phase, the manager gains information on the R&D project, such as the probability of

success, the costs required to complete, and the profits expected from the successfully developed

product. The manager decides whether to proceed to the next phase while taking account of the

preliminary results. In addition, several empirical works (e.g., (Aboody and Lev 2000, Barth,

Kasznik, and Mcnichols 2001)) have shown a relatively large information asymmetry associated

with R&D.

This paper extends the previous real options model with asymmetric information to a setting

in which the manager learns project type by costly exploration. We consider a principal-agent

model in which the owner (principal) optimizes a contract with a manager (agent) delegated

to undertake an investment project. The investment consists of exploratory and development

stages. Development cost can take one of two possible values. Only the manager observes a

realized development cost by costly exploration. Specifically, we investigate how the ratio of

exploration cost to total cost affects the investment policy. The results are summarized as

follows.

When exploration cost is relatively low, the firm, whether under symmetric or asymmetric

information, adopts a separating policy. The firm immediately proceeds to development in-

vestment for a favorable result in the exploration stage, while it delays the investment with an

unfavorable result. If the project turns out to be a bad type, exploration investment leads to

inefficiency ex post. However, because of low cost, the firm attempts earlier to acquire infor-

mation on project type. On the other hand, the firm takes a pooling policy when exploration

cost is relatively high. In this case, the firm invests in the development phase immediately

after the exploratory phase whether or not the exploration result is favorable, because high

cost reduces the incentive to gather information by earlier investment in the exploratory stage.

Under asymmetric information, the contract becomes useless because the owner pays the man-

ager the maximal rent for information. The pooling solution never appears in (Grenadier and

Wang 2005), where the manager observes project type at no cost. Our result is similar to a

finding by (Crémer, Khalil, and Rochet 1998a) in incentive theory. They showed that high cost

of information acquisition leads to a pooling contract not contingent on project type, although

their model does not treat a dynamic investment timing problem but a static problem.

A key role of asymmetric information is to provide an additional incentive for the owner

to separate investment timing of good- and bad-type projects. Consistent with the previous

studies, the owner can decrease the bonus to the manager by deferring investment in the bad-

type project. Thus, the firm chooses a pooling policy under symmetric information but chooses

a separating contract under asymmetric information when exploration cost is intermediate. If

this is the case, the investment timing differs between symmetric and asymmetric information

cases, not only for the bad-type project but also for the good-type project. In addition, unlike in
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the previous studies, the contract by which the owner cuts the information rent to the manager

can yield less social welfare than the case with no contract. This implies that wealth transfer

from manager to owner in the contract is not always efficient from the social viewpoint.

Most notably, we show that unlike the case with symmetric information, a higher proportion

of exploration cost can increase social welfare in the asymmetric information case. When a

higher proportion of exploration cost and asymmetric information are separately present, both

lead to inefficiency; however, combined with asymmetric information, costly learning can play

a positive role in mitigating excessive wealth transfer from manager to owner. The intuition

behind the key result is as follows. A higher exploration cost decreases the owner’s value

and increases the manager’s value because the owner finds it difficult to decrease the bonus

to the manager by a separating contract. Accordingly, high exploration cost leads to wealth

transfer from owner to manager.3 This may mitigate the social loss stemming from the owner’s

greedy contract. If information about exploration cost is also partially unknown to the owner,

the manager pretends to be ignorant of project type in order to increase his/her information

rent. This resembles the argument by (Kessler 1998), who showed that an agent’s ignorance

may generate strategic benefits in a static model. The manager’s moral hazard decreases the

owner’s value but does not necessarily reduce social welfare. The manager’s moral hazard

may enhance social welfare by mitigating inefficient asset substitution by the owner’s greedy

contract.

The key result resembles several findings known as “two incentive problems are better than

one” in corporate finance (e.g., (Hirshleifer and Thakor 1992, Mookherjee and Png 1995, Noe

and Rebello 1996)). Similar results are reported in recent papers in the real options context.

For example, (Hackbarth 2009) showed that managerial optimism and overconfidence, which

distort the investment and financing policy, can increase welfare in the presence of bondholder-

shareholder conflicts. (Nishihara and Shibata 2010) showed that a financing constraint, that

decreases firm value in a monopoly, can play a positive role in mitigating preemptive competition

and improving firm value in equilibrium.

This paper contributes to the literature of both investment timing and incentive theory as

follows. First, we complement the real options literature by pointing out the possibility that

costly learning greatly distorts the investment policy, leading especially to a pooling policy. We

also demonstrate the possibility that the owner’s greedy contract yields less social welfare than

the case with no contract. The main contribution is our demonstration that costly learning can

play a positive role through interactions with asymmetric information. In addition, this paper

complements several works in incentive theory by extending their findings in the static models

to those of the dynamic investment timing model.

3This is also consistent with an empirical finding by (Aboody and Lev 2000).
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The paper is organized as follows. Section 2 introduces the setup and presents the investment

policies under symmetric and asymmetric information. Section 3 investigates social welfare and

social loss. Section 4 explores more detailed properties of the solutions in numerical examples.

Section 5 concludes the paper. All proofs appear in the appendix.

2 Model solutions

2.1 Setup

Consider an owner (principal) with an option to invest in a single project. We assume that the

owner delegates the investment decision to a manager (agent). Throughout our analysis, all

agents are assumed to be risk neutral and to maximize their expected payoff. For simplicity,

we assume that project value follows the geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x, (1)

where µ, σ > 0 and x > 0 are constants, and B(t) denotes the one-dimensional standard

Brownian motion. Throughout the paper, we assume that the initial value x is sufficiently low

so that the firm has to wait for its investment condition to be met. For convergence, we assume

that r > µ where r is a constant interest rate.

The investment comprises two phases: exploratory and development investment. Ex-

ploratory investment requires irreversible cost aI and reveals development cost, which can

take one of two possible values (1− a)I (good type) or (1− a)I +∆I (bad type). The proba-

bilities of drawing (1 − a)I and (1 − a)I +∆I are equal to q and 1 − q, respectively. Assume

that I > 0, a ∈ [0, 1), and q ∈ (0, 1) are constants. We also assume that project value X(t) and

exploration cost aI is observed by both the owner and the manager while development cost

(1 − a)I or (1 − a)I + ∆I is privately observed only by the manager.4 Total investment cost

becomes I for the good-type project and I +∆I for the bad-type project.

This model is an extension of the simplified model of (Grenadier and Wang 2005). Indeed,

in the case of a = 0, the model is equal to the hidden information case of (Grenadier and Wang

2005).5 As mentioned in Section 1, the setting with a positive a is suitable for real investment

4The assumption that a portion of the project value is privately observed only by one person (here, the

manager) and not observed by the other (here, the owner) is quite common in the asymmetric information

literature (e.g., (Myers and Majluf 1984)). The model is not essentially changed when the privately observable

component corresponds to part of project value, as in (Grenadier and Wang 2005, Nishihara and Shibata 2008),

rather than part of investment cost.
5Although the manager’s one-time effort, which cannot be observed by the owner, changes the likelihood q

in the original model of (Grenadier and Wang 2005), we exclude the effect of this hidden action.
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such as a resource extraction and an R&D program. To preserve tractability, we assume that

investment takes place instantaneously, but this is not a severe restriction. The conclusions and

insights provided in this paper will be unchanged even if the period of investment is considered.

2.2 Symmetric information

As a benchmark, we investigate the case where there is no delegation of the exercise decision

and the owner observes the true value of development cost by exploratory investment. The

owner’s exploratory investment at τP = inf{t > 0 | X(t) ≥ xP} and development investment

at τi = inf{t > 0 | X(t) ≥ xi}, where i = 1 and 2 denote the investment policies for the good-

and bad-type projects, yield the expected profit

E[e−rτP (−aI)] + qE[e−rτ1(X(τ1)− (1− a)I)] + (1− q)E[e−rτ2(X(τ2)− ((1− a)I +∆I))]

=

(
x

xP

)β

(−aI) + q

(
x

x1

)β

(x1 − (1− a)I) + (1− q)

(
x

x2

)β

(x2 − ((1− a)I +∆I)),

where β = 1/2− µ/σ2 +
√

(µ/σ2 − 1/2)2 + 2r/σ2(> 1) is a positive characteristic root. Then,

the owner’s optimal policy (x∗
P , x

∗
1, x

∗
2) solves the following problem:

π∗
o(x) := max

xP ,x1,x2

(
x

xP

)β

(−aI) + q

(
x

x1

)β

(x1 − (1− a)I)

+(1− q)

(
x

x2

)β

(x2 − ((1− a)I +∆I))

s.t. xi ≥ xP (i = 1, 2)

(2)

Throughout the paper, the superscript ∗ refers to the solution under symmetric information.

Recall that the initial value x = X(0) is sufficiently low. Clearly, in the optimum of problem

(2), x∗
P = min(x∗

1, x
∗
2) and x∗

1 ≤ x∗
2 are satisfied. Then, problem (2) can be reduced to

π∗
o(x) = max

x1,x2

q

(
x

x1

)β

(x1 − (a/q + 1− a)I) + (1− q)

(
x

x2

)β

(x2 − ((1− a)I +∆I))

s.t. x2 ≥ x1.

(3)

The following proposition presents the solution to problem (3).

Proposition 1 The optimal policy (x∗
P , x

∗
1, x

∗
2) and the owner’s value π∗

o(x) are given as follows:

Case (i-S): a < q∆I/I (separating)

x∗
P = x∗

1 =
β

β − 1
(a/q + 1− a)I, x∗

2 =
β

β − 1
((1− a)I +∆I) (4)

π∗
o(x) =

qxβ

βx∗β−1
1

+
(1− q)xβ

βx∗β−1
2

(5)
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Case (ii-S): a ≥ q∆I/I (pooling)

x∗
P = x∗

1 = x∗
2 =

β

β − 1
(I + (1− q)∆I) (6)

π∗
o(x) =

xβ

βx∗β−1
1

(7)

First, we explain Case (i-S). In this case, the owner invests in the exploratory phase when

project value X(t) hits the threshold x∗
P . If exploratory investment reveals the good-type

project, the owner immediately proceeds to development investment. Otherwise, the owner

delays the investment until X(t) hits the higher level x∗
2. When costly exploration is unneces-

sary, i.e., a = 0 as in (Grenadier and Wang 2005), the owner can choose the best investment

timing, x∗
1 = βI/(β − 1) and x∗

2 = β(I + ∆I)/(β − 1) for the good- and bad-type projects,

respectively. However, when the exploratory phase requires a portion of investment cost, a > 0,

the optimal investment policy changes. The threshold x∗
1 for the good-type project increases

and x∗
2 for the bad-type project decreases with a. The cost of early exploration leads to ex-post

inefficiency when the project turns out to be the bad type. Then, a higher a and a lower q

delays exploratory investment. On the other hand, a higher a decreases remaining investment

cost. This decrease in development cost shortens the waiting time for the bad-type project.

When exploratory investment requires a relatively large portion of total cost, the owner

does not gather information on project type by an earlier exploratory investment. This is Case

(ii-S). The owner proceeds to the development stage immediately after exploratory investment

regardless whether the exploration result is favorable. The owner does not have to delay the

investment because of low development cost even if the project turns out to be the bad type. As

a result of high exploration cost, information acquisition by exploratory investment is useless.

Thus, the owner makes the entire investment at the threshold β(I + (1 − q)∆I)/(β − 1) as if

investment cost were equal to the average qI + (1− q)(I +∆I).

For fixed xi satisfying x1 < x2, the objective function in problem (3) decreases with a. This

leads to the following corollary.

Corollary 1 In Case (i-S), ∂π∗
o(x)/∂a < 0 holds.

Corollary 1 is intuitive because a high a means difficulty in judging the profitability of the

project. This difficulty distorts the owner’s investment policy (i.e., delays investment in the

good-type project and hastens investment in the bad-type project). Then, a higher a increases

loss due to the investment distortion. Note that in Case (ii-S), π∗
o(x) is a constant because the

optimal policy does not depend on a (cf. (6) and (7)).
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2.3 Asymmetric information

The owner delegates the investment decision to the manager who will acquire private informa-

tion with exploratory investment. Before contracting, both the owner and the manager know

that the probability of drawing (1 − a)I (good type) equals q. Immediately after exploratory

investment, only the manager knows the true development cost. As in (Grenadier and Wang

2005, Nishihara and Shibata 2008, Shibata and Nishihara 2010), we focus on the owner’s op-

timal contract at the initial time. At time 0, the owner offers the manager a contract that

commits the owner to pay the manager at the time of exercise. We assume that no opportunity

for renegotiation exists. Although the commitment may lead to ex post inefficiency in invest-

ment timing, it increases ex-ante value of the project. In fact, if the owner makes no contract

with the manager, the owner’s value becomes π∗
o(x) with q = 0 (see (7)). This is because the

manager requires the owner the higher cost (1 − a)I +∆I and makes ∆I his/her own even if

the true development cost is (1− a)I.

As in (Grenadier and Wang 2005), the optimal contract is included in a mechanism repre-

sented by (xP , x1, x2, w1, w2). In the contract, the owner forces the manager to make exploratory

investment at the threshold xP and report project type. For a report of the good-type (bad-

type) project, the owner specifies the investment threshold x1 (x2) and pays the manager w1

(w2) at the development investment time. Since the revelation principle (cf. (Laffont and

Martimort 2002, Bolton and Dewatripont 2005)) ensures that the manager reveals the true

development cost in the optimum, the owner’s optimal contract (x∗∗
P , x∗∗

1 , x∗∗
2 , w∗∗

1 , w∗∗
2 ) solves

the following problem:

π∗∗
o (x) := max

xP ,x1,x2,w1,w2

(
x

xP

)β

(−aI) + q

(
x

x1

)β

(x1 − (1− a)I − w1)

+(1− q)

(
x

x2

)β

(x2 − ((1− a)I +∆I)− w2)

s.t. xi ≥ xP (i = 1, 2)

wi ≥ 0 (i = 1, 2)(
x

x1

)β

w1 −
(

x

x2

)β

(w2 +∆I) ≥ 0(
x

x2

)β

w2 −
(

x

x1

)β

(w1 −∆I) ≥ 0,

(8)

Throughout the paper, the superscript ∗∗ refers to the solution under asymmetric information.

In the constraints of problem (8), the second inequalities correspond to the ex-post limited-

liability constraints, while the last two inequalities are the ex-post incentive-compatibility con-

straints. The incentive-compatibility constraint means that with a truthful report, the manager

who observes (1−a)I ((1−a)I+∆I) obtains the expected payoff (x/x1)
βw1 ((x/x2)

βw2), which

is larger than the expected payoff with a false report, (x/x2)
β(w2 + ∆I) ((x/x1)

β(w1 − ∆I)).
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Clearly, in the optimum of problem (2) x∗∗
P = x∗∗

1 ≤ x∗∗
2 and w∗∗

2 = 0 are satisfied. Then,

problem (8) can be reduced to

π∗∗
o (x) = max

x1,x2,w1

q

(
x

x1

)β

(x1 − (a/q + 1− a)I − w1) + (1− q)

(
x

x2

)β

(x2 − ((1− a)I +∆I))

s.t. x2 ≥ x1

w1 ≥ 0(
x

x1

)β

w1 −
(

x

x2

)β

∆I = 0.

(9)

The following proposition shows the solution to problem (9).

Proposition 2 The optimal contract (x∗∗
P , x∗∗

1 , x∗∗
2 , w∗∗

1 , w∗∗
2 ), the owner’s value π∗∗

o (x), and the

manager’s value π∗∗
m (x) are given as follows:

Case (i-A): a < q∆I/(1− q)I (separating)

x∗∗
P = x∗∗

1 = x∗
1, x∗∗

2 =
β

β − 1
((1− a)I +∆I/(1− q)), w∗∗

1 =

(
x∗
1

x∗∗
2

)β

∆I, w∗∗
2 = 0 (10)

π∗∗
o (x) =

qxβ

βx∗β−1
1

+
(1− q)xβ

βx∗∗β−1
2

(11)

π∗∗
m (x) = q∆I

(
x

x∗∗
2

)β

(12)

Case (ii-A): a ≥ q∆I/(1− q)I (pooling)

x∗∗
P = x∗∗

1 = x∗∗
2 =

β

β − 1
(I +∆I), w∗∗

1 = ∆I, w∗∗
2 = 0 (13)

π∗∗
o (x) =

xβ

βx∗∗β−1
1

(14)

π∗∗
m (x) = q∆I

(
x

x∗∗
1

)β

(15)

Proposition 2 can be interpreted similarly to Proposition 1. Indeed, exploration cost plays

a role in deferring the good-type project and accelerating the bad-type project for the same

reason as Proposition 1. However, under asymmetric information, the owner widens the gap

between the investment timing for the good- and bad-type projects to decrease the bonus to the

manager. Actually, x∗∗
2 /x∗∗

1 ≥ x∗
2/x

∗
1 ≥ 1 is satisfied for any a. Note that, by (10), the bonus

to the manager, w∗∗
1 , decreases as x∗∗

2 /x∗∗
1 increases. This spread increases the critical value

between the separating and pooling solutions from a = q∆I/I in the symmetric information

case to a = q∆I/(1 − q)I in the asymmetric information case. Accordingly, Case (i-S) is

included in Case (i-A).
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In the region a < q∆I/I, i.e., Case (i-S), the thresholds x∗∗
P and x∗∗

1 remain unchanged from

x∗
P and x∗

1, while x∗∗
2 becomes larger than x∗

2. The manager’s private information distorts the

investment timing for the bad-type project rather than the good-type project. This result is

the same as that of previous studies such as (Grenadier and Wang 2005, Nishihara and Shibata

2008, Shibata and Nishihara 2010). Because of low exploration cost, the owner designs the

contract contingent on information obtained with exploratory investment.

In the region q∆I/I ≤ a < q∆I/(1 − q)I, i.e., Case (ii-S) and Case (i-A), the investment

policy is quite different from that of the symmetric information case. To decrease the informa-

tion rent to the manager, the owner chooses a separating contract instead of a pooling contract.

Although exploration cost is not very low, the owner forces the manager to gather information

on project type earlier for the purpose of saving the bonus to the manager. Unlike the previous

studies, the investment timing for both bad- and good-type projects is delayed from that of the

symmetric information case. This complements the previous works by enforcing the results of

underinvestment caused by agency costs.

When a increases above q∆I/(1− q)I, i.e., Case (ii-A), the owner makes a pooling contract

independent of the exploration result. Because exploration cost is very high, the owner gives

up utilizing information regarding project type. Naturally, the owner must pay the entire

rent ∆I of the manager’s private information. This means that the owner cannot offer any

effective contract to the manager. Indeed, the owner’s value π∗∗
o (x) is equal to π∗

o(x) with

q = 0 (cf. (7) and (14)). This type of pooling contract never appears in the previous studies

with no exploration cost. However, a similar result is found in a static model by (Crémer,

Khalil, and Rochet 1998a). They showed that a high cost of information acquisition leads to a

pooling contract independent of project type, although their model cannot account for dynamic

investment timing.

For fixed w1 and xi satisfying x1 < x2, the objective function in problem (9) decreases with

a. In Case (i-A), we have ∂x∗∗
2 /∂a < 0. These immediately lead to the following corollary.

Corollary 2 In Case (i-A), ∂π∗∗
o (x)/∂a < 0 and ∂π∗∗

m (x)/∂a > 0 hold.

Note that in Case (ii-A) neither π∗∗
o (x) nor π∗∗

m (x) depends on a. Corollary 2 shows that an

increase in exploration cost transfers a portion of the owner’s value to the manager. A higher

a decreases the investment threshold x∗∗
2 and, hence, increases the manager’s value π∗∗

m (x). In

addition to the increased rent to the manager, distortion due to exploration cost decreases

the owner’s value π∗∗
o (x) with a. The wealth transfer is consistent with empirical evidence by

(Aboody and Lev 2000). They found insider gains in R&D-intensive firms substantially larger

than insider gains in firms without R&D, and then identified R&D as a major contributor

to information asymmetry. Our result provides a complementary explanation for their finding.
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Large insider gains in R&D-intensive firms originate not only from large information asymmetry

but also from high exploration cost for R&D activities.

Now, consider a case in which the proportion of exploration cost is also privately observed

by the manager. For example, assume that only the manager observes the realized value of

a ∈ [aL, aR] at time 0 while the owner knows only a range [aL, aR]. In this case, the manager

always reports aR with no additional mechanism, because a higher a increases the manager’s

value π∗∗
m (x). In other words, the manager pretends to be ignorant of project type. This result

is similar to that of (Kessler 1998) in incentive theory. He showed that, in a static model an

agent may be better off if he/she can commit to remain ignorant with some probability.

3 Social welfare

In the previous subsection, we have focused on the owner’s optimal contract with the manager

who will acquire information on project type with exploratory investment. In this subsection,

we explore how the agency problem affects social welfare. We define the social welfare and

the social loss by V ∗∗(x) := π∗∗
o (x) + π∗∗

m (x) and L∗∗(x) := π∗
o(x) − V ∗∗(x), respectively. As

documented by (Grenadier and Wang 2005), this social loss stemming from agency costs can

be indicative of a corporate structure. With potentially large social loss, a firm will be forced

to be privately held or to be organized in a manner that provides the closest alignment between

the owner and the manager. The following proposition shows how the ratio of exploration cost

to total investment cost, a, affects the social welfare and loss.

Proposition 3 Assume that q∆I/(1− q)I ≤ 1. There exists a unique ã ∈ (q∆I/I, q∆I/(1−
q)I) such that

∂V ∗∗(x)

∂a


< 0 (0 ≤ a < ã)

= 0 (a = ã)

> 0 (ã < a < q∆I/(1− q)I),

(16)

which means that the social welfare V ∗∗(x) is minimized at a = ã. The social loss L∗∗(x)

satisfies

∂L∗∗(x)

∂a


> 0 (0 ≤ a < ã)

= 0 (a = ã)

< 0 (ã < a < q∆I/(1− q)I),

(17)

which means that the social loss L∗∗(x) is maximized at a = ã.

Note that in the region a ≥ q∆I/(1− q)I neither V ∗∗(x) nor L∗∗(x) depends on a. Propo-

sition 3 contrasts asymmetric and symmetric information cases. In the absence of asymmet-

ric information, a higher a leads to less efficiency because exploration cost distorts the in-
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vestment policy; however, the outcome changes with asymmetric information. In the region

q∆I/I ≤ a < q∆I/(1 − q)I, the owner, unlike in the symmetric information case, chooses a

separating contract to decrease the information rent to the manager. For a ≈ ã, the owner’s

contract maximizing his/her interest becomes far from efficient from the social viewpoint. The

owner’s contract may lead to less social welfare than the case with no contract. Indeed, the

social welfare with no contract agrees with (14) + (15), which is larger than V ∗∗(x)|a=ã by (16).

This can also be verified from the opposite side, i.e., the social loss L∗∗(x).

In the region a ∈ (ã, q∆I/(1 − q)I), V ∗∗(x) increases with a. When costly learning and

asymmetric information are separately present, both lead to inefficiency. However, higher ex-

ploration cost can lead to less inefficiency due to asymmetric information by preventing the

owner’s greedy contract. This complements the literature by revealing interactions between

costly learning and asymmetric information. Similar to this result, several corporate finance

studies have shown that “two incentive problems are better than one” (e.g., (Hirshleifer and

Thakor 1992, Mookherjee and Png 1995, Noe and Rebello 1996)). Related results are seen in

the context of real options. In (Hackbarth 2009), managerial optimism and overconfidence,

which distort the investment and financing policy, play a potentially positive role in ameliorat-

ing bondholder-shareholder conflicts such as debt overhang, asset stripping, and risk-shifting.

(Nishihara and Shibata 2010) developed a model that reveals complex interactions between

preemptive competition and a financing constraint and showed that a financing constraint can

mitigate preemptive competition.

As discussed after Corollary 2, let us look at the situation where the manager has private

information about a ∈ [aL, aR]. The manager always reports the maximal value a = aR because

a higher a increases the manager’s value (cf. Corollary 2). This moral hazard decreases the

owner’s value but does not necessarily reduce the social welfare. For example, consider a case

of aL = ã. By Proposition 3, we have V ∗∗(x)|a=ã < V ∗∗(x)|a=aR and L∗∗(x)|a=ã > L∗∗(x)|a=aR .

This means that the manager’s moral hazard may enhance the social welfare by mitigating

inefficient asset substitution by the owner’s greedy contract.

4 Numerical examples

We investigate more detailed properties of the solutions in numerical examples. Section 4.1

focuses on the effects of the ratio of exploration cost, a. Section 4.2 explores the comparative

statics with respect to the volatility of project value, σ.

12



4.1 The effects of exploration cost

For comparison, we use the same base parameter values as (Shibata 2009, Shibata and Nishihara

2010):6

q = 0.5, σ = 0.2, r = 0.07, µ = 0.03, I = 50,∆I = 30, X(0) = x = 100 (18)

For the base parameter values (18) the critical value between Case (i-S) (separating) and Case

(ii-S) (pooling) in the symmetric information case becomes q∆I/I = 0.3 (cf. Proposition

1), while the critical value between Case (i-A) (separating) and Case (ii-A) (pooling) in the

asymmetric information case becomes q∆I/(1− q)I = 0.6 (cf. Proposition 2).

The upper-left and upper-right panels in Figure 1 depict the investment thresholds in the

symmetric and asymmetric information cases, respectively, with varying levels of a. In the

absence of exploration cost, i.e., a = 0, the solution is equal to that of the benchmark case

by (Grenadier and Wang 2005). Indeed, as in (Shibata 2009), the investment thresholds are

x∗
1 = 128.43, x∗

2 = 205.49, x∗∗
1 = 128.43, x∗∗

2 = 282.56. In the previous studies, the agency

problem does not distort the investment threshold for the good-type project, because the owner

can effectively decrease the bonus to the manager by changing the investment threshold for

the bad-type project. However, as discussed after Proposition 2, together with exploration

cost a > 0.3, the investment is delayed whether the project is the good- or bad-type. The

upper panels also show that distortion due to high exploration cost increases with asymmetric

information. For example, we compare the cases of a = 0 (separating) and a = 0.6 (pooling).

For a = 0.6 the investment thresholds are x∗
P = x∗

1 = x∗
2 = 166.96, x∗∗

P = x∗∗
1 = x∗∗

2 = 205.49.

The distortion due to a = 0.6 is 166.96 − 128.43 = 38.53 under symmetric information and

205.49− 128.43 = 77.06 under asymmetric information.

Next, let us turn to the owner’s and manager’s values. The lower-left and lower-right panels

in Figure 1 plot the owner’s value under symmetric information and the owner’s and manager’s

values under asymmetric information, respectively, with varying levels of a. As shown in

Corollaries 1 and 2, the owner suffers from inefficiency due to exploration cost while the manager

benefits from increased information rent. Comparing π∗
o(x) in the lower-left panel and π∗∗

o (x)

in the lower-right panel, we find that the decrease in the owner’s value is more serious in the

asymmetric information case than in the symmetric information case. Asymmetric information

reinforces inefficiency caused by costly exploration from the owner’s viewpoint.

Finally, we explore the effects of a on the social welfare and loss. The left and right panels in

Figure 2 plot V ∗∗(x) = π∗∗
o (x)+π∗∗

m (x) and L∗∗(x) = π∗
o(x)−V ∗∗(x), respectively, with varying

levels of a. As shown in Proposition 3, V ∗∗(x) is U-shaped and L∗∗(x) is unimodal. The worst

6We carried out a lot of computations with varying parameter values and distilled robust results into this

section.
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a is ã = 0.3894. We see from the right panel that the agency cost is very high for a ≈ 0.3894.

As mentioned above (cf. the lower-right panel in Figure 2), an increase in a plays a role in

transferring a portion of the value from the owner to the manager. In the region a < 0.3894,

the decrease in the owner’s value dominates the increase in the manager’s value. Then, V ∗∗(x)

decreases with a. This is straightforward and the same as the symmetric information case. On

the other hand, in the region a ∈ (0.3894, 0.6), the increase in the manager’s value dominates

the decrease in the owner’s value. This leads to a counter-intuitive result that V ∗∗(x) increases

with a. A higher a moderates inefficient asset substitution from owner to manager under

asymmetric information.

4.2 The effects of uncertainty

The effect of the volatility σ on the investment thresholds are straightforward; hence, we omit

a figure illustrating it. Actually, an increase in σ increases the investment thresholds, as well

as most real options models. Figure 3 illustrates π∗∗
o (x), π∗∗

m (x), V ∗∗(x), and L∗∗(x) for σ =

0.1, 0.2, 0.3, and 0.4. Note that the critical value between Case (i-A) (separating) and Case

(ii-A) (pooling) in the asymmetric information case, q∆I/(1 − q)I = 0.6, does not depend on

σ.

The upper panels show that a higher volatility increases the owner’s value and decreases

the manager’s value. This asset substitution is consistent with previous findings by (Shibata

2009, Shibata and Nishihara 2010). In the lower panels, we verify that asset substitution is

efficient from the social viewpoint. The lower panels demonstrate that V ∗∗(x) increases with σ

and L∗∗(x) decreases with σ. The impact of σ is especially great for L∗∗(x). Indeed, an increase

in σ from 0.2 to 0.4 reduces L∗∗(x) by half. We also see from the figure that the effects of σ

are relatively robust with respect to a.

5 Conclusion

This paper has investigated a principal-agent model in which the owner (principal) optimizes the

contract with the manager (agent) delegated to undertake the investment project. The model

assumes that the manager learns the real value of development cost by exploratory investment.

For low cost in the exploration phase, the firm invests in the exploratory stage early and

separates the investment timing for good- and bad-type projects. On the other hand, for high

cost in the exploration phase, the firm proceeds to the development stage immediately after

exploratory investment whether or not the exploration result is favorable. High exploration cost

leads to a pooling solution not contingent on the exploration result. Asymmetric information

increases the owner’s incentive to take a separating contract rather than a pooling contract

14



because the owner can decrease the information rent to the manager with a separating contract.

However, the owner’s greedy contract may seriously reduce the social welfare especially when

exploration cost is intermediate. Most notably, costly learning, or equivalently, the manager’s

pretense of ignorance, could improve social welfare by preventing inefficient wealth transfer by

the owner’s greedy contract.

A Proof of Proposition 1

We can ignore xβ. Define the Lagrangian

L(x1, x2, λ) := qx1
−β(x1 − (a/q + 1− a)I) + (1− q)x2

−β(x2 − ((1− a)I +∆I)) + λ(x2 − x1),

where λ denotes the Lagrangian multiplier. The Karush-Kuhn-Tucker conditions are

qx∗−β−1
1 ((−β + 1)x∗

1 + β(a/q + 1− a)I)− λ∗ = 0 (19)

(1− q)x∗−β−1
2 ((−β + 1)x∗

2 + β((1− a)I +∆I)) + λ∗ = 0 (20)

x∗
2 ≥ x∗

1, λ∗ ≥ 0, λ∗(x∗
2 − x∗

1) = 0 (21)

First, consider the case of x∗
1 < x∗

2. We have λ∗ = 0 by (21). Substituting λ∗ = 0 in (19) and

(20), we have (4). Taking account of

x∗
1 < x∗

2 ⇔ β

β − 1
(a/q + 1− a)I <

β

β − 1
((1− a)I +∆I)

⇔ a < q∆I/I,

we have the optimal policy in Case (i-S). The maximum value can be easily calculated as (5).

Next, consider the case of x∗
1 = x∗

2. By (19) + (20), we have (6). By (19) we have

λ∗ ≥ 0 ⇔ qx∗−β
1 ((−β + 1)x∗

1 + β(a/q + 1− a)I) ≥ 0

⇔ −(I + (1− q)∆I) + (a/q + 1− a)I ≥ 0

⇔ a ≥ q∆I/I,

which leads to the optimal policy in Case (ii-S). The maximum value becomes (7). �

B Proof of Proposition 2

We can ignore xβ. Define the Lagrangian

L(x1, x2, w1, λ1, λ2, λ3) := qx1
−β(x1 − (a/q + 1− a)I − w1) + (1− q)x2

−β(x2 − ((1− a)I +∆I))

+λ1(x2 − x1) + λ2w1 + λ3(x
−β
1 w1 − x−β

2 ∆I),
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where λi denotes the Lagrangian multiplier. The Karush-Kuhn-Tucker conditions are

qx∗∗−β−1
1 ((−β + 1)x∗∗

1 + β((a/q + 1− a)I + w∗∗
1 ))− λ∗∗

1 − βλ∗∗
3 x∗∗−β−1

1 w∗∗
1 = 0 (22)

(1− q)x∗∗−β−1
2 ((−β + 1)x∗∗

2 + β((1− a)I +∆I)) + λ∗∗
1 + βλ∗∗

3 x∗∗−β−1
2 ∆I = 0 (23)

−qx∗∗−β
1 + λ∗∗

2 + λ∗∗
3 x∗∗−β

1 = 0 (24)

x∗∗
2 ≥ x∗∗

1 , λ∗∗
1 ≥ 0, λ∗∗

1 (x∗∗
2 − x∗∗

1 ) = 0 (25)

w∗∗
1 ≥ 0, λ∗∗

2 ≥ 0, λ∗∗
2 w∗∗

1 = 0 (26)

x∗∗−β
1 w∗∗

1 − x∗∗−β
2 ∆I = 0 (27)

By (27) we have w∗∗
1 = (x∗∗

1 /x∗∗
2 )β∆I > 0. Then, by (26) and (24) we have λ∗∗

2 = 0 and λ∗∗
3 = q.

We can rewrite (22) and (23) as follows:

qx∗∗−β−1
1 ((−β + 1)x∗∗

1 + β(a/q + 1− a)I)− λ∗∗
1 = 0 (28)

(1− q)x∗∗−β−1
2 ((−β + 1)x∗∗

2 + β((1− a)I +∆I/(1− q))) + λ∗∗
1 = 0 (29)

First, suppose x∗∗
1 < x∗∗

2 in (25). Substituting λ∗∗
1 = 0 in (28) and (29), we have (10) in Case

(i-A). Note that

x∗∗
1 < x∗∗

2 ⇔ β

β − 1
(a/q + 1− a)I <

β

β − 1
((1− a)I +∆I/(1− q))

⇔ a < q∆I/(1− q)I.

We can easily show (14) and (15).

Next, suppose x∗∗
1 = x∗∗

2 in (25). By (28) + (29), we have (13). We have

λ∗∗
1 ≥ 0 ⇔ qx∗∗−β−1

1 ((−β + 1)x∗∗
1 + β(a/q + 1− a)I) ≥ 0

⇔ −(I +∆I) + (a/q + 1− a)I) ≥ 0

⇔ a ≥ q∆I/(1− q)I,

which leads to the solution in Case (ii-A). �

C Proof of Proposition 3

In Case (i-A), by (11) and (12), we have

∂V ∗∗(x)

∂a
= I

(
x

x∗∗
2

)β
(
(1− q)

(
1−

(
x∗∗
2

x∗
1

)β
)

+
β2q∆I

(β − 1)x∗∗
2

)
. (30)
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Because of ∂x∗
1/∂a > 0 and ∂x∗∗

2 /∂a < 0, we have ∂2V ∗∗(x)/∂2a > 0. Further, we have

∂V ∗∗(x)

∂a

∣∣∣∣
a=q∆I/I

= I

(
x

x∗∗
2

)β
(
(1− q)

(
1−

(
1 +

q∆I

(1− q)(I + (1− q)∆I)

)β
)

+
βq∆I

I − q∆I +∆I/(1− q)

)

≤ I

(
x

x∗∗
2

)β (
− βq∆I

I + (1− q)∆I
+

βq∆I

I − q∆I +∆I/(1− q)

)
(31)

< 0,

where (31) follows from the inequality (1 + y)β ≥ 1 + βy (y ≥ 0), and we also have

∂V ∗∗(x)

∂a

∣∣∣∣
a=q∆I/(1−q)I

= I

(
x

x∗∗
2

)β
β2q∆I

(β − 1)x∗∗
2

> 0.

Then, there exists a unique ã ∈ (q∆I/I, q∆I/(1− q)I) satisfying (16).

Considering ∂π∗
o(x)/∂a = 0 for a ≥ q∆I/I, we have only to show that ∂L∗∗(x)/∂a > 0 for

a ∈ (0, q∆I/I). For a ∈ (0, q∆I/I), by (5), (11), and (12) we have

∂L∗∗(x)

∂a

= I

(
x

x∗∗
2

)β
(
(1− q)

((
x∗∗
2

x∗
2

)β

− 1

)
− β2q∆I

(β − 1)x∗∗
2

)

= I

(
x

x∗∗
2

)β
(
(1− q)

((
1 +

q∆I

(1− q)((1− a)I +∆I)

)β

− 1

)
− βq∆I

(1− a)I +∆I/(1− q)

)

≥ I

(
x

x∗∗
2

)β (
βq∆I

(1− a)I +∆I
− βq∆I

(1− a)I +∆I/(1− q)

)
(32)

> 0,

where (32) follows from the inequality (1 + y)β ≥ 1 + βy (y ≥ 0). This leads to (17). �
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Morellec, E., and N. Schürhoff, 2009, Dynamic investment and financing under asymmetric

information, Working Paper, Swiss Finance Institute.

Myers, S., and N. Majluf, 1984, Corporate financing and investment decisions when firms have

information that investors do not have, Journal of Financial Economics 13, 187–221.

Nishihara, M., and T. Shibata, 2008, The agency problem between the owner and the manager

in real investment: The bonus-audit relationship, Operations Research Letters 36, 291–296.

Nishihara, M., and T. Shibata, 2010, Interactions between preemptive competition and a fi-

nancing constraint, Journal of Economics and Management Strategy 19, 1013–1042.

Noe, T., and M. Rebello, 1996, Asymmetric information, managerial opportunism, financing,

and payout policies, Journal of Finance 51, 637–660.

Paddock, J., D. Siegel, and J. Smith, 1988, Option valuation of claims on real assets: The case

of offshore petroleum leases, Quarterly Journal of Economics 103, 479–508.

Perlitz, M., T. Peske, and R. Schrank, 1999, Real options valuation: the new frontier in R&D

project evaluation?, R&D Management 29, 255–269.

Shibata, T., 2009, Investment timing, asymmetric information, and audit structure: a real

options framework, Journal of Economic Dynamics and Control 33, 903–921.

Shibata, T., and M. Nishihara, 2010, Dynamic investment and capital structure under manager-

shareholder conflict, Journal of Economic Dynamics and Control 34, 158–178.

Weeds, H., 2002, Strategic delay in a real options model of R&D competition, Review of Eco-

nomic Studies 69, 729–747.

19



0 0.2 0.4 0.6 0.8 1

150

200

250

300

a

T
rg

g
e

r

 

 

x
1
∗

x
2
∗

Case (i−S) Case (ii−S)

0 0.2 0.4 0.6 0.8 1

150

200

250

300

a
T

ri
g

g
e

r

 

 

x
1
∗∗

x
2
∗∗

Case (ii−A)Case (i−A)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

a

V
a

lu
e

 

 

π
o
∗ (x)

Case (i−S) Case (ii−S)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

a

V
a

lu
e

 

 

π
o
∗∗ (x)

π
m
∗∗ (x)

Case (ii−A)Case (i−A)

Figure 1: The investment thresholds and values under symmetric and asymmetric information.

The upper-left panel plots the investment thresholds for good- and bad-type projects, x∗
1 and x∗

2

in the symmetric information case. The critical value between Case (i-S) (separating) and Case

(ii-S) (pooling) is a = 0.3. The upper-right panel plots the investment thresholds for good- and

bad-type projects, x∗∗
1 and x∗∗

2 in the asymmetric information case. The critical value between

Case (i-A) (separating) and Case (ii-A) (pooling) is a = 0.6. The lower-left panel plots the

owner’s value under symmetric information, π∗
o(x), while the lower-right panel plots the owner’s

and manager’s values under asymmetric information, π∗∗
o (x) and π∗∗

m (x). The parameter values

are set at the base case (18).
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Figure 2: The social welfare and loss. The left panel plots the social welfare V ∗∗(x), while the

right panel plots the social loss L∗∗(x). At a = ã = 0.3894, the social welfare (loss) is minimized

(maximized). The parameter values are set at the base case (18).
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Figure 3: The comparative statics with respect to the volatility σ. The upper-left and upper-

right panels plot the owner’s and manager’s values under asymmetric information, π∗∗
o (x) and

π∗∗
m (x), respectively. The lower-left and lower-right panels plot the social welfare and loss,

V ∗∗(x) and L∗∗(x), respectively. The parameter values other than σ are set at the base case

(18).
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