
 

 

Discussion Paper No.141 

 

 

 

 

 

  

All-Pay Auctions with Handicaps 
 

 

 

 

Minoru Kitahara and Ryo Ogawa 

 

 

June 2010 

 

 

GCOE Secretariat 
Graduate School of Economics 

OSAKA UNIVERSITY 
1-7 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan 

GCOE Discussion Paper Series 

Global COE Program 
Human Behavior and Socioeconomic Dynamics 



All-Pay Auctions with Handicaps

Minoru Kitahara∗

Ryo Ogawa†

First Draft: March 2010
This Version: June 16, 2010

Abstract

This paper analyzes an all-pay auction where the winner is de-

termined according to the sum of the bid and a handicap endowed

to all players. The bidding strategy in equilibrium is then explic-

itly derived as a “piecewise affine transformation” of the equilibrium

strategy in an all-pay auction without handicaps. The paper also dis-

cusses the allocation rule implemented in the equilibrium and pro-

vides a comparison of revenue.
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1 Introduction

In many economic environments, agents compete by expending resources

to win prizes. Typical examples include lobbying, bribery, promotion con-

tests, R&D races, economists competing based on the number of publi-

cations, and so on. In the auction theory literature, such situations are

considered using the model of an all-pay auction where different players

spend money or exert effort as “bids” and the player that spends the most

“wins the auction” and obtains the final prize. As the “bid” in these mod-

els is a sunk cost borne by all players, regardless of the ultimate winner,

they are known as “all-pay” auctions.12

In reality, it is often the case that some players have an advantage over

others at the beginning. For instance, the success of lobbying today de-

pends not only on the activity undertaken today but also on the accumu-

lation of past efforts. Likewise, hereditary advantages also play some role

in bribery, while the sponsor of a contest probably undertakes some dis-

criminatory treatment in favor of one group of the players. From the view-

point of auction theory, such (dis)advantages are regarded as “handicaps”

in the all-pay auction; that is, the highest bidder is not always the winner,

as the player whose bid amount less his “handicap” is the highest wins

the auction. The present paper is devoted to the study of an all-pay auc-

tion where the advantages of players are described as handicaps existing

among agents.3

1Amann and Leininger [1] and Krishna and Morgan [11] consider all-pay auctions
with incomplete information while Noussair and Silver [21] conduct experimental work.
The recent theoretical work on all-pay auctions includes Parreiras and Rubinchik [22].

2Ando [2], Che and Gale [4, 5], Kaplan and Wettstein [9], and Moldovanu and Sela [19,
20] apply the all-pay auction model to contests, with recent theoretical work including
Siegel [25].

3In recent work, Mares and Swinkels [13, 14] study the first price handicap auction
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The paper presents two main results in Section 3. The first of these is

examination of the entry–exit decisions of players. When there are hand-

icaps in the auction, there is a positive probability that a disadvantaged

player finds it optimal to bid zero when his value is very small.4 Upon con-

sideration, an advantaged player also finds it beneficial to lower his bid;

that is, the advantaged player has some positive probability of winning

even when he bids zero. Two examples in Section 3.1 illustrate these strate-

gies in the equilibrium. In the examples, each player has an “entry point”,

and the player bids zero if his value is lower than this point, whereas he

makes some positive bid otherwise. A more interesting problem is if there

is some case where a player with a heavy handicap totally abandons win-

ning (i.e., he always bids zero regardless of the value). Example 2 in Sec-

tion 3.1 depicts the case where a player with a heavy handicap adopts a

strategy of bidding zero for all possible values (in other words, his entry

point is set to the upper bound of the value).

The second result found is a simple derivation of the equilibrium strat-

egy. Theoretically, it is not obvious if the analysis of asymmetric auctions

is straightforward. Indeed, it is generally understood in the literature that

asymmetries in some auctions lead to numerous complications. For in-

stance, although an equilibrium exists in asymmetric first-price auctions,5

(FPHA) along with other asymmetric settings. Our concept of a handicap is the same
as in their paper; namely, we treat bids and handicaps in terms of summation. We may
also consider another form of “handicap” where the bid of the disadvantaged player is
discounted through multiplication (for the two-player case of multiplicative handicaps,
see Feess et al. [7]). However, in the present paper we restrict our attention to summative
handicaps.

4Amann and Leininger [1] present two numerical examples of two-player all-pay auc-
tions under asymmetric distributions. In their examples, and under some parameter val-
ues, the bidding distribution of one player “has an atom at 0”, i.e., the player exits from
the auction when his or her value is lower than some threshold.

5The existence of pure strategy equilibria in asymmetric auctions (or in games with
incomplete information more generally) is shown using a variety of techniques by
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a closed-form expression of the equilibrium strategy is sometimes unavail-

able, and therefore it is difficult to investigate problems with revenue or

efficiency or the equilibrium allocation. 6 A study more closely related to

the present analysis is Mares and Swinkels [13, 14] in that they consider a

first-price auction with various handicap formulations. However, the mo-

tivation of their paper is not restricted to deriving the equilibrium strategy

in a closed form, and they argue that the equilibrium strategy is usually

complicated and so remains an open question. Our result then contrasts

sharply with the complications found in many asymmetric auction stud-

ies.

Proposition 1 encompasses the key finding of our paper. This shows

that the equilibrium strategy is written as a “piecewise affine transforma-

tion” of the equilibrium strategy in an all-pay auction without handicaps.

Section 3.2 presents the central idea underlying this result where we argue

that the optimality of the equilibrium strategy in an auction without hand-

icaps directly proves the optimality of the equilibrium strategy in a hand-

icap auction. Section 3.3 then discusses the allocation rule implemented

in the equilibrium. In asymmetric auctions, it is rather obvious that in-

efficient allocation takes place with some positive probability. However,

details of the allocation rule in the equilibrium are not straightforward.

Here, we discuss that the shape of the hyperplane dividing the type space

into each player’s winning is “kinked”.

Following this, Section 4 examines the uniform distribution case and

Athey [3], Jackson and Swinkels [8], Lebrun [12], Maskin and Riley [17], and Reny [24].
6Maskin and Riley [16] examine asymmetric first-price auctions in detail. For some

class of distributions, it is shown that equilibrium strategies in an asymmetric first-price
auction can be explicitly derived (see Plum [23] and Cheng [6]). Marshall et al. [15] ana-
lyze the computation of equilibrium under the asymmetry of distributions in first-price
auctions.
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considers the problem of revenue comparison. Although “flat” handicaps

appear to enhance competitive bids in the equilibrium, a change in one

player’s handicap affects other players’ decisions in complicated ways, so

it is not obvious if a decrease in one player’s handicap always leads to an

increase in revenue to the seller. In Section 4.1, we provide an example of

a three-player case where an increase in one player’s handicap increases

revenue. We conclude in Section 5. The Appendix contains formal proofs

of the propositions.

2 The Model

The basic structure of the all-pay auction with handicaps is as follows.

There are N risk-neutral agents competing for a single prize. Agent i’s

value Xi is distributed over the interval X = [0, x̄] according to an identi-

cal distribution function F with associated density function f .7 We assume

that agents’ values are private and independently distributed.

In this model, each agent has a “handicap” of Ai that is common knowl-

edge among all agents.8 When each agent submits a sealed bid of bi, the

prize goes to the agent whose sum of the handicap and the bid is the max-

imum; that is, to agent i that satisfies:

bi − Ai = max{b1 − A1, . . . , bN − AN}.

7If we remove the identical distribution assumption, numerous complications arise
and our result that the equilibrium with handicaps is a piecewise affine transformation
of the equilibrium without handicaps is no longer valid.

8The model in the present paper is mathematically equivalent to a model where each
agent i must pay a (nonrefundable) entry fee of Ai prior to the auction in order to be able
to submit bids. We note that in order to establish the equivalence between the two mod-
els, we need to assume that agents who pay the entry fees submit a bid before observing
whom else also participates in the auction. In this sense, interpreting Ai as an entry fee
should be done on a contingent basis.
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(If there is a tie, the prize goes to each winning agent with equal probabil-

ity.) The bid, bi, can be seen as the (irreversible) investment of efforts in

contexts such as lobbying, bribery, contests, and patent races. The hand-

icap, Ai, on the other hand, describes the disparity between the agents

stemming from the accumulation of past efforts, hereditary advantage, or

some discriminatory treatment by the sponsor of the contest. In the paper,

we assume without loss of generality that:

0 = A1 ≤ A2 ≤ · · · ≤ AN,

that is, Agent 1 is the most advantaged, Agent 2 is the second-most advan-

taged, and so on.

Given these bids and handicaps, the payoffs in the all-pay auction with

handicaps are:

Πi =

xi − bi if bi − Ai > maxj ̸=i(bj − Aj)

−bi if bi − Ai < maxj ̸=i(bj − Aj).

A strategy for an agent i in this model is a function βi : [0, x̄] → R+

that determines his bid for any value. For future use, we let β̄k denote the

symmetric equilibrium in the k-person all-pay auction without handicaps:9

β̄k(x) =
∫ x

0
y(k − 1)F(y)k−2 f (y)dy. (1)

We also let Π̄k(x, z) denote an agent’s (interim) expected payoff from bid-

ding β̄k(z) when his value is x, given that other bidders follow the strategy

9See, for instance, Krishna [10] and Milgrom [18].
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β̄k in the k-person all-pay auction without handicaps:

Π̄k(x, z) = F(z)k−1x − β̄k(z). (2)

As β̄k constitutes an equilibrium, Π̄k(x, z) satisfies:

Π̄k(x, x) ≥ Π̄k(x, z) for all x, z.

3 Equilibrium

3.1 Illustrative Examples

In this subsection, we provide two examples that illustrate the equilibrium

behavior given in the main result below. Here we consider a model where

there are three agents and the distribution F is uniform on an interval [0, 1].

Example 1. Suppose A2 = 1/4 and A3 = 1/2. Then:

β1(x1) =


0 when x1 ∈ [0, z2]

z3β̄2(x1)− C2 when x1 ∈ (z2, z3]

β̄3(x1)− C3 when x1 ∈ (z3, 1]

β2(x2) =


0 when x2 ∈ [0, z2]

z3β̄2(x2)− C2 + A2 when x2 ∈ (z2, z3]

β̄3(x2)− C3 + A3 when x2 ∈ (z3, 1]

β3(x3) =

0 when x3 ∈ [0, z3]

β̄3(x3)− C3 + A3 when x3 ∈ (z3, 1],

where z2 = 6
√

1/48 ≈ 0.525, z3 = 3
√

3/4 ≈ 0.909, C2 = 1/8 and C3 = 1/4,
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Figure 1: A2 = 1/4, A3 = 1/2

constitutes an equilibrium (Figure 1).

In the equilibrium, zi is an “entry point” for agent i; that is, agent i

makes positive bids only when his value is greater than zi. In each interval

(zk, zk+1], each agent follows a strategy that is an affine transformation of

the equilibrium strategy in k-person auction without handicaps. As shown

later, the proof that such a set of strategies constitutes an equilibrium is

also given in relation to the equilibrium without handicaps.

Example 2. Suppose A2 = 1/3 and A3 = 2/3. Then Agent 3 is “excluded”

from the auction, and:

β1(x1) =

0 when x1 ∈ [0, z2]

β̄2(x1)− C2 when x1 ∈ (z2, 1]

β2(x2) =

0 when x2 ∈ [0, z2]

β̄2(x2)− C2 + A2 when x2 ∈ (z2, 1]

β3(x3) = 0

where z2 =
√

1/3 ≈ 0.577 and C2 = 1/6 constitutes an equilibrium (Fig-
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Figure 2: A2 = 1/3, A3 = 2/3 (Agent 3 is excluded)

ure 2).

3.2 Main Result

In this subsection, we provide the main result of the equilibrium analysis

for the game with N agents and general distribution function F.

As illustrated in the examples, we are typically interested in the equi-

librium of the following form:

βi(xi)

= 0 when xi ≤ zA
i

> 0 when xi > zA
i ,

where zA
i ∈ [0, x̄] is the “entry point” of agent i. In such an equilib-

rium (if any), agent i completely gives up winning when his value is no

greater than zA
i , and makes positive bids only when xi > zA

i . In general,

zA
i depends not only on his own Ai, but also on the vector of handicaps

A = (A1, . . . , AN).

In the auction with handicaps, it sometimes happens (as in the case of

Agent 3 in Example 2) that an agent entirely abandons winning the auction
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when the agent’s Ai is substantially large. In such a case, he always bids

zero regardless of the value (that is, βi(xi) = 0 for all xi ∈ [0, x̄]). We

describe this agent’s strategy as zA
i = x̄. We also let zA

N+1 ≡ x̄ for the sake

of mathematical consistency.

Given the vector of entry points zA = (zA
1 , . . . , zA

N), we let:

Gk(zA) =
N+1

∏
i=k+1

F(zA
i )

and:10

Ck(zA) =
k

∑
ℓ=2

[
Gℓ(zA)β̄ℓ(zA

ℓ )− Gℓ−1(zA)β̄ℓ−1(zA
ℓ )
]

(3)

We now have the following result.

Proposition 1. Suppose that (i) zA
1 , . . . , zA

n ∈ [0, x̄) is a solution to the system

of equations:

zA
1 = 0

{F(zA
k )}k−1Gk(zA)zA

k = Gk(zA)β̄k(zA
k )− Ck(zA) + Ak for k ∈ {2, . . . , n}

(4)

given that zA
n+1 = · · · = zA

N+1 = x̄, and (ii) the solution zA satisfies:

x̄ ≤ β̄k(zA
k )− Ck(zA) + Ak (5)

10Gk(zA) is regarded as the probability of the event that all agents k + 1, . . . , N do not
“enter” the auction. Ck(zA) is determined in such a way that the equilibrium strategy is
continuous everywhere except for each agent’s entry point.
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for k = n + 1, . . . , N. Then:

βi(x) =

0 when x ∈ [0, zA
i ]

Gk(zA)β̄k(x)− Ck(zA) + Ai when x ∈ (zA
k , zA

k+1] and i ≤ k

(6)

constitutes a Bayesian–Nash equilibrium of the all-pay auction with handicaps

A.

Proof. See the Appendix.

While the complete proof is given in the Appendix, we sketch here the

idea underlying the result.

The main point of the result is that the equilibrium strategy of agent

i with a value of xi > zA
i is an affine transformation of the equilibrium

strategy in an all-pay auction without handicaps. In what follows, we

generally argue that such strategies are the best responses to each other.

Suppose that agent i has value xi ∈ (zA
k , zA

k+1] (k ≥ i), and other agents

follow strategy β in (6). We consider what happens if agent i bids βi(y)

where y ∈ (zA
k , zA

k+1].
11

Agent i’s probability of winning by bidding βi(y) is calculated as fol-

lows. The event that agent i wins against some agent j ≤ k is equivalent

to the event that Xj ≤ y, given we have from (6) that:

βi(y)− Ai = β j(y)− Aj

if j ≤ k. The event that agent i wins against some agent j > k, on the other

11To complete the proof, we need to show that it is not beneficial for agent i to bid
anything other than β(x). See the Appendix for details.
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hand, is equivalent to the event that Xj ≤ zA
j , as we have from (5) that:

β j(zA
j )− Aj = −Aj < 0 < βi(y)− Ai ≤ βi(zA

j )− Ai = lim
xj↓zA

j

β j(xj)− Aj

if j > k.12 Put together, we now have the probability of winning when

agent i bids βi(y) (y ∈ (zA
k , zA

k+1]) as:

qk
i (y, zA) = F(y)k−1Gk(zA) if i ≥ k. (7)

We can then write agent i’s expected payoff from bidding βi(y) when his

value is x as follows:

Πi(x, y) ≡ qk
i (y, zA)x − βi(y)

= Gk(zA)Π̄k(x, y) + Ck(zA)− Ai,

where Π̄k is the corresponding expected payoff in a k-person auction with-

out handicaps, as given in (2). Given Π̄k satisfies Π̄k(x, x) ≥ Π̄k(x, y), we

have:

Πi(x, x) ≥ Gk(zA)Π̄k(x, y) + Ck(zA)− Ai = Πi(x, y)

for all x, y ∈ (zA
k , zA

k+1]. Thus, we have argued that agent i with a value

of x ∈ (zA
k , zA

k+1] (k ≥ i) cannot improve his payoff by bidding βi(y) (y ∈

(zA
k , zA

k+1]).

In the Appendix, while we show that it is neither beneficial for agent i

with a value of x ∈ (zA
k , zA

k+1] to make a bid b ≤ βi(zA
k ) nor to make a bid

b > βi(zA
k+1), the spirit of the proof is identical to the above discussion.

12The argument here implicitly assumes that βi(x) is nondecreasing (and strictly in-
creasing in x ∈ (zA

i , x̄]). See Lemma 1 in the Appendix.
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3.3 Allocation Rule

In this subsection, we provide a brief argument about the allocation rule

implemented in the equilibrium given in Proposition 1.

Let Qi(x) be defined as the probability that i will win the auction in the

equilibrium when agents’ values are x = (x1, . . . , xN). We then have the

following:13

Proposition 2. In the equilibrium of Proposition 1, for xi ∈ (zk, zk+1):

Qi(x) =



1 if xA
i > zA

i , xi > maxj∈{1,...,k}\{i} xj,

and maxj∈{k+1,...,N}{xj − zA
j } ≤ 0

0 if xA
i > zA

i and
[

xi < maxj∈{1,...,k}\{i} xj or

maxj∈{k+1,...,N}{xj − zA
j } > 0

]
0 if xi ≤ zA

i

Figure 3 depicts the allocation rule when there are two agents and

A2 > 0. While we have a natural conjecture that the dividing line (the

“Myerson Line” à la Mares and Swinkels [13]) is not below the diago-

nal, the precise shape of the line is not straightforward. In the first-price

auction with handicaps, as studied in Mares and Swinkels, the line is

smoother but likely difficult to derive in a closed form. In the numeri-

cal examples of the asymmetric all-pay auction studied by Amann and

Leininger [1], the Myerson Line is also smooth. In the all-pay auction

studied in the present paper, the line is kinked and can be explicitly de-

rived using the agents’ entry points zA.

13Tiebreaking does not take place with a positive probability in the equilibrium, and
hence is omitted in Proposition 2.
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Figure 3: Myerson Line when A2 > 0

Corollary. With a positive probability, the all-pay auction with handicaps does

not allocate the object efficiently.

4 The Uniform Case

When the distribution, F, is uniform, we can analyze the agents’ entry–exit

decisions more explicitly than in Proposition 1.14

Proposition 3. Suppose that the distribution F is uniform on an interval [0, 1].

Given the handicaps A1, . . . , AN:

n∗ = max

{
n

∣∣∣∣∣ (n − 1)An −
n−1

∑
i=1

Ai < 1

}
(8)

14The results in this section can be applied to the model where the distribution belongs
to a subclass of the beta distribution that satisfies F(x) = xα (α > 0). With such distri-
butions, an agent’s equilibrium bid is written as cF(x)k−1Gk(zA)x with some constant
c > 0. This feature enables us to study the revenue problem in a closed form.
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is the number of active agents in the equilibrium. That is:

zA
i

< 1 if i ≤ n∗

= 1 if i > n∗

in the equilibrium. Moreover, zA
i for agents i ≤ n∗ are recursively written as:

zA
i =

(
Bi

zA
i+1

)1/i

(9)

where Bi is defined as:

Bi = (i − 1)Ai −
i−1

∑
j=1

Aj. (10)

Proof. See the Appendix.

We invite the reader to check that the values of zA
i given in the exam-

ples in Section 3.1 can be calculated using the formula for Proposition 3.

Given the number of active agents n∗ and entry decisions (zA
i )i≤n∗ , we

can derive the affine transformations more explicitly.

Proposition 4. Suppose that the distribution F is uniform on the interval [0, 1].

Given the handicaps A, let n∗ be the number of active agents as derived in (8).

Then:

βi(x) =

0 when x ∈ [0, zA
i ]

Gk β̄k(x)− Ck + Ai when x ∈ (zA
k , zA

k+1] and i ≤ k

15



constitutes an equilibrium of the all-pay auction with handicaps, where:

Gk =


(

∏n∗
ℓ=k+1(Bℓ)

(1/{ℓ(ℓ−1)})
)k

if k < n∗

1 if k = n∗

and

Ck =
A1 + · · ·+ Ak

k
.

Proof. See the Appendix.

Our proof of the result that Ck is equal to the average of handicaps is

strongly dependent on the assumption that the distribution is uniform, but

it does suggest an interesting property of the equilibrium. For any given

x ∈ (zA
k , zA

k+1], we have

k

∑
i=1

βi(x) = k · Gk β̄k(x),

so βi(x)’s are symmetric around Gk β̄k(x) for a given x.15

4.1 Revenue Comparison

In Section 3, we noted that the auction with handicaps results in inefficient

allocation with a positive probability. It is not obvious, however, whether

handicaps always have a tendency to decrease revenue to the seller. In this

subsection, we provide a few results about the relationship between rev-

15Mares and Swinkels [14] note a conjecture that the agents’ strategies “should move
monotonically further apart” as the handicap grows in a two-person, first-price auction.
In the equilibrium of the all-pay auction studied in the present analysis, the distance
between the strategies is a constant, but we have a conjecture that the strategies should be
symmetric (or distributed in a systematic way) around Gk β̄k for the general distribution
F.
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enue and the handicaps using the explicitly derived formula of the equi-

librium strategies when the distribution F is uniform.

Let RA
N denote the ex ante expected revenue to the seller in the N-

person all-pay auction with handicaps A.

Proposition 5. Suppose that the distribution F is uniform on the interval [0, 1].

We then have:

RA
N =

N − 1
N + 1

−
N

∑
k=2

2
k(k + 1)

(zA
k )

k+1 · zA
k+1 · · · · · zA

N,

where zA
k are as given in (9).

Proof. See the Appendix.

It is not obvious how fluctuations in the agents’ handicaps, A, influ-

ence revenue as an increase in Ai has complex effects on all of the agents’

entry decisions, (zA
i ). The following example states that the problem is not

straightforward.

Example 3. In some cases, an increase in an agent’s handicap, Ai, increases

revenue to the seller (Figure 4).

Figure 4 depicts the isoprofit curves of a three-person auction. When A3 >

(A2 + 1)/2, Agent 3 is excluded, we therefore see dRA
3 /dA3 = 0. In the

shaded area at the lower left, we can see that dRA
3 /dA2 > 0. This result is

interpreted as follows: if A3 is substantially large compared with A2 (but

zA
3 < 1 is still satisfied), an increase in A2 contributes to the enhancement

of competitiveness between agents by setting Agent 3’s mind at ease.

As to the handicap of the most disadvantaged agent, we have a mono-

tonicity result.
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Figure 4: Isoprofit curves of three-person auction (in the shaded area,
dRA

3 /dA2 is negative)

Proposition 6. Suppose that the distribution F is uniform on [0, 1]. Then we

have:
dRA

N
dAN

< 0

as long as zA
N ∈ (0, 1).

Proof. See the Appendix.

It is a natural conjecture that Proposition 6 holds for general distribu-

tion F, but the proof given in the Appendix strongly depends on the as-

sumption that the distribution is uniform. Hence, monotonicity in revenue

with respect to handicaps remains an open question.
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5 Concluding Remarks

In this paper, we have shown that the equilibrium strategy of the all-pay

auction with handicaps is written in a closed form. Specifically, the strat-

egy in each interval of values (zA
k , zA

k+1] where exactly k agents are “active”

is an affine transformation of the equilibrium strategy in the k-player all-

pay auction without handicaps.

Technically, analyzing the equilibrium of asymmetric auctions (e.g.,

nonidentical distributions of values, risk aversion heterogeneity, and first-

price auctions with handicaps) is relatively complicated. In most of these

instances, and unlike symmetric auctions, a closed-form expression for the

bidding strategies is unavailable and the allocations in the equilibrium are

unclear. Such technical complications are resolved in the all-pay auction

because of the feature that given an agent’s value, the ex post amount of

the bid in the equilibrium strategy is identical to the interim expected bid

in the equilibrium.

Perhaps the most important question unanswered by the present anal-

ysis concerns the way in which the handicaps endowed in our model are

formed in a more dynamic environment. For example, handicaps in a con-

test where agents compete for a final prize are sometimes a reflection of the

agents’ efforts in preceding periods. The general theoretical examination

of these problems remains to be done.

Appendix

Lemma 1. For each agent i, the strategy βi given in (6) is continuous and strictly

increasing in the interval (zA
i , x̄].
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Proof. It is already known that the equilibrium strategy in the all-pay auc-

tion without handicaps, given in (1), is continuous and strictly increasing.

Now we show that βi is continuous on every “junction” zA
i+1, . . . , zA

n .

For some k ≥ i, we have from (6) that:

lim
x↓zA

k+1

βi(x) = Gk+1(zA)β̄k+1(zA
k+1)− Ck+1(zA) + Ai.

Using (3), we have:

lim
x↓zA

k+1

βi(x) = Gk(zA)β̄k(zA
k+1)− Ck(zA) + Ai

= βi(zA
k+1),

thus βi is continuous on the point x = zA
k+1 (k ≥ i).

Given β̄k is continuous and strictly increasing, we established that βi is

continuous and strictly increasing in the interval (zA
i , x̄].

Given the vector of entry points zA, we define κ(x) as follows:

κ(x) = {k | x ∈ (zA
k , zA

k+1]}

Let q̃i(x, zA), β̃i(x) and Π̃i(x, y) be denoted respectively as:

q̃i(x, zA) =

F(x)κ(x)−1Gk(zA) (i ≥ k)

F(x)κ(x)Gk(zA)/F(zA
i ) (i < k)

(11)

β̃i(x) = Gκ(x)(zA)β̄κ(x)(x)− Cκ(x)(zA) + Ai

Π̃i(x, y) = q̃i(y, zA)x − β̃i(y)

Note that β̃i([zA
2 , x̄]) = [Ai, βi(x̄)] for every i.
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Lemma 2. For all x ∈ [0, x̄], Π̃i(x, y)− Π̃i(x, y′) is nondecreasing in x (nonin-

creasing in x) if y > y′ (if y < y′, respectively).

Proof. We have:

d
dx
{

Π̃(x, y)− Π̃(x, y′)
}
= q̃i(y, zA)− q̃i(y′, zA).

From the definition given in (11), qi(y, zA) is nondecreasing in y. So Π̃i(x, y)−

Π̃i(x, y′) is nondecreasing in x if y > y′. A similar observation holds for

y < y′.

Proof of Proposition 1.

Suppose that other agents j ̸= i follow the equilibrium strategy given in

(6). First, note that it can never be optimal to choose a bid b > βi(x̄) as in

that case agent i would certainly win and could do better by reducing his

bid slightly. Similarly, it can never be optimal to choose a bid b ∈ (0, Ai),

as agent i would certainly lose and could do better by reducing his bid

slightly. Accordingly, we need only consider bids b ∈ {0} ∪ [Ai, βi(x̄)] =

{0} ∪ β̃i([0, x̄]).

Given a value x ∈ (zA
k , zA

k+1] and k ≥ i, suppose that agent i consid-

ers bidding βi(y) instead of βi(x). For y ∈ (zA
k , zA

k+1] (i.e., in the “same”

interval as x), it is straightforward from the definition that we have:

Π̃i(x, x) ≥ Π̃i(x, y).

Thus, it is not beneficial to bid βi(y) instead of βi(x).

More specifically, we have for some ℓ < k:

Π̃i(zA
ℓ+1, zA

ℓ+1) ≥ Π̃i(zA
ℓ+1, y)
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for all y ∈ (zA
ℓ , zA

ℓ+1]. From Lemma 2, we obtain:

Π̃i(x, zA
ℓ+1) ≥ Π̃i(x, y)

for all x ≥ zA
ℓ+1, since Π̃i(x, zA

ℓ+1)− Π̃i(x, y) is nondecreasing in x. If x ∈

(zA
k , zA

k+1], we obtain

Π̃i(x, x) ≥ Π̃i(x, zA
k ) ≥ · · · ≥ Π̃i(x, zA

ℓ+1) ≥ Π̃i(x, y).

Then, we conclude that agent i with value x cannot benefit by bidding

b ∈ {β̃i(y) | y < x}. The same argument holds for the case of y > x. As

Πi(x, x) is nondecreasing in x,

Πi(x, x) ≥ Πi(zA
i , zA

i ) = Πi(zA
i , 0) = Πi(x, 0) = 0

so agent i cannot benefit by bidding 0 when his value is greater than zA
i .

Given β̃i([0, x̄]) = [Ai, βi(x̄)], we have argued that if all other agents are

following the strategy β j (j ̸= i), agent i with a value of x > zA
i cannot

benefit by bidding b ∈ {0} ∪ [Ai, βi(x̄)] \ {βi(x)}.

When agent i’s value x is no greater than zA
i , then:

0 = Πi(x, x) = Πi(zA
i , zA

i ) = Π̃i(zA
i , zA

i ) ≥ Π̃i(zA
i , y) ≥ Π̃i(x, y)

since Π̃ is nondecreasing in its first argument. Thus we have argued that

if all other agents are following the strategy β j (j ̸= i), agent i with a value

of x ≤ zA
i cannot benefit by bidding b ∈ {0} ∪ [Ai, βi(x̄)] \ {βi(x)}.
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Proof of Proposition 3.

First, note that if F is a uniform distribution on the interval [0, 1], the sym-

metric equilibrium strategy in a k-person all-pay auction without handi-

caps is:

β̄k(x) =
k − 1

k
xk (12)

Thus, we can write:

Ck(zA) =
k

∑
ℓ=2

[
ℓ− 1
ℓ

(zA
ℓ )

ℓ
N+1

∏
m=ℓ+1

zA
m − ℓ− 2

ℓ− 1
(zA

ℓ )
ℓ−1

N+1

∏
m=ℓ

zA
m

]

=
k

∑
ℓ=2

[
ℓ− 1
ℓ

(zA
ℓ )

ℓ
N+1

∏
m=ℓ+1

zA
m − ℓ− 2

ℓ− 1
(zA

ℓ )
ℓ

N+1

∏
m=ℓ+1

zA
m

]

=
k

∑
ℓ=2

1
ℓ(ℓ− 1)

(zA
ℓ )

ℓ
N+1

∏
m=ℓ+1

zA
m (13)

From (4),

(zA
k )

k
N+1

∏
ℓ=k+1

zA
ℓ =

k − 1
k

(zA
k )

k
N+1

∏
ℓ=k+1

zA
ℓ −

k

∑
ℓ=2

1
ℓ(ℓ− 1)

(zA
ℓ )

ℓ
N+1

∏
m=ℓ+1

zA
m + Ak

We can show that:

(zA
k )

k
N+1

∏
ℓ=k+1

zA
ℓ = (k − 1)Ak −

k−1

∑
ℓ=1

Aℓ (14)

Given the right-hand side is increasing in k, there uniquely exists an n∗

such that:

n∗ = max

{
n

∣∣∣∣∣ (n − 1)An −
n−1

∑
i=1

Ai < 1

}
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and n∗ is the number of active agents in the equilibrium. For active agents

i = 1, . . . , n∗, we have:

zA
i =

(
Bi

∏n∗
j=i+1 zA

j

)1/i

=
B1/i

i

∏n∗
j=i+1 B1/{j(j−1)}

j

Proof of Proposition 4.

The derivation of Gk is straightforward.

From Equations (13) and (14), we have:

Ck =
k

∑
ℓ=2

1
ℓ(ℓ− 1)

{
(ℓ− 1)Aℓ −

ℓ−1

∑
m=1

Am

}

=
k

∑
ℓ=2

Aℓ

ℓ
−

k

∑
ℓ=2

ℓ−1

∑
m=1

Am

ℓ(ℓ− 1)

=
k

∑
m=2

Am

m
−

k−1

∑
m=1

k

∑
ℓ=m+1

Am

ℓ(ℓ− 1)

=
k

∑
m=2

Am

m
−

k−1

∑
m=1

(
1
m

− 1
k − 1

)
Am

=
1
k

k

∑
m=1

Am

Proof of Proposition 5.

Given Gk and Ck in Proposition 4:

E[βi(x)] =
N

∑
k=i

∫ zk+1

zk

(Gk β̄k(x)− Ck + Ai)dx
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=
N

∑
k=i

(
Gk
∫ zk+1

zk

β̄k(x)dx − Ck(zA
k+1 − zA

k )

)
+ Ai(1 − zA

i )

=
N

∑
k=i

(
Gk
[

k − 1
k(k + 1)

xk+1
]zA

k+1

zA
k

− Ck(zA
k+1 − zA

k )

)
+ Ai(1 − zA

i )

As:

N

∑
i=1

N

∑
k=i

Ck(zA
k+1 − zA

k ) =
N

∑
k=1

k · Ck(zA
k+1 − zA

k )

=
N

∑
k=1

k

∑
ℓ=1

Aℓ(zA
k+1 − zA

k )

=
N

∑
ℓ=1

Aℓ

N

∑
k=ℓ

(zA
k+1 − zA

k )

=
N

∑
i=1

Ai(1 − zA
i )

we have:

RA
N =

N

∑
i=1

E[βi(x)]

=
N

∑
k=1

k − 1
k + 1

[
(zA

k+1)
k+1 − (zA

k )
k+1
]

zA
k+1 · · · · · zA

N

=
N − 1
N + 1

+
N

∑
k=2

(
k − 2

k
− k − 1

k + 1

)
(zA

k )
k+1 · zA

k+1 · · · · · zA
N

=
N − 1
N + 1

−
N

∑
k=2

2
k(k + 1)

(zA
k )

k+1 · zA
k+1 · · · · · zA

N
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Proof of Proposition 6

Let gk denote the equilibrium gross expected profit of agent k with a value

of zA
k as follows:

gk = (zA
k )

kzA
k+1 . . . zA

N.

Then:

ln gk = k ln zA
k +

N

∑
ℓ=k+1

ln zA
ℓ (15)

In particular,

ln gN = N ln zA
N,

hence

(N + 1) ln gN = N ln(gNzA
N).

By taking the difference in (15),

ln gk+1 − ln gk = (k + 1) ln zA
k+1 − k ln z − ln zA

k+1 = k(ln zA
k+1 − ln zA

k ),

Hence:

(k + 1)(ln gk+1 − ln gk) = k(ln(gk+1zA
k+1)− ln(gkzA

k )).

Thus:

ln(gNzA
N)− ln(gkzA

k ) =
N

∑
ℓ=k+1

ℓ

ℓ− 1
(ln gℓ − ln gℓ−1)

=
N

N − 1
ln gN +

N−1

∑
ℓ=k+1

1
ℓ(ℓ− 1)

ln gℓ −
k + 1

k
ln gk,
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hence,

ln(gkzA
k ) = ln(gNzA

N)−
N

N − 1
ln gN −

N−1

∑
ℓ=k+1

1
ℓ(ℓ− 1)

ln gℓ +
k + 1

k
ln gk

=
k + 1

k
ln gk −

N

∑
ℓ=k+1

1
ℓ(ℓ− 1)

ln gℓ.

Therefore:

∂ ln(gkzA
k )

∂ ln gN
=


N+1

N if k = N

− 1
N(N−1) if k < N

Thus:

∂ ln
(

∑N−1
k=1

2
k(k+1)gkzA

k

)
∂ ln gN

=

∂ ∑N−1
k=1

2
k(k+1) gkzA

k
∂ ln gN

∑N−1
k=1

2
k(k+1)gkzA

k

= − 1
N(N − 1)

,

hence,

∂ ∑N−1
k=1

2
k(k+1)gkzA

k

∂ ln gN
= − 1

N(N − 1)

N−1

∑
k=1

2
k(k + 1)

gkzA
k ,

and similarly:

∂ 2
N(N+1)gNzA

N

∂ ln gN
=

N + 1
N

2
N(N + 1)

gNzA
N

=
1

N(N − 1)

(
2N

N + 1
− 2

N(N + 1)

)
gNzA

N.

Therefore:

∂ ∑N
k=1

2
k(k+1)gkzA

k

∂ ln gN
=

1
N(N − 1)

(
2N

N + 1
gNzA

N −
N

∑
k=1

2
k(k + 1)

gkzA
k

)
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=
1

N(N − 1)

N

∑
k=1

2
k(k + 1)

(gNzA
N − gkzA

k )

> 0,

as long as zA
N > 0.

Thus:
dE[R]
dAN

= −∂ ln gN

∂AN

∂ ∑N
k=1

2
k(k+1)gkzA

k

∂ ln gN
< 0.
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