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Abstract

This paper studies the problem of a monopolist who sells a network good
through a price posting scheme. The scheme posts a price of every possible
allocation for each buyer, who are then asked to report their private information
to the seller. The seller then implements the allocation based on the reports.
The social choice functions that are ex post implementable through such a
sales scheme are characterized, and the conditions are identified under which
the revenue maximizing scheme has the property that the price of a larger
network is more affordable than that of a smaller network.
Key words: network externalities, ex post equilibrium, revenue maximization.
Journal of Economic Literature Classification Numbers: C72, D82.

1 Introduction

Goods have network externalities when their value to any consumer depends on
the consumption decision of other consumers. A classical example of a good with
network externalities, or more simply a network good, is a telecommunication device
whose value depends directly on the number of other people using the device. Other
leading examples of network goods include the operating system (OS) of PC’s, fuel-
cell vehicles, social networking services, industrial parks, and so on. The nature of
network externalities may be purely physical as in the case of the telecommunication
device, but may also be market-based or psychological. Market-based externalities
arise when more users of a good induces the market to provide complementary goods
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that enhance the value of the good. More users of a fuel-cell vehicle, for example,
encourages entry into the market of charge stations, which leads to the increased
value of such vehicles. On the other hand, much of bandwagon consumption in
the fashion, toy and electronic industries can be explained through psychological
externalities where consumers’ tastes for a particular good are directly influenced
by the size of its consumption. When all types of externalities are accounted for, it
would be no exaggeration to say that a substantial fraction of consumption goods
have network properties.

Despite their importance, network goods have received relatively little attention
in economic theory.1 Analysis of network goods in the literature has mostly been
focused on the resolution of the coordination problem arising from the multiplicity
of equilibria. When every consumer expects others to adopt the good, its expected
value is high enough to render adoption a rational decision (at least for some price).
On the other hand, when every consumer expects no other consumers to adopt,
then its low expected value makes no adoption rational. Expectation is self-fulfilling
in both cases, leading to multiple, Pareto-ranked equilibria. A subsidy scheme
as proposed by Dybvig and Spatt (1983) is one way to eliminate the problem by
promising to compensate the adopters when the number of adoptions is below some
threshold. The existence of Pareto-ranked equilibria is also the main focus of the
analysis of intertemporal patterns of adoption of a network good.2 In contrast, the
problem of revenue maximization by a monopolist has been analyzed only partially
either through the analysis of subsidy schemes under the implicit assumption that
higher participation implies higher revenue, or through the analysis of introductory
prices, a common practice of setting a low price for early adopters and a higher,
regular price for others.3 In contrast, our objective in this paper is to directly explore
the revenue maximization problem in the incomplete information environment.

In the present context, an allocation is the list of all buyers’ adoption/non-
adoption decisions. Each buyer i’s valuation function vi depends on an allocation,
and also is an increasing function of his private signal distributed over the unit
interval. A price-posting scheme is described as follows: The seller first posts a
price of every possible allocation for each buyer. The buyers then report their
private signals to the seller. An allocation is determined by the reports through

1Rofles (1974) is the first to give a theoretical analysis of network goods.
2See Gale (1995, 2001), Ochs and Park (2009) and Shichijo and Nakayama (2009).
3See Cabral et al. (1999). Sekiguchi (2009) examines the monopolist’s revenue in the dynamic

setup as in Gale (1995) when the price is held constant over time and across consumers.

2



an allocation rule, and offered to the buyers at the originally posted price. Finally,
each buyer who is supposed to adopt in the proposed allocation chooses whether to
accept the offer or not.4

We analyze a revenue maximizing price posting scheme that is strategy-proof
and ex post individually rational. Our analysis focuses on the “regularity” property
defined as follows: We say that for buyer i, price p of an allocation a is more
affordable than price p′ of allocation a′ if for some signal si, i’s valuation of a is above
p but his valuation of a′ is below p′. In other words, buyer i is willing to accept a

at p whenever he is willing to accept a′ at p′. A price-posting scheme is regular if
(1) whenever allocation a is larger than allocation a′ (i.e., a has more adopters than
a′), the price of a is more affordable than the price of a′ for every buyer, and (2) the
allocation rule chooses the largest allocation as permitted by individual rationality.
When the buyers’ private signals are independently distributed, we find that the
optimal scheme is regular when there are only two buyers. For a general number
of ex ante symmetric buyers, we demonstrate the optimality of a regular scheme
among the class of symmetric schemes when the externalities are sufficiently strong.
We also show that a regular scheme is coalitionally strategy-proof in the sense that
no group deviations are profitable, and that there exists a regular scheme that is
optimal among the class of symmetric coalitionally strategy-proof schemes. The
latter findings indicate the robustness of the optimality of a regular price-posting
scheme against buyer collusion.5

The idea of price-posting schemes is most closely related to the concept of an
inducement scheme proposed by Park (2004). An inducement scheme, which is itself
a generalization of the subsidy schemes discussed above to the incomplete informa-
tion environment, is a sales mechanism in which the transfer between the seller and
buyers depends on the final allocation. We may think of an inducement scheme as
first posting a price of each allocation, and then letting the buyers simultaneously
decide whether to adopt or not. Hence, an inducement scheme is a subclass of price-

4In the sense that the adopters may be a subset of agents, the network good problem is related

to the problem of excludable public goods, where agents can be excluded from the use of the good.

However, the value of the public good depends on the amount of contributions from the agents

rather than their adoption decisions, and the focus of analysis is on the efficient cost sharing rather

than revenue maximization. See, for example, Moulin (1994), Deb and Razzolini (1999a, b), and

Bag and Winter (1999).
5For example, potential buyers of an industrial park may be from the same industry and know

each other well.
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posting schemes in which the buyers’ adoption decisions are made independently of
one another. In contrast, a price-posting scheme coordinates their decisions through
the reported signal profile.

The paper is organized as follows: The next section introduces a price posting
scheme. Ex post implementable schemes are characterized in Section 3. We study
the problem with two buyers in Section 4, and optimal symmetric schemes with a
general number of ex ante symmetric buyers in Sections 5 and 6. Section 5 analyzes
the case of strong externalities, and Section 6 analyzes coalitionally strategy-proof
schemes. We conclude in Section 7. All the proofs are collected in the Appendix.

2 Model

There are I potential buyers of a network good indexed by i ∈ I = {1, . . . , I}.
Buyer i’s decision is either to buy the good (ai = 1), or not (ai = 0). An allocation
(or a network) is a profile of adoption decisions a = (ai)i∈I , and an element of the
set A = {0, 1}I . Let Ai be the set of allocations in which buyer i buys the good:
Ai = {a ∈ A : ai = 1}. The value of the good to buyer i, denoted vi(a, si), depends
on the allocation a as well as his own private signal si. The signal profile s = (si)i∈I

has a strictly positive joint density g over S =
∏

i∈I Si, where Si is the unit interval
[0, 1] ⊂ R+.

A social choice function determines the allocation of the good and monetary
transfer from each buyer as a function of the private signal profile. Formally, a
social choice function is a pair (f, τ) of an allocation rule f : S → A and a transfer
rule τ = (τ1, . . . , τI) : S → RI : f(s) ∈ A is the allocation under the signal profile
s ∈ S, and τi(s) ∈ R is the monetary transfer from buyer i under s. A social choice
function (f, τ) is strategy-proof if

vi(f(si, s−i), si) − τi(si, s−i) ≥ vi(f(s′i, s−i), si) − τi(s′i, s−i)

for every i, si, s′i and s−i,

and ex post individually rational if

vi(f(si, s−i), si) − τi(si, s−i) ≥ 0 for any i, si, and s−i.

A social choice function (f, τ) is ex post implementable if it is both strategy-proof
and ex post individually rational.

Given the concern for the multiplicity of equilibria in the network good problems,
strategy-proofness is a particularly suitable requirement compared with Bayesian

4



incentive compatibility, which does not address the multiplicity issue.6 Ex post in-
dividual rationality also adequately handles the possibility of withdrawal by a buyer
after they update the value of the good upon learning the seller’s recommendation.7

The social choice function (f, τ) is simple if for any s, s′ ∈ S, f(s) = f(s′) implies
τ(s) = τ(s′). Under a simple social choice function, hence, the transfer depends on
the signal profile only through the allocation. When (f, τ) is simple, we express it
as (f, t), where t : A → RI is a function of the allocation a. A price posting scheme
is a mechanism described as follows: For every buyer i and every allocation a ∈ A,
the seller first posts price ti(a) charged to buyer i when allocation a is realized.
Facing the price schedule, the buyers report their private signals to the seller. The
seller then determines and announces the allocation f(s) ∈ A as a function of the
report profile s. Finally, every buyer i responds by either accepting or rejecting
the proposed allocation. When any buyer rejects, no transaction takes place and
every buyer receives the reservation utility of zero. Formally, a price posting scheme
can be described by (S, {0, 1}I , f, t), where S is the set of message profiles, {0, 1} is
the set of each buyer’s decisions to accept (di = 1) or reject (di = 0) the proposed
allocation, t = (ti(a))a∈A, i∈I is the posted price schedule, and f = (fi)i∈I : S → A

is the allocation rule.
A strategy for buyer i in the price-posting mechanism is a pair (ρi, σi), where

ρi : Si → Si determines the reported signal given his true signal si, and σi : Si×A →
{0, 1} determines whether to accept or reject the proposed allocation as a function
of the proposal a and the own signal si. The participation strategy (ρ∗i , σ

∗
i ) of buyer

i is honest and obedient if ρ∗i (si) = si and σ∗
i (si, a) = ai for every si ∈ Si and a ∈ A.

Note in particular that buyer i cannot adopt if the proposed allocation f(s) /∈ Ai.
The profile of the honest and obedient strategies (ρ∗, σ∗) is an ex post equilibrium if

vi(f(si, s−i), si) − ti(f(si, s−i)) ≥ max
{

max
s′i∈Si

vi(f(s′i, s−i), si) − ti(f(s′i, s−i)), 0
}

for every i, si, and s−i.

6Park (2004) presents an analysis of Bayesian implementable sales mechanisms for a network

good.
7That is, when buyer i with signal si has reported si and is recommended to adopt for the

payment of xi, his updated utility equals

Es−i [vi(f(si, s−i), si) − xi | si, fi(si, s−i) = 1, τi(si, s−i) = xi].

Ex post IR guarantees that the above is non-negative whereas interim IR condition

Es−i [vi(f(si, s−i), si) − τi(si, s−i) | si] ≥ 0 does not.
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The first term in the parentheses on the right-hand side corresponds to i’s payoff
when he makes a false report and then accepts the proposed allocation, and the
second term to his payoff when he rejects the proposal. The following result is
immediate.

Proposition 1 Let (f, t) be a simple social choice function. Then (f, t) is ex post
implementable if and only if honesty and obedience is an ex post equilibrium of the
price posting scheme (S, {0, 1}I , f, t).

This proposition allows us to identify a simple ex post implementable social
choice function with a price posting scheme that has honesty and obedience as an
ex post equilibrium. In what follows, hence, we call such a social choice function
(f, t) an ex post implementable price posting scheme.

As seen, a price-posting scheme determines the price of the good only as a
function of the publicly observable final allocation. As such, it leaves little room for
the seller to deviate from his announced mechanism compared with more general
mechanisms in which the transfer may vary with the reports even when the allocation
is the same.8 Let the seller’s expected revenue per buyer under a price posting
scheme (f, t) be defined by

R(f, t) =
1
I

∑
i∈I

Es[ti(f(s))].

An ex post implementable price posting scheme (f, t) is optimal if it maximizes the
seller’s expected revenue:

R(f, t) = max {R(f ′, t′) : (f ′, t′) is simple and ex post implementable}.

3 Characterization of Ex Post Implementability

In this section, we present a basic characterization of ex post implementability
that will later be used in the analysis of optimal schemes. We make the following
assumptions on the valuation function vi : A × Si → R+:

Assumption 1 For any i ∈ I and a ∈ A,
8Suppose that buyer i’s payment is higher when some other buyer j reports sj than when he

reports s′j . Since j’s report is privately solicited by the seller and unknown to i, the seller may

pretend to i that j has reported sj when in fact he reported s′j in order to demand the higher

payment. A similar problem arises in a sealed-bid second-price auction.
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1. vi(a, 0) = 0,

2. a /∈ Ai ⇒ vi(a, ·) ≡ 0,

3. a ∈ Ai ⇒ ∂vi
∂si

(a, ·) > 0,

4. vi(a, ·) 	= vi(b, ·) ⇒ ∂vi
∂si

(a, ·) > ∂vi
∂si

(b, ·) or ∂vi
∂si

(b, ·) > ∂vi
∂si

(a, ·).

That is, the value of the good equals zero (1) to a buyer at the lowest margin,
and (2) to a non-adopter. Moreover, (3) the value is strictly increasing with the
private signal, and (4) when the two allocations are not equivalent to any buyer, the
rate of increase in his value is strictly higher for one of them. We introduce some
notation as follows. First, let

Ci(a) = {a′ ∈ A : vi(a′, ·) = vi(a, ·)}

be the set of allocations among which buyer i is indifferent. For example, when
the level of externalities depends only on the size of an allocation defined by |a| =∑

i∈I ai, then Ci(a) = {a′ ∈ Ai : |a′| = |a|} for a ∈ Ai. Next, fix any s−i ∈ S−i and
let

Bi(s−i) = {f(si, s−i) : si ∈ Si}
be the set of possible allocations that buyer i can achieve by changing his report
when the signal profile of other buyers is fixed at s−i. Further, for any allocation
a ∈ A and profile s−i ∈ S−i, let

Li(a, s−i) = cl {si ∈ Si : f(si, s−i) = a}

be the (closure of the) set of i’s signals that would lead to allocation a when others’
signal profile is fixed at s−i, and for any allocation a ∈ A,

La = cl {s ∈ S : f(s) = a}

be the (closure of the) set of signal profiles that induce allocation a.
Now suppose that (f, t) is a price-posting scheme. Given any allocation a ∈ Ai,

define ya
i ∈ [0, 1] to be the marginal signal at which buyer i is indifferent between

accepting allocation a at price ti(a), and not accepting:

vi(a, ya
i ) − ti(a) = 0.
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Such a signal ya
i is unique by Assumption 1 if it exists. If vi(a, 0) − ti(a) > 0, then

let ya
i = 0 and if vi(a, 1) − ti(a) < 0, then let ya

i = 1. Likewise, given any pair of
allocations a, b ∈ Ai such that vi(a, ·) > vi(b, ·), define yab

i = yba
i ∈ [0, 1] to be the

marginal signal at which buyer i is indifferent between allocation a at price ti(a)
and allocation b at price ti(b):

vi(a, yab
i ) − ti(a) = vi(b, yab

i ) − ti(b). (1)

Again, such a signal yab
i is unique if it exists. If vi(a, 0) − ti(a) > vi(b, 0) − ti(b), set

yab
i = 0 and if vi(a, 1) − ti(a) < vi(b, 1) − ti(b), set yab

i = 1.
For each i ∈ I and a ∈ Ai, we may restrict attention to the price ti(a) such that

0 ≤ ti(a) ≤ vi(a, 1). Since there is a one-to-one correspondence between ti(a) and
ya

i for any such ti(a), we will interchangeably use the profile y = (ya
i )i∈I,a∈Ai and

the transfer rule t in what follows.

Proposition 2 A price posting scheme (f, t) is ex post implementable if and only if
the following holds. For any i and s−i, if a1, . . . , an ∈ A are all distinct allocations
such that

1. ∂vi
∂si

(a1, ·) < · · · < ∂vi
∂si

(an, ·), and

2. {a1, . . . , an} ⊂ Bi(s−i) ⊂
⋃n

k=1 Ci(ak),

then for k = 1, . . . , n,

1. ti(a) = ti(ak) if a ∈ Ci(ak) ∩ Bi(s−i),

2. ti(a1) ≤ 0,

3. ti(a1) ≤ · · · ≤ ti(an).

4.
⋃

a∈Ci(ak)∩Bi(s−i)

Li(a, s−i) =
[
yak−1ak

i , yakak+1

i

]
, where ya0a1

i = 0.

The above proposition can be illustrated as follows: Fix the signal profile of
buyers other than i. The allocations that may be chosen for different reports of
i’s signal should be lined up in the order of the marginal values ∂vi

∂si
(a, si): The

allocation a with the kth smallest ∂vi
∂si

(a, si) is chosen for the kth partition interval
of reports. (Figure 1). Any two allocations with the same ∂vi

∂si
are equivalent to i,
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a1 a4a3a2

vi(a2, si)

vi(a3, si)

vi(a4, si)

vi(a1, si)
si = 0 si = 1

Figure 1: Ex post implementable allocation rule

and the relative ordering between them is indeterminate. It is also clear from the
figure that[

yak−1ak

i , yakak+1

i

]
=

{
si : vi(ak, si) − ti(ak) = max

a∈Bi(s−i)
vi(a, si) − ti(a)

}
. (2)

4 Optimal Schemes against Two Buyers

Suppose now that there are only two buyers I = {1, 2}. The set of possible alloca-
tions in this case is given by

A = {11, 10, 01, 00},

where
11 = (1, 1), 10 = (1, 0), 01 = (0, 1) and 00 = (0, 0).

We assume positive network externalities as follows.

Assumption 2 For each a ∈ Ai, vi(a, 0) = 0. Furthermore,

∂v1

∂s1
(11, ·) >

∂v1

∂s1
(10, ·), ∂v2

∂s2
(11, ·) >

∂v2

∂s2
(01, ·).
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The following theorem characterizes the optimal schemes in a general environ-
ment with two buyers.

Theorem 1 If (f, t) is an optimal ex post implementable price posting scheme
against two buyers under Assumption 2, then it takes one of the following forms.

(A) y11
1 , y11

2 < 1, y10
1 , y01

2 ∈ (0, 1),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A0) y11
1 ≤ y10

1 , y11
2 ≤ y01

2

(A1) y11
1 ≤ y10

1 , y11
2 > y01

2 ,

(A2) y11
1 > y10

1 , y11
2 ≤ y01

2⎧⎪⎨
⎪⎩

L11 = [y11
1 , 1] × [y11

2 , 1]
L10 = [y10

1 , 1] × [0, y11
2 ]

L01 = [0, y11
1 ] × [y01

2 , 1].

(B1) 0 < y10
1 < y11

1 < y11,10
1 < 1, y11

2 < 1, y01
2 ∈ (0, 1),⎧⎪⎨

⎪⎩
L11 = [y11,10

1 , 1] × [y11
2 , 1]

L10 = [y10
1 , 1] × [0, 1] \ int L11

L01 = [0, y10
1 ] × [y01

2 , 1].

(B2) 0 < y01
2 < y11

2 < y11,01
2 < 1, y10

1 ∈ (0, 1), y11
1 < 1,⎧⎪⎨

⎪⎩
L11 = [y11

1 , 1] × [y11,01
2 , 1]

L10 = [y10
1 , 1] × [0, y01

2 ]
L01 = [0, 1] × [y01

2 , 1] \ int L11.

(C1) y10
1 < y11

1 < 1, 0 < y01
2 < y11

2 < 1,⎧⎪⎨
⎪⎩

L11 = [y11
1 , 1] × [y11

2 , 1]
L10 = [y10

1 , 1] × [0, y11
2 ]

L01 = [0, y10
1 ] × [y01

2 , 1].

(C2) 0 < y10
1 < y11

1 < 1, y01
2 < y11

2 < 1,⎧⎪⎨
⎪⎩

L11 = [y11
1 , 1] × [y11

2 , 1]
L10 = [y10

1 , 1] × [0, y01
2 ]

L01 = [0, y11
1 ] × [y01

2 , 1].

These configurations are depicted in Figures 2, 3 and 4. As seen, an optimal
scheme permits various allocation rules. Which one of these is optimal depends on
the specific distribution of signal profiles.
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y11
1 y10

1

y11
2

y01
2

11

10
00

01

y11
1 y10

1

y01
2

y11
2

11

10
00

01

Figure 2: Configurations (A0) (left) and (A1) (right)

y11,10
1y10

1

y11
2

y01
2

11

10
00

01

y11
1 y10

1

y11,01
2

y01
2

11

1000

01

Figure 3: Configurations (B1) (left) and (B2) (right)

y11
1y10

1

y11
2

y01
2

11

1000

01

y11
1y10

1

y11
2

y01
2

11

1000

01
00

00

Figure 4: Configurations (C1) (left) and (C2) (right)
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r1(11, s1)

r1(10, s1)

s1 = 0 s1 = 1z̄11
1 z̄10

1

Figure 5: Functions r1(10, ·) and r1(11, ·).

4.1 Independent Signals

A more precise characterization of an optimal scheme becomes possible when we
make some additional assumptions on the valuation functions and the signal distri-
bution. Assume specifically that the signals s1 and s2 are independent. Let Gi be
the cumulative distribution function of si, and for i ∈ I, a ∈ A and si ∈ Si, define

ri(a, si) = {1 − Gi(si)} vi(a, si).

to be the seller’s expected revenue from buyer i when he offers allocation a for price
vi(a, si). We make the following assumptions.

Assumption 3 1. vi(a, ·) is strictly log-concave for each a ∈ Ai.9

2. v1(11,·)
v1(10,·) and v2(11,·)

v2(01,·) are weakly decreasing.

3. gi(·)
1−Gi(·) is strictly increasing.

The first two conditions hold, for example, when vi(a, si) = γ(a)h(si) for some
functions γ : A → R+ and h : [0, 1] → R+ such that h is strictly log-concave.
The increasing hazard rate condition in the third line is known to hold for most
distributions. As summarized by the following lemma and depicted in Figure 5, the
above assumption implies that the graph of r1(a, ·) has a single peak when a = 11
or 10 and that the peak of r1(11, ·) is located to the left of that of r1(10, ·).

Lemma 1 Suppose that Assumptions 2 and 3 hold. Then

1. For each a ∈ Ai, ri(a, ·) is strictly log-concave with the (unique) maximizer z̄a
i

which satisfies z̄11
1 ≤ z̄10

1 and z̄11
2 ≤ z̄01

2 .
9That is, log vi(a, ·) is strictly concave for each a.
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2.

∂r1

∂s1
(11, s1) <

∂r1

∂s1
(10, s1) for s1 > z̄10

1 ,

∂r2

∂s2
(11, s2) <

∂r2

∂s2
(01, s2) for s2 > z̄01

2 .

We say that a price posting scheme (f, t) against two buyers is regular if

1. y11
1 ≤ y10

1 , y11
2 ≤ y01

2 , and

2. f1(s) =

⎧⎨
⎩1 if s1 ≥ y10

1 , or s ≥ (y11
1 , y11

2 ),

0 otherwise,
and

f2(s) =

⎧⎨
⎩1 if s2 ≥ y01

2 , or s ≥ (y11
1 , y11

2 ),

0 otherwise.

Under a regular scheme, hence, the price of a larger network a = 11 is more
affordable than that of a smaller network a = 10 or 01, and the network size is
maximized subject to the individual rationality constraints. The second property
can also be interpreted as saying that the good is allocated to a single buyer only
when the other buyer’s signal is too low for joint adoption. Configuration (A0)
in Figure 1 corresponds to a regular scheme. If a regular scheme is optimal, then
(y10

1 , y01
2 ) = (z̄10

1 , z̄01
2 ) and

(y11
1 , y11

2 ) ∈ argmax {1 − G2(y11
2 )} r1(11, y11

1 ) + {1 − G1(y11
1 )} r2(11, y11

2 )

+ G2(y11
2 ) r1(10, z̄10

1 ) + G1(y11
1 ) r2(01, z̄01

2 ).
(3)

Theorem 2 Suppose that (s1, s2) is independent. If (f, t) is an optimal ex post
implementable price posting scheme against two buyers under Assumptions 2 and 3,
then it is regular.

Proof. See the Appendix.
When y11

1 < y10
1 and y11

2 < y01
2 , it is impossible to replicate the allocation rule f

of a regular scheme by any scheme in which the buyers’ decisions are based only on
their own signals or on the decisions of other buyers: In any such scheme, at least
one buyer’s decision (e.g, the first-mover’s decision) must be independent of other
buyers’ signals.
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Example: Suppose that si has the uniform distribution Gi(si) = si, and that the
buyers’ valuation functions are given by

v1(10, s1) = γs1

v1(11, s1) = δs1,

v2(01, s2) = γs2

v2(11, s2) = δs2,

where 0 < γ < δ. Given that the optimal scheme is regular, the marginal value
for the single adoption 10 or 01 equals y10

1 = y01
2 = 1

2 . By (3) and symmetry, the
marginal value y11

1 = y11
2 for the joint adoption 11 solves

y11
1 = y11

2 ∈ argmax
x

δx(1 − x)2 +
γ

4
x.

Solving this, we get10

y11
1 = y11

2 =
1
3δ

{
2δ −

√
δ2 − 3

4
γδ

}
.

We can confirm that y11
1 = y11

2 < 1
2 = y10

1 = y01
2 if and only if γ < δ. Consider now

the price of each allocation associated with these marginal values. They are given
by

t1(10) = t2(01) =
γ

2
, and t1(11) = t2(11) =

1
3

{
2δ −

√
δ2 − 3

4
γδ

}
.

From these, we can check that the price of the size 2 network 11 is higher than that
of the size 1 network if and only if

δ

γ
>

3
4
.

In other words, when the network externalities are strong, the actual price of the
larger network is higher than that of the smaller network, and vice versa.

5 Optimal Symmetric Schemes

With more than two buyers, the problem of identifying all the ex post implementable
schemes becomes intractable. In this section, we focus on an optimal symmetric
scheme when the buyers are ex ante symmetric. We show that the optimal scheme

10As seen, the explicit derivation of the marginal values is possible only under very limited

specifications of the distribution and values.
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is regular when the network externalities are strong, or when a stronger notion of
incentive compatibility is imposed.

Suppose that the signals s1, . . . , sI are independent and identically distributed,
and denote by g the density of si and by G the corresponding cumulative distribu-
tion. The valuation functions are symmetric in the sense that

vi(a, s) = vj(a, s′)

for any a ∈ A, i 	= j, and s, s′ ∈ S such that (si, sj , s−i−j) = (s′j, s
′
i, s−i−j). The

symmetry condition implies that the network externalities depend only on the size
of the allocation a ∈ A, defined by |a| =

∑
j∈I aj. For this reason, we denote by

vn : [0, 1] → R+ the valuation function of any single buyer when he adopts an
allocation of size n ∈ N ≡ {1, . . . , I}.11

We say that a price posting scheme (f, t) is symmetric if for any i 	= j,

(fi(s), fj(s), f−i−j(s)) = (fj(s′), fi(s′), f−i−j(s′))

for any s, s′ ∈ S such that (si, sj , s−i−j) = (s′j, s
′
i, s−i−j), and

(ti(a), tj(a), t−i−j(a)) = (tj(a′), ti(a′), t−i−j(a′))

for any a, a′ ∈ A such that (ai, aj , a−i−j) = (a′j , a
′
i, a

′
−i−j). That is, when (f, t) is

symmetric, swapping the private signals of any pair of buyers results in the swapping
of their allocations but does not affect those of any other buyers.12 When the scheme
(f, t) is symmetric, the transfer depends on the allocation only through its size. That
is, ti(a) = tj(a′) for any i, j ∈ I and any a ∈ Ai, a′ ∈ Aj such that |a| = |a′|. Hence,
we let tn denote the transfer required of any single buyer when he is one of n adopters
of the good. The following assumption is a symmetric generalization of that in the
previous section.

Assumption 4 1. v1(0) = · · · = vI(0) = 0 and (v1)′(·) < · · · < (vI)′(·).

2. g(·)
1−G(·) is strictly increasing.

3. v1, . . . , vI are strictly log-concave.

4. vn(·)
vm(·) is weakly decreasing if m < n.

11Although the set of sizes of positive networks equals the set I = {1, . . . , I} of buyers, we use

different notation N to avoid confusion.
12In the social choice literature, this property is often called anonymity.
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Recall from (1) that for any a, a′ ∈ Ai, ya
i denotes the signal at which buyer i is

indifferent between allocation a priced at ti(a) and no-adoption, and ya,a′
i denotes

the signal at which he is indifferent between a and a′. For any m, n ∈ I, m 	= n,
and a, a′ ∈ Ai such that |a| = m and |a′| = n, we let ym = ya

i , and ymn = ya,a′
i . In

the present context, yn is defined by

vn(yn) = tn if tn ∈ [0, vn(1)],

and yn = 0 if tn < 0, and yn = 1 if tn > vn(1). Likewise, for m < n, ymn = ynm is
defined by

vn(ymn) − tn = vm(ymn) − tm if tn − tm ∈ [0, vn(1) − vm(1)],

and ymn = 0 if tn − tm < 0, and ymn = 1 if tn − tm > vn(1) − vm(1). Just as in
the general formulation of Section 3, restricting the range of the transfer rule tn to
[0, vn(1)] for each n ∈ N entails no loss of generality as far as the expected revenue
is concerned. Given the one-to-one correspondence between such a transfer rule
t = (t1, . . . , tn) and the profile of marginal signals y = (y1, . . . , yI), we again use t

and y interchangeably when describing a price-posting scheme.
Let λ0 = λ0

I−1 = 1, and for each k = 1, . . . , I − 1, let λk = λk
I−1 be the kth

highest value among I − 1 signals s−i = (sj)j �=i. A symmetric price-posting scheme
(f, t) is regular if

1. yI ≤ · · · ≤ y1, and

2. fi(s) =

⎧⎨
⎩1 if si ≥ yn and λn−1 ≥ yn for some n ∈ N ,

0 otherwise.

Again, a regular scheme (1) sets a more affordable price for a larger network, and (2)
maximizes the network size subject to individual rationality. The second property
is implied if for any k ∈ N , |f(s)| = k if and only if |{i ∈ I : si ≥ yk}| = k: To
see the “only if” part, suppose that |f(s)| = k. Then IR implies that |{i ∈ I : si ≥
yk}| ≥ k. If the inequality is strict, then take any i such that si ≥ yk. For this i,
λk ≥ yk ≥ yk+1 so that |f(s)| ≥ k + 1 must hold by definition, a contradiction. It is
also not difficult to see from Proposition 2 that a regular scheme is strategy-proof.13

As in the case with two buyers, we consider the seller’s expected revenue from
a single buyer i. Specifically, take any set K ⊂ N and write K = {k1, . . . , km}

13Proposition 4 below proves that it satisfies a stronger condition of coalitional strategy-proofness.
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for k1 < · · · < km. Let also the marginal signals y = (y1, . . . , yI) ∈ [0, 1]I be
given. Suppose now that the seller simultaneously offers buyer i an allocation of
size k1 for price vk1(yk1), an allocation of size k2 for price vk2(yk2), and so on.
Letting yK = (yk)k∈K , we will denote by rK(yK) the seller’s expected revenue from
these offers to buyer i.14 When K = {k}, we denote rK(yK) = rk(yk), and when
K = {k, 	}, we denote rK(yK) = rk�(yk, y�). Under Assumption 4, we have:

Lemma 2 Suppose that Assumption 4 holds. Then the following hold.

1. For m < n, (vn)′(·)
vn(·) ≤ (vm)′(·)

vm(·) .

2. For each n ∈ I, rn is strictly log-concave with the (unique) maximizer z̄n which
satisfies 1 > z̄1 ≥ · · · ≥ z̄I > 0.

3. (rm)′(s)
(vm)′(s) > (rn)′(s′)

(vn)′(s′) if m < n and s < s′.

4. If m < n, ym < yn, and (rn)′(ymn) ≥ (rm)′(ymn), then rn(yn) > rmn(ym, yn).

The last observation above says that for the seller, offering two allocations is
dominated by offering just one of them when ymn is not so large.15 Let the marginal
signals y = (y1, . . . , yI) and set K ⊂ N be given. Define LK(y) by

LK(y) = {s−i ∈ S−i : min
k∈K

(λk−1 − yk) ≥ 0, max
k/∈K

(λk−1 − yk) < 0}.

The interpretation of LK(y) is as follows. LK(y) is the set of signal profiles of buyers
other than i such that when s−i ∈ LK(y), an ex post IR price-posting scheme (f, t)
may assign an allocation of size k ∈ K to (si, s−i) if si ≥ yk, but not an allocation
of size k /∈ K for any si. Let

QK(y) = P (s−i ∈ LK(y)).

5.1 Optimal Symmetric Scheme under Strong Externalities

We assume that the network externalities are sufficiently large in the sense specified
below.

14An explicit formula for rK(yK) is presented in the Appendix.
15Note that (rn)′(ymn) ≥ (rm)′(ymn) holds only if ymn < z̄n.
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Assumption 5 1. For any m < n and ym, yn ∈ (0, 1), if rn(yn) ≤ rm(ym) and
yn < ym, then

(rn)′(yn)
rn(yn)

{G(ym) − G(yn)} > g(yn).

2. Let μ̄n = vn−1(1)
vn(1) and μn = lims→0

vn−1(s)
vn(s) for n = 2, . . . , I. If

μ̄n <
1 + (n − 2)

∏n−1
k=2 μk

n − 1
,

for n = 2, . . . , I − 1,

The following proposition verifies that Assumption 5 is a requirement on the
degree of network externalities for the linear valuation functions.16

Proposition 3 Suppose that vn(si) = ρnsi for every n = 1, . . . , I, where 0 <

ρ1 < · · · < ρI are constants. Suppose also that the density g is continuous and
strictly positive. Then there exists ε > 0 such that Assumption 5 holds when
max2≤k≤I

ρk−1

ρk < ε.

Now define w : [0, 1]I → R+ by

w(y) =
∑

1∈K⊂N

QK(y) max
∅�=L⊂K

rL(yL).

w(y) is the maximal revenue that the seller can raise from any single buyer i when he
only takes in account (i) IC of buyer i, and (ii) ex post IR of all buyers. It hence gives
an upper bound on the expected revenue under a symmetric, ex post implementable
price-posting scheme (f, y). We can also make the following observation. Suppose
that (f, y) is a regular scheme. Suppose further that s−i ∈ LK(y) for some i and
K ⊂ N with 1 ∈ K. Since ymax K ≤ yk for any k ∈ K, if si < ymax K , then si < yk

for any k ∈ K so that fi(si, s−i) = 0. On the other hand, since the network size is
maximized subject to IR, if si ≥ ymax K , then |f(si, s−i)| = maxK. Therefore, the
expected revenue from buyer i conditional on s−i ∈ LK(y) equals rmaxK(ymax K),
and the unconditional expected revenue from buyer i equals

R(f, y) =
∑

1∈K⊂N

QK(y) rmax K(ymax K). (4)

16For a more general class of valuation functions, the first condition in Assumption 5 also requires

some condition on their derivative.
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If rmaxK(ymax K) = max∅�=L⊂K rL(yL) for any such K, hence, we have w(y) =
R(f, y) by the definition of w(y) and (4). The following lemma summarizes this
observation.

Lemma 3 Let y ∈ [0, 1]I be such that yI ≤ · · · ≤ y1, and

rmaxK(ymax K) = max
∅�=L⊂K

rL(yL) for any 1 ∈ K ⊂ N .

If (f, y) is a regular scheme, then R(f, y) = w(y).

The following theorem proves the optimality of a regular scheme by showing that
any maximizer y of w satisfies the conditions of Lemma 3.

Theorem 3 Suppose that Assumptions 4 and 5 hold. Then the optimal symmetric
price-posting scheme is regular.

When the externalities are positive but weak, preliminary analysis indicates that
an optimal ex post implementable symmetric scheme is not regular. Full charac-
terization of an optimal scheme in such an environment appears extremely difficult
as it entails a very complex allocation rule. As seen in the next section, however,
requiring a stronger version of incentive compatibility recovers the regularity of an
optimal scheme for any positive degree of externalities.

5.2 Optimal Symmetric Scheme under Coalitional Implementabil-

ity

Given a price-posting scheme (f, t), a subset J ⊂ I of buyers, and signal profiles
s = (sJ , s−J) and ŝJ , ŝJ is a profitable deviation for the coalition J at s if

vi(f(ŝJ , s−J), si) − ti(f(ŝJ , s−J)) ≥ vi(f(s), si) − ti(f(s)) for every i ∈ J , and

vi(f(ŝJ , s−J), si) − ti(f(ŝJ , s−J)) > vi(f(s), si) − ti(f(s)) for some i ∈ J .

(f, t) is coalitionally strategy-proof if no coalition of buyers has a profitable devia-
tion at any signal profile. Coalitional strategy-proofness is hence a strong robustness
requirement since even if there exists a group of buyers who share the information
about their private signals and jointly misreport them, the deviation is not prof-
itable. (f, t) is coalitionally ex post implementable if it is coalitionally strategy-proof
and ex post individually rational.
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Proposition 4 A regular scheme (f, t) is coalitionally ex post implementable.

Given the marginal signals y = (y1, . . . , yI), define

M(y) = {m : m = 1, . . . , I − 1, ym < max
�>m

y�}.

M(y) is the set of sizes of a network whose marginal value is smaller than the
marginal value for some larger network. Also, let

K(f) = {n ∈ N : |f(s)| = n for some s ∈ S}

be the set of network sizes that may be achieved under an allocation rule f . If (f, y)
is a regular scheme, then K(f) = N , and also M(y) = ∅ since a larger network is
always more affordable (yI ≤ · · · ≤ y1). Hence, M(y) ∩ K(f) = ∅ for a regular
scheme. For K ⊂ N and y ∈ [0, 1]I , let w(K, y) be defined by

w(K, y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈K

P

(
λk−1 ≥ yk, max

�>k
�∈K

(λ�−1 − y�) < 0

)
rk(yk) if K ∩ M(y) = ∅,

0 otherwise.

The following proposition shows that for any coalitionally ex post implementable
scheme, (1) ym ≤ yk holds whenever k, m ∈ K(f) and k < m, (2) its expected
revenue is bounded above by w(K(f), y), and (3) when it is regular, the expected
revenue R(f, y) equals w(K(f), y) = w(N, y).

Lemma 4 Let (f, y) be a symmetric, coalitionally ex post implementable price-
posting scheme. Then

1. M(y) ∩ K(f) = ∅.

2. R(f, y) ≤ w(K(f), y).

3. If (f, y) is regular, then R(f, y) = w(N, y).

Given that the expected revenue from a regular scheme (f, y) equals an upper
bound w(N, y), it is optimal if the function w(K, y) is itself maximized at some
(N, y). The following theorem shows that this in fact holds.

Theorem 4 Suppose that Assumption 4 holds. Then there exists a regular price-
posting scheme that is optimal in the class of symmetric, coalitionally ex post im-
plementable price-posting schemes.
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6 Conclusion

Most of the sales schemes for network goods proposed in the literature specify a fixed
price or transfer for each allocation but do not coordinate the buyers’ adoption de-
cisions. A price-posting scheme maintains a one-to-one correspondence between
the price and allocation and allows the seller to coordinate the buyers’ adoption
decisions through the reported signals. As such, hence, it presents a reasonable
generalization of many sales schemes studied in the literature. The ex post imple-
mentability eliminates the multiplicity of equilibria, a central issue in the network
adoption problems. We identify the conditions under which the optimal scheme is
regular. In a regular scheme, a more affordable price is set for a larger network, and
given those prices, the network size is maximized as allowed by individual rational-
ity. Given that regularity is defined in terms of the private signals, it has no direct
implication on the actual price levels for different allocations. As observed in the
example in Section 4.1, it is consistent with a lower price for a smaller network when
the network externalities are strong, and a lower price for a larger network when the
externalities are not so strong. The observation in the first case corresponds to a
refund from the seller to the adopters when the number of adoptions is below some
threshold.

In this paper, we have only looked at positive network externalities. It would be
interesting to study optimal sales schemes under negative externalities as seen in the
case of snob consumption, or more complex forms of externalities based on graph
structure.17 Network goods are often supplied competitively as in the case of cellular
phones or PC operating systems. While some aspects of such competition have been
analyzed by Katz and Shapiro (1985, 1986), much remains to be understood.

Appendix

Proof of Proposition 2 (Necessity) 1. We first show that if f(si, s−i) = ak and
f(s′i, s−i) = am for k < m, then si < s′i. Since (f, t) is strategy-proof,

vi(am, s′i) − ti(am)

= vi(f(s′i, s−i), s′i) − ti(f(s′i, s−i))

≥ vi(f(si, s−i), s′i) − ti(f(si, s−i))

= vi(ak, s′i) − ti(ak),
17See Sundararajan (2007) for one such formulation.
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and

vi(ak, si) − ti(ak)

= vi(f(si, s−i), si) − ti(f(si, s−i))

≥ vi(f(s′i, s−i), si) − ti(f(s′i, s−i))

= vi(am, si) − ti(am).

It hence follows that

vi(am, s′i) − vi(ak, s′i) ≥ ti(am) − ti(ak) ≥ vi(am, si) − vi(ak, si).

This further implies that∫ s′i

si

∂vi

∂si
(am, si) dsi = vi(am, s′i) − vi(am, si)

≥ vi(ak, s′i) − vi(ak, si) =
∫ s′i

si

∂vi

∂si
(ak, si) dsi.

Since ∂vi
∂si

(am, ·) > ∂vi
∂si

(ak, ·) by assumption, this implies that si < s′i.

2. If ti(a) > ti(ak) for a ∈ Ci(ak) ∩ Bi(s−i), then vi(f(si, s−i), si) − ti(f(si, s−i)) <

vi(f(s′i, s−i), si)− ti(f(s′i, s−i)) for si and s′i such that f(si, s−i) = a and f(s′i, s−i) =
ak, contradicting the strategy-proofness of (f, t).

3. Ex post IR requires that vi(a1, 0) − ti(a1) = −ti(a1) ≥ 0.

4. For si and s′i such that f(si, s−i) = ak and f(s′i, s−i) = ak+1, we have

vi(ak, si) − ti(ak) = vi(f(si, s−i), si) − ti(f(si, s−i))

≥ vi(f(s′i, s−i), si) − ti(f(s′i, s−i))

= vi(ak+1, si) − ti(ak+1).

Hence,
ti(ak+1) − ti(ak) ≥ vi(ak+1, si) − vi(ak, si) ≥ 0.

(Sufficiency) Fix i ∈ I and s−i ∈ S−i.
Strategy-proofness:

Suppose that si ∈ [yak−1ak

i , yakak+1

i ] and that s′i ∈ [ya�−1a�

i , ya�a�+1

i ] for some
k 	= 	. Then

vi(f(si, s−i), si) − ti(f(si, s−i)) = vi(ak, si) − ti(ak)

≥ vi(a�, si) − ti(a�)

= vi(f(s′i, s−i), si) − ti(f(s′i, s−i)),
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where the inequality follows from (2).
Ex post IR:

Since for si ∈ [yakak−1

i , yak+1ak

i ], we have

vi(ak, si) − ti(ak)

≥ vi(ak, yakak−1

i ) − ti(ak) = vi(ak−1, yakak−1

i ) − ti(ak−1)

≥ vi(ak−1, yak−1ak−2

i ) − ti(ak−1) = vi(ak−2, yak−1ak−2

i ) − ti(ak−2)

≥ · · ·
≥ −ti(a1) ≥ 0.

Proof of Theorem 1 We begin with the following lemma.

Lemma 5 Suppose that (f, t) is an optimal ex post implementable price posting
scheme against two buyers under Assumption 2. Then

1. There exist no 0 ≤ α1 < β1 ≤ 1 such that f(s) = 0 for every s ∈ (α1, β1) ×
(y01

2 , 1].

2. There exist no 0 ≤ α2 < β2 ≤ 1 such that f(s) = 0 for every s ∈ (y10
1 , 1] ×

(α2, β2).

3. L11 is a rectangle with a non-empty interior such that (1, 1) ∈ L11 and (0, 0) /∈
L11.

Proof.

1. Suppose that there exist such α1 and β1 and denote D = (α1, β1) × (y01
2 , 1]. We

will show that (f, t) is suboptimal. If y01
2 = 0 or 1, let (f̂ , t̂) be such that ŷ1 = y1,

(ŷ01
2 , ŷ11

2 ) = (1
2 , y11

2 ), and

f̂(s) =

⎧⎨
⎩01 if s ∈ (α1, β1) × (1

2 , 1],

f(s) otherwise.

Then (f̂ , t̂) is ex post implementable and raises a strictly positive expected revenue
P (s ∈ (α1, β1) × (1

2 , 1]) v2(01, 1
2) from D. When y01

2 ∈ (0, 1), let (f̂ , t̂) be such that
ŷ = y and

f̂(s) =

⎧⎨
⎩01 if s ∈ D,

f(s) otherwise.
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Again, (f̂ , t̂) is ex post implementable and raises a strictly positive expected revenue
P (s ∈ D) v2(01, y01

2 ) from D. In both cases, R(f̂ , t̂) > R(f, t).

3. If L11 	= ∅, then it contains (1, 1) by Assumption 2 and Proposition 2. Suppose
that int L11 = ∅. The optimality of (f, t) would then imply that (1, 1) ∈ L10 ∪ L01.
Assume without loss of generality that (1, 1) ∈ L10. We will show that (f, t) is
dominated by an alternative scheme (f̂ , t̂) defined as follows:

f̂(s) =

⎧⎨
⎩11 if s ∈ [y10

1 , 1] × [0, 1],

f(s) otherwise.
(ŷ10

1 , ŷ11
1 ) = (y10

1 , y10
1 ), (ŷ01

2 , ŷ11
2 ) = (y01

2 , 0)

Then (f̂ , t̂) is ex post implementable. Furthermore, the expected revenue under
(f̂ , t̂) from [y10

1 , 1] × [0, 1] equals

P (L11) v1(11, y10
1 ).

This is strictly greater than the expected revenue under (f, t) from the same set
since the latter is bounded above by

P (L11) v1(10, y10
1 ),

and v1(11, y10
1 ) > v1(10, y10

1 ) by Assumption 2. The expected revenue under (f̂ , t̂)
and that under (f, t) are the same elsewhere. We hence conclude that R(f, t) <

R(f̂ , t̂).
Next, we show that L11 is a rectangle. If y10

1 ≥ y11
1 , then L11 = [y11

1 , 1] × [y11
2 , 1]

or L11 = [y11
1 , 1] × [y11,01

2 , 1]. It is also a rectangle if y01
2 ≥ y11

2 . Suppose then
that y11,10

1 > y11
1 and y11,01

2 > y11
2 . L11 may fail to be a rectangle only if L11 =

[y11
1 , 1]×[y11

2 , 1]\[y11
1 , y11,10

1 ]×[y11
2 , y11,01

2 ]. However, if f(s) = 10 for s ∈ [y11
1 , y11,10

1 ]×
[y11

2 , y11,01
2 ], f is not ex post IC since for s1 ∈ (y11

1 , y11,10
1 ), L2(10, s1) = [y11

2 , y11,01
2 ]

and L2(11, s1) = [y11,01
2 , 1] and violates Proposition 2. Likewise, f(s) 	= 01, 00 for

s ∈ [y11
1 , y11,10

1 ] × [y11
2 , y11,01

2 ]. Therefore, L11 is a rectangle in all cases. Finally,
(0, 0) /∈ L11 since otherwise, L11 = [0, 1]2 and the expected revenue under (f, t)
would equal zero.

We now return to the proof of the theorem.
Case 1) y11

1 ≤ y10
1 and y11

2 ≤ y01
2 . For s � (y11

1 , y11
2 ), f(s) = 00 by ex post IR.

For s ∈ [0, y10
1 ) × [0, y11

2 ), f(s) = 00 by ex post IR. It then follows from Lemma
5.1 that y10

1 < 1 and that f(s) = 10 for s ∈ (y10
1 , 1] × [0, y11

2 ). The symmetric
argument shows that y01

1 < 1, f(s) = 00 for s ∈ [0, y11
1 ) × (y11

2 , y01
2 ), and f(s) = 01
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Figure 6: Configuration (D)

for s ∈ [0, y11
1 ) × (y01

2 , 1]. By Lemma 5.3, it must be the case that f(s) = 11
for s ∈ (y10

1 , 1] × (y01
2 , 1]. By ex post IC, we must then have f(s) = 11 for s ∈

(y11
1 , y10

1 ]× (y01
2 , 1] and s ∈ (y10

1 , 1]× (y11
2 , y01

2 ). Since L11 is a rectangle, we can then
conclude that L11 = [y11

1 , 1] × [y11
2 , 1].

Case 2) y10
1 < y11

1 < y11,10
1 and y01

2 < y11
2 < y11,01

2 . For s � (y10
1 , y01

2 ), f(s) = 00
by ex post IR. For s ∈ (y10

1 , 1] × (0, y01
2 ), f(s) ∈ {00, 10} by ex post IR, and hence

f(s) = 10 by Proposition 2 and Lemma 5.1. The symmetric argument shows that
f(s) = 01 for s ∈ [0, y10

1 ) × (y01
2 , 1]. We now proceed by separately considering

possible configurations of L11. Since L11 is a rectangle containing (1, 1) by Lemma
5.3, there are four possible cases as follows:

1. L11 = [y11,10
1 , 1] × [y11,01

2 , 1]. Proposition 2 shows that f(s) = 10 for s ∈
(y10

1 , y11,10
1 ) × (y11,01

2 , 1] and that f(s) = 01 for s ∈ (y11,10
1 , 1] × (y01

2 , y11,01
2 ).

Proposition 2 further implies that f(s) = 00 for s ∈ (y10
1 , y11,10

1 )× (y01
2 , y11,01

2 ).
This configuration, called (D), is depicted in Figure 6.

Now consider configurations (B1) and (B2) which have the same t as (D) above.
We show that (D) is dominated by (B1) if t1(10) ≥ t2(01) and dominated by
(B2) if t1(10) ≤ t2(01). To see this, note that the expected revenue under (D)
minus that under (B1) is written as

RF − RB = P ([y10
1 , y11,10

1 ] × [y01
2 , y11,01

2 ]) {−t1(10)}
+ P ([y11,10

1 , 1] × [y01
2 , y11

2 ]) {t2(01) − t1(10)}
+ P ([y11,10

1 , 1] × [y11
2 , y11,01

2 ]) {t2(01) − t1(11) − t2(11)}.

Since y11
1 > y10

1 ≥ 0 implies t1(11) = v1(11, y11
1 ) > v1(10, y10

1 ) = t1(10) ≥ 0,
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this difference is strictly negative if t1(10) ≥ t2(01). Likewise, the expected
revenue under (D) minus that under (B2) is written as

RF − RC = P ([y10
1 , y11,10

1 ] × [y01
2 , y11,01

2 ]) {−t2(01)}
+ P ([y10

1 , y11
1 ] × [y11,01

2 , 1]) {t1(10) − t2(01)}
+ P ([y11

1 , y11,10
1 ] × [y11,01

2 , 1]) {t1(10) − t1(11) − t2(11)}.

Since y11
2 > y01

2 ≥ 0 implies t2(11) = v2(11, y11
2 ) > v2(01, y01

2 ) = t2(01) ≥ 0, the
difference is strictly negative if t2(01) ≤ t1(10). Hence, (D) is never optimal.

2. L11 = [y11,10
1 , 1] × [y11

2 , 1]. By Proposition 2, f(s) = 10 for s ∈ (y10
1 , y11,10

1 ) ×
(y11

2 , 1]. Furthermore, Lemma 5.1 shows that f(s) = 10 for s ∈ (y10
1 , 1] ×

(y01
2 , y11

2 ). This yields (B1).

3. L11 = [y11
1 , 1] × [y11,01

2 , 1]. A similar reasoning as above shows that f(s) = 01
for (y10

1 , 1] × (y01
2 , 1] \ L11. This yields (B2).

4. L11 = [y11
1 , 1] × [y11

2 , 1]. In this case, we have two possibilities:

(a) f(s) = 10 for s ∈ (y10
1 , 1] × (y01

2 , y11
2 ) and f(s) = 00 for s ∈ (y10

1 , y11
1 ) ×

(y11
2 , 1]. This yields (C1).

(b) f(s) = 01 for s ∈ (y10
1 , 1] × (y01

2 , y11
2 ) and f(s) = 00 for s ∈ (y10

1 , y11
1 ) ×

(y11
2 , 1]. This yields (C2).

Case 3) y10
1 < y11

1 < y11,10
1 and y11

2 < y01
2 .

By ex post IR and Lemma 5.1, f(s) = 00 for s ∈ [0, y10
1 ) × [0, y01

2 ), f(s) = 01
for s ∈ [0, y10

1 ) × (y01
2 , 1], and f(s) = 10 for s ∈ [y10

1 , 1] × [0, y11
2 ). By Lemma 5.3,

L11 can be either (i) [y11,10
1 , 1] × [y11

2 , 1] or (ii) s ∈ [y11
1 , 1] × [y11

2 , 1]. In case (i),
it must be the case that f(s) = 10 for s ∈ (y10

1 , y11,10
1 ) × (y11

2 , 1]. Hence we obtain
configuration (B1). In case (ii), f(s) = 00 for s ∈ (y10

1 , y11
1 )×(y11

2 , y01
2 ) by Proposition

2. Proposition 2 also implies that that f(s) ∈ {10, 00} for s ∈ (y10
1 , y11

1 ) × (y01
2 , 1].

However, Lemma 5.1 implies that f(s) = 10. This yields (A).

Case 4) y11
1 < y10

1 and y01
2 < y11

2 < y11,01
2 .

The reasoning similar to that of Case 3 above yields (A) and (B2).
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Proof of Theorem 2 We first examine the optimality of configuration (B1),
which requires y10

1 < y11
1 < y11,10

1 < 1. Since y11,10
1 is uniquely determined as a

function of y1 = (y10
1 , y11

1 ) in this case, we can use the pair of variables (y10
1 , y10,11

1 )
instead of y1 to express the seller’s expected revenue.

RB(y11,10
1 , y10

1 , y11
2 , y01

2 )

= {1 − G2(y11
2 )} {1 − G1(y

11,10
1 )}

×
{
v1(11, y

11,10
1 ) − v1(10, y

11,10
1 ) + v1(10, y10

1 ) + v2(11, y11
2 )

}
+

[
1 − G1(y10

1 ) − {1 − G2(y11
2 )} {1 − G1(y

11,10
1 )}

]
v1(10, y10

1 )

+ G1(y10
1 ) {1 − G2(y01

2 )} v2(01, y01
2 )

= {1 − G2(y11
2 )}

{
r1(11, y

11,10
1 ) − r1(10, y

11,10
1 ) + {1 − G1(y

11,10
1 )} v2(11, y11

2 )
}

+ r1(10, y10
1 ) + G1(y10

1 ) r2(01, y01
2 ).

Differentiation of RB with respect to y10
1 yields:

∂RB

∂y11,10
1

(y11,10
1 , y10

1 , y11
2 , y01

2 ) =
∂r1

∂s1
(10, y10

1 ) + g1(y10
1 ) r2(01, y01

2 ).

If y10
1 < z̄10

1 , then ∂r1
∂s1

(10, y10
1 ) > 0 by Assumption 3 and hence the above partial

derivative is strictly positive. It follows that the optimal y10
1 must satisfy y10

1 ≥ z̄10
1 .

Next, differentiation of RB with respect to y11,10
1 yields:

∂RB

∂y11,10
1

(y11,10
1 , y10

1 , y11
2 , y01

2 )

= {1 − G2(y11
2 )}

{∂r1

∂s1
(11, y11,10

1 ) − ∂r1

∂s1
(10, y11,10

1 ) − g1(y
11,10
1 ) v2(11, y11

2 )
}

.

Since y11,10
1 > y10

1 ≥ z̄10
1 , ∂r1

∂s1
(11, y11,10

1 ) < ∂r1
∂s1

(10, y11,10
1 ) by Assumption 3. It follows

that
∂RB

∂y11,10
1

(y11,10
1 , y10

1 , y11
2 , y01

2 ) < 0 for y11,10
1 > y10

1 ,

suggesting that (B1) cannot be optimal. The symmetric discussion shows that (B2)
is also suboptimal. Consider next configuration (C1) which requires y10

1 < y11
1 < 1.
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The expected revenue can be written as:

RD(y11
1 , y10

1 , y11
2 , y01

2 )

= {1 − G2(y11
2 )} {1 − G1(y11

1 )}
{

v1(11, y11
1 ) + v2(11, y11

2 )
}

+ {1 − G1(y10
1 )}G2(y11

2 ) v1(10, y10
1 )

+ G1(y10
1 ) {1 − G2(y01

2 )} v2(01, y01
2 )

= {1 − G2(y11
2 )} r1(11, y11

1 ) + {1 − G1(y11
1 )} r2(11, y11

2 )

+ G2(y11
2 ) r1(10, y10

1 ) + G1(y10
1 ) r2(01, y01

2 ).

(5)

Differentiation of RD with respect to y10
1 yields

∂RD

∂y10
1

(y11
1 , y10

1 , y11
2 , y01

2 ) = G2(y11
2 )

∂r1

∂s1
(10, y10

1 ).

Hence, the optimal y10
1 should equal z̄10

1 . Differentiation of RD with respect to y11
1

on the other hand yields

∂RD

∂y11
1

(y11
1 , y10

1 , y11
2 , y01

2 ) = {1 − G2(y11
2 )} ∂r1

∂s1
(11, y11

1 ) − g1(y11
1 ) r2(11, y11

2 ).

Since y11
1 > y10

1 = z̄10
1 , ∂r1

∂s1
(11, y11

1 ) < ∂r1
∂s1

(10, y11
1 ) < 0 by Assumption 3. Therefore,

the derivative is strictly negative and (C1) cannot be optimal. That (C2) cannot be
optimal is shown by a symmetric argument. We are then left with configurations in
(A), which require either y11

1 ≤ yb or y11
2 ≤ y01

2 . The expected revenue under each
one of (A) has the same expression as that under (B2) in (5). It then follows from
the discussion there that the optimal values satisfy y10

1 = z̄10
1 , y01

2 = z̄01
2 , y11

1 ≤ z̄10
1

and y11
2 ≤ z̄10

2 . The optimal scheme is hence (A0), which is regular.

Formula for rK(yK): We can verify that the seller’s expected revenue from these
price offers equals

rK(yK)

= max
{
0, G(min {yk1k2 , . . . , yk1km}) − G(yk1)

}
vk1(yk1)

+
m−1∑
n=2

max
{
0, G(min {yknkn+1, . . . , yknkm})

− G(max {ykn , yk1kn , . . . , ykn−1kn})
}

vkn(ykn)

+ max
{
0, 1 − G(max {ykm , yk1km , . . . , ykm−1km})

}
vkm(ykm).
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When yk�kn < ykmkn for every 	 < m and n, we can express rK(yK) as

rK(yK) =
m∑

n=2

{rkn(ykn−1kn) − rkn−1(ykn−1kn)} + rk1(yk1). (6)

Proof of Lemma 4 (i) For m < n, (vn)′(·)
vn(·) ≤ (vm)′(·)

vm(·) .

This readily follows from Assumption 4(iv), which implies that
(

vn(s)
vm(s)

)′ ≤ 0
when m < n.

(ii) For each n ∈ I, rn is strictly log-concave with the (unique) maximizer z̄n which
satisfies 1 > z̄1 ≥ · · · ≥ z̄I > 0.

Note that

(rn)′(s) = −g(s) vn(s) + {1 − G(s)} (vn)′(s)

= {1 − G(s)} vn(s)
{
− g(s)

1 − G(s)
+

(vn)′(s)
vn(s)

}

= rn(s)
{
− g(s)

1 − G(s)
+

(vn)′(s)
vn(s)

}
.

Since g(s)
1−G(s) is strictly increasing and (vn)′(s)

vn(s) is strictly decreasing, (rn)′(·)
rn(·) is strictly

decreasing, implying that rn is strictly log-concave. Hence, the maximizer z̄n of rn

is unique and satisfies z̄n ∈ (0, 1) as rn(0) = rn(1) = 0. For m < n, z̄m and z̄n

satisfy
(vm)′(z̄m)
vm(z̄m)

=
g(z̄m)

1 − G(z̄m)
and

(vn)′(z̄n)
vn(z̄n)

=
g(z̄n)

1 − G(z̄n)
.

If z̄m < z̄n, then
g(z̄m)

1 − G(z̄m)
<

g(z̄n)
1 − G(z̄n)

,

and hence
(vm)′(z̄m)
vm(z̄m)

<
(vn)′(z̄n)
vn(z̄n)

,

which contradicts (i).

(iii) (rm)′(s)
(vm)′(s) > (rn)′(s′)

(vn)′(s′) if m < n and s < s′.
The inequality is equivalent to

{1 − G(s′)}
[
1 − g(s′)

1 − G(s′)
vn(s′)

(vn)′(s′)

]
< {1 − G(s)}

[
1 − g(s)

1 − G(s)
vm(s)

(vm)′(s)

]
.

Since s < s′, this holds if g(·)
1−G(·) is (strictly) increasing, and (vn)′(s′)

vn(s′) ≤ (vm)′(s)
vm(s) . By

the log-concavity of vm, the latter inequality holds if (vn)′(s′)
vn(s′) ≤ (vm)′(s′)

vm(s′) , which is
true by (i).
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(iv) If m < n, s < s′, s′′ = ϕmn(s, s′), and (rn)′(s′′) ≥ (rm)′(s′′), then rn(s′) >

rmn(s, s′).
We first show that (rn)′(s) ≥ (rm)′(s) implies that (rn)′(s), (rm)′(s) ≥ 0. Note

that (rn)′(s) ≥ (rm)′(s) is equivalent to

(vn)′(s) − (vm)′(s)
vn(s) − vm(s)

≥ g(s)
1 − G(s)

. (7)

and that (rn)′(s) ≥ 0 is equivalent to

(vn)′(s)
vn(s)

≥ g(s)
1 − G(s)

. (8)

Furthermore, since (vn)′(·)
vn(·) ≤ (vm)′(·)

vm(·) by (i),

(vn)′(s)
vn(s)

≥ (vn)′(s) − (vm)′(s)
vn(s) − vm(s)

. (9)

(8) then follows from (9) and (7). That (rm)′(s) > 0 can be obtained in a similar
manner.

Now, since (rn)′(s′′), (rm)′(s′′) ≥ 0, we have (rm)′(s) > 0 and (rn)′(s′) > 0 for
any s, s′ < s′′ by the strict log-concavity of rm and rn. It hence follows from (iii)
that for any such s and s′,

(vm)′(s)
(vn)′(s′)

<
(rm)′(s)
(rn)′(s′)

. (10)

Now fix s′′ such that rn(s′′) > rm(s′′), and consider the following functions of
s ∈ [0, s′′]:

s′ = (vn)−1
(
vm(s) + vn(s′′) − vm(s′′)

)
,

and
s′ = (rn)−1

(
rm(s) + rn(s′′) − rm(s′′)

)
.

Both functions are differentiable over the domain, and the graph of the former lies
above that of the latter since both of them go through (s′′, s′′) and have a single
crossing point because of (10), which shows that the latter has a steeper slope than
the former at any point of intersection between the two. Hence, for any s < s′′, we
have

(vn)−1
(
vm(s) + vn(s′′) − vm(s′′)

)
> (rn)−1

(
rm(s) + rn(s′′) − rm(s′′)

)
.
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In other words, whenever vn(s′) = vm(s)+vn(s′′)−vm(s′′), rn(s′) > rm(s)+rn(s′′)−
rm(s′′). Equivalently, we have rn(s′) > rm(s)+rn(s′′)−rm(s′′) when s′′ = ϕmn(s, s′),
and s < s′. The desired conclusion then follows since by (6),

rmn(s, s′) = rn(s′′) − rm(s′′) + rm(s).

Proof of Proposition 3 Since the density g is continuous and strictly positive
over [0, 1], we have

G(ym) − G(yn)
ym − yn

≥ β g(yn),

where β = min g(si)
max g(si)

> 0. Hence, Assumption 5.1 holds if

β(ym − yn)
(rn)′(yn)
rn(yn)

> 1.

Since rm(ym) ≥ rn(yn) and ym > yn imply vm(ym) > vn(yn), using the linearity of
the value functions, we see that the above inequality holds if

β

(
ρn

ρm
− 1

)
yn (rn)′(yn)

rn(yn)
> 1.

Substituting

(rn)′(yn)
rn(yn)

=
(vn)′(yn)
vn(yn)

− g(yn)
1 − G(yn)

=
1
yn

− g(yn)
1 − G(yn)

into the above, we obtain

β

(
ρn

ρm
− 1

)(
1 − yn g(yn)

1 − G(yn)

)
> 1.

Since yn < ρm

ρn < ε, the increasing hazard rate condition then implies that the above
holds if

β

(
1
ε
− 1

)(
1 − ε

g(ε)
1 − G(ε)

)
> 1,

which is true for a small ε > 0.
For Assumption 5.2, the assumed linearity of vn implies that μ̄n = μn = ρn−1

ρn <

ε. The inequality then holds if

ε <
1 + (n − 2)εn−2

n − 1
,

which is true for a small ε > 0.
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Proof of Theorem 3 The proof of the theorem begins with Lemmas 6, 7 and 8.

Lemma 6 If z ∈ argmaxy∈[0,1]I w(y), then there exists a permutation π1, . . . , πI of
1, . . . , I such that for each n = 1, . . . , I,

rπn(zπn) = max
∅�=L⊂Πn

rL(zL),

where ΠI = N and Πn = N \ {πn+1, . . . , πI}. In particular, rπI (zπI ) ≥ · · · ≥
rπ1(zπ1).

Proof.
Step 1. rπI (zπI ) = max∅�=J⊂I rJ(zJ) for some πI ∈ I.

Suppose to the contrary that there exists K such that K ⊂ I, |K| ≥ 2, and

rK(zK) = max
∅�=J⊂I

rJ(zJ). (11)

If there exists more than one such set that satisfies (11), choose any one with the
smallest cardinality |K|. Write K = {κ1, . . . , κn} for some 2 ≤ n ≤ I and κ1 <

· · · < κn. Now consider y such that

0 < yκ1 < · · · < yκn < 1, and yκn−1 < yκn < yκn−1κn < 1. (12)

Given that K has the smallest cardinality, z must satisfy (12): Otherwise, there is
redundancy in K and we can find a strictly smaller set K̂ ⊂ K such that rK̂(zK̂) =
rK(zK). Write yκ1κ2, . . . , yκn−1κn as functions of yκ1 , . . . , yκn as follows:

yκ1κ2 = yκ1κ2(yκ1 , yκ2), . . . , yκn−1κn = yκn−1κn(yκn−1 , yκn).

Let
zκ1κ2 = yκ1κ2(zκ1 , zκ2), . . . , zκn−1κn = yκn−1κn(zκn−1 , zκn).

z1 = ϕκ1κ2(zκ1 , zκ2), . . . , ζn−1 = ϕκn−1κn(zκn−1 , zκn).

By our choice of K, we must have 0 < ζ1 < ζ2 < · · · < ζn−1 < 1, zκ1 < zκ2 < ζ1,
zκ2 < zκ3 < ζ2,. . . ,zκn−1 < zκn < ζn−1.

Now define ŵ by

ŵ(y) =
∑

1∈J⊂N
κn /∈J

QJ(y) max
∅�=L⊂J

rL(yL) + rK(yK)
∑

1∈J⊂N
K⊂J

QJ(y).
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Note that LJ(z) = ∅ for any J ⊂ N such that K 	⊂ J and κn ∈ J : Suppose to
the contrary that s−i ∈ LJ(z) for such a J . Since K 	⊂ J , there exists k ∈ K

such that λk−1 < zk. However, since λκn−1 ≤ λk−1 < zk ≤ zκn for any such s−i,
we must have λκn−1 < zκn , contradicting the assumption that κn ∈ J . Hence,∑

1∈J⊂N
κn∈J,K �⊂J

QJ(z) = 0 so that

ŵ(z) =
∑

1∈J⊂N
K �⊂J

QJ(z) max
∅�=L⊂J

rL(zL) + rK(zK)
∑

1∈J⊂N
K⊂J

QJ(z).

This suggests that ŵ(y) ≤ w(y) for any y, and ŵ(z) = w(z) by our hypothesis.
From the definition of ŵ, we have

∂ŵ

∂yκn
(z) =

∑
1∈J⊂N
κn /∈J

∂QJ

∂yκn
(z) max

∅�=L⊂J
rL(zL)

+ rK(zK)
∑

1∈J⊂N
K⊂J

∂QJ

∂yκn
(z) +

∂rK

∂yκn
(zK)

∑
1∈J⊂N

K⊂J

QJ(z).

Using ∑
1∈J⊂N
κn /∈J

∂QJ

∂yκn
(z) = −

∑
1∈J⊂N

K⊂J

∂QJ

∂yκn
(z),

we observe that the FOC ∂ŵ
∂yκn (z) = 0 is given by

∑
1∈J⊂N
κn /∈J

∂QJ

∂yκn
(zJ )

{
max

∅�=L⊂J
rL(zL) − rK(zK)

}
+

∂rK

∂yκn
(zK)

∑
1∈J⊂N

K⊂J

QJ(z) = 0.

Note that the bracketed term is negative and that
∑

1∈J⊂N
K⊂J

QJ(z) > 0 since zκ1 <

· · · < zκn < 1. It follows that this equation holds only if

∂rK

∂yκn
(zK) ≥ 0.

Recall from (6) that

rK(zK) = rκ1(zκ1) +
n∑

�=2

{
rκ�(zκ�−1κ�) − rκ�−1(zκ�−1κ�)

}
.

The derivative of rK is hence given by

∂rK

∂yκn
(zK) =

{
(rκn)′(zκn−1κn) − (rκn−1)′(zκn−1κn)

} ∂yκn−1κn

∂yκn
(zκn−1 , zκn).
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Since ∂yκn−1κn

∂yκn (zκn−1 , zκn) > 0, (rκn)′(zκn−1κn) − (rκn−1)′(zκn−1κn) ≥ 0. Since
zκ�−1 < zκ� < zκ�−1κ� ≤ zκn−1κn for each 	 ≤ n, we have by Lemma 4

rκ�(zκ�) > rκ�−1κ�(zκ�−1 , zκ�) = rκ�−1(zκ�−1) + rκ�(zκ�−1κ�) − rκ�−1(zκ�−1κ�).

Substituting this into (6), we obtain

rK(zK)

= rκ1(zκ1) +
n∑

�=2

{
rκ�(zκ�−1κ�) − rκ�−1(zκ�−1κ�)

}

< rκ1(zκ1) +
n∑

�=2

{
rκ�(zκ�) − rκ�−1(zκ�−1)

}
= rκn(zκn).

This however contradicts our original supposition.

Step 2.
As an induction hypothesis, suppose that for m = μ + 1, . . . , I, there exists

πm ∈ Πm such that
rπm(zπm) = max

∅�=L⊂Πm

rL(zL).

We will show that
rK(zK) < max

∅�=J⊂Πμ

rJ(zJ)

for any K such that K ⊂ Πμ and |K| ≥ 2. Suppose to the contrary that rK(zK) =
max∅�=J⊂Πμ

rJ(zJ ) for some K = {κ1, . . . , κn} such that K ⊂ Πμ and n ≥ 2. Define

ŵ(y) =
∑

1∈J⊂Πμ
κn /∈J

QJ(y) max
∅�=L⊂J

rL(yL) + rK(yK)
∑

1∈J⊂Πμ
K⊂J

QJ(y)

+
I∑

m=μ+1

rπm(yπm)
∑

1∈J⊂Πm
πm∈J

QJ(y).

As in Step 1, we observe that LJ(z) = ∅ for any J such that κn ∈ J and K 	⊂ J .18

Then ŵ(y) ≤ w(y) for any y and ŵ(z) = w(z) by the induction hypothesis. Since∑
1∈J⊂Πm

πm∈J

QJ(y) = P
(
λπm−1 ≥ yπm, max

�>m
(λπ�−1 − yπ�) < 0

)
,

18The reasoning is the same as that following the definition of ŵ in Step 1.
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the third term in the definition of ŵ is independent of yΠμ . It follows that

∂ŵ

∂yκn
(z) =

∑
1∈J⊂Πμ

κn /∈J

∂QJ

∂yκn
(z) max

∅�=L⊂J
rL(zL) + rK(zK)

∑
1∈J⊂Πμ

K⊂J

∂QJ

∂yκn
(z)

+
∂rK

∂yκn
(zK)

∑
1∈J⊂Πμ

K⊂J

QJ(z).

Noting that
∑

1∈J⊂Πμ
κn /∈J

∂QJ

∂yκn (z) = −∑
1∈J⊂Πμ

K⊂J

∂QJ

∂yκn (z), we conclude as before that

∂rK

∂yκn (zK) ≥ 0. Using the same logic as in Step 1, we can then derive the contradiction
that rK(zK) < rκn(zκn). This advances the induction step and completes the proof.

Lemma 7 If z ∈ argmaxy∈[0,1]I w(y), then z ∈ (0, 1)I .

Proof. Suppose not and take the largest n for which zπn = 0 or 1, where π1, . . . , πI

are as defined in Lemma 6. It would then follow that rπn(zπn) = 0 and hence that
rπ�(zπ�) = 0 for every 	 < n as well. Define ẑ to be such that

ẑπμ =

⎧⎨
⎩zπμ if μ 	= n,

1
2 if μ = n.

We then have

w(ẑ) ≥
I∑

μ=1

rπμ(ẑπμ)
∑

1∈J⊂Πμ
πμ∈J

QJ(ẑ)

= rπn(ẑπn)P
(
λπn−1 ≥ ẑπn , max

�>n
(λπ�−1 − zπ�) < 0

)

+
I∑

μ=n+1

rπμ(zπμ)P
(
λπμ−1 ≥ zπμ , max

�>μ
(λπ�−1 − zπ�) < 0

)

>
I∑

μ=n+1

rπμ(zπμ)P
(
λπμ−1 ≥ zπμ , max

�>μ
(λπ�−1 − zπ�) < 0

)
= w(z),

where the inequality holds since rπn(1
2 ) > 0 and zπ� > 0 for 	 > n. This is a

contradiction.
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Lemma 8 Suppose that Assumptions 4 and 5 hold. If z ∈ argmaxy∈[0,1]I w(y), then
πμ = μ for μ = 1, . . . , I, or equivalently,

r1(z1) ≤ · · · ≤ rI(zI).

Proof. Note first that argmaxy w(y) 	= ∅ since w is a continuous function over the
compact domain [0, 1]I . Let z = (z1, . . . , zI) ∈ argmaxy w(y) be any maximizer.
We prove the claim by induction over μ = 1, . . . , I.

Step 1. rI(zI) = max∅�=J⊂I rJ(zJ).
Given the conclusion of Lemma 6, the claim is equivalent to πI = I, where

π1, . . . .πI are as defined there. Suppose to the contrary that πI < I, and take n < I

such that πn = I. If we define

ŵ(y) =
I∑

μ=1

rπμ(yπμ)
∑

1∈J⊂Πμ
πμ∈J

QJ(y)

=
I∑

μ=1

rπμ(yπμ)P
(
λπμ−1 ≥ yπμ , max

�>μ
(λπ�−1 − yπ�) < 0

)
,

then ŵ(y) ≤ w(y) for any y and ŵ(z) = w(z). Differentiating ŵ with respect to
yπn = yI , we obtain

∂ŵ

∂yπn
(y) =

n−1∑
μ=1

rπμ(yπμ)
∑

1∈J⊂Πμ
πμ∈J

∂QJ

∂yπn
(y)

+ (rπn)′(yπn)
∑

1∈J⊂Πn
πn∈J

QJ(y)

+ rπn(yπn)
∑

1∈J⊂Πn
πn∈J

∂QJ

∂yπn
(y).

(13)

Since z ∈ (0, 1)I by Lemma 7, the FOC ∂ŵ
∂yπn (z) = 0 holds at y = z. Furthermore,

since rπμ(zπμ) ≤ rπn(zπn) for every μ < n, and

∑
1∈J⊂Πμ

πμ∈J

∂QJ

∂yπn
(z) = −

∑
1∈J⊂Πn

πn∈J

∂QJ

∂yπn
(z) > 0, (14)
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the sum of the first and third terms on the right-hand side of (13) evaluated at z is
≤ 0, implying that (rπn)′(zπn) ≥ 0. This and rπ�(zπ�) ≥ rπn(zπn) for 	 > n together
imply that zπ� > zπn for 	 > n. Let zπm be the smallest among zπn+1, . . . , zπI .

For any y such that yπn < yπm < min�>n,� �=m yπ�, we now evaluate the probabil-
ity

∑
1∈J⊂Πn

πn∈J
QJ(y) appearing in (13) in two ways. First, assigning just one of I − 1

signals to the interval [yπn , yπm ], we see that∑
1∈J⊂Πn

πn∈J

QJ(y) = P
(
λπn−1 ≥ yπn , max

�>n
(λπ�−1 − yπ�) < 0

)

=
(

I − 1
1

)
{G(yπm) − G(yπn)}

× P
(
λπn−2

I−2 ≥ yπn , max
�>n

(λπ�−1
I−2 − yπ�) < 0

)
,

(15)

where λk
I−2 is the kth largest value among I − 2 signals, and λ�

k = 0 whenever
k < 	. Second, suppose we assign p of I − 1 signals to [yπn , yπm] and the remaining
q = I−1−p signals to (yπm, 1]. In this case, q < πm−1 must hold since λπm−1 < yπm.
Hence, ∑

1∈J⊂Πn
πn∈J

QJ(y) = P
(
λπn−1 ≥ yπn ,max

�>n
(λπ�−1 − yπ�) < 0

)

=
∑

p+q=I−1
q<πm−1

(
I − 1

p

)
{G(yπm) − G(yπn)}p

× P
(

max
�>n,� �=m

(λπ�−1
q − yπ�) < 0, λq

q ≥ yπm

)
.

(16)

Differentiating (16) with respect to yπn = yI and rearranging, we obtain∑
1∈J⊂Πn

πn∈J

∂QJ

∂yπn
(y)

= −(I − 1) g(yπn)P
(
λπn−2

I−2 ≥ yπn , max
�>n

(λπ�−1
I−2 − yπ�) < 0

)
.

(17)

Now substitute (15) and (17) into (13) and set y = z to get

∂ŵ

∂yπn
(z)

≥ P
(
λπn−2

I−2 ≥ zπn , max
�>n

(λπ�−1
I−2 − zπ�) < 0

)
× (I − 1)

[
−g(zπn) rπn(zπn) + (rπn)′(zπn) {G(zπm) − G(zπn)}

]
> 0.
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where the first inequality follows from the fact that the first term on the right-
hand side of (13) is positive (i.e., (14)), and the second from Assumption 1 along
with the fact that zπn < zπm and rπm(zπm) ≥ rπn(zπn). We have hence derived a
contradiction to the fact that z is an interior maximizer.

Step 2. For n = 1, . . . , I − 1, rn(zn) = max�≤n r�(z�).
As an induction hypothesis, suppose that the statement holds for n + 1, . . . , I.

Define

ŵn(y) =
n∑

k=1

rπk(yπk)
∑

1∈J⊂Πk
πk∈J

QJ(y) +
I∑

k=n+1

rk(yk)
∑

1∈J⊂N
max J=k

QJ(y)

=
n∑

k=1

rπk(yπk)
∑

1∈J⊂Πk
πk∈J

QJ(y)

+
I∑

k=n+1

P
(
λk−1 ≥ yk, max

�>k
(λ�−1 − y�) < 0

)
rk(yk).

We then have ŵn(y) ≤ w(y) for any y, and by the induction hypothesis, ŵn(z) =
w(z). Hence, since z is a maximizer of w, it is a maximizer of ŵn as well. Note
that the second term on the right-hand side above is independent of (y1, . . . , yn),
and the first term has the same form as ŵ in Step 1 with the only exception that n

replacing I. This implies that the same reasoning as that in step 1 proves

rn(zn) = max
�≤n

r�(z�).

We now return to the proof of the theorem. We will show that any maximizer z

of w : RI → R satisfies zI ≤ · · · ≤ z1 under Assumption 5.2. For n = 1, . . . , I and
y ∈ [0, 1]I , define

Rn(y) =
∑

1∈J⊂In
n∈J

QJ(y) = P (λn−1 ≥ yn, max
�>n

(λ�−1 − y�) < 0).

For any y such that yI > yI−1, we have

∂R1

∂yI
(·) = · · · =

∂RI−2

∂yI
(·) = 0.

Furthermore, since
RI(y) = {1 − G(yI)}I−1,
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and

RI−1(y)

= P (λI−2 ≥ yI−1, λI−1 < yI)

= (I − 1){1 − G(yI−1)}I−2G(yI−1)

+ {1 − G(yI−1)}I−1 − {1 − G(yI)}I−1,

we have
∂RI

∂yI
(y) = −(I − 1){1 − G(yI)}I−2g(yI),

and
∂RI−1

∂yI−1
(y) = −(I − 1)(I − 2){1 − G(yI−1)}I−3G(yI−1)g(yI−1).

Suppose now that there exists a maximizer z of w such that zI > zI−1. Since
z ∈ (0, 1)I by Lemma 7, z satisfies the FOC’s:

∂w

∂yI
(z) =

∂RI−1

∂yI
(z) rI−1(zI−1)

+
∂RI

∂yI
(z) rI(zI) + RI(z) (rI)′(zI) = 0,

and

∂w

∂yI−1
(z) =

I−1∑
n=1

∂Rn

∂yI−1
(z) rn(zn)

+ RI−1(z) (rI−1)′(zI−1) = 0.

Noting that ∂RI−1

∂yI (z) = −∂RI−1

∂yI (z) > 0, and
∑I−2

n=1
∂Rn

∂yI−1 (z) = −∂RI−1

∂yI−1 (z) > 0, we
obtain

(rI)′(zI)
rI(zI)

= − 1
RI(z)

∂RI

∂yI
(z)

{
1 − rI−1(zI−1)

rI(zI)

}
,

= (I − 1)
g(zI)

1 − G(zI )

{
1 − rI−1(zI−1)

rI(zI)

}
,

(18)

and

(rI−1)′(zI−1)
rI−1(zI−1)

=
1

RI−1(z)

{
−∂RI−1

∂yI−1
(z) −

I−2∑
n=1

∂Rn

∂yI−1
(z)

rn(zn)
rI−1(zI−1)

}

≤ − 1
RI−1(z)

∂RI−1

∂yI−1
(z)

{
1 − r1(z1)

rI−1(zI−1)

}
.

(19)
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Let R̂I−1(y) = RI−1(ŷ), where ŷk = yk for k 	= I and ŷI = yI−1. Then R̂I−1(y) ≤
RI−1(y), and

− 1
R̂I−1(z)

∂RI−1

∂yI−1
(z) = (I − 2)

g(zI−1)
1 − G(zI−1)

.

Since zI−1 < z1 = z̄1 and (r1)′(y1) > 0 for y1 < z̄1, we have

r1(z1)
rI−1(zI−1)

>
r1(zI−1)

rI−1(zI−1)
=

v1(zI−1)
vI−1(zI−1)

≥
I−1∏
k=2

μk.

Hence, (19) implies

(rI−1)′(zI−1)
rI−1(zI−1)

≤ (I − 2)
g(zI−1)

1 − G(zI−1)

{
1 −

I−1∏
k=2

μk

}
. (20)

Since (rI)′(zI) > 0, zI−1 < zI and (rI−1)′(y) > 0 whenever (rI)′(y) > 0, we also
have

rI−1(zI−1)
rI(zI)

<
rI−1(zI)
rI(zI)

=
vI−1(zI)
vI(zI)

≤ μ̄I .

substituting this into (18), we get

(rI)′(zI)
rI(zI)

> (I − 1)
g(zI)

1 − G(zI)
(1 − μ̄I). (21)

Combining (20) and (21) together, we see that

(I − 1)
g(zI)

1 − G(zI)
(1 − μ̄I)

<
(rI)′(zI)
rI(zI)

≤ (rI)′(zI−1)
rI(zI−1)

≤ (rI−1)′(zI−1)
rI−1(zI−1)

≤ (I − 2)
g(zI−1)

1 − G(zI−1)

{
1 −

I−1∏
k=2

μk

}
,

where the inequalities in the second line hold because (rI)′
rI is decreasing, zI > zI−1.

and (rI)′(si)
rI(si)

≤ (rI−1)′(si)
rI−1(si)

for any si. Furthermore, given the increasing hazard rate,
we must have

(I − 1) (1 − μ̄I) < (I − 2)

{
1 −

I−1∏
k=2

μk

}
.

This, however, contradicts Assumption 5.2.
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As an induction hypothesis, suppose that zI ≤ · · · ≤ zn. Suppose that zn >

zn−1. For any y such that yI ≤ · · · ≤ yn and yn > yn−1, we have ∂R1

∂yn (y) = · · · =
∂Rn−1

∂yn (y) = 0, and

Rn(y)

= P (λn−1 ≥ yn, λn < yn+1, . . . , λI−1 < yI)

=
(

I − 1
n − 1

)
{1 − G(yn)}n−1 P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI),

where λk
I−n is the kth largest value among I − n signals. Hence,

∂Rn

∂yn
(y)

= −g(yn)(n − 1) {1 − G(yn)}n−2

(
I − 1
n − 1

)
P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI),

and
1

Qn(y)
∂Qn

∂yn
(y) = −(n − 1)

g(yn)
1 − G(yn)

.

The first-order condition ∂w
∂yn (z) = 0 then yields

(rn)′(zn)
rn(zn)

= − 1
Qn

∂Qn

∂yn

{
1 − rn−1(zn−1)

rn(zn)

}

= (n − 1)
g(zn)

1 − G(zn)

{
1 − rn−1(zn−1)

rn(zn)

}
.

(22)

On the other hand, suppose yn+1 ≤ yn−1 < yn. Other cases can be treated in a
similar manner.

Rn−1(y)

= P (λn−2 ≥ yn−1, λn−1 < yn, λn < yn+1, . . . , λI−1 < yI)

=
(

I − 1
n − 2

)
{1 − G(yn−1)}n−2

×
[
(I − n + 1){G(yn−1) − G(yn+1)}P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI)

+ P (λ1
I−n+1 < yn+1, . . . , λI−n+1

I−n+1 < yI)
]

+
(

I − 1
n − 1

)[
{1 − G(yn−1)}n−1 − {1 − G(yn)}n−1

]
P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI).
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Differentiating Rn−1 with respect to yn−1, we obtain

∂Rn−1

∂yn−1
(y)

= −g(yn−1)
(

I − 1
n − 2

)
(n − 2){1 − G(yn−1)}n−3

×
[
(I − n + 1){G(yn−1) − G(yn+1)}P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI)

+ P (λ1
I−n+1 < yn+1, . . . , λI−n+1

I−n+1 < yI)
]
.

Let R̂n−1(y) = Rn−1(ŷ), where ŷk = yk for k 	= n and ŷn = yn−1. We have
R̂n−1(y) ≤ Rn−1(y) and can also verify that

1
R̂n−1(y)

∂Rn−1

∂yn−1
(y) = −(n − 2)

g(yn−1)
1 − G(yn−1)

.

The first-order condition ∂w
∂yn−1 (z) = 0 then yields

(rn−1)′(zn−1)
rn−1(zn−1)

= − 1
Rn−1(z)

[
n−1∑
k=1

∂Rk

∂yn−1
(z)

rk(zk)
rn−1(zn−1)

]

≤ (n − 2)
g(yn)

1 − G(yn)

(
1 − r1(z1)

rn−1(zn−1)

)

< (n − 2)
g(yn)

1 − G(yn)

(
1 − r1(zn−1)

rn−1(zn−1)

)

≤ (n − 2)
g(yn)

1 − G(yn)

(
1 −

n−1∏
k=2

μk

)
.

(23)

On the other hand,

(rn)′(zn)
rn(zn)

= (n − 1)
g(zn)

1 − G(zn)

{
1 − rn−1(zn−1)

rn(zn)

}

> (n − 1)
g(zn)

1 − G(zn)

{
1 − rn−1(zn)

rn(zn)

}

> (n − 1)
g(zn)

1 − G(zn)
{1 − μ̄n} .

(24)

Just as in Step 1, we can combine (23) and (24) to yield a contradiction to Assump-
tion 5.2, which is equivalent to

(n − 1) {1 − μ̄n} ≥ (n − 2)

(
1 −

n−1∏
k=2

μk

)
.
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This advances the induction step and completes the proof.

Proof of Lemma 1 Take any m ∈ M(y). Let n be such that n > m and ym < yn.
Take s such that ym < s1 = · · · = sn < yn and sn+1 = · · · = sI = 0. Symmetry
and ex post IR then imply that f(s) equals either (0, . . . , 0︸ ︷︷ ︸

n

, 1, . . . , 1︸ ︷︷ ︸
I−n

), (0, . . . , 0), or

(1, . . . , 1). When f(s) = (0, . . . , 0, 1, . . . , 1), tI−n = 0 should hold by ex post IR, and
when f(s) = (1, . . . , 1), then tI = 0 should hold by ex post IR. Suppose now that
m ∈ K(f), or that there exists ŝ such that |f(ŝ)| = m. By symmetry, we can take
ŝ such that f(ŝ) = (1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0).

If f(s) = (0, . . . , 0). then ŝ is a profitable deviation for the coalition J = I at s:
For i = 1, . . . ,m,

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm > 0 = vi(f(s), si) − ti(s),

where the inequality follows from the fact that si > ym. Furthermore, for i =
m + 1, . . . , I,

vi(f(ŝ), si) − ti(f(ŝ)) = 0 = vi(f(s), si) − ti(s).

If f(s) = (0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1), then tI−n = 0 as noted above and ŝ is a profitable

deviation for the coalition J = I at s: For i = 1, . . . ,m,

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm > 0 = vi(f(s), si) − ti(f(s)),

for i = m + 1, . . . , n,

vi(f(ŝ), si) − ti(f(ŝ)) = 0 = vi(f(s), si) − ti(f(s)),

and for i = n + 1, . . . , I,

vi(f(ŝ), si) − ti(f(ŝ)) = 0 = vI−n(0) − tI−n = vi(f(s), si) − ti(f(s)).

If f(s) = (1, . . . , 1), then yI = 0 as noted above and s is a profitable deviation for
the coalition J = I at ŝ: For i = 1, . . . ,m,

vi(f(s), ŝi) − ti(f(s)) = vI(ŝi) − tI > vm(ŝi) − tm = vi(f(ŝ), ŝi) − ti(f(ŝ)),

and for i = m + 1, . . . , I,

vi(f(s), ŝi) − ti(f(s)) = vI(ŝi) − tI > 0 = vi(f(ŝ), ŝi) − ti(f(ŝ)).

Therefore, (f, t) is not coalitionally strategy-proof.
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Proof of Lemma 2 For K and y such that K ∩ M(y) = ∅, w can alternatively
be written as

w(K, y) =
∑
k∈K

P (λk−1 ≥ yk,max
�∈K
�>k

(λ�−1 − y�) < 0) rk(yk).

Let (f, y) be such that K(f) = K. Fix k ∈ K and s−i such that λk−1 ≥ yk and
max �∈K

�>k
(λ�−1 − y�) < 0. By our choice of s−i, |f(si, s−i)| ≤ k for any si by ex post

IR. Moreover, if si < yk, then si < ym for any m < k so that |fi(si, s−i)| = 0. In
what follows, we show that |f(si, s−i)| = k whenever si > yk. If this holds, then

Esi [ti(f(si, s−i)) | s−i] = P (si < yk)Esi [ti(f(si, s−i)) | si < yk, s−i]

+ P (si > yk)Esi [ti(f(si, s−i)) | si > yk, s−i]

= P (si > yk) tk

= rk(yk).

This in turn implies that

R(f, t) = Es[ti(f(s))]

= Es−i [Esi [ti(f(si, s−i)) | s−i]]

=
∑
k∈K

rk(yk)P (λk−1 ≥ yk, max
�∈K
�>k

(λ�−1 − y�) < 0)

= w(K, y).

Suppose that si > yk and denote s = (si, s−i). We will derive a contradiction when
m = |f(s)| < k. Let J ⊂ I be such that i ∈ J , |J | = k, and

{j : fj(s) = 1} ⊂ J ⊂ {j : sj ≥ yk}.
Such a set J exists since fj(s) = 1 implies that sj ≥ ym ≥ yk by ex post IR. Since
k ∈ K = K(f), take ŝ such that |f(ŝ)| = k and {j : fj(ŝ) = 1} = J . Such a signal
profile ŝ exists by symmetry. When sj ≥ yk, note that

vk(sj) − vm(sj) ≥ vk(yk) − vm(yk) ≥ vk(yk) − vm(ym),

where the first inequality follows from (vk)′ > (vm)′, and the second from yk ≤ ym.
We will show that ŝ is a profitable deviation for I at s:
For j ∈ J ∩ {j : fj(s) = 1},

vj(f(ŝ), sj) − tj(f(ŝ)) = vk(sj) − vk(yk)

≥ vm(sj) − vm(ym)

= vj(f(s), sj) − tj(f(s)).

(25)

44



For j ∈ J ∩ {j : fj(s) = 0},

vj(f(ŝ), sj) − tj(f(ŝ)) = vk(sj) − tk ≥ 0 = vj(f(s), sj) − tj(f(s)). (26)

For j ∈ I \ J ,

vj(f(ŝ), sj) − tj(f(ŝ)) = 0 = vj(f(s), sj) − tj(f(s)).

Since si > yk, if fi(s) = 1, then (25) holds with strict inequality for j = i, and
if fi(s) = 0, then (26) holds with strict inequality for j = i. Hence, (f, t) is not
strategy-proof.

Proof of Lemma 4 Take any J ⊂ I, s = (sJ , s−J) and ŝJ . Denote ŝ = (ŝJ , s−J)
and k = |f(s)|. If |f(ŝ)| = m > k, then |{i : si ≥ zk}| = k < m and |{i : ŝi ≥
zm}| = m by the definition of a regular scheme. Hence, there exists at least one
buyer i ∈ J for whom si < zm, ŝi ≥ zm and fi(ŝ) = 1. It follows that for this i,

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm < 0 ≤ vi(f(s), si) − ti(f(s)),

suggesting that ŝJ is not a profitable deviation of J at s. If |f(ŝ)| = m < k, take any
i ∈ J for whom fi(ŝ) = 1. If there exists no such j ∈ J , then ŝ is not a profitable
deviation for J . Since zm ≥ zk, we have vk(zm) − vm(zm) ≥ vk(zk) − vm(zm).
Furthermore, since (vk)′ ≥ (vm)′, vk(si)−vm(si) ≥ vk(zm)−vm(zm) for any si ≥ zm.
It follows that vk(si) − vm(si) ≥ vk(zk) − vm(zm) for any si ≥ zm. In other words,
if fi(ŝ) = 1 and si ≥ zm, then

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm

= vm(si) − vm(zm)

≤ vk(si) − vk(zk)

= vi(f(s), si) − ti(f(s)).

This implies that ŝ is not a profitable deviation for J at s.

Proof of Theorem 4 We will show that when K 	= N and y ∈ [0, 1]I , w(K, y) ≤
w(I, ŷ) for some ŷ such that ŷI ≤ · · · ≤ ŷ1. Since w(N, ·) is continuous over the
compact set {y : yI ≤ · · · ≤ y1}, it achieves a maximum at some z in this set.
Hence, w(N, z) = maxK⊂N, y∈[0,1]I w(K, y), and by Proposition 4, there exists a
regular scheme (f, t) such that R(f, t) = w(N, z).
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When yk = 1 for some k ∈ K, then w(K, y) = w(K \ {k}, y) so that we may
restrict attention to the case where maxk∈K yk < 1. Suppose that K 	= N and fix
any y such that K ∩ M(y) = ∅. We have

w(K, y) =
∑
�∈K

P (λ�−1 ≥ y�, max
m∈K
m>�

(λm−1 − ym) < 0) r�(y�).

Let n = min N \ K and K̂ = K ∪ {n}. If n = 1, then let ŷ be such that ŷ1 =
maxk∈K yk and ŷk = yk for k > 1. Then K̂ ∩ M(ŷ) = ∅ and w(K̂, ŷ) is given by

w(K̂, ŷ) =
∑
k∈K̂

P (λk−1 ≥ yk, max
�∈K̂
�>k

(λ�−1 − y�) < 0) rk(yk)

= P (max
�∈K

(λ�−1 − y�) < 0) r1(y1)

+
∑
k∈K

P (λk−1 ≥ yk, max
�∈K
�>k

(λ�−1 − y�) < 0) rk(yk)

≥ w(K, y).

If n > 1, then n − 1 ∈ K and let ŷ be such that

ŷk =

⎧⎨
⎩yk if k 	= n,

yn−1 if k = n.

Since K̂ ∩ M(ŷ) = ∅, w is given by

w(K̂, ŷ) =
∑
�∈K̂

P
(
λ�−1 ≥ ŷ�, max

m∈K̂
m>�

(λm−1 − ŷm) < 0
)

r�(ŷ�)

=
∑
�∈K
�<n

P
(
λ�−1 ≥ y�, λn−1 < yn−1, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�)

+ P
(
λn−1 ≥ yn−1, max

m∈K
m>n

(λm−1 − ym) < 0
)

rn(yn−1)

+
∑
�∈K
�>n

P
(
λ�−1 ≥ y�, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�).
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Noting that λn−2 < yn−1 implies λn−1 < yn−1, we can reduce the above to

w(K̂, ŷ) =
∑
�∈K

�<n−1

P
(
λ�−1 ≥ y�, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�)

+ P
(
λn−2 ≥ yn−1, λn−1 < yn−1, max

m∈K
m>n−1

(λm−1 − ym) < 0
)

rn−1(yn−1)

+ P
(
λn−1 ≥ yn−1, max

m∈K
m>n

(λm−1 − ym) < 0
)

rn(yn−1)

+
∑
�∈K
�>n

P
(
λ�−1 ≥ y�, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�).

Using rn(yn−1) ≥ rn−1(yn−1), and

P
(
λn−2 ≥ yn−1, λn−1 < yn−1, max

m∈K
m>n−1

(λm−1 − ym) < 0
)

+ P
(
λn−1 ≥ yn−1, max

m∈K
m>n

(λm−1 − ym) < 0
)

= P
(
λn−2 ≥ yn−1, max

m∈K
m>n−1

(λm−1 − ym) < 0
)
,

we obtain w(K̂, ŷ) ≥ w(K, y). Iteration of this process shows that w(I, ŷ) ≥ w(K, y)
for some ŷ.
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