
 

 

Discussion Paper No.112 
 

 

 
Coordination Behavior and Optimal Committee Size 

 

Keiichi Morimoto 

 

 

 

January 2010 

 

 

 

GCOE Secretariat 
Graduate School of Economics 

OSAKA UNIVERSITY 
1-7 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan 

GCOE Discussion Paper Series 

Global COE Program 
Human Behavior and Socioeconomic Dynamics 
 



Coordination Behavior and Optimal Committee Size∗

Keiichi Morimoto†‡

January 27, 2010

Abstract

How many members should committees consist of? This paper addresses this
question in view of imperfect information and coordination behavior among the
members, which is a new approach alternative to introducing information acquisi-
tion cost. First, using a simple model, I show that the existence of the coordination
motive dismisses Condorcet’s (1785) suggestion and the finite optimal size of the
committee is determined. Second, I provide an application of the mechanism to
monetary policy committees in a basic New Keynesian model. This example will
inspire other applications to policy issues in the dynamic stochastic general equi-
librium framework.

Keywords: committee, Condorcet jury theorem, coordination, higher order beliefs

monetary policy

JEL Classification: D71; D84; E58

∗I am very grateful to Koichi Futagami for his invaluable advice and encouragement. I also thank
Yasushi Asako, Junichiro Ishida, Wataru Tamura and the participants of the 108th meeting of Kansai
Macroeconomics Workshop and the seminar at Bank of Japan. Of course, all remaining errors are mine.
I acknowledge financial support from the Research Fellowships for Young Scientists of the Japan Society
for the Promotion of Science (JSPS).

†Japan Society for the Promotion of Science.
‡Graduate School of Economics, Osaka University, 1-7, Machikaneyama, Toyonaka, Osaka 560-0043,

Japan. E-mail address: gge014mk@mail2.econ.osaka-u.ac.jp



1 Introduction

How many members should committees consist of? This paper addresses this question in

view of imperfect information and coordination behavior among the members, which is

a new approach alternative to introducing information acquisition cost. While enlarging

the committee promotes information aggregation effect, it also foments inefficient coor-

dination behavior among the members by reducing the power of the individuals in the

whole of the committee. This ensures the existence of the optimal size of the committee.

The economic theory of committee decision-making has been developing rapidly in

recent years. The background of this stream is not only the progress of game theory

but also that decision-making by committee has played an important role in the actual

economic activities. Many countries traditionally adopt the jury systems and their design

problems have been one of the central subjects of the academic and practical arguments

in committee design. As the latest event, Japan brought the citizen judge system into

effect in 2009 and its design problem was and will be discussed hard. Another outstanding

example is the establishment of the monetary policy committees in many countries. Bank

of England and Bank of Japan founded the Monetary Policy Committee in 1997 and the

Policy Board in 1998 respectively and the central banks of the other countries one after

another. Besides, the governments of many countries traditionally call the well-informed

persons to the committees for the important policy issues such as tax reforms and the big

firms in general hold the meetings to make decisions on the important matters for their

business. Following this trend, the demand for the committee design is growing day by

day.

The problem of optimal committee size is one of the important issues in the area of

group decision-making. The most fundamental argument is whether or not we can enrich

the performance of the committees (unlimitedly) by increasing the number of the com-

mittee members (infinitely). A famous answer for it is Condorcet’s (1785) jury theorem.

The theorem asserts that when the committee members vote honestly by use of their own

information, enlarging the committee always raises the probability that the committee

makes an appropriate decision and it converges to one as the committee size goes to

infinity. This implies that finite optimal sizes of committees do not exist. The result is

intuitive in a sense but there exist several critical arguments against it in recent literature.

They dispute Condorcet’s assertion, mainly focusing on that information acquisition of

the committee members is costly in the real world and this affects the members’ behavior

as follows. 1 When the committee size is large, the committee members are apt to avoid

paying the information acquisition cost and free-ride on the information that the other

1Gerling et al. (2005) provides a brief survey on this topic.
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members provide because their contribution to the decision of the committee is small

relatively to the information acquisition cost. Thus, Condorcet jury theorem can fail to

hold under the existence of information acquisition cost.

In this paper, I take an approach different from the existing studies to discuss on

the optimal committee size. I focus on the role of coordination behavior among the

committee members with noisy common information. This is motivated as follows. In

the case of the jury systems, although individual names of jurors are not disclosed, tri-

als by courts are held publicly and their sayings are documented and reported. When

the individual jurors face uncertainty, they may avoid distant voting from the general

tendency in the jury. Besides, many organizations have instituted the rules of informa-

tion disclosure in recent years. In particular, disclosure of public information on the

policy issues of the government and central bank has usually been a legal mandate in

many developed countries. How does such an institutional trend make a difference in

committee decision-making? Transparency may generate the incentive of the committee

members to coordinate with the other members because the minutes are often opened to

the public under transparency and hence the individual member faces an accountability

problem. That is, when the information on the decision-making process in the committee

is disclosed to the outsiders, the inefficiency of each member’s vote, which is revealed ex

post, is also known to them and it affects the individual valuation or reputation of each

member. Unless the common information of all the members is perfectly correct, the

coordination behavior can bring an inefficient decision.

There is another reason for taking the approach other than information acquisition

cost. Although the assumption of the existence of information acquisition cost is intu-

itively plausible, it is questionable whether the assumption fits with design of committees,

for example, the jury systems. Indeed, jurors usually question the accused in the courts

but they fundamentally rely on the material and circumstantial evidence provided by the

prosecutors and the defense. That is, in general, jurors do not get information drudgingly.

I think that this is one of the limits of introducing information acquisition cost in com-

mittee design. Also, the model with costly information does not fit for the committees

consisting of experts. This is because experts are generally well-informed about the issues

concerned in advance and detail information such as data is often provided not by the

committee members but the staff. Typical examples are the monetary policy committees

and the other policy boards. In fact, Toshiro Muto, who is a deputy governor of Bank

of Japan, said that he did not sense the effect of the free-rider problem of information

provision in the meetings according to his experience as an insider of the Policy Board.2

2See Muto (2007).
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The setting of the present paper is an attempt to find an alternative framework which is

suitable to the case where the committee consists of experts.

The main findings of this paper are as follows. When the committee members have the

incentive to coordinate with the other members, enlarging the committee size foments the

coordination behavior. The reasoning is that each member realizes that her power to the

final decision of the committee is reduced and has to bury herself so as not to stand out

in all the committee members. Thus, while a large committee can absorb idiosyncrasy

of noisy decentralized information strongly, it brings a large coordination loss. The

optimal size of the committee is the size which brings the best trade-off between the

positive and negative effects above and it generally exists in a wide parameter region. The

optimal committee size decreases in the potential coordination motive and the precision

of common information since they increase the dependency of the committee members on

noisy common information. Thus, this paper provides a new explanation for the existence

and properties of the optimal committee size.

Another contribution of this paper to the literature is that the benchmark model has

an explicit application to a concrete economic problem. I extend the benchmark model to

a macroeconomic model for monetary policy analysis which starts from decision-making

by the monetary policy committee and investigate its optimal size. In the last decade,

many countries established the formal committee for decision-making on monetary policy.

So that, in recent arguments of monetary policy, the institutional design problems of

monetary policy committee are regarded as important matters and the optimal committee

size is one of them. 3 This paper is the first paper which analyzes the optimal size of the

monetary policy committee in a formal model of the modern framework for monetary

policy analysis. Since central bank transparency is also a remarkable feature of modern

monetary policy as mentioned above, this paper’s approach is motivated along the trend

of central banking.

There is enormous literature on Condorcet jury theorem. Here, I briefly review several

studies relevant to the present paper. It is known that Condorcet jury theorem does not

hold under some kinds of strategic voting since sincere voting, which is one of crucial

assumption for the theorem, is inconsistent with equilibrium. Austen-Smith and Banks

(1996) show that sincere voting is not attained in equilibrium when the individuals take

their being pivotal into consideration. Feddersen and Pesendorfer (1998) show that the

probability of false accusation can be increasing in the jury size under unanimity rule.

Several studies suggest that Condorcet jury theorem also fails to hold when information

acquisition of the individuals is costly. 4 Mukhopadhaya (2003) assumes the environment

3Blinder (2007) provides a brief survey on this issue.
4It is known that there is a case where the asymptotic efficiency as in Condorcet jury theorem can
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where the individuals have identical preferences and their information acquisition is costly.

By a numerical method, he shows that welfare can be lower in mixed-strategy equilibria

of large committees than pure-strategy equilibria of small committees. Koriyama and

Szentes (2009) assume the environment similar to Mukhopadhaya (2003) and show that

the optimal committee size is bounded. They also show that the inefficiency of oversized

committees is smaller than that of the undersized committees. Thus, the recent literature

mainly focuses on information acquisition cost. The framework of the present paper can

treat the cases of experts committees to which the existence of information acquisition

cost is not suitable.

There are a few studies on optimal size of monetary policy committees. Sibert (2006)

conjectures that the free-rider problem of information acquisition can play a role for the

discussion on the issue. 5 However, it seems disputable in the standpoint of practice of

decision-making in the monetary policy committees as Muto (2007) suggests. This paper

provides an alternative approach to study optimal size of monetary policy committees and

an intuitively plausible answer for the problem in a formal model in modern framework

for monetary policy analysis. Some empirical studies find the facts on monetary policy

committees. In particular, Berger and Nitsch (2008) find the fact that inflation volatility

is U-shaped in the size of the monetary policy committees. This shows that the structure

of the monetary policy committees affects the economic outcome in actual. The result

of the present paper explains the fact above by showing the two effects of enlarging

the monetary policy committee: the positive effect of information aggregation and the

negative effect of coordination.

In the rest of this paper is organized as follows. Section 2 provides a simple microe-

conomic model which describes the substantial mechanism for the determination of the

optimal committee size. Section 3 applies the mechanism in Section 2 to a design of the

monetary policy committee in a modern macroeconomic model and provides some policy

implications. Section 4 concludes. All proofs are given in the Appendix.

2 A Simple Model

This section provides a simple microeconomic model which describes the process of

decision-making and determination of the finite optimal size of the committee. It is

very abstract but can grasp clearly the role of coordination behavior in decision-making

hold even if information acquisition is costly. Martinelli (2006) shows that if there is only variable cost
for obtaining precision of the signals, then the probability that the committee makes a correct decision
converges to one as the committee size goes to infinity.

5On the free-rider problem of information as a public good, for example, see Li (2001).
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by the committee.

2.1 Setup

I set up a benchmark model. The committee consists of N (ex-ante) homogeneous mem-

bers. It is seated to pursue a target θ ∈ R on behalf of an organization in the background.
6 For example, juries are called to judge criminal suits reasonably in the cause of (social)

justice and monetary policy committees are organized to make an appropriate decision

on monetary policy for society’s benefit. The target θ is interpreted as an underlying

state or the committee’s optimal response to it. For instance, θ is the truth of the case in

the trials. 7 In the model of monetary policy by committee which I provide in the next

section, the counterpart of θ is a level of nominal interest rate set in optimal discretionary

policy under perfect information. 8

Each member of the committee has uninformative flat prior about θ over the real line

but receives common and private signals on θ. 9 The common signal is of the form such

as

y = θ + η,

where the noise term η is normally distributed with mean zero and variance α−1. Each

member knows that the realization of y and the distribution of η are common and known

to everyone. The common signal is interpreted as a content of a staff report or well-

balanced recognition among the committee members especially as experts. The private

signal of an arbitrary member j is also of the standard form such as

xj = θ + εj,

where the noise term εj is mutually independent and normally distributed with mean

zero and variance β−1. She knows that the distribution is common to every member

6I believe that this is a natural motivation for the establishements of the actual committees in many
cases according to concrete application (such as the example in section 3) although there are probably
counter examples.

7Most of literature on problems of juries adopt two state models in which θ = ’innocent’ or θ = ’guilty’.
The model of continuous state admits the case where the jury also participates in the determination of
the appropriate punishment as the citizen judge system in Japan.

8In a basic New Keynesian model, nominal interest rate set in optimal discretionary policy is linear in
demand shock and cost shock. In this example, (innovations of) these shocks are the underlying states.
For detail, see the next section.

9This assumption on the prior about θ is intended for analytical ease. Although this is not so natural
according to the application given in the next section, no substantial difference arises from considering
proper prior. For a detail discussion, see the supplementary note.
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but does not know the realization of the others’ private signals. The private signals

represent the members’ individual views on the target which are generally distinct and

not communicated to the others.

Next, I set the payoff structure of the committee. Although the committee itself

is seated for making a decision near to the true θ under imperfect information, each

committee member pursues her own objectives. In this simple model, I assume that each

member j votes aj ∈ R so as to maximize her own payoff function

uj = −(1 − r)(aj − θ)2 − r(aj − ā)2, (1)

where r ∈ [0, 1) and ā = 1
N

∑N
k=1 ak. The meaning of the payoff function above is as

follows. Each member j has two goals. One is to hit the true target and the other is not

to remove her vote from the average of all. That is, while she honestly tries to contribute

to an appropriate decision, she also seeks coordination with the other members even

though it makes the performance of the committee worse. Thus, I interpret parameter

r as the degree of coordination motive of the members. Note that I assume that the

objective of establishing the committee is to grasp the true target and make the decision

as correct as possible. 10 Since the coordination motive distorts the members’ use of

information, it generates only a loss for the performance of the committee.

However, there are some reasons for considering such coordination motive. Usual

committees are established for better decision-making by choosing the delegations from

the large organizations. For example, firms hold committee meetings to make decisions

on big bargains or selections of recruits, governments summon well-informed persons

committees for various policy issues and the central banks have the formal policy boards

for decision-making on monetary policy. In the cases of policy issues, since each member’s

saying or voting in the meeting is often released to the public, she will be at least partially

motivated to coordinate with the other members. In the cases of the firms, although the

records are rarely opened formally, what the members said in the meeting usually spreads

from nowhere or can be speculated by the outsiders. Therefore, I interpret r also as a

measure of the indirect effect of transparency on decision-making in the committee.

All the votes are aggregated by a specific voting rule and it becomes the final decision

of the committee. For analytical ease, I assume that the voting rule of the benchmark

case is the arithmetic mean:

â =
1

N

N∑
j=1

aj. (2)

10I set the performance measure of the committee along this line soon later.
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This rule is quite simple but enough for grasping the basic mechanism this paper suggests.

Of course, the approach I will take is applicable to the case of more realistic voting rule.

In section 2.4, I analyze the case of the median-voting rule:

â = med
1≤j≤N

{aj}.

I will show that the basic properties of the model do not change in that case.

I finally set a performance measure of the committee. Since in this paper I assume

that the committee is seated to make accurate decisions for the benefit of the organization

in the background, a natural measure of the committee’s performance is

W = −(â − θ)2. (3)

2.2 Equilibrium

I derive the Bayesian Nash equilibrium of the model. The first order condition of each

member j’s problem is

aj =
1 − r

1 − r
N

Ej(θ) +
(1 − 1

N
)r

1 − r
N

Ej(ā),

where the symbol Ej represents a mathematical expectation conditioned on information

available to member j. Let δ =
(1− 1

N
)r

1− r
N

. Then, the FOC above is rewritten as

aj = (1 − δ)Ej(θ) + δEj(ā). (4)

Note that δ is increasing in N . That is, each member places a higher weight on the

average of all the votes relative to the target as the committee becomes larger. What

does cause it? Since the number of the committee members is finite, each member can

partially control the average of all the votes: see (1). When the committee size is small,

she does not have to care about the others’ behavior extremely because her power in the

committee is relatively large. As the committee becomes large, the power fades away and

she must seek harder for coordination with the other members. In short, the massiveness

of the group drives the individuals to bury themselves in it.

Equation (4) provides the conjecture that the equilibrium strategy is linear in common

and private signals. 11 In fact, the following proposition supports for it together with

the uniqueness property.

11For a heuristic derivation of equilibrium, put aj = (1 − γ)y + γxj . Here γ is an undetermined
coefficient. Substituting this into (4) and comparing the coefficients of both sides, the response coefficient
γ given in Proposition 1 is obtained.
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Proposition 1 There exists a unique equilibrium strategy such that for all y, xj ∈ R,

aj = (1 − γ)y + γxj,

where γ = (1−r)β

(1− r
N

)(α+β)−r(1− 1
N

)( α
N

+β)
.

Proof.

See Appendix A.

This equilibrium strategy brings the essential mechanism for the main result of the

present paper. The next assertion shows it.

Corollary 1 The response coefficient γ to private signal is decreasing in N . Given α, β

and r, it lies in the half-open interval
(

(1−r)β
α+(1−r)β

, β
α+β

]
.

Proof.

See Appendix B.

Corollary 1 asserts that each member’s dependency of the common signal increases

as the size of the committee becomes larger. It results from the relationship between

each member’s control of decision-making in the committee and coordination behavior

which I explained above. When the committee becomes larger, each member becomes

more sensitive to common signal to adjust her voting to the others’ more precisely. If

the committee consists of only one person, the coordination motive vanishes and his

behavior accords with that of the basic statistical decision-making: γ|N=1 = β
α+β

. As the

committee size goes to infinity, the response coefficient γ converges to (1−r)β
α+(1−r)β

. That is,

the equilibrium strategy corresponds to that of the finite-players version of Morris and

Shin’s (2002) beauty contest game. In the finite-players version of Morris and Shin’s

(2002) beauty contest game, each player j has the same informational structure as the

model of the present paper and her utility function is 12

−(1 − r)(aj − θ)2 − r
(
aj −

1

N − 1

∑
k 6=j

ak

)2

.

12As an alternative setting, we may assume that her utility function is

−(1 − r)(aj − θ)2 − r

N − 1

∑
k 6=j

(aj − ak)2.

The solution under this utility function is the same as the case of the function in the text although the
social welfare function changes.
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The second objective of each player is the average of the others’ actions, which does

not include her own action. In this case, each player can not control the average and

hence has to care about the others’ behavior more greatly than the case where she can

do it. Therefore, the basic beauty contest game can be regarded as a limiting case of the

coordination game in this paper.

2.3 Optimal Size of the Committee

By (3) and Proposition 1, the decision of the committee is

â = (1 − γ)y + γ

∑N
k=1 xk

N
. (5)

Thus, substituting (5) into (3), the expected performance of the committee is

E(W |θ) = −E

[(
(1 − γ)(θ + η) + γ

∑N
k=1(θ + εk)

N
− θ

)2]
= −E

[(
(1 − γ)η + γ

∑N
k=1 εk

N

)2]
= −(1 − γ)2α−1 − γ2β−1

N
.

I investigate the relationship between the size of the committee and its performance.

Considering the continuation of E(W |θ) with respect to N , I obtain

∂E(W |θ)
∂N

= 2(1 − γ)α−1 ∂γ

∂N
− 2γ

β−1

N
· ∂γ

∂N
+ γ2β−1N−2. (6)

The meaning of (6) is clear in view of Corollary 1. Enlarging the committee has three

effects on its performance. Note that, since ∂γ
∂N

< 0 by Corollary 1, the first term is

negative and the second and third terms are positive. The first term represents the

indirect negative effect due to the stronger coordination behavior. The second term is

the indirect positive effect owing to the decrease of the members’ dependency on the

noisy private signals. The third term is the direct positive effect from the decrease of the

volatility due to the noisy private signals by averaging larger samples.

The next proposition provides a necessary and sufficient condition for the existence

of the optimal committee size under the average-voting rule.

Proposition 2 Under the average-voting rule, there exists a finite optimal size of the

committee if and only if the parameter set satisfies r > 1
5

and β
α

< 5r−1
(1−r)2

.
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Proof.

See Appendix C.

The parameter condition above means that the degree of coordination motive, r, is

not so weak and the precision of common (private, resp.) information relative to private

(common) information is large (small).

This result is intuitively plausible. When the coordination motive is strong, each mem-

ber depends highly on common information to approximate her own voting to the others’.

Besides, when the relative precision of common information is larger, each member also

places a higher weight on common information to hit the true target more accurately. 13

The negative effect of enlarging the committee is amplified in such a case. Then, this

dominates the positive effects in the limit since the marginal contribution of averaging

reduces as the committee becomes larger.

In fact, the expected performance E(W |θ) is single-peaked in the committee size N

under the necessary and sufficient condition for the existence of the optimal size. 14

[Figure 1 about here.]

Figure 1 gives a numerical example of this relationship. 15 When the committee size is

small, the direct positive effect of averaging is very large and it (and the indirect positive

effect) dominates the negative effect. However, as the committee size becomes larger, the

direct positive effect becomes smaller and the negative effect becomes relatively larger.

Thus, the expected performance has the single peak in the committee size. According

to the discussion above, I obtain the following characterization of the optimal committee

size.

Corollary 2 Suppose that the parameter set satisfies the necessary and sufficient condi-

tion for the existence of the optimal committee size under the average-voting rule: r > 1
5

and β
α

< 5r−1
(1−r)2

. Then, the optimal size N∗ is given by the following equation.

N∗ = argmax
N∈{N−(Ñ),N+(Ñ)}

E(W |θ),

where Ñ ∈ R is the solution of the equation

γ

1 − γ
· 1

N
− γ2

2(1 − γ)

( ∂γ

∂N
N2

)−1

=
β

α
13This mechanism necessarily works since I assume r < 1.
14A formal proof of this fact is given in the necessity part of the proof of Proposition 2.
15To depict Figure 1, I set r = 0.4, α = 1.25 and β = 1.
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with respect to N ∈ R, N−(Ñ) is the maximal integer which is not larger than Ñ and

N+(Ñ) is the minimal integer which is not smaller than Ñ .

Proof.

It is obtained immediately from the proof of Proposition 2. See Appendix C.

Note that Ñ depends only on r and the precision ratio β
α

because γ and ∂γ
∂N

does

so. 16 Since Ñ is the single peak of the continuation of E(W |θ) with respect to N , N∗

is mainly determined by them. However, rigorously speaking, N∗ depends on not the

precision ratio but the pair (α, β) in general. This is because E(W |θ) can not be written

as the function of r and β
α

and it is impossible to decide which of N−(Ñ) and N+(Ñ) the

optimal size N∗ is equal to only with the values of r and β
α
.

Next, I investigate two relationships between the parameters and the optimal size.

Although it is difficult to obtain them in analytical ways due to discreteness of the

committee size, I can find the robust qualitative results below.

First, I fix α = 1.25 and β = 1 as in Figure 1 and calculate the optimal sizes for

various values of r in [0.3, 0.99]. 17

[Figure 2 about here.]

Figure 2 illustrates the result. The optimal committee size is non-increasing in the

degree of coordination motive, r. When r is small and hence the coordination motive

is weak, the negative effect of enlarging the committee is small. The importance of

enhancing the positive effect of information aggregation is then relatively large. There-

fore, the optimal size of the committee is very large for small r. As r becomes larger,

the optimal size decreases rapidly since the negative effect of coordination acceleratingly

swells. Figure 2 provides another interesting fact. It illustrates that the optimal size of

the committee is one for sufficiently large r. That is, if the coordination motive is very

strong and adding a committee member is too costly, then a single decision-maker can be

optimal to choose a correct alternative. When the members bury themselves and follow

the incorrect common sense with little criticism, appointing a sincere individual may be

a good measure to reach a right conclusion.

Second, I set r = 0.4 as in Figure 1 and calculate the optimal sizes for various values

of α (β, resp.) in [1, 5] with β fixed to 2 (α fixed to 3).

[Figure 3 about here.]

16See the necessity part of the proof of Proposition 2.
17When α = 1.25 and β = 1, the existence condition is met for all 0.3 ≤ r ≤ 0.99.
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Figure 3 illustrates the result. Given the precision of private information (common

information, resp.), the optimal committee size is non-increasing (non-decreasing) in the

precision of common information (private information). Given the degree of coordination

motive, when the precision of common information is large relative to that of private

information, each member places a high weight on common information. Then, enlarging

the committee strongly foments the coordination behavior among the members. The op-

timal size is hence non-increasing in α. Contrary, since such a negative effect of enlarging

the committee is small when the precision of private information is large, the gain of

information aggregation is relatively large. Thus, the optimal size is non-decreasing in

β. The result above suggests that we should establish a small committee to reduce the

coordination loss when the common sense (or the staff report) on the issue concerned is

precise to some extent.

2.4 Median-Voting Rule

In the last of this section, I consider the case where the voting rule is the median-voting

rule. The basic properties of the model do not change even under this voting rule. The

discussion below ensures the robustness of the results in section 2.3 in a wide class of

voting rules.

Since each committee member’s behavior is invariant in voting rules, the decision of

the committee is

â = med
1≤j≤N

{(1 − γ)y + γxj}

= θ + (1 − γ)η + γ med
1≤j≤N

{εj}.

Thus, the expected performance of the committee is

E(W |θ) = −(1 − γ)2α−1 − γ2E

[(
med

1≤j≤N
{εj}

)2
]
.

The expectation in the second term of the right-hand side has no analytical expression for

finite N . However, since the distribution of med1≤j≤N{εj} is approximately the normal

distribution with mean 0 and variance πβ−1

2N
for sufficiently large N (med1≤j≤N{εj} ∝

N(0, πβ−1

2N
)), I obtain

E(W |θ) ≈ −(1 − γ)2α−1 − γ2πβ−1

2N
(7)
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for sufficiently large N . 18 Thus, I obtain a sufficient condition for the existence of the

finite optimal committee size under the median-voting rule by use of this asymptotic

property.

Corollary 3 Under the median-voting rule, there exists a finite optimal size of the com-

mittee if the parameter set satisfies r > π
π+8

and β
α

< (π+8)r−π
π(1−r)2

.

Proof.

See Appendix D.

The intuition for this sufficient condition is similar to Proposition 2 but there is a

quantitative difference between the median-voting rule and the average-voting rule. One

can show that the parameter region which satisfies the sufficient condition under the

median-voting rule is smaller than that of the average-voting rule. Figure 4 illustrates it.

[Figure 4 about here.]

The cause of this result is the difference between statistical properties of mean and

median. That is, as seen in med1≤j≤N{εj} ∝ N(0, πβ−1

2N
), sample median converges in

probability more slowly than sample mean. 19 Therefore, under the median-voting rule,

it is more important to promote the positive effect of information aggregation than under

the average-voting rule. This makes the existence condition under the median-voting rule

stricter.

A necessary condition along the line of Proposition 2 can not be obtained under the

median-voting rule because there is no analytical expression of the distribution of sample

median for small sample: see the necessity part of the proof of Proposition 2. However,

the basic properties under the average-voting rule will be robust since the distribution of

sample median approaches that of sample mean very quickly. 20 Moreover, the proofs of

Proposition 2 and Corollary 3 imply the following. In general, we can obtain a similar

(sufficient) condition for the existence of the optimal committee size when we adopt as

18It is known that when n random variables Xi (i = 1, ..., n) identically and independently follow a
distribution with median M and density function f , the distribution of Yn = med1≤i≤n{Xi} with large
sample is approximately the normal distribution with mean M and variance 1

4n(f(M))2 . As a special case,
when each Xi follow the normal distribution with mean µ and variance σ2 identically and independently,
the distribution of the sample median Yn is approximately N(µ, πσ2

2n ) for large n. For a detail explanation,
see Kenney and Keeping (1962).

19Since 1
N

∑N
j=1 εj ∼ N(0, β−1

N ), the variance of sample mean is π
2 times as small as that of sample

median.
20For a detail explanation on this fact, see Maritz and Jarret (1978).
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a voting rule any statistics which has the consistency as an estimator of the true state

with respect to private signals and converges at an order not lower than sample mean. 21

3 Monetary Policy Committee

In this section, I provide a simple application of the model in Section 1. Following

Morimoto (2009) basically, I set up the model for monetary policy analysis which starts

from decision-making by the monetary policy committee. For a detail explanation of the

model setting, see Morimoto (2009).

3.1 Macroeconomic Model

As the underlying macroeconomic model, I adopt a basic New Keynesian model. The

model consists of the two stochastic difference equations

xt = Etxt+1 −
1

σ
(it − Etπt+1) + ut, (8)

πt = βEtπt+1 + κxt + et, (9)

together with a monetary policy rule. Here, xt, πt, it, ut, et are output gap, inflation rate,

nominal interest rate, demand shock and cost shock in period t respectively and β, σ, κ are

positive parameters. Parameters β, σ, κ represent the discount rate, constant elasticity of

intertemporal substitution and impact of one unit output gap on inflation, respectively.

I assume that ut and et follow AR(1) processes in such a way that

ut = ρuut−1 + ϕt,

et = ρeet−1 + ψt,

where ρu, ρe ∈ [0, 1) and the innovations ϕt and ψt are normally distributed with mean

zero and variances σ2
ϕ and σ2

ψ respectively. Once a setting rule of nominal interest rate

is specified, macro dynamics of the model economy is determined as sequences of output

gap and inflation rate under the policy rule.

As in most works in optimal monetary policy, I adopt the following social loss function

as the welfare measure.

L ≡ V (π) + λV (x), (10)

21An estimator for a parameter is said to satisfy consistency if it converges in probability to the true
value of the parameter.
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where V (π) and V (x) are asymptotic variances of inflation rate and output gap and λ is

the weight that society places on output gap relative to inflation. 22

3.2 Interest Rate Setting by Committee

Next, I set up the process of decision-making on interest rate setting in the monetary

policy committee. The committee consists of N (ex-ante) homogeneous members. The

informational structure of the committee is as follows. Each committee member faces

information imperfectness about innovations of demand shock and cost shock. For sim-

plicity, I assume that each committee member has improper flat prior about them over

the real line. 23 In the end of period t− 1, each member receives two kinds of signals on

innovations of demand shock and cost shock in period t. One is common signal and the

other is private signal. Each member j′s common signal is of the standard form such as

ϕc
t = ϕt + µt,

ψc
t = ψt + νt,

where the noise terms of µt and νt are independently and normally distributed with mean

zero and variance σ2
µ and σ2

ν respectively. There are some sources of common signals

of the committee members. The committee members probably have a kind of well-

balanced recognition on economic states as macroeconomists. Besides, in most actual

central banks, the first step of or one of preparations for the meeting of monetary policy

committees is the staff report on the present conditions and future developments of the

economies.

Each member j’s private signal is of the standard form such as

ϕj
t = ϕt + εj

t ,

22In the usual analysis in the New Keynesian literature, the welfare measure is the second order
approximation of the household’s utility function. In the basic model, it is proportional to

E0

∞∑
t=0

βt
(
π2

t + λx2
t

)
.

In this paper, however, I focus only on the average performance of monetary policy and reset it to

lim
β→1

(1 − β)E0

∞∑
t=0

βt
(
π2

t + λx2
t

)
= L.

23Although it is more natural to assume that each member knows the distribution of innovations,
ϕt ∼ N(0, σ2

ϕ) and ψt ∼ N(0, σ2
ψ), this does not change the basic properties below and only complicates

manipulations. For details, see the supplementary note.
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ψj
t = ψt + ηj

t ,

where the noise terms of εj
t and ηj

t are independently and normally distributed with mean

zero and variance σ2
ε and σ2

η respectively.

In the meeting of the monetary policy committee, based on her own information, each

member j votes the level of nominal interest rate in period t, ijt , to maximize her own

expected payoff. The function form of the payoff function is assumed to be

−r(ijt − i∗t )
2 − (1 − r)(ijt − īt)

2, (11)

where r ∈ [0, 1), īt = 1
N

∑N
j=1 ijt and i∗t is the nominal interest rate in period t set in

optimal discretionary policy under perfect information by a single policy maker. That is,

i∗t is the solution of the following linear-quadratic problem. 24

min π2
t + λx2

t ,

s.t. xt = Etxt+1 −
1

σ
(it − Etπt+1) + ut,

πt = βEtπt+1 + κxt + et.

Solving this problem, I obtain the analytical expression of i∗t such that

i∗t = σut + Φet,

where Φ = λcρe+(1−ρe)σκ
λc(1−βρe)+κ2 .

Nominal interest rate in period t, it, is determined by aggregating the voting rates with

a specific rule. As the benchmark case, I assume that the voting rule is the arithmetic

mean:

it =
1

N

N∑
j=1

ijt . (12)

This is quite simple but sufficient for the purpose of this paper. In the actual institutions,

however, the majority rule is often adopted and hence it is natural to consider the case

of the median-voting rule:

it = med
1≤j≤N

{ijt}. (13)

I will show that as in the simple model of the previous section, the basic result does not

change under the median-voting rule.

24For a detail explanation of this issue, see Walsh (2003).
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3.3 Equilibrium Dynamics and Macroeconomic Volatility

Now let us see the equilibrium strategy of the subgame in the committee. The first order

condition of member j’s problem is

ijt = (1 − δ)Ej
t−1(i

∗
t ) + δEj

t−1(̄it),

where Ej
t−1 is a mathematical expectation conditioned on information available to member

j in the end of period t − 1. Since

Ej
t−1(i

∗
t ) = σ

[
ρuut−1 +

σ−2
µ

σ−2
ε + σ−2

µ

ϕc
t +

σ−2
ε

σ−2
ε + σ−2

µ

ϕj
t

]
+ Φ

[
ρeet−1 +

σ−2
ν

σ−2
η + σ−2

ν

ψc
t +

σ−2
η

σ−2
η + σ−2

ν

ψj
t

]
,

I obtain the following proposition immediately from Proposition 1.

Proposition 3 There exists a unique equilibrium strategy of the form such that

ijt = σ[ρuut−1 + γuϕ
j
t + (1 − γu)ϕ

c
t ] + Φ[ρeet−1 + γeψ

j
t + (1 − γe)ψ

c
t ], (14)

where γu = (1−r)σ−2
ε

(1− r
N

)(σ−2
µ +σ−2

ε )−r(1− 1
N

)(
σ−2

µ
N

+σ−2
ε )

and γe =
(1−r)σ−2

η

(1− r
N

)(σ−2
ν +σ−2

η )−r(1− 1
N

)(
σ−2

ν
N

+σ−2
η )

.

Substituting (14) into (12), I obtain the following equilibrium nominal interest rate.

it = σ[ut + γuε̃t + (1 − γu)µt] + Φ[et + γeη̃t + (1 − γe)νt]

= i∗t + σ[γuε̃t + (1 − γu)µt] + Φ[γeη̃t + (1 − γe)νt], (15)

where ε̃t = 1
N

∑N
j=1 εj

t and η̃t = 1
N

∑N
j=1 ηj

t . The second and third terms of (15) represent

the inefficiency of interest rate setting due to imperfect information and coordination

behavior among the committee members.

Macro dynamics of the model economy is given by (8), (9) and (15). Note that since

the relevant state variables in period t are et, ε̃t, η̃t, µt and νt, equilibrium output gap

and inflation rate is linear in them. Thus, by the method of undetermined coefficients, I

obtain the following equilibrium output gap and inflation rate. 25

xt = − κ

λc(1 − βρe) + κ2
et −

[
γuε̃t +

γeΦ

σ
η̃t + (1 − γu)µt +

(1 − γe)Φ

σ
νt

]
, (16)

πt =
λc

λc(1 − βρe) + κ2
et − κ

[
γuε̃t +

γeΦ

σ
η̃t + (1 − γu)µt +

(1 − γe)Φ

σ
νt

]
. (17)

25For the detail of the calculation, see Appendix E.
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The bracketed parts of the equilibrium output gap and inflation rate are the inefficient

economic fluctuations due to the inefficient interest rate setting by the committee. Note

that the second term of (17) is κ times as large as that of (16). This means that the

inefficient interest rate setting brings the inefficient output gap fluctuation, −[γuε̃t +
γeΦ
σ

η̃t + (1 − γu)µt + (1−γe)Φ
σ

νt], and it hits on inflation through the aggregate supply

relation, the New Keynesian Phillips curve.

To find equilibrium social loss, let us calculate the asymptotic variances of the output

gap and inflation rate. After some calculations, I obtain

V (x) =

[
κ

λc(1 − βρe) + κ2

]2 σ2
ψ

1 − ρ2
e

+
1

N

[
γ2

uσ
2
ε +

(γeΦ

σ

)2

σ2
η

]
+

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
, (18)

V (π) =

[
λc

λc(1 − βρe) + κ2

]2 σ2
ψ

1 − ρ2
e

+
κ2

N

[
γ2

uσ
2
ε +

(γeΦ

σ

)2

σ2
η

]
+κ2

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
. (19)

The first terms of (18) and (19) are due to cost shock, one of the economic fundamentals.

The second (third, resp.) terms are due to noisiness of private (common) information of

the committee members, which is one of the non-fundamentals. By (10), (18) and (19),

the social loss in equilibrium is

L =

[( λc

λc(1 − βρe) + κ2

)2

+ λ
( κ

λc(1 − βρe) + κ2

)2
]

σ2
ψ

1 − ρ2
e

+(κ2 + λ)

[
1

N

(
γ2

uσ
2
ε +

(γeΦ

σ

)2

σ2
η

)
+

(
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

)]
.

The social loss L seems somewhat complicated but its meaning is clear. The first term

is equal to the social loss under optimal discretionary policy under perfect information.

Since I adopt optimal policy under discretion as the optimality concept, it is not relevant

to the performance of the monetary policy committee. The second term is the social

loss generated by the inefficient interest rate setting due to imperfect information and

coordination behavior among the members. Therefore, the second term of L should be

regarded as the performance measure of the monetary policy committee in this model.

Note that it corresponds just to E(W ) in the previous section.
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3.4 Optimal Size of MPC

In the rest of this section, I investigate an existence condition of the optimal size of the

monetary policy committee and its property. As mentioned above, the optimal size is

the size N ∈ N which maximizes the performance measure of the committee:

P ≡ − 1

N

[
γ2

uσ
2
ε +

(γeΦ

σ

)2

σ2
η

]
−

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
.

Note that when the response coefficients γu and γe are independent of the committee

size N , P is increasing in N and the first term of P converges to zero as N goes to

infinity. This is a variant of Condorcet’s assertion. Although the inefficiency of interest

rate setting does not disappear because of noisy common information, the idiosyncratic

noise of private information is perfectly absorbed by averaging the large sample in the

limit. 26

In general cases, γu and γe depend on N and hence P is not necessarily increasing

in N . So that, the optimal size of the monetary policy committee can exist. The next

proposition provides both of necessary and sufficient conditions separately.

Proposition 4 The following statements on the existence of the optimal size of the mon-

etary policy committee hold under the average-voting rule.

1. There exists a finite optimal size of the monetary policy committee if the parameter

set satisfies that r > 1
5
, σ−2

ε

σ−2
µ

< 5r−1
(1−r)2

and
σ−2

η

σ−2
ν

< 5r−1
(1−r)2

.

2. There exists a finite optimal size of the monetary policy committee only if the pa-

rameter set satisfies that r > 1
5

and σ−2
ε

σ−2
µ

< 5r−1
(1−r)2

or
σ−2

η

σ−2
ν

< 5r−1
(1−r)2

.

Proof.

See Appendix F.

Because this model includes two economic shocks, demand and cost shock, it is difficult

to find exactly a necessary and sufficient condition along the line of Proposition 2. 27

However, the necessary condition above is close to the sufficient condition. This is because

the mechanism for the existence of the optimal size is similar to that of the simple model

in the previous section. Note that according to Figure 4, if r > 1
5
, the condition that σ−2

ε

σ−2
µ

<

5r−1
(1−r)2

and
σ−2

η

σ−2
ν

< 5r−1
(1−r)2

is normally satisfied because common information is interpreted

as well-balanced recognition among the economist or the staff report and hence it does

26See Corollary 1 and 7 of Morimoto (2009).
27See the proofs of Proposition 4 and Corollary 4.
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not seem far more imprecise than the members’ private information. Therefore, it can

be said that the monetary policy committees should not be so large under central bank

transparency and a reputation effect if we consider a source of the coordination motive

as such.

The properties of the optimal size of the monetary policy committee are basically

similar to those of the simple model. So that, I do not report numerical examples here.

First, the optimal size N∗ is non-increasing in r. That is, the stronger what foments the

coordination behavior among the committee members is, the smaller the monetary pol-

icy committees should be. In the standpoint mentioned above, it is optimal to promote

efficient use of the members’ information by holding the monetary policy committees

to small groups when central bank transparency and a reputation effect is large. Sec-

ond, given the precision of private information, the optimal size is non-increasing in the

precision of common information. In the context of the monetary policy committee, it

suggests that the committee size should be small when the staff report or common un-

derstanding of general economists on the present and future economic states is reliable

to some extent.

Next, I provide a sufficient condition for the existence of the optimal size of the

monetary policy committee under the median-voting rule, which is similar to the case of

the average-voting rule as in the simple model.

Corollary 4 If the parameter set satisfies that r > π
π+8

, σ−2
ε

σ−2
µ

< (π+8)r−π
π(1−r)2

and
σ−2

η

σ−2
ν

<
(π+8)r−π
π(1−r)2

, then there exists a finite optimal size of the monetary policy committee.

Proof.

See Appendix G.

As in the simple model in the previous section, the parameter condition for the ex-

istence of the optimal committee size under the median voting rule is stricter than that

of the average-voting rule. It suggests that the the effect of information aggregation is

more valuable for the monetary policy committees which adopt the majority rule.

3.5 A Positive Implication

Finally, I provide a positive implication of the model for the actual monetary policy

committees. Using a data set on the characteristics of the monetary policy committees

in more than 30 countries from 1960 through 2000, Berger and Nitsch (2008) report that

inflation volatility is U-shaped in the size of the monetary policy committee. In the

present paper, the inflation volatility exhibits a similar behavior as in the case of the
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simple model since the the part of variace of inflation which depends on the committee

size is

κ2

N

[
γ2

uσ
2
ε +

(γeΦ

σ

)2

σ2
η

]
+ κ2

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
.

Since Berger and Nitsch (2008) also report that similar results are obtained about output

growth, one of the real terms, I conjecture that the property results from a feature of the

functions of committee decision-making for economic stabilization. The present paper

gives an explanation for the property in terms of the positive effect of information aggre-

tion and the negative effect of fomenting the inefficient coordination which an increase

of the committee size brings to the performance of the monetary policy committee.

4 Conclusion

How many members should the committees consist of? The present paper provides an

answer for this question in committee design, focusing on coordination behavior among

the members based on higher order beliefs. The approach in this paper is an alternative

to incorporating information acquisition costs into the payoff structures, which is usually

adopted in literature. This paper also analyzes in a formal model the optimal size of

monetary policy committees, which is one of the most important issues of monetary

policy design.

There are a few remaining problems. The first one is to construct a theoretical

foundation for the members’ coordination motive. It seems very significant in the area of

committee design. Especially, I think transparency and reputation can play an important

role for it. The second one is to find applications of the mechanism given in this paper to

other economic problems. Considering the structure of this paper’s model, the mechanism

will be applicable to the models in which the optimal action of the committee under

perfect information is a linear function of states. I believe that such situations are not

rare in the economic phenomena of our interest.
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Appendices

Appendix A: Proof of Proposition 1

By the iterated substituion of F.O.C. (4), I obtain 28

aj = (1 − δ)Ej(θ) + (1 − δ)δEj(Ē(θ)) + (1 − δ)δ2Ej(Ē
2(θ)) + · · ·

= (1 − δ)
∞∑

s=0

δsEj(Ē
s(θ)). (20)

To calculate this infinite series, I use the following lemma.

Lemma 1 For all j and s,

Ej(Ē
s(θ)) = (1 − µs)y + µsxj, (21)

where µs =
β( α

N
+β)s

(α+β)s+1 .

Proof of Lemma 1.

I prove it by induction. Choose arbitrary member j. The assertion obviously holds

when s = 0. Suppose that it holds for an arbitrary s. Then, by (21), I obtain

Ēs+1(θ) =
1

N

N∑
k=1

Ek(Ē
s(θ))

= (1 − µs)y + µs

∑N
k=1 xk

N
.

Therefore,

Ej(Ē
s+1(θ)) = (1 − µs)y + µsEj

(∑N
k=1 xk

N

)
= (1 − µs)y + µs

( 1

N
xj +

N − 1

N
· αy + βxj

α + β

)
=

[
1 −

(
1 − N − 1

N
· α

α + β

)
µs

]
y + µs

( 1

N
+

N − 1

N
· β

α + β

)
xj.

By 1 − N−1
N

· α
α+β

= 1
N

+ N−1
N

· β
α+β

=
α
N

+β

α+β
, I obtain

Ej(Ē
s+1(θ)) =

(
1 −

α
N

+ β

α + β
µs

)
y + µs

α
N

+ β

α + β
xj

= (1 − µs+1)y + µs+1xj.
28The symbol Ēs(θ) denotes an s-th order average expectation. That is, for an arbitrary s ∈ {1, 2, ...},

Ēs(θ) = 1
N

∑N
k=1 Ek

(
Ēs−1(θ)

)
.
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This completes the proof of Lemma 1.

Substituting (21) into (20), I obtain

aj = (1 − δ)
∞∑

s=0

δs
[
(1 − µs)y + µsxj

]
=

[
1 − (1 − δ)

∞∑
s=0

δsµs

]
y + (1 − δ)

( ∞∑
s=0

δsµs

)
xj.

After some algebraic manipulations, I obtain 29

(1 − δ)
∞∑

s=0

δsµs = γ,

where γ is defined in Proposition 1. Q.E.D.

Appendix B: Proof of Corollary 1

The denominator of γ can be reduced to

(1 − r)α +

[
1 − r

( 2

N
− 1

N2

)]
β.

Considering its continuation with respect to N , I obtain

∂

∂N

( 2

N
− 1

N2

)
= −2N−3(N − 1) ≤ 0.

This shows that the denominator of γ is increasing in N and positive. 30 Therefore, γ is

decreasing in N .

It is immediately obtained that γ = β
α+β

when N = 1 and limN→∞ γ = (1−r)β
α+(1−r)β

.

Q.E.D.

Appendix C: Proof of Proposition 2

(Sufficiency)

Since E(W |θ) converges as N goes to infinity, a finite optimal size of the committee

exists if ∂E(W )
∂N

< 0 for sufficiently large N . I derive an explicit expression of this sufficient

condition.

29Note that the infinite series
∑∞

s=0 δsµs converges since
∑∞

s=0 δsµs = β
α+β

∑∞
s=0

(
(1− 1

N )r

1− r
N

·( α
N +β)

)s

.
30It is larger than or equal to (1 − r)(α + β) > 0.
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Equation (6) can be reduced to

∂E(W |θ)
∂N

= 2(1 − γ)β−1 ∂γ

∂N

[
β

α
−

(
γ

1 − γ
· 1

N
− γ2

2(1 − γ)

( ∂γ

∂N
N2

)−1
)]

. (22)

Note that ∂γ
∂N

< 0 for all N by Corollary 1 and that the second term of the bracketed

part of (22) converges to zero as N goes infinity. Thus, if

β

α
> − lim

N→∞

γ2

2(1 − γ)

( ∂γ

∂N
N2

)−1

, (23)

then ∂E(W |θ)
∂N

< 0 for sufficiently large N , which ensures the existence of a finite optimal

size of the committee.

Let us find the parameter condition equivalent to (23). After some calculations, I

obtain

lim
N→∞

∂γ

∂N
N2 = − 2r(1 − r)αβ

[α + (1 − r)β]2
.

By limN→∞ γ = (1−r)β
α+(1−r)β

, I obtain

lim
N→∞

γ2

2(1 − γ)

( ∂γ

∂N
N2

)−1

= −β

α
· 1 − r

4r
·
[
1 + (1 − r)

β

α

]
.

Thus, (23) if and only if

1 >
1 − r

4r
·
[
1 + (1 − r)

β

α

]
, (24)

which is equivalent to that r > 1
5

and β
α

< 5r−1
(1−r)2

.

(Necessity)

I will show that E(W |θ) is monotonically increasing in N unless the parameter set

satisfies that r > 1
5

and β
α

< 5r−1
(1−r)2

. Define the function f : (1,∞) → R by

f(N) =
γ

1 − γ
· 1

N
− γ2

2(1 − γ)

( ∂γ

∂N
N2

)−1

, for all N ∈ (1,∞).

Note that f(N) is the second term of the bracketed part of (22). Since γ is decreasing in

N by Corollary 1, the first term of f(N) is decreasing in N . Since

∂γ

∂N
N2 = −

2r(1 − r)(1 − 1
N

)αβ[
(1 − r

N
)(α + β) − r(1 − 1

N
)( α

N
+ β)

]2 ,
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by use of the definition of γ, I obtain

− γ2

2(1 − γ)

( ∂γ

∂N
N2

)−1

=
(1 − r)2β2

1 − γ
· 1

2r(1 − r)(1 − 1
N

)αβ
.

Since γ is decreasing in N by Corollary 1, the denominator of the right-hand side above

is increasing in N . This implies that the second term of f(N) is also decreasing in N .

Therefore, f is a decreasing function.

Note that limN→1
∂E(W )

∂N
> 0 by limN→1 f(N) = +∞. Thus, since f is monotonically

decreasing, ∂E(W )
∂N

> 0 for all N unless

β

α
> lim

N→∞
f(N).

Immediately from the calculation in the necessity part, this condition is equivalent to

that r > 1
5

and β
α

< 5r−1
(1−r)2

. Q.E.D.

Appendix D: Proof of Corollary 3

Since equation (7) holds for sufficiently large N , according to the proof of Proposition 2,

the next inequality is a sufficient condition for the existence of a finite optimal size.

β

α
>

π

2
lim

N→∞

γ2

2(1 − γ)

( ∂γ

∂N
N2

)−1

. (25)

Hence, similar to (24), inequality (25) is equivalent to

1 >
π

2
· 1 − r

4r

[
1 + (1 − r)

β

α

]
, (26)

which is equivalent to that r > π
π+8

and β
α

< (π+8)r−π
π(1−r)2

. Q.E.D.

Appendix E: Derivation of (16), (17), (18) and (19)

Macroeconomic dynamics of the artificial economy is given by the following system of

stochastic difference equations.

xt = Etxt+1 −
1

σ
(it − Etπt+1) + ut, (27)

πt = βEtπt+1 + κxt + et, (28)

it = σ[ut + γuε̃t + (1 − γu)µt] + Φ[et + γeη̃t + (1 − γe)νt]. (29)
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Since the relevant state variables in period t are et, ε̃t, η̃t, µt and νt, the solution will be

of the form

xt = Axet + Bxε̃t + Cxη̃t + Dxµt + Exνt, (30)

πt = Aπet + Bπε̃t + Cπη̃t + Dπµt + Eπνt, (31)

where Ak, Bk, Ck, Dk and Ek (k = x, π) are undetermined coefficients. Substituting

(30),(31) into (27),(29) and then (29) into (27) and comparing the coefficients of both

sides, I obtain

Ax = ρeAx −
Φ − ρeAπ

σ
, Bx = −γu, Cx = −γeΦ

σ
, (32)

Dx = −(1 − γu), Ex = −(1 − γe)Φ

σ
.

Substituting (30),(31) into (28) and comparing the coefficients of both sides,

Aπ = βρeAπ + κAx + 1, Bπ = κBx, Cπ = κCx, Dπ = κDx, Eπ = κEx. (33)

Solving the first equations of (32) and (33), Ax and Aπ turn out to be

Ax = − κ

λc(1 − βρe) + κ2
, Aπ =

λc

λc(1 − βρe) + κ2
.

Thus, I obtain equilibrium output gap and inflation rate in period t in the text.

Finally, I calculate asymptotic variances of output gap and inflation rate. By et =

ρeet−1 + ψt, asymptotic variance of et is
σ2

ψ

1−ρ2
e
. Besides, since et, ε

j
t , η

j
t , µt and νt are

mutually independent, each covariance of them is zero. Noting the two facts above, I

find asymptotic variance of output gap in the text. Similarly, I can calculate asymptotic

variance of inflation rate in the text.

Appendix F: Proof of Proposition 4

(1. The Sufficient Condition)

I prove it in the same way as the proof of Proposition 3. By the definition of the

performance measure of the monetary policy committee, the counterpart to (22) is

∂P

∂N
= 2

{
(1 − γu)σ

2
ε

∂γu

∂N

[
σ−2

ε

σ−2
µ

− γu

1 − γu

· 1

N
+

γ2
u

2(1 − γu)

(∂γu

∂N
N2

)−1
]

+(1 − γe)σ
2
η

∂γe

∂N

(Φ

σ

)2
[
σ−2

η

σ−2
ν

− γe

1 − γe

· 1

N
+

γ2
e

2(1 − γe)

(∂γe

∂N
N2

)−1
]}

. (34)
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Hence, a sufficient condition for that ∂L
∂N

> 0 for sufficiently large N is

σ−2
ε

σ−2
µ

> lim
N→∞

γ2
u

2(1 − γu)

(∂γu

∂N
N2

)−1

and

σ−2
η

σ−2
ν

> lim
N→∞

γ2
e

2(1 − γe)

(∂γe

∂N
N2

)−1

.

Similar to the proof of Proposition 3, this is equivalent to that r > 1
5
, σ−2

ε

σ−2
µ

< 5r−1
(1−r)2

and

σ−2
η

σ−2
ν

< 5r−1
(1−r)2

.

(2. The Necessary Condition)

According to the proof of Proposition 2, if both of the first and the second terms of

(35) converge to some non-negative numbers, then the optimal size does not exists. Thus,

for the existence of the optimal size, it is necessary for at least one of them to converge to

a negative number. Similar to the proof of Proposition 3, this is equivalent to r > 1
5

and
σ−2

ε

σ−2
µ

< 5r−1
(1−r)2

or r > 1
5

and
σ−2

η

σ−2
ν

< 5r−1
(1−r)2

, which can be reduced to r > 1
5

and σ−2
ε

σ−2
µ

< 5r−1
(1−r)2

or
σ−2

η

σ−2
ν

< 5r−1
(1−r)2

. Q.E.D.

Appendix G: Proof of Corollary 4

Note that med1≤j≤N{ϕj
t} = ϕt+med1≤j≤N{εj

t} and med1≤j≤N{ψj
t} = ψt+med1≤j≤N{ηj

t}.
Thus, by (13) and (14), nominal interest rate under median-voting rule is

it = i∗t + zt + σ(1 − γu)µt + Φ(1 − γe)νt,

where zt = med1≤j≤N {σγuε
j
t + Φγeη

j
t}.

By the same way as in Appendix E, I obtain the following equilibrium output gap

and inflation rate.

xt = − κ

λc(1 − βρe) + κ2
et −

[
1

σ
zt + (1 − γu)µt +

(1 − γe)Φ

σ
νt

]
,

πt =
λc

λc(1 − βρe) + κ2
et − κ

[
1

σ
zt + (1 − γu)µt +

(1 − γe)Φ

σ
νt

]
.

The asymptotic variances of the equilibrium output gap and inflation rate are

V (x) =

[
κ

λc(1 − βρe) + κ2

]2 σ2
ψ

1 − ρ2
e

+
1

σ2
V (zt) +

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
,

V (π) =

[
λc

λc(1 − βρe) + κ2

]2 σ2
ψ

1 − ρ2
e

+
κ2

σ2
V (zt) + κ2

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
,
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which give the social loss in equilibrium by (11). Since

zt ∝ N

(
0,

π(σ2γ2
uσ

2
ε + Φ2γ2

eσ
2
η)

2N

)
,

I obtain that

V (x) ≈
[

κ

λc(1 − βρe) + κ2

]2 σ2
ψ

1 − ρ2
e

+
π

2
· 1

N

[
γ2

uσ
2
ε +

(γeΦ

σ

)2

σ2
η

]
+

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
,

V (π) ≈
[

λc

λc(1 − βρe) + κ2

]2 σ2
ψ

1 − ρ2
e

+
π

2
· κ2

N

[
γ2

uσ
2
ε +

(γeΦ

σ

)2

σ2
η

]
+κ2

[
(1 − γu)

2σ2
µ +

(
(1 − γe)Φ

σ

)2

σ2
ν

]
for sufficiently large N .

Therefore, according to the proof of Corollary 2 and Proposition 4, I obtain the result

of Corollary 4. 31 Q.E.D.

31See Appendix D and F.
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Gerling, K., Grüner, H.P., Kiel, A. and E. Schulte (2005), ”Information acquisition and

decision making in committees: A survey”, European Journal of Polical Economy, 21,

563-597.

Kenney, J.F., and E.S. Keeping (1962), ”Mathematics of statistics”, Part 2, Van Nos-

trand, Princeton.

Koriyama, Y. and B. Szentes (2009), ”A resurrection of the Condorcet jury theorem”,

Theoretical Economics, 4, 227-252.

Li, H. (2001), ”A theory of conservatism”, Journal of Political Economy, 109, 617-636.

Maritz, J.S., and R.G. Jarrett (1978), ”A note on estimating the variance of the sample

median”, Journal of the American Statistical Association, 73, 194-196.

Martinelli, C. (2006), ”Would rational voters acquire costly information?”, Journal of

Economic Theory, 129, 225-251.

Morimoto, K. (2009), ”Optimal structure of monetary policy committees”, mimeo.

Morris, S. and H.S. Shin (2002), ”Social value of public information”, American Eco-

nomic Review, 92, 1521-1534.

Mukhopadhaya, K. (2003), ”Jury size and the free rider problem”, Journal of Law, Eco-

nomics, and Organization, 19, 24-44.

29



Muto, T. (2007), ”How do central banks make decisions?: Monetary policy by

committee”, Summary of a speech at the Spring Meeting of the Japan

Society of Monetary Economics in Chiba on May 12, 2007, readable at

http://www.boj.or.jp/en/type/press/koen07/ko0709b.htm.

Sibert, A. (2006), ”Central banking by committee”, International Finance, 9, 145-168.

Walsh, C.E. (2003), ”Monetary theory and policy”, 2nd ed., MIT Press, Cambridge, MA.

30



A Supplementary Note for ”Coordination Behavior
and Optimal Committee Size”∗

Keiichi Morimoto†‡

January 27, 2010

Abstract

This is a supplementary note for Morimoto (2010) ”Coordination Behavior and
Optimal Committee Size”. Here, I treats the case where each committee member
has proper prior on underlying state θ.

Keywords: beauty contest, proper prior, Condorcet jury theorem
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1 Incorporating Proper Prior into the Simple Model

Along the line of Morris and Shin (2002), Morimoto (2010) assumes each member’s im-

proper flat prior about the underlying state over the real line. However, it is more natural

to adopt some informative prior about the underlying state according to applications to

committees of experts. I analyze such a case here and show that the results of Morimoto

(2010) do not change. For a detail of the notations and model setting, see Morimoto

(2010).

Suppose that the underlying state θ is normally distributed with mean zero and

variance ω−1 > 0 and each committee member knows this.
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1.1 A Derivation of the Unique Equilibrium Strategy

Recall that the first order condition for each member problem is

aj = (1 − δ)Ej(θ) + δEj(ā). (1)

First, I find the equilibrium strategy by a heuristic method. Since each member’s es-

timation of the underlying state is partially anchored by the prior θ ∼ N(0, ω−1), it

becomes

Ej(θ) =
ω × 0 + αy + βxj

ω + α + β
=

α

ω + α + β
y +

β

ω + α + β
xj. (2)

Note that α
ω+α+β

+ β
ω+α+β

< 1. Thus, I can conjecture that the equilibrium strategy is of

the form such that

aj = γcy + γpxj, (3)

where γc and γp are undetermined coefficients such that γc + γp < 1. Substituting (2)

and (3) into (1), after some calculations, the left-hand size of (1) turns out to be[
(1 − δ)β

ω + α + β
+ δγc + δ

β

ω + α + β

(
1 − 1

N

)
γp

]
y

+

[
(1 − δ)α

ω + α + β
+

δ

N
γp + δ

α

ω + α + β

(
1 − 1

N

)
γp

]
xj.

Thus, comparing the coefficients of both the sides of (1) and using the definition of δ, I

obtain

γc =
(1 − 2rN−1 + rN−2)α(

1 − r
N

)
[β + ω + α] − r

(
1 − 1

N

)[
β + ω+α

N

] , (4)

γp =
(1 − r)β(

1 − r
N

)
[β + ω + α] − r

(
1 − 1

N

)[
β + ω+α

N

] . (5)

Second, I formally show that the strategy above is the unique equilibrium strategy.

Substituting (1) recursively, I obtain

aj = (1 − δ)
∞∑

s=0

δsEj(Ē
s(θ)). (6)

Thus, I next calculate the s-th order belief Ej(Ē
s(θ)). For given s = 0, 1, ..., put the s-th

order belief of arbitrary member j as follows.

Ej(Ē
s(θ)) = µsy + νsxj. (7)
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Then, since Ēs+1(θ) = µsy + νs
1
N

∑N
k=1 xk, I obtain

Ej(Ē
s+1(θ)) = µsy + νs

( 1

N
xj +

N − 1

N
· αy + βxj

ω + α + β

)
=

[
µs +

α

ω + α + β

(
1 − 1

N

)
νs

]
y +

ω+α
N

β

ω + α + β
νsxj.

Therefore, the coefficients of higher order beliefs satisfy the simultaneous difference equa-

tion

µs+1 = µs +
α

ω + α + β

(
1 − 1

N

)
νs,

νs+1 =
ω+α
N

β

ω + α + β
νs,

with the initial value (µ0, ν0) = ( α
ω+α+β

, β
ω+α+β

). The solution of this equation is

µs =
α

ω + α + β

[
1 +

(
1 − 1

N

) β

ω + α + β
· 1 − τ s

1 − τ

]
, for s = 0, 1, ..., (8)

µs =
β

ω + α + β
τ s, for s = 0, 1, ..., (9)

where τ =
ω+α

N
+β

ω+α+β
. Substituting (7), (8) and (9) into (6) and using the definition of δ, I

obtain the unique equilibrium strategy of the form given by (3), (4) and (5).

I finally check that the relationship between the committee size and the equilibrium

strategy.

∂γc

∂N
=

2r(1 − r)N−2(1 − N−1)αβ[
(1 − 2rN−1 − N−2)(ω + α) + (1 − r)β

]2 > 0, (10)

∂γp

∂N
= − 2r(1 − r)N−2(1 − N−1)(ω + α)β[

(1 − 2rN−1 − N−2)(ω + α) + (1 − r)β
]2 < 0. (11)

lim
N→∞

γc =
α

ω + α + (1 − r)β
, γc|N=1 =

α

ω + α + β
, (12)

lim
N→∞

γp =
(1 − r)β

ω + α + (1 − r)β
, γp|N=1 =

β

ω + α + β
(13)

1.2 Proper Prior and the Existence of Optimal Size

Next, I investigate the existence condition for the optimal size of the committee. Since

the distribution of θ is given in this case, it is natural to consider the unconditional

3



performance of the committee:

E(W ) = −E

[(
γc(θ + η) + γp

1

N

N∑
k=1

(θ + εk) − θ
)2

]

= −E

[(
γcη + γp

1

N

N∑
k=1

εk − (1 − (γc + γp))θ
)2

]
= −γ2

c α
−1 − γ2

p

β−1

N
− [1 − (γc + γp)]

2ω−1. (14)

The third term of (14) is generated by the weak response to common and private signals

due to the prior of mean zero. Differentiating E(W ) with respect to N , I obtain

∂E(W )

∂N
= −2γcα

−1 ∂γc

∂N
− 2γp

β−1

N
· ∂γp

∂N
+ γ2

pβ
−1N−2 + 2[1 − (γc + γp)]ω

−1∂(γc + γp)

∂N
.

The first, second and third terms are the same effects as those of the benchmark model.

The forth term is the negative effect from that each member is more strongly anchored

by the prior of mean zero. 1 Since

∂E(W )

∂N
= 2γcβ

−1∂γp

∂N

[
− β

α
· ∂γc/∂N

∂γp/∂N
−

(
γp

γc

· 1

N
−

γ2
p

2γc

(∂γp

∂N
N2

)−1

−[1 − (γc + γp)]
1

γc

· β

ω
· ∂(γc + γp)/∂N

∂γp/∂N

)]
,

along the line of the proof of Proposition 2, the following inequality is a sufficient condition

for the existence of the optimal committee size. 2

lim
N→∞

{
− β

α
· ∂γc/∂N

∂γp/∂N

}
> lim

N→∞

{
−

γ2
p

2γc

(∂γp

∂N
N2

)−1

+ [1 − (γc + γp)]
1

γc

· β

ω
· ∂(γc + γp)/∂N

∂γp/∂N

}
.

By (10), (11), (12) and (13), this is equivalent to

β + (1 − r)−1ω

α
<

5r − 1

(1 − r)2
. (15)

1.3 The Case of Median-voting Rule

Incorporating the proper prior, the sufficient condition for the existence of the optimal

size under median-voting rule in Corollary 3 should be modified in the same way. Similar

1By (10) and (11), I obtain ∂(γc+γp)
∂N = − 2r(1−r)N−2(1−N−1)ωβ[(

1−2rN−1−N−2
)
(ω+α)+(1−r)β

]2 < 0.

2Similar to the proof of Proposition 2, it can be easily checked that this is also a necessary condition.
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to section 2.4 in the main text, since

E(W ) ≈ −γ2
c α

−1 − π

2
γ2

p

β−1

N
− [1 − (γc + γp)]

2ω−1

for sufficiently large N under the median-voting rule, a sufficient condition for the exis-

tence of the optimal size is

lim
N→∞

{
− β

α
· ∂γc/∂N

∂γp/∂N

}
> lim

N→∞

{
− π

2
·

γ2
p

2γc

(∂γp

∂N
N2

)−1

+ [1 − (γc + γp)]
1

γc

· β

ω
· ∂(γc + γp)/∂N

∂γp/∂N

}
.

This is equivalent to

β + (1 − r)−1ω

α
<

(π + 8)r − π

π(1 − r)2
. (16)

2 The Model of Monetary Policy Committee

Next, I modify the model of monetary policy committee in section 3 of the main text

along the line of the modification of the simple model. In this model, each member of

the monetary policy committee has prior such that ϕt ∼ N(0, σ2
ϕ) and ψt ∼ N(0, σ2

ψ).

2.1 The Case of Average-voting Rule

Similar to section 1.2, the sufficient condition and necessary condition for the existence

of the optimal size in Proposition 4 are modified to ’r > 1
5
,

σ−2
ε +(1−r)−1σ−2

ϕ

σ−2
µ

< 5r−1
(1−r)2

and

σ−2
η +(1−r)−1σ−2

ψ

σ−2
ν

< 5r−1
(1−r)2

’ and ’r > 1
5

and
σ−2

ε +(1−r)−1σ−2
ϕ

σ−2
µ

< 5r−1
(1−r)2

or
σ−2

η +(1−r)−1σ−2
ψ

σ−2
ν

< 5r−1
(1−r)2

’

respectively.

2.2 The Case of Median-voting Rule

Similar to section 1.3, the sufficient condition for the existence of the optimal size in

Corollary 4 is modified to ’r > π
π+8

,
σ−2

ε +(1−r)−1σ−2
ϕ

σ−2
µ

< (π+8)r−π
π(1−r)2

and
σ−2

η +(1−r)−1σ−2
ψ

σ−2
ν

<
(π+8)r−π
π(1−r)2

’.
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