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Abstract

We analyze a dynamic principal–agent problem in which the agent’s ef-

fort in each period has strong persistent effects. We show that a simple

contract, where the reward depends only on the final outcome, is explained

as the optimal contract derived in the principal’s optimization problem. The

paper also discusses that the optimality of such a simple payment scheme

crucially depends on the first-order stochastic dominance of the final out-

come under various effort sequences.
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1 Introduction

In long-term principal–agent relationships with complete contracts, the principal

prepares payment schedules in advance and these schedules potentially depend on

the agent’s period-wise performance (i.e., performance related to the level of ef-

fort), in order to provide proper incentives. In the light of the celebrated sufficient

statistic theorem (Holmström (1979)), one may expect that using a very detailed

history of past performances, each of which are informative of the agent’s efforts,

is optimal for the principal in preparing payment schedules. In reality, however,

we often observe various incentive schemes that are not necessarily dependent on

the entire detailed record of performances but only on a subset of them, where

such subsets are sometimes much smaller than the entire set of performances.

From the viewpoint of economic studies, such simple contracts are interpreted

in several ways. One argument is that the principal incurs costs in preparing or

enforcing complex contracts, after taking such costs into consideration, some sort

of simple contract is concluded as a suboptimal solution. Another possibility,

following Holmström and Milgrom (1987), is that simple payment schedules are

justified by their robustness to the change of model parameters. Understanding

that such interpretations provide insights that enable us to grasp important aspects

of contracts in reality, the present paper aims to study a third way of explaining

simple contracts.1

Consider an environment where the agent’s current efforts have persistent ef-

fects over the future performances. In such environments, a contract that provides

strong incentives in the future induces the agent to work hard in the present, and

the role of such future incentives appears to be more important in such situations

than in those where the agent’s efforts have no persistent effects. However, this

is not to say that providing incentives only in the future is sufficient: the agent’s

1It should be noted that the current paper does not aim to provide a universal explanation for
simple contracts (as in Holmström and Milgrom (1987)), but looks for an explanation that works
in a particular class of environments.
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current performance is still informative about present efforts,2 and we may expect

that every informative performance should be included in the optimal contract, no

matter how low their informativeness may be. The present paper shows that this

is not always the case; that is, we show that an incentive scheme that depends only

on the final performance is optimal if the agent’s effort in each period has strong

persistent effects.

We provide sufficient conditions for such simple contracts to be optimal in

dynamic moral hazard models, in which the cost of efforts is the same in all peri-

ods. The common feature of our sufficient conditions is summarized as follows:

the probability distribution of the final outcome when the agent shirks only in the

final period first-order stochastically dominates (FOS-dominates hereafter) the

distribution when the agent shirks in any other period in such a way that the ex-

pected number of shirking events is one. To grasp the idea behind this condition

intuitively, consider a two-period model in which the agent’s first-period action

also affects the probability distribution of the second-period outcome. Let (a,a′)

denote the action profile in which the first element (second element) indicates the

agent’s first-period action (second-period action, respectively), and let ā (a) de-

note a strong effort (a shirk, respectively). Then, the sufficient condition has the

following two requirements (Assumption 1).

(i) The probability distribution of the second-period outcome when the agent

shirks only in the second period (ā,a) FOS-dominates the distribution when

the agent shirks only in the first period (a, ā).

(ii) The probability distribution of the second-period outcome when the agent

shirks only in the second period (ā,a) FOS-dominates the half-and-half

mixture of (a) the distribution when the agent shirks in both periods (a,a)

and (b) the distribution when the agent never shirks in any period (ā, ā).

We can understand this sufficient condition in the following way. Suppose that

2In the paper, we assume that performances are statistically independent between one period
and the next. See Section 2 for the formal model.
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the principal can (somehow) force the agent to work hard in the first period. Then

the principal’s problem is to design the contract so that the agent finds it optimal

to work hard in the second period (given that the agent is forced to worked hard in

the first period). Such an optimal contract provides the agent with higher expected

payoff (the sum of wages and effort costs) by taking (ā, ā) than by taking (ā,a).

Note that this optimal contract depends only on the second-period outcome so that

it is a contract in which “only the final outcome matters.”

Additionally suppose that this “optimal” contract is an increasing function of

second-period outcomes.3 Then requirement (i) ensures that shirking in the first

period (a, ā) always makes the agent worse off than shirking in the second period

(ā,a) does, since the cost of efforts is the same between the two action profiles

(i.e., one effort) and FOSD ensures that the agent’s expected wage by taking (ā,a)

is larger than by taking (a, ā).4 So given this contract, the agent never finds it

optimal to undertake (a, ā), even if there is no “forced labor” in the first period.

Requirement (ii), on the other hand, ensures that shirking in both periods (a,a)

makes the agent worse off compared with shirking in the second period (ā,a).

The argument behind this requirement is bit more complicated since the effort

costs are different between the two action profiles, (ā,a) and (a,a). As we will

see later, such a comparison is made by a FOSD between well-designed mixtures

of action profiles with the same expected number of efforts. In requirement (ii),

this is achieved by setting the expected number of efforts to be one on both sides

(1 = 0.5×2+0.5×0). Thus, under requirements (i) and (ii), the agent never finds

it optimal to undertake either (a, ā) or (a,a) even if there is no forced labor in the

first period, as long as the contract induces the agent to take (ā, ā) rather than

(ā,a). This is how the contract in which only the final outcome matters provides

a sufficient incentive to work hard in both periods.

3As is known in the literature, the monotone likelihood ratio property (MLRP) is required for
the optimal contract to be an increasing function. Subsection 2.1 discusses the case of MLRP.
In Subsection 2.2, we argue how the sufficient condition, (i) and (ii), is rewritten if MLRP is not
satisfied.

4FOSD provides a sufficient condition for a comparison between expectations of increasing
functions.
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Strong persistent effects of efforts as characterized by the FOSD are the main

sources of our result. Historical dependence of this sort is often seen in real eco-

nomic environments. For example, if an effort has a time-lag effect into the next

period, as well as the direct effect in the current period, then the probability of

success in period 2 is influenced by the effort level in period 1. If the production

technology involves irreversibility, then the model becomes history dependent in

a similar manner. We discuss these examples briefly in Section 2.

In Section 3, we show how the result in Section 2 is extended to a general

T-period setting. The extension is modestly straightforward and again the point

is the FOSD between mixtures of action profiles with the same expected number

of efforts. Human capital investment is discussed as an example of the sufficient

condition.

1.1 Related Literature

Much simpler models than the one in the present paper have been studied in inde-

pendent works by Kwon (2006), Mukoyama and Şahin (2005), and Ogawa (2003).

In their studies, outcomes take only two values, “success” and “failure”, and sim-

plified versions of our requirements (i) and (ii) are presented as the sufficient con-

dition for the simple contract.5 The present paper studies a model with N possible

outcomes and the proof is given in an organized manner using the property of

FOSD, which provides clear and rigorous interpretations of the earlier works.6

Studies on the dynamic models of the moral hazard problem date back to Lam-

5Although the distinction between MLRP and FOSD is important in the incentive theories with
hidden actions (Mas-Colell, Whinston, and Green (1995, Section 14.B)), the two conditions are
given by the same inequality

Pr[“success” | ā]> Pr[“success” | ā]

in the 2-outcome models.
6The earlier works have another contributions. Mukoyama and Şahin (2005) provided some

numerical analyses when the theoretical approach is difficult. The highlight of Kwon (2006) is the
empirical analysis using health insurance data. The “nonincreasing marginal returns” condition by
Kwon (2006) is a special case of our sufficient condition (see Section 3).
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bert (1983) and Rogerson (1985). Their studies are on the repeated model in the

sense that there is no persistent effects as studied in the present paper. In repeated

moral hazard, it is shown that the optimal contract depends on the entire history of

outcomes (memory effect in Rogerson (1985)). Our paper, in contrast, shows that

the optimal contract depends only on the final outcome under certain sufficient

conditions.

Dynamic moral hazard problems then have been studied in various exten-

sions. Problems in which the agent can access a bank are analyzed by Fudenberg,

Holmstrom, and Milgrom (1990) and Chiappori, Macho, Rey, and Salanié (1994)

among others. Renegotiation problems in dynamic moral hazard are studied by

Fudenberg and Tirole (1990), Ma (1991), Ma (1994), and Matthews (1995) among

others. In the present paper, we assume that there is no access to banks and no

renegotiation.

The relationship between sufficient statistic theorem (Holmström (1979)) and

our result casts an interesting light on the interpretation of “informativeness” in

economic studies. In the view of the sufficient statistic theorem, every statisti-

cally informative signal is useful (and should be used) in the optimal contract,

whereas in our model, the principal sometimes finds it optimal to “ignore” some

statistically informative signals.

Recent theoretical studies on repeated moral hazard problems include Jarque

(2010), who considers a similar problem with infinite horizon, continuum effort.

The current paper studies the model with two effort levels and we do not need to

replace incentive constraints with first-order conditions.

2 The Basic Model

We study a simple dynamic moral hazard model with “history dependence.” The

relationship between a principal (she) and an agent (he) lasts for two periods (t =

1,2).

In each period, the agent chooses his action at from the action space A =
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{a, ā}. These actions are unobservable to the principal. We may find it convenient

to interpret these actions as effort levels and say that the agent works hard (shirks)

when he chooses ā (a).

In period t, after the agent has chosen his action at , the outcome xt ∈
{x1, · · · ,xN} ≡ X is realized according to probabilities that depend on the history

of the agent’s actions; that is, the distribution of x1 depends on a1, whereas that

of x2 depends on the pair (a1,a2). These outcomes are immediately observed

by both parties (and assumed to be verifiable to third parties, such as a court).

We may regard these outcomes as performances and identify each of them with a

corresponding revenue received by the principal.

We assume that x1 and x2 are independently distributed;7 hereafter, we write

the distributions as given below:

p1
i (a

1) = Pr
[
x1 = xi | a1] (i = 1, · · · ,N),

p2
i (a

1,a2) = Pr
[
x2 = xi | (a1,a2)

]
(i = 1, · · · ,N).

Throughout the paper, we assume that the distributions have full support:

p1
i (a

1)> 0 for all (i,a1) ∈ {1, · · · ,N}×A,

p2
i (a

1,a2)> 0 for all (i,a1,a2) ∈ {1, · · · ,N}×A2.

At the beginning of the game (i.e., before t = 1), the principal and the agent

sign a contract in the manner detailed below.

First, the principal offers a long-term contract w = (w1,w2), where w1 =

(w1(x1))x1∈X and w2 = (w2(x1,x2))(x1,x2)∈X2 are payment schedules for periods

1 and 2, respectively, under outcome realizations (x1,x2). Such a contract stipu-

lates N+N2 possible payments, depending on the realizations of outcomes. Next,

the agent decides whether to accept or reject the contract offered by the principal.

7Under this assumption, the realized value of x1 does not influence the distribution of x2, so
the former yields no information on the current likelihood of any particular production levels in
period 2. The “history dependence” discussed in this paper deals with the case where x2 is affected
by a1, but not by the realization of x1.
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If the agent refuses the offered contract, both parties receive their reservation util-

ities and the game comes to an end. If the agent accepts the contract, the game

enters into the two-time moral hazard repetition discussed above.

We assume that the principal can commit to the long-term contract that she

has offered before t = 1, therefore, once the contract is accepted by the agent,

the principal cannot change the payment schedule w and must make the payment

in each period according to the history of outcome realizations up to the date of

payment. In addition, we assume that the agent must commit to his participation

in the game, therefore, once he accepts the contract, he cannot exit in the midst of

the game and must participate in it until the end of period 2.

In each period, the agent attains a payoff of u(w)− c(a), where u is strictly

increasing and strictly concave (the agent is risk averse) and c(a) < c(ā) (harder

work involves a greater cost). We normalize this as c(a) = 0 and c(ā) =C.

Given a long-term contract w, the agent’s strategy consists of two parts: one

is the action he takes in the first period, a1, and the other is the action schedule

for the second period a2 = (a2
i )

N
i=1, each of which specifies the action he takes

in period 2 under the outcome realization of x1 in period 1.8 Let Ui(a1,a2
i ,w2)

denote the expected utility in period 2 for the agent when he chose a1 and the

outcome was xi in the first period:

Ui(a1,a2
i ,w

2) =
N

∑
j=1

p2
i (a

1,a2
i )u(w

2(xi,x j))− c(a2
i ).

Using this notation, the intertemporal expected utility for the agent U(a1;a2;w)

under the agent’s strategy (a1;a2) is written as

U(a1;a2
1, · · · ,a2

N ;w) =
N

∑
i=1

p1
i (a

1)
[
u(w1(xi))+Ui(a1,a2

i ,w
2)
]
− c(a1).9

8Accordingly, we allow the agent to change his action in period 2 after he observes the outcome
realization in period 1, which is one of the standard assumptions in this literature. Once we stop
making this assumption and assume that the agent has to commit to a pair of actions (a1,a2)
ex ante, then the model reduces to a one-shot multitask incentive problem. We will make the
sequentiality assumption to focus on the dynamics of the model, but note that the main result of
the paper also applies to the one-shot multitask model.

9We assume that both the principal and the agent have a common discount factor of one. If
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The optimization problem for the principal when she wishes to implement an

action profile (a1,a2) is written as

min
w

N

∑
i=1

p1
i (a

1)

[
w1(xi)+

N

∑
j=1

p2
j(a

1,a2
i )w

2(xi,x j)

]
, (P)

subject to

U(a1,a2,w)≥U(a′,a′′,w), a′ ̸= a1, ∀a′′ ∈ AN , (IC1)

Ui(a1,a2
i ,w

2)≥Ui(a1,a′,w2), a′ ̸= a2
i , i = 1, · · · ,N, (IC2)

U(a1,a2,w)≥ 2ū, (PC)

where ū denotes the reservation utility for the agent.10

2.1 Simple Contract

In this subsection, we show that the optimal long-term contract is dependent only

on the second-period outcome if the probability distribution of the second-period

outcome satisfies certain conditions, as briefly discussed in the Introduction. The

result (Theorem 1) contrasts with that of the repeated moral hazard literature,

where the optimal long-term contract is always dependent on the complete history

of past outcomes.

Throughout this subsection, we assume that

p2
1(ā, ā)

p2
1(ā,a)

< · · ·<
p2

N(ā, ā)
p2

N(ā,a)
(2)

the common discount factor was less than one (but positive) and the outcome space consisted of
three elements or more, we could not attain the plausible sufficient conditions as in Assumption 1,
which relies on the nature of (p1

i (·)) and (p2
i (·, ·)). Mukoyama and Şahin (2005) showed that

when N = 2, an extension of Assumption 1 is a sufficient condition for w1(x1) to be constant, in a
similar model in which both players have a common discount factor of less than one.

10When the model is just a repetition of two moral hazard stages (as in Lambert (1983) and
Rogerson (1985)), the action taken in period 1, a1, does not affect the probability distribution of
outcomes in period 2, such that Ui(a′,a2

i ,w2) = Ui(a′′,a2
i ,w2) for any a′ ̸= a′′. This reduces the

incentive constraints for the first period (IC1) to

U(a1,a2,w)≥U(a′,a2,w), (a′ ̸= a1), (1)

under which we must only take into account the deviation strategies from a1 to the other a′, with
a2 being fixed.
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for the sake of a simple exposition. (2) is referred to as the monotone likelihood

ratio property (MLRP), and plays an important role in the monotonicity of optimal

contracts in the basic moral hazard model.11 In Subsection 2.2, we discuss how

the sufficient condition (Assumption 1 below) is described if (2) is not satisfied. At

this point we should note that the discussion in Subsection 2.2 is not restrictive,

and there we can describe an analogue of Assumption 1 for any given pairs of

p2
j(ā, ā) and p2

j(ā,a) which do not satisfy MLRP.

The following assumption provides a sufficient condition for such simple con-

tracts. We may regard this assumption as relating to “strong persistent effects”

in the sense that the action chosen in period 1 has a stronger influence on the

outcome in period 2 than does the action chosen in period 2.

Assumption 1. p2
j(a

1,a2) satisfies the following conditions:

(i) ∑ j
k=1 p2

k(a, ā)≥ ∑ j
k=1 p2

k(ā,a) for all j = 1, · · · ,N.

(ii) 1
2 ∑ j

k=1

(
p2

k(a,a)+ p2
k(ā, ā)

)
≥ ∑ j

k=1 p2
k(ā,a) for all j = 1, . . . ,N.

Condition (i) states that (ā,a) (first-order) stochastically dominates (a, ā), so

it asserts that, for any increasing function γ : {1, . . . ,N}→ R,

N

∑
j=1

p2
j(ā,a)γ( j)≥

N

∑
j=1

p2
j(a, ā)γ( j).

Condition (ii) is the stochastic dominance between (ā,a) and 1
2((ā, ā)+ (a,a)),

and hence, again,

N

∑
j=1

p2
j(ā,a)γ( j)≥ 1

2

N

∑
j=1

(
p2

j(ā, ā)+ p2
j(a,a)

)
γ( j),

for any increasing function γ .12 Given a pair of p2
j(ā, ā) and p2

j(ā,a), conditions

(i) and (ii) are mutually independent.

11MLRP’s implications in the principal-agent problem are discussed in Milgrom (1981).
12For comprehensive discussions of stochastic orders, see Mas-Colell et al. (1995, Section 6.D),

Shaked and Shanthikumar (2007) for instance.
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A different interpretation of condition (ii) can be done in the following manner.

Since p j(ā, ā)/p j(ā,a) is increasing in j and therefore ∑ j
k=1 p2

k(ā,a)≥∑ j
k=1 p2

k(ā, ā)

for all j, condition (ii) implies that

j

∑
k=1

(
p2

k(a,a)− p2
k(ā,a)

)
≥

j

∑
k=1

(
p2

k(ā,a)− p2
k(ā, ā)

)
≥ 0.

Therefore, condition (ii) implies that (ā,a) has to be “closer” to (ā, ā), compared

with (a,a).

Here, we provide two examples of probability distributions that satisfy As-

sumption 1. In both examples, it is assumed that the outcome is either “success”

or “failure” (N = 2).

Example 1 (Time lag). There is a time lag between the effort and its effect.

If the agent works hard in period t, it increases the probability of success not

only in the same period by α but also in the following period by β . We assume

that 0 < α < β , and regard β as a “full effect” of the effort and α as a “partial

effect” of the effort. Let π denote the probability of success when the agent has

never taken any positive efforts. Then, we have

p1
success(a) = π, p1

success(ā) = π +α ,

p2
success(a,a) = π, p2

success(a, ā) = π +α ,

p2
success(ā,a) = π +β , p2

success(ā, ā) = π +α +β .

Example 2 (Irreversibility). The agent has to make a positive effort in every pe-

riod to maintain the highest probability of success π̄ . If he shirks, the probability

of success declines by γ and this degree of success is not recovered even if the

agent makes a positive effort in the following period:

p1
success(a) = π̄ − γ, p1

success(ā) = π̄,

p2
success(a,a) = π̄ −2γ , p2

success(a, ā) = π̄ − γ

p2
success(ā,a) = π̄ − γ, p2

success(ā, ā) = π̄.

The main result is as follows.
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Theorem 1. Suppose that the probability distribution of the second-period out-

come satisfies Assumption 1. Then, the optimal long-term contract w that imple-

ments a1 = ā and a2 = (ā, . . . , ā) is such that

(a) w1(x1) is a constant for all x1 and

(b) w2(x1,x2) is independent of x1 and depends only on x2.

Proof. The proof proceeds in two steps. In the first step, we solve a “relaxed”

optimization problem as follows:

min
w

N

∑
i=1

p1
i (a

1)

[
w1(xi)+

N

∑
j=1

p2
j(a

1,a2
i )w

2(xi,x j)

]
, (P’)

subject to

Ui(a1,a2
i ,w

2)≥Ui(a1,a′,w2), a′ ̸= a2
i , i = 1, · · · ,N, (IC2)

U(a1,a2,w)≥ 2ū, (PC)

and show that the solution satisfies the properties (a) and (b). In the second step,

we verify that (any of the) contract satisfying properties (a) and (b) are always

compatible with the constraint (IC1). By these two steps, we conclude that the

solution to the “original” optimization problem (P) satisfies properties (a) and (b).

1. The first-order condition for w1(xi) in the “relaxed” problem (P′) is

1
u′(w1(xi))

= ν for all xi,

where ν is the Lagrange multiplier with respect to (PC). Thus, w1(xi) is a constant

for all xi.

The first-order condition for w2(xi,x j) is

1
u′(w2(xi,x j))

=
µi

pi(ā)

[
1−

p2
j(ā,a)

p2
j(ā, ā)

]
+ν , (3)

where µi is the Lagrange multiplier with respect to (IC2) for the correspond-

ing i. Here, w2(xi,x j) is independent of i (otherwise, the principal could be
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strictly better off by offering the certainty equivalence w̃′
j, such that u(w̃′

j) =

∑i p1
i (ā)u(w

2(xi,x j)), without affecting the remaining constraints (IC2) and (PC)).

Hence, the ratio µi/pi(ā) is a constant for all i.

If µi = 0, then w2(xi,x j) is a constant for all j, which violates (IC2) for i.

Hence, µi > 0 should be satisfied for all i, which means that (IC2) is binding for

all i in the optimum. Therefore, w2(xi,x j) depends only on j. In particular, from

the concavity of the utility function and the definition of j, w2(xi,x j) is increasing

in j .

2. First, we check that (IC1) is satisfied for two deviation strategies, (a1;a2) =

(a; ā, · · · , ā) and (a1;a2) = (a;a, · · · ,a), under the optimal contract derived in step

1. Here, we write w1(xi) =w1 and w2(xi,x j) =w2
j , as the contract is not dependent

on xi.

As shown in step 1, (IC2) is binding at the optimum. Therefore,

C =
N

∑
j=1

p2
j(ā, ā)u(w

2
j)−

N

∑
j=1

p2
j(ā,a)u(w

2
j). (4)

From Assumption 1 (i), we have
N

∑
j=1

p2
j(ā,a)u(w

2
j)≥

N

∑
j=1

p2
j(a, ā)u(w

2
j), (5)

since u(w j) is an increasing function of j. (5) together with (4) implies (IC1) with

a′ = a and a′′ = ā. Similarly, from Assumption 1 (ii), we have

2
N

∑
j=1

p2
j(ā,a)u(w

2
j)≥

N

∑
j=1

p2
j(ā, ā)u(w

2
j)+

N

∑
j=1

p2
j(a,a)u(w

2
j),

which implies (IC1) with a′ = a′′ = a.

Finally, we check that (IC1) is satisfied for any deviation strategies, (a1;a2) =

(a;a2
1, · · · ,a2

N). Suppose the agent undertakes a2
i = ā if i ∈ Ī ⊂ {1, · · · ,N} and

a2
i = a if i ∈ I = {1, · · · ,N} \ Ī. The intertemporal payoff to the agent following

this deviation strategy satisfies

u(w1)+∑
i∈Ī

p1
i (a)

[
N

∑
j=1

p2
j(a, ā)u(w

2
j)−C

]
+∑

i∈I
p1

i (a)

[
N

∑
j=1

p2
j(a,a)u(w

2
j)

]

13



≤ u(w1)+max

{
N

∑
j=1

p2
j(a, ā)u(w

2
j)−C,

N

∑
j=1

p2
j(a,a)u(w

2
j)

}
= max{U(a; ā, · · · , ā;w), U(a;a, · · · ,a;w)}

≤U(ā; ā, · · · , ā;w),

where the last inequality is derived from the previous result that (IC1) is satisfied

both for (a1;a2) = (a; ā, · · · , ā) and for (a1;a2) = (a;a, · · · ,a). Hence, (IC1) is

satisfied for any deviation strategy (a1;a2) = (a;a2
1, · · · ,a2

N).

The intuition behind the proof is as follows. For the principal who intends to

induce the agent to exert the positive effort ā in period 2, it is necessary to make

the second-period payment w2(xi,x j) dependent on the second-period outcome x j,

as this is the only source of incentive power available. However, such a payment

schedule induces the agent to work hard in period 1 because the distribution of

second-period outcomes is affected not only by a2 but also by a1. Assumption 1

(i) ensures that the agent always obtains a larger gross expected payoff in terms

of wages by undertaking action profile (ā,a) than by undertaking (a, ā) as a result

of the FOSD. In addition, as the cost of effort, C, is the same in both periods,

the agent obtains a larger net expected payoff as well. Thus, if the contract is to

induce hard work by the agent in the second period, it automatically provides the

agent with the incentive to work hard in the first period. Assumption 1 (ii), on

the other hand, ensures that the agent does not deviate to a strategy of shirking

in both periods (i.e., to (a,a)). Half-and-half mixture of the two probability dis-

tributions, (ā, ā) and (a,a), gives the agent’s gross expected payoff from taking

(a,a) in accordance with the benefit of effort cost reduction normalized to C (a

one-time shirk). Thus, if the contract is to induce hard work in the second period,

it automatically makes the agent worse off if he shirks in both periods, (a,a).

To summarize, if the probability distribution of the second-period outcome

when the agent shirks only in the second period (ā,a) FOS-dominates the distri-

bution when the agent shirks in any other periods in such a way that the expected

number of shirkings is one, providing incentives to work hard in the second pe-

14



riod becomes sufficient to induce the agent to make strong efforts in both periods.

As we will see in Section 3, such arguments regarding FOSD and one-time shirk-

ing play central roles in T -period models as well. We also discuss the sufficient

conditions for simple contracts for T -period models in a similar manner.

2.2 Non-MLRP Case

In this subsection, we discuss how an analogue of Assumption 1 is described if

p2
j(ā,a) and p2

j(ā,a) do not satisfy MLRP.

For making the problem non-trivial, we suppose that

p2
j(ā, ā)

p2
j(ā,a)

̸=
p2

k(ā, ā)
p2

k(ā,a)
for all j ̸= k

is satisfied.13 Then we have a unique rearrangement (permutation) κ(1), . . . ,κ(N)

of 1, . . . ,N so that
p2

κ(1)(ā, ā)

p2
κ(1)(ā,a)

< · · ·<
p2

κ(N)(ā, ā)

p2
κ(N)

(ā,a)
.

MLRP in the previous subsection is equivalent to (κ(1), . . . ,κ(N)) = (1, . . . ,N).

Then an analogue of Assumption 1 (i) is written as

j

∑
k=1

p2
κ(k)(a, ā)≥

j

∑
k=1

p2
κ(k)(ā,a) for all j = 1, . . . ,N,

which implies, for any increasing function γ : {1, . . . ,N}→ R,

N

∑
j=1

p2
κ( j)(ā,a)γ( j)≥

N

∑
j=1

p2
κ( j)(a, ā)γ( j).

The difference from the normal stochastic dominance cases is that the function γ
should be increasing in terms of the permutated numbers κ(1), . . . ,κ(N).

Then (3) in the proof of Theorem 1 is rewritten as

1
u′(w2(xi,xκ( j)))

=
µi

pi(ā)

[
1−

p2
κ( j)(ā,a)

p2
κ( j)(ā, ā)

]
+ν ,

13Equalities can be allowed for a subset of {1, . . . ,N}, but we avoid such cases for the sake of a
brief exposition.
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and, following the similar argument as in the proof, w2(xi,xκ( j)) is increasing in j

(and independent of i). Then (5) is rewritten as

N

∑
j=1

p2
κ( j)(ā,a)u(w

2
κ( j))≥

N

∑
j=1

p2
κ( j)(a, ā)u(w

2
κ( j)),

which is satisfied since u(w2
κ( j)) is increasing in j and (ā,a) FOS-dominates (a, ā)

in terms of κ( j). Similar argument holds for Assumption 1 (ii) and its implications

in the proof.

The following example depicts the role of κ( j) in the case where MLRP is not

satisfied. Suppose N = 3 (e.g., a performance is either low, middle, or high), and

the distributions are given as in the table.

j 1 2 3 κ(1) = 2 κ(2) = 1 κ(3) = 3

(ā, ā) 0.3 0.2 0.5 0.2 0.3 0.5

(ā,a) 0.3 0.4 0.3 0.4 0.3 0.3

(a, ā) 0.4 0.4 0.2 ⇒ 0.4 0.4 0.2

(a,a) 0.3 0.6 0.1 0.6 0.3 0.1

LR 1.0 0.5 1.6 0.5 1.0 1.6

The likelihood ratio (LR in the table) is not monotone in the original numbers

1,2,3, but we have a permutation κ(1),κ(2),κ(3) so that LR is monotone. It is

easy for the reader to check that (ā,a) FOS-dominates both (a, ā) and 1
2((ā, ā)+

(a,a)) (in terms of κ(1), . . . ,κ(N)), and hence, only the final outcome matters in

the optimal contract.

3 Extension

In this section, we extend the basic model to a T -period setup and show that a

similar result as in Theorem 1 are obtained. As in Section 2, we let at ∈ {ā,a}= A

and xt ∈ {x1, . . . ,xN}= X denote the agent’s actions and outcomes in each period

t = 1, · · · ,T , respectively. We also let at = (a1, . . . ,at) and xt = (x1, . . . ,xt). The
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distribution of each outcome xt is dependent on the whole past history of actions

at . We write the distributions as follows:

pt
i(a

t) = Pr
[
xt = xi | at] , i = 1, · · · ,N.

Throughout this section, we assume the monotone likelihood ratio property

(MLRP) for the final period outcome:

pT
1 (ā, . . . , ā, ā)

pT
1 (ā, . . . , ā,a)

< · · ·<
pT

N(ā, . . . , ā, ā)
pT

N(ā, . . . , ā,a)
.

This is just for a simplification as in Subsection 2.2. If the model does not satisfy

MLRP, we can rearrange the order of outcomes so that the sufficient condition for

the simple contracts as given below is written in a consistent way (see Subsec-

tion 2.3). It should be noted that MLRP is imposed only on the distributions by

(ā, . . . , ā, ā) and (ā, . . . , ā,a).

We also assume that the agent decides his entire action profile aT =(a1, · · · ,aT )

at the beginning of period 1 and that he never changes this profile after observing

the outcomes in each period.14 We split the agent’s action space AT = A×·· ·×A

into partitions (A0, . . . ,AT ), where

Ak =
{
(a1, . . . ,aT ) | #

{
t | at = a

}
= k
}
, k = 0, . . . ,T.

That is, Ak is the set of the action profile aT in which there are k weak efforts

a (and hence, T − k strong efforts ā).15 For instance, if T = 3, then we have

A0 = {(ā, ā, ā)}, A1 = {(ā, ā,a),(ā,a, ā),(a, ā, ā)}, etc.

Let V (a,w) denote the agent’s gross expected payoff from payment schedule

w when he takes action profile a. Then, the agent’s net expected payoff is written

14In the basic model presented in Section 2, it is assumed that the agent makes his second-
period action a2 after observing the first-period outcome x1; therefore, the action profile consists
of N + 1 components (a1;a2

1, . . . ,a
2
N), where a2

i denotes the second-period action when the first-
period outcome is xi. For the T -period model in this section, we may also consider the possibility
that the agent’s actions depend on past outcomes (the action profile in such a model consists of
(NT −1)/(N−1) components), but such a consideration does not change the result in Theorem 2.
See the Appendix for more on this point.

15It is obvious that (A0, . . . ,AT ) satisfies Ak∩Al = /0 for any k, l (k ̸= l), and
∪

k Ak =A. Hence,
(A0, · · · ,AT ) is a partition of A.
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as

V (a,w)−C ·m(a),

where C is the cost of a strong effort ā (as in Section 2) and m(a) is the number

of strong efforts in action profile a. Then, the incentive compatibility constraint in

the T -period model is simplified as follows: for k = 1, . . . ,T ,

V (ā, . . . , ā,w)−C · k ≥V (a′,w), for all a′ ∈ Ak. (ICk)

Now, we have an extension of Assumption 1.

Assumption 2. For all k = 1, . . . ,T and all a′ ∈ Ak,

∑ j
i=1
[
(k−1)pT

i (ā, . . . , ā, ā)+ pT
i (a′)

]
k

≥
j

∑
i=1

pT
i (ā, . . . , ā,a) (6)

holds for all j = 1, . . . ,N.

The following is an important example of Assumption 2.

Example 3 (Human capital investment). Suppose that the distributions of out-

comes in each period are dependent not on the detail of past actions, but on the

number of strong efforts that the agent has taken to date. To be specific, we let

qi(k) denote the probability distribution when the agent has undertaken k strong

efforts, and provide pt
i(·) as

pt
i(a

1, . . . ,at) = qi(#{τ ≤ t | aτ = ā}).

Such distributions depict the agent’s human capital investment or the learning-by-

doing effect of the agent’s effort.

In this example, the requirement of Assumption 2 is the following: For all

k = 2, · · · ,T , the inequality

∑ j
i=1 [(k−1)qi(T )+qi(T − k)]

k
≥

j

∑
i=1

qi(T −1)
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holds for all j = 1, . . . ,N. This condition seems rather artificial, but it includes

an important economic environment in which the investment has nonincreasing

marginal returns:

j

∑
i=1

[qi(k+1)−qi(k)]≥
j

∑
i=1

[qi(k)−qi(k−1)] . (7)

This inequality states that the marginal “benefit” in the probability distribution of

one additional effort is decreasing in k. It is easy to show that (7) is a special case

of condition (ii).16

Theorem 2. Suppose that pT
i (·) satisfies Assumption 2. Then, payments in the

optimal long-term contract are dependent only on the final outcome xT .

Remark. Assumption 2 is imposed only on the distribution of outcomes in the

final period (t = T ), and how the efforts of the agent affect the outcomes in other

periods (t = 1, . . . ,T − 1) is irrelevant to the result of Theorem 2. We should

discuss the reason briefly.

As long as the principal wants to make the agent work hard in the final period

(t = T ), the optimal wage should depend (at least) on the final outcome, xT . If the

economic environment satisfies Assumption 2, then the agent works hard in other

periods (t = 1, . . . ,T −1) under the wage scheme that gives enough incentives to

work hard in the final period. As long as the principal finds it optimal to implement

high efforts (as usually assumed in studies on moral hazard, including the present

16Kwon (2006) investigated a similar model with binary outcomes (N = 2) and showed that
the optimal long-term contract is dependent only on the final outcome under the assumption of
“nonincreasing marginal returns.” Although nonincreasing marginal returns is an easy assumption
to interpret economically, it is a rather strong assumption if T is a substantially large number, as it
requires that the inequality (7) be satisfied for all possible numbers of high efforts, k = 1, . . . ,T −1.
On the other hand, consider the following distributions when T = 3 and N = 2:

q1(0) = 0.9, q1(1) = 0.8, q1(2) = 0.2, q1(3) = 0.1,

(q1(·) represents the probability of “failure” when N = 2). This is not “nonincreasing returns,” but
it satisfies our FOSD condition. Our result suggests that what is central to the incentives in simple
contracts is the FOSD relationship, and nonincreasing marginal returns is just one example of the
condition. In addition, note that the two conditions coincide if (and only if) T = 2.
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one), other distributions are irrelevant in the principal’s cost minimization problem

and only the final distribution is central to the contract in which only the final

outcome matters.

We should also discuss that Assumption 2 is close to a “necessary” condition

in the following informal manner. Suppose that k = 1 and only a′ = (a, ā, . . . , ā) ∈
A1 violates (6). If the contract gives enough incentive to work hard in the final

period (and the IC in the final period is binding), the agent finds it optimal to work

hard in periods t = 2, . . . ,T , but may not in the first period.17 If the utility function

of the agent is such that the incentive to work hard in the first period is not provided

by the simple contract, the principal needs to rewrite the contract. However, the

precise form of the optimal contract is complicated in dynamic models, so we

cannot argue whether or not only the final outcome matters in the optimal contract

in the way using the FOSD condition as shown in the present paper.

Sketch of the proof. As in the proof of Theorem 1, we can show that the optimal

long-term contract is independent of outcome history xT−1 up to the period T −1,

if all incentive constraints are not binding with the exception of

V (ā, . . . , ā, ā,w)−C ≥V (ā, . . . , ā,a,w) (8)

In the following, we show that the derived contract, which is dependent only on

the final outcome xT , satisfies all incentive compatibility constraints.

As the derived contract w∗ satisfies (8) with equality, we have

C =V (ā, . . . , ā, ā,w∗)−V (ā, . . . , ā,a,w∗). (9)

For each k = 1, . . . ,T , substituting (9) into (ICk) yields:

k ·V (ā, . . . , ā,a,w∗)≥ (k−1) ·V (ā, . . . , ā, ā,w∗)+V (a′,w∗).

Condition (6) ensures that this inequality holds.

17FOSD between random variables X and Y is a sufficient condition for that E[u(X)]≥ E[u(Y )]
holds for an exogenously given increasing function u(·), but not a necessary one (Shaked and
Shanthikumar (2007)).
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4 Concluding Remarks

This paper explores the role of history dependence in a dynamic moral hazard

model. It is shown that, under certain conditions on the probability distributions

of outcomes, the optimal long-term contract is such that the payment schedules

are not contingent upon the realization of past outcomes. This finding contrasts

strikingly with the results in repeated moral hazard models, where the optimal

long-term contracts are generally dependent on the complete history of past out-

comes.

An important point of the results is the relationship between statistical infor-

mativeness of the signals (outcomes) and its effects on incentive problems in the

optimal contracts. In the light of statistical inference of agent’s past efforts, the

history of all outcomes must be valuable to the principal (i.e., informative), be-

cause the distributions of outcomes are assumed to be independent over time in

the present analysis (Apart from the information provided by x2 about a1, x1 pro-

vides a statistically independent information about a1). The principal, however,

sometimes finds it optimal to ignore such x1 in the present paper. We believe the

result that the principal finds it optimal to “ignore” informative signals is found in

other (non-trivial) contract theory models, but we leave this for future research.

This paper demonstrated a particular class of dynamic moral hazard models in

which the optimal contract is written in a simple manner. This extra conclusion

brings some new insights to the incentive provision in moral hazard problems,

but does not extend to general models on which we pose no conditions on the

information structure. Perhaps more important question is to explore the general

structure of dynamic incentives in which efforts have persistent effects over time.

The general theoretical examination of these problems remains to be done.
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Appendix

In this Appendix, we provide some mathematical arguments for footnote 14 in

Section 3.

Suppose that the agent is to undertake actions dependent on past outcomes.

We think of such an agent’s strategy as a sequence of “behavior strategy”; for

example,

α = (α1,α2(x1),α3(x1,x2), . . . ,αT (x1, . . . ,xT−1)),

where each α t : {1, . . . ,N}t−1 → A is a mapping from the history of past outcomes

(up to period t −1) to the action in period t.

The problem in footnote 14 is whether the agent improves his payoff by se-

lecting such a history-dependent strategy α (rather than a history-independent

strategy a = (a1,a2, . . . ,aT )).

Theorem 3. If the contract is simple, then the agent cannot improve his payoff by

selecting a history-dependent strategy α .

Proof. The expected payoff to the agent undertaking such a strategy α is written

as

∑
a∈AT


 ∑

(x1,...,xT−1)∈I(a,α)

T−1

∏
t=1

Pr[xt | α t(x1, . . . ,xt−1)]


×

(
T−1

∑
t=1

u(wt)+
N

∑
j=1

pT
j (a)u(w

T
j )−C ·m(a)

)}
(10)

where

I(a,α) =
{
(x1, . . . ,xT−1) | α t(x1, . . . ,xt−1) = at for t = 1, . . . ,T

}
;

that is, I(a,α) is the set of historical outcomes with the positive probability that

action profile a is played under strategy α .

Because every history (x1, . . . ,xT−1) generates exactly one action profile, a

given α , the first parentheses in (10) is seen as a probability distribution of a over
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AT ; that is,

∑
a∈AT

 ∑
(x1,...,xT−1)∈I(a,α)

T−1

∏
t=1

Pr[xt | α t(x1, . . . ,xt−1)]

= 1 for any α.

As the expected value of random variables does not exceed the maximum of the

variables, we establish that

(10)≤ max
a∈AT

(
T−1

∑
t=1

u(wt)+
N

∑
j=1

pT
j (a)u(w

T
j )−C ·m(a)

)
= max

a∈AT
(V (a,w)−C ·m(a)) .
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HOLMSTRÖM, B., AND P. MILGROM (1987): “Aggregation and Linearity in the

Provision of Intertemporal Incentives,” Econometrica, 55, 303–328.

JARQUE, A. (2010): “Repeated Moral Hazard with Effort Persistence,” Journal

of Economic Theory, 145, 2412–2423.

23



KWON, I. (2006): “Incentives, Wages, and Promotions: Theory and Evidence,”

RAND Journal of Economics, 37, 100–120.

LAMBERT, R. A. (1983): “Long-Term Contracts and Moral Hazard,” Bell Journal

of Economics, 14, 441–452.

MA, C.-T. A. (1991): “Adverse Selection in Dynamic Moral Hazard,” Quarterly

Journal of Economics, 106, 255–275.

(1994): “Renegotiation and Optimality in Agency Contracts,” Review of

Economic Studies, 61, 109–129.

MAS-COLELL, A., M. WHINSTON, AND J. GREEN (1995): Microeconomic

Theory. Oxford: Oxford University Press.

MATTHEWS, S. A. (1995): “Renegotiation of Sales Contracts,” Econometrica,

63, 567–589.

MILGROM, P. R. (1981): “Good News and Bad News: Representation Theorems

and Applications,” Bell Journal of Economics, 12, 380–391.
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